

Ian Moir, Allan Seabridge and Malcolm Jukes

Civil Avionics Systems Second Edition

Aerospace Series

Editors Peter Belobaba, Jonathan Cooper and Allan Seabridge

CIVIL AVIONICS SYSTEMS

Aerospace Series List

to

Civil Avionics Systems, Second Edition
Modelling and Managing Airport Performance
Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes
Design and Analysis of Composite Structures: With Applications Aerospace Structures, Second Edition
Aircraft Systems Integration of Air-Launched Weapons
Design and Development of Aircraft Systems, Second Edition
Understanding Aerodynamics: Arguing from the Real Physics
Aircraft Design: A Systems Engineering Approach
Introduction to UAV Systems, Fourth Edition
Theory of Lift: Introductory Computational Aerodynamics with MATLAB and Octave
Sense and Avoid in UAS: Research and Applications
Morphing Aerospace Vehicles and Structures
Gas Turbine Propulsion Systems
Basic Helicopter Aerodynamics, Third Edition
Advanced Control of Aircraft, Spacecraft and Rockets
Cooperative Path Planning of Unmanned Aerial Vehicles
Principles of Flight for Pilots
Air Travel and Health: A Systems Perspective
Unmanned Aircraft Systems: UAVS Design, Development and Deployment
Introduction to Antenna Placement and Installations
Principles of Flight Simulation
Aircraft Fuel Systems
The Global Airline Industry
Computational Modelling and Simulation of Aircraft and the Environment: Volume 1 – Platform Kinematics and Synthetic Environment
Handbook of Space Technology
Aircraft Performance Theory and Practice for Pilots
Aircraft Systems, Third Edition
Introduction to Aircraft Aeroelasticity and Loads
Stability and Control of Aircraft Systems
Military Avionics Systems
Design and Development of Aircraft Systems
Aircraft Loading and Structural Layout
Aircraft Display Systems
Civil Avionics Systems

Moir, Seabridge and Jukes	August 2013
Zografos	July 2013
Torenbeek	June 2013
Kassapoglou	April 2013
Rigby	April 2013
Moir and Seabridge	November 2012
McLean	November 2012
Sadraey	October 2012
Fahlstrom and Gleason	August 2012
McBain	August 2012
Angelov Valasek	April 2012 April 2012
MacIsaac and Langton	July 2011
Seddon and Newman	July 2011
Tewari	July 2011
Tsourdos et al.	November 2010
Swatton	October 2010
Seabridge et al.	September 2010
Austin	April 2010
Macnamara	April 2010
Allerton	October 2009
Langton et al.	May 2009
Belobaba	April 2009
Diston	April 2009
Ley, Wittmann Hallmann	April 2009
Swatton	August 2008
Moir and Seabridge	March 2008
Wright and Cooper	December 2007
Langton	September 2006
Moir and Seabridge	February 2006
Moir and Seabridge	June 2004
Howe	May 2004

December 2003

December 2002

Jukes

Moir and Seabridge

CIVIL AVIONICS SYSTEMS

Second Edition

Ian Moir Aerospace Consultant, UK

Allan Seabridge Aerospace Consultant, UK

Malcolm Jukes Aerospace Consultant, UK

WILEY

This edition was published in 2013 © 2013 John Wiley & Sons, Ltd

First Edition published in 2003 © 2003 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Moir, I. (Ian)
Civil avionic systems / Ian Moir, Allan Seabridge, Malcolm Jukes. – 2nd edition.

online resource.

Some parts of ECIP data have title: Civil avionics systems
Includes bibliographical references and index.
Description based on print version record and CIP data provided by publisher; resource not viewed.
ISBN 978-1-118-53672-8 (ePub) – ISBN 978-1-118-53673-5 (Adobe PDF) – ISBN 978-1-118-53674-2
(MobiPocket) – ISBN 978-1-118-34180-3 (cloth) 1. Avionics. I. Seabridge, A. G. (Allan G.) II. Jukes,
Malcolm. III. Title. IV. Title: Civil avionics systems.
TL695
629.135–dc23

2013023778

A catalogue record for this book is available from the British Library

ISBN: 978-1-118-34180-3

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

1 2013

This book is dedicated to Sheena, Sue and Marianne who once again allowed us to indulge our passion for aircraft engineering.

We also wish to acknowledge the passing of a friend, colleague, fellow author, and Series Editor: a major contributor to the Aerospace Series. A vital member of the global aerospace engineering community who passed away on 22 November 2012.

An aerospace systems engineer 'par excellence'

Roy Langton, 1939 to 2012

Contents

Abou	ut the Au	thors	xix
Serie	es Preface	e	xxi
Prefa	ace to Sec	cond Edition	xxii
Prefa	ace to Fir	rst Edition	xxiii
Ackr	nowledge	ments	XXV
List	of Abbrev	viations	xxvi
1	Introd	uction	1
1.1	Advand	ces since 2003	1
1.2	Compa	arison of Boeing and Airbus Solutions	2
1.3		e of Book Content	2
	1.3.1	Enabling Technologies and Techniques	3
	1.3.2		4
	1.3.3	The Flight Deck	4
1.4	The Ap	ppendices	4
2	Avioni	cs Technology	7
2.1	Introdu	action	7
2.2	Avioni	cs Technology Evolution	8
	2.2.1	Introduction	8
	2.2.2	Technology Evolution	8
2.3	Avionics Computing		11
	2.3.1	The Nature of an Avionics Computer	11
	2.3.2	Resolution (Digitisation)	13
	2.3.3	The Sampling Frequency (Refresh Rate)	14
2.4	-	Systems Input and Output	19
	2.4.1	Introduction	19
	2.4.2	Analogue to Digital Process	20
	2.4.3	Sampling Rate	22
	2.4.4	Digital to Analogue Process	23
	2.4.5	Analogue Signal Conditioning	25
	2.4.6	Input Signal Protection and Filtering	27
	2.4.7	Analogue Signal Types	29

2.5	Binary .	Arithmetic	29
	2.5.1	Binary Notations	29
	2.5.2	Binary Addition, Subtraction, Multiplication	
		and Division	32
	2.5.3	The Arithmetic Logic Unit	32
2.6	The Cer	ntral Processing Unit (CPU)	34
	2.6.1	CPU Instruction Format	35
	2.6.2	Instruction Execution Sequence	35
	2.6.3	Extended Operand Addressing Modes	42
2.7	Softwar	re	43
	2.7.1	Software Introduction	43
	2.7.2	Assemblers and Compilers	43
	2.7.3	Software Engineering	44
	2.7.4	Software Design Process Assurance	45
	2.7.5	Languages	47
	2.7.6	Object-Oriented Design	49
	2.7.7	Auto-code Generation	50
	2.7.8	Real-Time Operating System (RTOS)	51
2.8	Microp	rocessors	53
	2.8.1	Moore's Law	53
	2.8.2	Significant Microprocessors used in	
		Aerospace Applications	54
	2.8.3	CPU Cache	57
	2.8.4	Microcontrollers	58
	2.8.5	Rock's Law	59
2.9	Memory	y Technologies	59
	2.9.1	Desired Avionics Memory Attributes	60
	2.9.2	Available Memory Technology Attributes	60
	2.9.3	Memory Device Summary	64
	2.9.4	Memory Hierarchy	64
2.10	Applica	ation-Specific Integrated Circuits (ASICs)	64
	2.10.1	Main Types of ASICs	64
	2.10.2	Field Programmable Gate Array (FPGA)	66
	2.10.3		68
	2.10.4		68
	2.10.5	RTCA-DO-254/ED 80	69
2.11		ted Circuits	70
	-	Logic Functions	70
	2.11.2	The MOS Field Effect Transistor (MOSFET)	70
	2.11.3	IC Fabrication	70
2.12		ted Circuit Packaging	73
	2.12.1	Wafer Probe and Test	74
	2.12.2	Wafer Separation and Die Attachment	74
	2.12.3	Wire Bonding	75
	2.12.4	Packaging	75
	Referen	0 0	77

3	Data B	Bus Networks	79
3.1	Introdu	iction	79
3.2	Digital	Data Bus Basics	80
	3.2.1	Data Bus Overview	80
	3.2.2	Bit Encoding	82
	3.2.3	Attributes	83
	3.2.4	Transmission Classes	83
	3.2.5	Topologies	83
	3.2.6	Transmission Rates	84
3.3	Transm	nission Protocols	84
	3.3.1	Transmission Protocols Overview	84
	3.3.2	Time-Slot Allocation Protocol	86
	3.3.3	Command/Response Protocol	87
	3.3.4	Token Passing Protocol	88
	3.3.5	Contention Protocol	88
3.4	ARINO	C 429	88
	3.4.1	ARINC 429 Overview	88
	3.4.2	ARINC 429 Architecture Realisation	90
3.5	MIL-S	TD-1553B	91
	3.5.1	MIL-STD-1553B Overview	91
	3.5.2	MIL-STD-1553B Word Formats	92
	3.5.3	Bus Controller to Remote Terminal (BC-RT) Protocol	94
	3.5.4	Remote Terminal to Bus Controller (RT-BC) Protocol	94
	3.5.5	Remote Terminal to Remote Terminal (RT-RT) Protocol	95
	3.5.6	Broadcast Protocol	95
	3.5.7	Error Management	95
3.6	ARINO	C 629	97
	3.6.1	ARINC 629 Overview	97
	3.6.2	ARINC 629 Protocol	97
	3.6.3	ARINC 629 Bus Coupler	99
	3.6.4	ARINC 629 Architecture Realisation	99
3.7	ARINO	C 664 Part 7	100
	3.7.1	ARINC 664 Overview	100
	3.7.2	Ethernet Frame Format	101
	3.7.3	Network Topology	101
	3.7.4	Contention Avoidance	103
	3.7.5	Virtual Links	105
	3.7.6	Protocol	107
	3.7.7	Summary	109
	3.7.8	Cables	109
3.8	CANbu	15	110
	3.8.1	CANbus Overview	110
	3.8.2	CANbus Message Formats	110
	3.8.3	CANbus Variants	112
3.9	Time T	riggered Protocol	113
3.10		ptic Data Communications	113

	3.10.1	Attributes of Fibre-optic Data Transmission	113
	3.10.2	Physical Implementation	114
3.11	Data Bu	us Summary	115
	3.11.1	Data Bus Overview	115
	3.11.2	Contrasting Traffic Management Techniques	117
	Referen	nces	118
4		Safety	119
4.1	Introdu		119
4.2	Flight S	•	120
	4.2.1	Introduction	120
	4.2.2	Flight Safety Overview	120
	4.2.3	Accident Causes	124
4.3	System	Safety Assessment	124
	4.3.1	Introduction	124
	4.3.2	Key Agencies, Documents and Guidelines	125
	4.3.3	Failure Classification	126
	4.3.4	In-Service Experience	127
	4.3.5	Safety Assessment Processes	127
4.4	Reliabi	lity	128
	4.4.1	Introduction	128
	4.4.2	Failure Mechanisms	128
	4.4.3	The Relationship between Probability and Mean	
		Time between Failures	130
	4.4.4	Assessment of Failure Probability	132
	4.4.5	Reliability Management	133
4.5	Availab	134	
	4.5.1	Introduction	134
	4.5.2	Classic Probability Theory	135
	4.5.3	Simplex Architecture	135
	4.5.4	Triplex Architecture	136
	4.5.5	Triplex Architecture plus Backup	136
4.6	Integrit	у	138
	4.6.1	Built-in-Test	139
	4.6.2	Cross-Monitoring	140
4.7	Redund	lancy	141
	4.7.1	Simplex Architecture	142
	4.7.2	Duplex Architecture	142
	4.7.3	Dual Command: Monitor Architecture	143
	4.7.4	Triplex Architecture	145
	4.7.5	Quadruplex Architecture	146
	4.7.6	Summary	147
4.8	Analysi	is Methods	148
	4.8.1	Top-Down Methods	148
	4.8.2	Bottom-Up Methods	149
	4.8.3	Lighting System Example	149

4.9	Other (Considerations	151
	4.9.1	Exposure Time (Time at Risk)	151
	4.9.2	Cascade and Common Mode Faults	152
	4.9.3	Dissimilarity	153
	4.9.4	Segregation and Partitioning	155
	4.9.5	Dispatch Availability	156
	Refere		157
5	Avioni	ics Architectures	159
5.1	Introdu	uction	159
5.2	Avioni	cs Architecture Evolution	159
	5.2.1	Overview of Architecture Evolution	159
	5.2.2	Distributed Analogue Architecture	161
	5.2.3	÷	162
	5.2.4		164
	5.2.5	Integrated Modular Avionics	166
	5.2.6	Open System Standards	169
5.3	Avioni	ic Systems Domains	169
	5.3.1	The Aircraft as a System of Systems	169
	5.3.2	ATA Classification	171
5.4	Avioni	cs Architecture Examples	172
	5.4.1	The Manifestations of IMA	172
	5.4.2	The Airbus A320 Avionics Architecture	173
	5.4.3	The Boeing 777 Avionics Architecture	174
	5.4.4	Honeywell EPIC Architecture	179
	5.4.5	The Airbus A380 and A350	180
	5.4.6	The Boeing 787	184
5.5	IMA D	Design Principles	188
5.6		irtual System	189
	5.6.1	Introduction to Virtual Mapping	189
	5.6.2	Implementation Example: Airbus A380	191
	5.6.3	Implementation Example: Boeing 787	193
5.7	Partitic		194
5.8		Fault Tolerance	195
	5.8.1	Fault Tolerance Principles	195
	5.8.2	Data Integrity	196
	5.8.3	Platform Health Management	197
5.9		rk Definition	197
5.10	Certifie		198
	5.10.1		198
	5.10.2		199
	5.10.3		200
	5.10.4	*	200
	5.10.5		201
5.11		Standards	201
	Refere		203

6	Systen	ns Development	205
6.1	Introdu	action	205
	6.1.1	Systems Design	205
	6.1.2	Development Processes	206
6.2	System	1 Design Guidelines	206
	6.2.1	Key Agencies and Documentation	206
	6.2.2	Design Guidelines and Certification Techniques	207
	6.2.3	Guidelines for Development of Civil Aircraft and	
		Systems – SAE ARP 4754A	208
	6.2.4	Guidelines and Methods for Conducting the	
		Safety Assessment – SAE ARP 4761	208
	6.2.5	Software Considerations – RTCA DO-178B	209
	6.2.6	Hardware Development – RTCA DO-254	209
	6.2.7	Integrated Modular Avionics – RTCA DO-297	209
	6.2.8	Equivalence of US and European Specifications	210
6.3	Interre	lationship of Design Processes	210
	6.3.1	Functional Hazard Assessment (FHA)	210
	6.3.2	Preliminary System Safety Assessment (PSSA)	212
	6.3.3	System Safety Assessment (SSA)	213
	6.3.4	Common Cause Analysis (CCA)	213
6.4	Requirements Capture and Analysis		
	6.4.1	Top-Down Approach	214
	6.4.2	Bottom-Up Approach	214
	6.4.3	Requirements Capture Example	215
6.5	Development Processes		
	6.5.1	The Product Life-Cycle	217
	6.5.2	Concept Phase	218
	6.5.3	Definition Phase	219
	6.5.4	Design Phase	220
	6.5.5	Build Phase	221
	6.5.6	Test Phase	222
	6.5.7	Operate Phase	223
	6.5.8	Disposal or Refurbish Phase	223
6.6	Develo	224	
	6.6.1	Typical Development Programme	224
	6.6.2	'V' Diagram	226
6.7	Extended Operations Requirements		
	6.7.1	ETOPS Requirements	226 226
	6.7.2	Equipment Requirements	228
6.8	ARINO	C Specifications and Design Rigour	229
	6.8.1	ARINC 400 Series	229
	6.8.2	ARINC 500 Series	229
	6.8.3	ARINC 600 Series	229
	6.8.4	ARINC 700 Series	230
	6.8.5	ARINC 800 Series	230
	6.8.6	ARINC 900 Series	230

6.9	Interfac	ce Control	231
	6.9.1	Introduction	231
	6.9.2	Interface Control Document	231
	6.9.3	Aircraft-Level Data-Bus Data	231
	6.9.4	System Internal Data-Bus Data	233
	6.9.5	Internal System Input/Output Data	233
	6.9.6	Fuel Component Interfaces	233
	Referen	nces	233
7		ical Systems	235
7.1	Electric	cal Systems Overview	235
	7.1.1	Introduction	235
	7.1.2	Wider Development Trends	236
	7.1.3	Typical Civil Electrical System	238
7.2	Electric	cal Power Generation	239
	7.2.1	Generator Control Function	239
	7.2.2	DC System Generation Control	240
	7.2.3	AC Power Generation Control	242
7.3	Power	Distribution and Protection	248
	7.3.1	Electrical Power System Layers	248
	7.3.2	Electrical System Configuration	248
	7.3.3	Electrical Load Protection	250
	7.3.4	Power Conversion	253
7.4	Emerge	ency Power	254
	7.4.1	Ram Air Turbine	255
	7.4.2	Permanent Magnet Generators	256
	7.4.3	Backup Systems	257
	7.4.4	Batteries	258
7.5	Power	System Architectures	259
	7.5.1	Airbus A320 Electrical System	259
	7.5.2	Boeing 777 Electrical System	261
	7.5.3	Airbus A380 Electrical System	264
	7.5.4	Boeing 787 Electrical System	265
7.6	Aircraf	ft Wiring	268
	7.6.1	Aircraft Breaks	269
	7.6.2	Wiring Bundle Definition	270
	7.6.3	Wiring Routing	271
	7.6.4	Wiring Sizing	272
	7.6.5	Aircraft Electrical Signal Types	272
	7.6.6	Electrical Segregation	274
	7.6.7	The Nature of Aircraft Wiring and Connectors	274
	7.6.8	Used of Twisted Pairs and Quads	275
7.7	Electric	cal Installation	276
	7.7.1	Temperature and Power Dissipation	278
	7.7.2	Electromagnetic Interference	278
	7.7.3	Lightning Strikes	280

7.8	Bondin	g and Earthing	280
7.9		Conditioning	282
	7.9.1	Signal Types	282
	7.9.2	Signal Conditioning	283
7.10	Central	Maintenance Systems	284
	7.10.1	Airbus A330/340 Central Maintenance System	285
	7.10.2	Boeing 777 Central Maintenance	
		Computing System	288
	Referen		290
		Reading	290
8	Sensor	s	291
8.1	Introdu		291
8.2		ta Sensors	292
0.2	8.2.1		292
	8.2.2	Pressure Sensing	292
	8.2.3	Temperature Sensing	292
	8.2.4	Use of Pressure Data	292
	8.2.5	Pressure Datum Settings	295
	8.2.6	Air Data Computers (ADCs)	293
	8.2.7	Airstream Direction Detectors	299
	8.2.8	Total Aircraft Pitot-Static System	300
8.3	Magnet	301	
0.5	8. <i>3</i> . <i>1</i>	Introduction	301
	8.3.2	Magnetic Field Components	301
	8.3.3	Magnetic Variation	302
	8. <i>3.4</i>	Magnetic Heading Reference System	305
8.4		Sensors	305
0.4	8.4.1	Introduction	306
	8.4.2	Position Gyroscopes	306
	8.4.3	Rate Gyroscopes	306
	8.4.4	Accelerometers	308
	8.4.5	Inertial Reference Set	309
	8.4.6	Platform Alignment	312
	8.4.0 8.4.7	Gimballed Platform	312
	8.4.7 8.4.8	Strap-Down System	313
8.5		ned Air Data and Inertial	317
0.0			317
		Introduction	
	8.5.2	Evolution of Combined Systems	317
	8.5.3	Boeing 777 Example	319
	8.5.4	ADIRS Data-Set	320
06	8.5.5 Further System Integration		320
8.6	Radar S		323
	8.6.1	Radar Altimeter	323
	8.6.2	Weather Radar	324
	Referen	nces	327

9		unications and Navigation Aids	329
9.1	Introdu		329
	9.1.1	Introduction and RF Spectrum	329
	9.1.2	Equipment	331
0.0	9.1.3	Antennae	332
9.2		inications	332
	9.2.1	Simple Modulation Techniques	332
	9.2.2	HF Communications	335
	9.2.3	VHF Communications	337
	9.2.4	SATCOM	339
	9.2.5	Air Traffic Control (ATC) Transponder	342
0.0	9.2.6	Traffic Collision Avoidance System (TCAS)	345
9.3		-Based Navigation Aids	347
	9.3.1	Introduction	347
	9.3.2	Non-Directional Beacon	348
	9.3.3	VHF Omni-Range	348
	9.3.4	Distance Measuring Equipment	348
	9.3.5	TACAN	350
	9.3.6	VOR/TAC	350
9.4		ent Landing Systems	350
	9.4.1	Overview	350
	9.4.2	Instrument Landing System	351
	9.4.3	Microwave Landing System	354
	9.4.4	GNSS Based Systems	354
9.5	Space-H	Based Navigation Systems	354
	9.5.1	Introduction	354
	9.5.2	Global Positioning System	355
	9.5.3	GLONASS	358
	9.5.4	Galileo	359
	9.5.5	COMPASS	359
	9.5.6	Differential GPS	360
	9.5.7	Wide Area Augmentation System (WAAS/SBAS)	360
	9.5.8	Local Area Augmentation System (LAAS/LBAS)	360
9.6	Commu	inications Control Systems	362
	Referen	aces	363
10	Flight (Control Systems	365
10.1	Principl	les of Flight Control	365
	10.1.1	Frame of Reference	365
	10.1.2	Typical Flight Control Surfaces	366
10.2	Flight C	Control Elements	368
	10.2.1	Interrelationship of Flight Control Functions	368
	10.2.2	Flight Crew Interface	370
10.3	Flight C	Control Actuation	371
	10.3.1	Conventional Linear Actuation	372
	10.3.2	Linear Actuation with Manual and Autopilot Inputs	372

	10.3.3	Screwjack Actuation	373
	10.3.4	Integrated Actuation Package	374
	10.3.5	FBW and Direct Electrical Link	376
	10.3.6	Electrohydrostatic Actuation (EHA)	377
	10.3.7	Electromechanical Actuation (EMA)	378
	10.3.8	Actuator Applications	379
10.4	Principl	es of Fly-By-Wire	379
	10.4.1	Fly-By-Wire Overview	379
	10.4.2	Typical Operating Modes	380
	10.4.3	Boeing and Airbus Philosophies	382
10.5	Boeing	777 Flight Control System	383
	10.5.1	Top Level Primary Flight Control System	383
	10.5.2	Actuator Control Unit Interface	384
	10.5.3	Pitch and Yaw Channel Overview	386
	10.5.4	Channel Control Logic	387
	10.5.5	Overall System Integration	389
10.6	Airbus l	Flight Control Systems	389
	10.6.1	Airbus FBW Evolution	389
	10.6.2	A320 FBW System	391
	10.6.3	A330/340 FBW System	393
	10.6.4	A380 FBW System	394
10.7	Autopil	ot Flight Director System	396
	10.7.1	Autopilot Principles	396
	10.7.2	Interrelationship with the Flight Deck	398
	10.7.3	Automatic Landing	400
10.8	Flight D	Data Recorders	401
	10.8.1	Principles of Flight Data Recording	401
	10.8.2	Data Recording Environments	403
	10.8.3	Future Requirements	403
	Referen	*	404
11	Navigat	tion Systems	405
11.1	Principl	es of Navigation	405
	11.1.1	Basic Navigation	405
	11.1.2	Navigation using Ground-Based Navigation Aids	407
	11.1.3		408
	11.1.4	Navigation using Global Navigation Satellite Systems	410
	11.1.5	Flight Technical Error – Lateral Navigation	411
	11.1.6	Flight Technical Error – Vertical Navigation	412
11.2	Flight N	Aanagement System	413
	11.2.1	Principles of Flight Management Systems (FMS)	413
	11.2.2	FMS Crew Interface – Navigation Display	414
	11.2.3	FMS Crew Interface – Control and Display Unit	417
	11.2.4	FMS Functions	420
	11.2.5	FMS Procedures	421
	11.2.6	Standard Instrument Departure	423

	11.2.7	En-Route Procedures	423
	11.2.8	Standard Terminal Arrival Routes	424
	11.2.9	ILS Procedures	427
	11.2.10	Typical FMS Architecture	427
11.3		ic Flight Bag	427
	11.3.1		427
	11.3.2	EFB Implementation	429
11.4	Air Traf	fic Management	430
	11.4.1	•	430
	11.4.2	Communications, Navigation, Surveillance	430
	11.4.3	NextGen	431
	11.4.4	Single European Sky ATM Research (SESAR)	432
11.5	Perform	ance-Based Navigation	433
	11.5.1	· · · · · · · · · · · · · · · · · · ·	433
	11.5.2	Area Navigation (RNAV)	434
	11.5.3		438
	11.5.4	Precision Approaches	440
11.6	Automa	tic Dependent Surveillance – Broadcast	442
11.7		and Airbus Implementations	442
	11.7.1	Boeing Implementation	442
	11.7.2	Airbus Implementation	444
11.8	Terrain .	Avoidance Warning System (TAWS)	444
	Referen		447
	Historic	al References (in Chronological Order)	447
12		Deck Displays	449
12.1	Introduc	tion	449
12.2	First Ge	neration Flight Deck: the Electromagnetic Era	450
	12.2.1	Embryonic Primary Flight Instruments	450
	12.2.2	The Early Pioneers	451
	12.2.3	The 'Classic' Electromechanical Flight Deck	453
12.3	Second	Generation Flight Deck: the Electro-Optic Era	455
	12.3.1	The Advanced Civil Flight Deck	455
	12.3.2	The Boeing 757 and 767	456
	12.3.3	The Airbus A320, A330 and A340	457
	12.3.4	The Boeing 747-400 and 777	458
	12.3.5	The Airbus A380	460
	12.3.6	The Boeing 787	461
	12.3.7	The Airbus A350	462
12.4	Third G	eneration: the Next Generation Flight Deck	463
	12.4.1	Loss of Situational Awareness in Adverse Operational Conditions	463
	12.4.2	Research Areas	463
	12.4.3	Concepts	464
12.5	Electronic Centralised Aircraft Monitor (ECAM) System		
	12.5.1	ECAM Scheduling	465
	12.5.2	ECAM Moding	465

	12.5.3	ECAM Pages	466
	12.5.4	Qantas Flight QF32	466
	12.5.5	The Boeing Engine Indicating and Crew Alerting System (EICAS)	468
12.6	Standby	Instruments	468
12.7	Head-Up	Display Visual Guidance System (HVGS)	469
	12.7.1	Introduction to Visual Guidance Systems	469
	12.7.2	HVGS on Civil Transport Aircraft	470
	12.7.3	HVGS Installation	470
	12.7.4	HVGS Symbology	471
12.8	Enhanced and Synthetic Vision Systems		473
	12.8.1	Overview	473
	12.8.2	EVS, EFVS and SVS Architecture Diagrams	474
	12.8.3	Minimum Aviation System Performance Standard (MASPS)	474
	12.8.4	Enhanced Vision Systems (EVS)	474
	12.8.5	Enhanced Flight Vision Systems (EFVS)	478
	12.8.6	Synthetic Vision Systems (SVS)	481
	12.8.7	Combined Vision Systems	484
12.9	Display System Architectures		
	12.9.1	Airworthiness Regulations	486
	12.9.2	Display Availability and Integrity	486
	12.9.3	Display System Functional Elements	487
	12.9.4	Dumb Display Architecture	488
	12.9.5	Semi-Smart Display Architecture	490
	12.9.6	Fully Smart (Integrated) Display Architecture	490
12.10	Display	Usability	491
	12.10.1	Regulatory Requirements	491
	12.10.2	Display Format and Symbology Guidelines	492
	12.10.3	Flight Deck Geometry	492
	12.10.4	Legibility: Resolution, Symbol Line Width and Sizing	494
	12.10.5	Colour	494
	12.10.6	Ambient Lighting Conditions	496
12.11		Technologies	498
		Active Matrix Liquid Crystal Displays (AMLCD)	499
		Plasma Panels	501
		Organic Light-Emitting Diodes (O-LED)	501
		Electronic Paper (e-paper)	502
		Micro-Projection Display Technologies	503
		Head-Up Display Technologies	504
		Inceptors	505
12.12	U	ontrol Inceptors	506
	12.12.1	Handling Qualities	507
	12.12.2	Response Types	507
	12.12.3	Envelope Protection	508
	12.12.4	Inceptors	508 509
	References		

13	Military Aircraft Adaptations		
13.1	Introdu	ction	511
13.2	Avionic and Mission System Interface		512
	13.2.1	Navigation and Flight Management	515
	13.2.2	Navigation Aids	516
	13.2.3	Flight Deck Displays	517
	13.2.4	Communications	518
	13.2.5	Aircraft Systems	518
13.3	Applica	ations	519
	13.3.1	Green Aircraft Conversion	519
	13.3.2	Personnel, Material and Vehicle Transport	521
	13.3.3	Air-to-Air Refuelling	521
	13.3.4	Maritime Patrol	522
	13.3.5	Airborne Early Warning	528
	13.3.6		528
	13.3.7	Electronic Warfare	530
	13.3.8	Flying Classroom	530
	13.3.9	Range Target/Safety	530
	Reference		531
	Further Reading		531
A nn o	ndiaaa		522
Appe	ndices	ation to Annandiasa	533
	Introdu	iction to Appendices	533
Appe	ndix A: S	Safety Analysis – Flight Control System	534
A.1	Flight C	Control System Architecture	534
A.2	Dependency Diagram		535
A.3	Fault Tr	ree Analysis	537
		Safety Analysis – Electronic Flight Instrument System	539
B.1		nic Flight Instrument System Architecture	539
B.2	Fault Ti	ree Analysis	540
		Safety Analysis – Electrical System	543
C.1		cal System Architecture	543
C.2	Fault T	ree Analysis	543
		Safety Analysis – Engine Control System	546 546
D.1	Factors Resulting in an In-Flight Shut Down		
D.2	-	Control System Architecture	546
D.3		/ Analysis	548
	Simplifi	ied Example (all failure rates per flight hour)	549
Index	ζ.		551

About the Authors

Ian Moir, after 20 years in the Royal Air Force as an engineering officer, went on to Smiths Industries in the UK where he was involved in a number of advanced projects. Since retiring from Smiths (now GE aviation), he is now in demand as a highly respected consultant. Ian has a broad and detailed experience working in aircraft avionics systems in both military and civil aircraft. From the RAF Tornado and Army Apache helicopter to the Boeing 777 electrical load management system (ELMS), Ian's work has kept him at the forefront of new system developments and integrated systems in the areas of more-electric technology and system implementations. With over 50 years of experience, Ian has a special interest in fostering training and education and further professional development in aerospace engineering.

Allan Seabridge was until 2006 the Chief Flight Systems Engineer at BAE Systems at Warton in Lancashire in the UK. In over 45 years in the aerospace industry, his work has included the opportunity to work on a wide range of BAE Systems projects including Canberra, Jaguar, Tornado, EAP, Typhoon, Nimrod, and an opportunity for act as reviewer for Hawk, Typhoon and Joint Strike Fighter, as well being involved in project management, research and development, and business development. In addition, Allan has been involved in the development of a range of flight and avionics systems on a wide range of fast jets, training aircraft, and ground and maritime surveillance projects. From experience in BAE Systems with Systems Engineering education, he is keen to encourage a further understanding of integrated engineering systems. An interest in engineering courses at a number of UK universities at undergraduate and postgraduate level. Allan has been involved at Cranfield University for many years and has recently started a three-year period as External Examiner for the MSc course in Aerospace Vehicle Design.

Malcolm Jukes has over 35 years of experience in the aerospace industry, mostly working for Smiths Aerospace at Cheltenham, UK. Among his many responsibilities as Chief Engineer for Defence Systems Cheltenham, Malcolm managed the design and experimental flight trials of the first UK electronic flight instrument system (EFIS) and the development and application of head-up displays, multifunction head-down displays, and mission computing on the F/A-18, AV8B, Eurofighter Typhoon, Hawk and EH101 aircraft. In this role, and subsequently as Technology Director, he was responsible for product technical strategy and the acquisition of new technology for Smiths UK aerospace products in the areas of displays and controls, electrical power management systems, fuel gauging and management systems, and health and usage monitoring systems. One of his most significant activities was the application of AMLCD technology to civil and military aerospace applications. Malcolm was also a member of the UK Industrial Avionics Working Group (IAWG), and is now an aerospace consultant and university lecturer operating in the areas of displays, display systems, and mission computing.

Between them the authors have been actively involved in undergraduate, postgraduate and supervisory duties in aerospace at the Universities of Bristol, Bath, City, Cranfield, Lancaster, Loughborough, Imperial, Manchester, and the University of the West of England. The authors are course leaders for the postgraduate Avionics Systems and Aircraft Systems modules for the Continuous Professional Development in Aerospace (CPDA) course delivered by a consortium of the Universities of Bristol, Bath and the West of England to UK aerospace companies including BAE Systems, Airbus UK and Augusta Westland.

Series Preface

The field of aerospace is wide ranging and covers a variety of products, disciplines and domains, not merely in engineering but in many related supporting activities. These combine to enable the aerospace industry to produce exciting and technologically challenging products. A wealth of knowledge is retained by practitioners and professionals in the aerospace fields that is of benefit to other practitioners in the industry, and to those entering the industry from University.

The Aerospace Series aims to be a practical and topical series of books aimed at engineering professionals, operators, users and allied professions such as commercial and legal executives in the aerospace industry. The range of topics is intended to be wide ranging, covering design and development, manufacture, operation and support of aircraft as well as topics such as infrastructure operations, and developments in research and technology. The intention is to provide a source of relevant information that will be of interest and benefit to all those people working in aerospace.

Avionic systems are an essential and key component of modern aircraft that control all vital functions, including navigation, traffic collision avoidance, flight control, data display and communications. It would not be possible to fly today's advanced aircraft designs without such sophisticated systems.

This 2^{nd} edition of *Civil Avionics Systems* provides many additions to the original edition, taking into account many of the innovations that have appeared over the past decade in this rapidly advancing field. The book follows the same successful format of the first edition, and is recommended for those wishing to obtain either a top-level overview of avionic systems or a more in-depth description of the wide range of systems used in today's aircraft.

Peter Belobaba, Jonathan Cooper and Allan Seabridge

Preface to Second Edition

It has been over ten years since the first edition of Civil Avionics Systems was published. The book has been in print since that time and it is used as a course text book for a number of university undergraduate and postgraduate courses. It continues to be popular with students and practitioners, if the sales are anything to go by, and the authors continue to use it as the basis of lectures whilst continuously updating and improving the content.

However, much has happened in the world of commercial aviation and in the technological world of avionics since the first publication, prompting a serious update to the book. Despite worldwide economic recession, people still feel a need to fly for business and leisure purposes. Airlines have introduced new and larger aircraft and also introduced more classes to improve on the basic economy class, with more people choosing premium economy and even business class for their holiday flights. This has seen the introduction of the world's largest airliner, the Airbus A380, and an airliner seriously tackling some of the environmental issues in the form of the Boeing B787.

In the field of avionics there have been many advances in the application of commercial data bus networks and modular avionic systems to reduce the risk of obsolescence. Global navigation systems including interoperability of European, US, Russian and Chinese systems and associated standards will seek to improve the ability of aircraft to navigate throughout the world, maybe leading to more 'relaxed' rules on navigation and landing approaches. The crew have been served well with ergonomically improved flight decks providing improved situational awareness through larger, clearer, head-down displays and the addition of head-up displays, with enhanced flight vision and synthetic vision systems.

Propulsion systems have improved in the provision of thrust, reduced noise, improved availability and economic operation. Modern airliners are beginning to move towards moreelectric operation.

All these topics and more are covered in this new edition, at considerable effort to keep the book to a reasonable number of pages.

Preface to First Edition

This book on '*Civil Avionic Systems*' is a companion to our book on '*Aircraft Systems*'. Together the books describe the complete set of systems that form an essential part of the modern military and commercial aircraft. There is much read across – many basic aircraft systems such as fuel, air, flight control and hydraulics are common to both types, and modern military aircraft are incorporating commercially available avionic systems such as liquid crystal cockpit displays and flight management systems.

Avionics is an acronym which broadly applies to AVIation (and space) electrONICS. Civil avionic systems are a key component of the modern airliner and business jet. They provide the essential aspects of navigation, human machine interface and external communications for operation in the busy commercial airways. The civil avionic industry, like the commercial aircraft industry it serves, is driven by regulatory, business, commercial and technology pressures and it is a dynamic environment in which risk must be carefully managed and balanced against performance improvement. The result of many years of improvement by systems engineers is better performance, improved safety and improved passenger facilities.

'Civil Avionic Systems' provides an explanation of avionic systems used in modern aircraft, together with an understanding of the technology and the design process involved. The explanation is aimed at workers in the aerospace environment – researchers, engineers, designers, maintainers and operators. It is, however, aimed at a wider audience than the engineering population, it will be of interest to people working in marketing, procurement, manufacturing, commercial, financial and legal departments. Furthermore it is intended to complement undergraduate and post graduate courses in aerospace systems to provide a path to an exciting career in aerospace engineering. Throughout the book 'industry standard' units have been used, there is therefore a mix of metric and Imperial units which reflects normal parlance in the industry

The book is intended to operate at a number of levels:

- Providing a top level overview of avionic systems with some historical background.
- Providing a more in-depth description of individual systems and integrated systems for practitioners.
- Providing references and suggestions for further reading for those who wish to develop their knowledge further.

We have tried to deal with a complex subject in a straightforward descriptive manner. We have included aspects of technology and development to put the systems into a rapidly changing context. To fully understand the individual systems and integrated architectures of systems to meet specific customer requirements is a long and complicated business. We hope that this book makes a contribution to that understanding.

Ian Moir and Allan Seabridge 2002

Acknowledgements

Many people have helped us with this book, albeit unknowingly in a lot of cases. Some of the material has come from our lecturing to classes of short-course delegates and continuing professional development students. The resulting questions and discussions inevitably help to develop and improve the material. Thanks are due to all those people who patiently listened to us and stayed awake.

Colleagues in industry have also helped us in the preparation. Mike Hirst critiqued a number of chapters, and Brian Rawnsley of GE Aviation reviewed and advised upon the latest regulatory issues. Our Airbus UK course mentors Barry Camwell, Martin Rowlands and Martin Lee provided invaluable advice and really gave a stimulus to generating a lot of new material. We have also been helped by Leon Skorczewski and Dave Holding who have joined in the avionics courses by providing material and lectures.

BAE Systems, Cranfield University and the University of the West of England have invited us to lecture on their continuing professional development courses, which opens the door to discussions with many mature students. We wish to thank the organisers of the courses and also the students.

We have been guided throughout the preparation of the manuscript by Anne Hunt, Tom Carter and Eric Willner at John Wiley's at Chichester, and also to Samantha Jones, Shikha Jain from Aptara Delhi and Wahidah Abdul Wahid from Wiley Singapore for the proof-reading, copy-editing and publishing stages of production. Their guidance and patience is, as always, gratefully received.

> Ian Moir, Allan Seabridge and Malcolm Jukes January 2013

List of Abbreviations

3-D	three-dimensional
4-D	four-dimensional
ABS	automatic braking system
AC	alternating current
AC	Advisory Circular
ACARS	ARINC Communications and Reporting System
ACE	actuator control electronics
ACK	receiver acknowledge
ACFD	Advanced Civil Flight Deck
ACP	audio control panel
ADC	air data computer
ADC	analogue to digital conversion/converter
ADD	airstream direction detector
ADF	automatic direction finding
ADI	attitude director indicator
ADI	aircraft direction indicator
ADIRS	Air Data & Inertial Reference System
ADIRU	Air Data and Inertial Reference Unit (B777)
ADM	air data module
ADP	air-driven pump
ADS-A	automatic dependent surveillance – address
ADS-B	automatic dependent surveillance - broadcast
AEW	airborne early warning
AEW&C	Airborne Early Warning and Control
AFDC	autopilot flight director computer
AFDS	autopilot flight director system
AFDX	Aviation Full Duplex
AH	artificial horizon
AHRS	attitude and heading reference system
AIM	Apple–IBM–Motorola alliance
AIMS	Aircraft Information Management System (B777)
Al	aluminium
ALARP	As Low as Reasonably Practical
ALT	barometric altitude

ATT	
ALU	arithmetic logic unit
AM	amplitude modulation
AMCC	Applied Micro Circuits Corporation
AMLCD	active matrix liquid crystal display
ANO	Air Navigation Order
ANP	actual navigation performance
AoA	angle of attack
AOC	airline operation communication
AOR-E	Azores Oceanic Region – East
AOR-W	Azores Oceanic Region – West
APEX	Application Executive
API	Application Programming Interface
APU	auxiliary power unit
AR	Authorisation Required
ARINC	Air Radio Inc.
ARM	Advanced RISC machine
ASCB	Avionics Standard Communications Bus (Honeywell)
ASCII	American Standard Code for Information Interchange
ASI	airspeed indicator
ASIC	application-specific integrated circuit
ASPCU	air supply and pressure control unit
ASTOR	Airborne Stand-off Radar
ATA	Air Transport Association
ATC	air traffic control
ATI	air transport indicator
A to D	analogue to digital
ATM	air traffic management
ATN	aeronautical telecommunications network
ATR	Air Transport Radio
ATS	air traffic services
ATSU	Air Traffic Service Unit – Airbus unit to support FANS
AWACS	Airborne Warning and Control System
AWG	American Wire Gauge
11110	American who Suage
В	Blue Channel (hydraulics) Airbus
BAG	bandwidth allocation gap
BAT	battery
BC	bus controller
BCD	binary coded decimal
BGA	ball grid array
BGAN	Broadcast Global Area Network
BIT	built-in-test
BLC	battery line contactors
BPCU	bus power control unit
BPCU	brake power control unit
DICO	orace power control unit

bps BRNAV BSCU BTB BTC BTMU	bits per second basic area navigation brake system control unit bus tie breaker bus tie contactor brake temperature monitoring unit
C C C C C C C C C C C C C C C C C C C	Centre Centre Channel (hydraulic) Airbus C Band (3.90 to 6.20 GHz) Centre 1 (Boeing 777) Centre 2 (Boeing 777) Course/Acquisition – GPS Operational Mode Civil Airworthiness Authority a widely used industrial data bus developed by Bosch calibrated air speed Certification Authorities Software Team Automatic Approach Category I Automatic Approach Category II Automatic Approach Category II Category I Autoland Category II Autoland Category III Autoland Category IIIB Autoland Category IIIB Autoland category IIIB Autoland common cause analysis common computing resource communications control system collision detection candela per square metre control and display unit critical design review constant frequency course to a fix controlled flight into terrain Code of Federal Regulations configurable logic block common mode analysis Central Maintenance Computing System (Boeing) complementary metal-oxide semiconductor Central Maintenance System (Airbus) Communications, Navigation, Surveillance carbon dioxide centre of gravity coursed to a fra to the semiconductor Central Maintenance System (Airbus)
COMMS	communications mode