

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MATHEMATICS STANDARD LEVEL PAPER 2

Thursday 4 May 2006 (morning)

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 16]

Let S_n be the sum of the first *n* terms of the arithmetic series $2+4+6+\ldots$

- (a) Find
 - (i) S_4 ;
 - (ii) S_{100} . [4 marks]

Let
$$\boldsymbol{M} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
.

(b) (i) Find M^2 .

(ii) Show that $M^3 = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix}$. [5 marks]

It may now be assumed that $M^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix}$, for $n \ge 4$. The sum T_n is defined by

 $\boldsymbol{T}_n = \boldsymbol{M}^1 + \boldsymbol{M}^2 + \boldsymbol{M}^3 + \ldots + \boldsymbol{M}^n.$

- (c) (i) Write down M^4 .
 - (ii) Find T_4 . [4 marks]
- (d) Using your results from part (a) (ii), find T_{100} . [3 marks]

2. [Maximum mark: 18]

Consider the functions f and g where f(x) = 3x - 5 and g(x) = x - 2.

- (a) Find the inverse function, f^{-1} . [3 marks]
- (b) Given that $g^{-1}(x) = x + 2$, find $(g^{-1} \circ f)(x)$. [2 marks]
- (c) Given also that $(f^{-1} \circ g)(x) = \frac{x+3}{3}$, solve $(f^{-1} \circ g)(x) = (g^{-1} \circ f)(x)$. [2 marks]

Let
$$h(x) = \frac{f(x)}{g(x)}, x \neq 2$$
.

- (d) (i) **Sketch** the graph of *h* for $-3 \le x \le 7$ and $-2 \le y \le 8$, including any asymptotes.
 - (ii) Write down the **equations** of the asymptotes. [5 marks]
- (e) The expression $\frac{3x-5}{x-2}$ may also be written as $3 + \frac{1}{x-2}$. Use this to answer the following.

(i) Find
$$\int h(x) dx$$
.

- (ii) **Hence**, calculate the **exact** value of $\int_{3}^{5} h(x) dx$. [5 marks]
- (f) On your sketch, shade the region whose area is represented by $\int_{3}^{5} h(x) dx$. [1 mark]

[4 marks]

3. [Maximum mark: 20]

- (a) Let $y = -16x^2 + 160x 256$. Given that y has a maximum value, find
 - (i) the value of x giving the maximum value of y;
 - (ii) this maximum value of y.

The triangle XYZ has XZ = 6, YZ = x, XY = z as shown below. The perimeter of triangle XYZ is 16.

(b) (i) Express z in terms of x.

(ii) Using the cosine rule, express z^2 in terms of x and $\cos Z$.

(iii) Hence, show that
$$\cos Z = \frac{5x - 16}{3x}$$
. [7 marks]

Let the area of triangle XYZ be A.

(c) Show that
$$A^2 = 9x^2 \sin^2 Z$$
. [2 marks]

(d) Hence, show that
$$A^2 = -16x^2 + 160x - 256$$
. [4 marks]

- (e) (i) Hence, write down the maximum area for triangle XYZ.
 - (ii) What type of triangle is the triangle with maximum area? [3 marks]

-4-

- 5 -

4. [Maximum mark: 17]

In a large school, the heights of all fourteen-year-old students are measured.

The heights of the girls are normally distributed with mean $155 \,\mathrm{cm}$ and standard deviation $10 \,\mathrm{cm}$.

The heights of the boys are normally distributed with mean 160 cm and standard deviation 12 cm.

(a)	Find the probability that a girl is taller than 170 cm.	[3 marks]
(b)	Given that 10% of the girls are shorter than $x \text{ cm}$, find x .	[3 marks]
(c)	Given that 90% of the boys have heights between $q \text{ cm}$ and $r \text{ cm}$ where q and r are symmetrical about 160 cm, and $q < r$, find the value of q and of r .	[4 marks]
In the group of fourteen-year-old students, 60% are girls and 40% are boys. The probability that a girl is taller than 170 cm was found in part (a). The probability that a boy is taller than 170 cm is 0.202.		
A fourteen-year-old student is selected at random.		
(d)	Calculate the probability that the student is taller than 170 cm.	[4 marks]
(e)	Given that the student is taller than 170 cm, what is the probability the student is a girl?	[3 marks]

5. [Maximum mark: 19]

The following diagram shows a solid figure ABCDEFGH. Each of the six faces is a parallelogram.

The coordinates of A and B are A(7, -3, -5), B(17, 2, 5).

(a) Find

(This question continues on the following page)

(Question 5 continued)

The following information is given.

$$\vec{AD} = \begin{pmatrix} -6\\6\\3 \end{pmatrix}, \ \left| \vec{AD} \right| = 9, \ \vec{AE} = \begin{pmatrix} -2\\-4\\4 \end{pmatrix}, \ \left| \vec{AE} \right| = 6$$

(b) (i) Calculate $\vec{AD} \cdot \vec{AE}$.

- (ii) Calculate $\vec{AB} \cdot \vec{AD}$.
- (iii) Calculate $\overrightarrow{AB} \cdot \overrightarrow{AE}$.
- (iv) Hence, write down the size of the angle between any two intersecting edges. [5 marks]
- (c) Calculate the volume of the solid ABCDEFGH. [2 marks]
- (d) The coordinates of G are (9, 4, 12). Find the coordinates of H. [3 marks]
- (e) The lines (AG) and (HB) intersect at the point P.

Given that
$$\overrightarrow{AG} = \begin{pmatrix} 2\\ 7\\ 17 \end{pmatrix}$$
, find the acute angle at P. [5 marks]