MATHEMATICS
STANDARD LEVEL
PAPER 2

Thursday 4 May 2006 (morning)

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 16]

Let S_{n} be the sum of the first n terms of the arithmetic series $2+4+6+\ldots$.
(a) Find
(i) S_{4};
(ii) S_{100}.

Let $\boldsymbol{M}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$.
(b) (i) Find \boldsymbol{M}^{2}.
(ii) Show that $\boldsymbol{M}^{3}=\left(\begin{array}{ll}1 & 6 \\ 0 & 1\end{array}\right)$.

It may now be assumed that $\boldsymbol{M}^{n}=\left(\begin{array}{cc}1 & 2 n \\ 0 & 1\end{array}\right)$, for $n \geq 4$. The sum \boldsymbol{T}_{n} is defined by

$$
\boldsymbol{T}_{n}=\boldsymbol{M}^{1}+\boldsymbol{M}^{2}+\boldsymbol{M}^{3}+\ldots+\boldsymbol{M}^{n} .
$$

(c) (i) Write down \boldsymbol{M}^{4}.
(ii) Find \boldsymbol{T}_{4}.
(d) Using your results from part (a) (ii), find \boldsymbol{T}_{100}.
2. [Maximum mark: 18]

Consider the functions f and g where $f(x)=3 x-5$ and $g(x)=x-2$.
(a) Find the inverse function, f^{-1}.
(b) Given that $g^{-1}(x)=x+2$, find $\left(g^{-1} \circ f\right)(x)$.
(c) Given also that $\left(f^{-1} \circ g\right)(x)=\frac{x+3}{3}$, solve $\left(f^{-1} \circ g\right)(x)=\left(g^{-1} \circ f\right)(x)$.

Let $h(x)=\frac{f(x)}{g(x)}, x \neq 2$.
(d) (i) Sketch the graph of h for $-3 \leq x \leq 7$ and $-2 \leq y \leq 8$, including any asymptotes.
(ii) Write down the equations of the asymptotes.
(e) The expression $\frac{3 x-5}{x-2}$ may also be written as $3+\frac{1}{x-2}$. Use this to answer the following.
(i) Find $\int h(x) \mathrm{d} x$.
(ii) Hence, calculate the exact value of $\int_{3}^{5} h(x) \mathrm{d} x$.
(f) On your sketch, shade the region whose area is represented by $\int_{3}^{5} h(x) \mathrm{d} x$.
3. [Maximum mark: 20]
(a) Let $y=-16 x^{2}+160 x-256$. Given that y has a maximum value, find
(i) the value of x giving the maximum value of y;
(ii) this maximum value of y.

The triangle XYZ has $\mathrm{XZ}=6, \mathrm{YZ}=x, \mathrm{XY}=z$ as shown below. The perimeter of triangle XYZ is 16.

(b) (i) Express z in terms of x.
(ii) Using the cosine rule, express z^{2} in terms of x and $\cos Z$.
(iii) Hence, show that $\cos Z=\frac{5 x-16}{3 x}$.

Let the area of triangle XYZ be A.
(c) Show that $A^{2}=9 x^{2} \sin ^{2} Z$.
(d) Hence, show that $A^{2}=-16 x^{2}+160 x-256$.
(e) (i) Hence, write down the maximum area for triangle XYZ.
(ii) What type of triangle is the triangle with maximum area?
4. [Maximum mark: 17]

In a large school, the heights of all fourteen-year-old students are measured.
The heights of the girls are normally distributed with mean 155 cm and standard deviation 10 cm .

The heights of the boys are normally distributed with mean 160 cm and standard deviation 12 cm .
(a) Find the probability that a girl is taller than 170 cm .
(b) Given that 10% of the girls are shorter than $x \mathrm{~cm}$, find x.
(c) Given that 90% of the boys have heights between $q \mathrm{~cm}$ and $r \mathrm{~cm}$ where q and r are symmetrical about 160 cm , and $q<r$, find the value of q and of r.

In the group of fourteen-year-old students, 60% are girls and 40% are boys. The probability that a girl is taller than 170 cm was found in part (a).
The probability that a boy is taller than 170 cm is 0.202 .
A fourteen-year-old student is selected at random.
(d) Calculate the probability that the student is taller than 170 cm .
(e) Given that the student is taller than 170 cm , what is the probability the student is a girl?
5. [Maximum mark: 19]

The following diagram shows a solid figure ABCDEFGH. Each of the six faces is a parallelogram.

The coordinates of A and B are $\mathrm{A}(7,-3,-5), \mathrm{B}(17,2,5)$.
(a) Find
(i) $\overrightarrow{\mathrm{AB}}$;
(ii) $|\overrightarrow{\mathrm{AB}}|$.

(Question 5 continued)

The following information is given.

$$
\overrightarrow{\mathrm{AD}}=\left(\begin{array}{c}
-6 \\
6 \\
3
\end{array}\right),|\overrightarrow{\mathrm{AD}}|=9, \overrightarrow{\mathrm{AE}}=\left(\begin{array}{c}
-2 \\
-4 \\
4
\end{array}\right),|\overrightarrow{\mathrm{AE}}|=6
$$

(b) (i) Calculate $\overrightarrow{A D} \cdot \overrightarrow{A E}$.
(ii) Calculate $\overrightarrow{A B} \cdot \overrightarrow{A D}$.
(iii) Calculate $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AE}}$.
(iv) Hence, write down the size of the angle between any two intersecting edges. [5 marks]
(c) Calculate the volume of the solid ABCDEFGH.
(d) The coordinates of G are $(9,4,12)$. Find the coordinates of H .
(e) The lines (AG) and (HB) intersect at the point P .

Given that $\overrightarrow{A G}=\left(\begin{array}{c}2 \\ 7 \\ 17\end{array}\right)$, find the acute angle at P.

