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Introduction 

Rationale 
Personally, creating art has always been something I have been drawn to as it allows me to figuratively 

pour my feelings out onto paper. Taking visual arts as an IB subject was only natural for me; what was 

not natural for me was having to create art across a range of different art forms as an IB requirement, as 

I was only comfortable working with paint and pencil. It was only until I began to experiment ceramics at 

the start of IB that I became interested in other forms of art. The glazed ceramic pot shown below in 

Figure 1 was made and painted early into Grade 11. Though simplistic in design, it is of great significance 

to me and hence, I wanted to find a way in which I could tie it together with my Maths Exploration. Hence, 

I decided to centre my investigation on finding the surface area of my ceramic pot. This topic has wider 

implications; the surface area of a ceramic body determines the amount of glaze that needs to be applied 

to it prior to firing, to seal and protect the fired clay piece ("The Basics of Glaze - Kiln Arts", 2017). Ceramic 

glazes can also be pricey, especially if they have precious metal components. Thus, this exploration has 

practical applications as well if I want to roughly approximate the cost of coating future ceramics I make 

with a certain glaze and to determine if it would be an economically viable option to use that glaze.  

 

 

 

 

 

Aim  
During Maths HL class, we were taught how to utilise integral calculus in order to find the volume of a 

solid of revolution in the interval [𝑎, 𝑏]. The formula given to us was: 

𝑉 = ∫ 𝜋𝑦2𝑑𝑥
𝑏

𝑎

 

Hence, I wondered if there was a similar way in which the surface area of a solid of revolution could be 

found through calculus. After doing some research, I found a formula that would allow me to find the 

surface area, 𝐴, of the ceramic pot in the interval [𝑎, 𝑏]: 

𝐴 = ∫ 2𝜋𝑦 𝑑𝑠
𝑏

𝑎

 

Where 𝑦 = 𝑓(𝑥) > 0, 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑑𝑠 = √1 + (
𝑑𝑦

𝑑𝑥
)2𝑑𝑥

Figure 1: Front view of ceramic pot  
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This formula only applies to solids of revolution, which is just as well since the ceramic pot I have has a 

circular cross section as shown below in Figure 2. Thus, the aim of my exploration will be to learn the 

how to mathematically derive the formula for the surface area of a solid of revolution and then, apply it to 

approximating the surface area of the ceramic pot.  

 

 

 

 

 

 

 

 

Exploring the formula for surface area 
A solid of revolution is made by rotating a continuous a continuous function 𝑦 = 𝑓(𝑥) about the x-axis 

in the interval [𝑎, 𝑏]. The solid of revolution can be divided into an infinite number of frustums, created 

by taking a line segment and rotating it around the x-axis, with equal width ∆𝑑𝑥. The number of frustums 

is taken as infinite as this will allow the solid to be modelled as closely as possible. An example of a solid 

revolution being divided into frustums at equal intervals of width ∆𝑑𝑥 to reflect its shape is shown below 

with an image of my ceramic pot, although only to 4 frustums.   

 

 

 

 

 

 

 

 

As shown, using only 4 frustums does not reflect the shape of the ceramic pot accurately. Thus, an infinite 

number of frustums will have to be considered to calculate the surface area.  

Figure 2: Aerial view of ceramic pot with 

circular cross section  

Figure 3: Ceramic pot divided into 4 frustums  

𝑑𝑥 
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To derive the formula for the surface area of a solid of revolution, I have to start with the formula for the 

surface area of a frustum which is given by: 

𝐴 = 2𝜋𝑟𝑙 

 

 

Where 𝑟 =
𝑟1+𝑟2

2
 as the frustum has sides of different radii and 𝑙 is the slant height of the frustum as 

shown in Figure 4 above. 𝑙 can be equated to 𝑑𝑠 which is the curve length of the function. This gives 

me: 

𝐴 = 2𝜋𝑟𝑙 

= 2𝜋(
𝑟1 + 𝑟2

2
)𝑑𝑠 

𝑟1 = 𝑓(𝑥𝑖−1)and 𝑟2 = 𝑓(𝑥𝑖) . Since ∆𝑥  is small and 𝑓(𝑥) is a continuous function, 𝑓(𝑥𝑖−1) and 

𝑓(𝑥𝑖) can both be approximated to be 𝑓(𝑥𝑖
∗). These values are then substituted back into the original 

formula for the surface area of a frustum. Thus, the surface area of a frustum in the interval [𝑥𝑖−1, 𝑥𝑖] is: 

𝐴 = 2𝜋 (
𝑓(𝑥𝑖−1) + 𝑓(𝑥𝑖)

2
) 𝑑𝑠 

= 2𝜋 (
𝑓(𝑥𝑖

∗) + 𝑓(𝑥𝑖
∗)

2
) 𝑑𝑠 

= 2𝜋𝑓(𝑥𝑖
∗)𝑑𝑠 

 

Since the definite integral of 𝑓(𝑥) in the interval [𝑎, 𝑏] is defined as: 

∫ 𝑓(𝑥)𝑑𝑥 = lim
𝑛→∞

∑ 𝑓(𝑥𝑖)

𝑛

𝑖=1

𝑏

𝑎

𝑑𝑥 

 

Figure 4: Diagram of a frustum  
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The surface area of the solid of revolution with an infinite number of frustums can thus be approximated 

to be: 

𝐴 = lim
𝑛→∞

∑ 2𝜋𝑓(𝑥𝑖
∗)𝑑𝑠 =

𝑛

𝑖=1

∫ 2𝜋𝑓(𝑥)𝑑𝑠
𝑏

𝑎

 

I then need to find 𝑑𝑠. Since 𝑑𝑥 and 𝑑𝑦 are small, the curve length,𝑑𝑠, can be taken as a straight line; 

the curved solid of revolution can then be said to be comprised of an infinite number of straight lines. 𝑑𝑠 

can then be equated to 𝑙 which is the slant height of the frustum. To find 𝑙 and by extension 𝑑𝑠, the 

Pythagorean Theorem can be used. 𝑑𝑥 and 𝑑𝑦 in relation to 𝑑𝑠 can be shown through a right-angled 

triangle.  

 

 

 

 

 

 

 

 

 

 

Hence, utilising Pythagorean Theorem, I can then find 𝑑𝑠: 

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 

I then square root both sides to find 𝑑𝑠: 

𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑦2 

I then factorise 𝑑𝑥2 from the terms inside the square root and simplify to find the equation of 𝑑𝑠:  

𝑑𝑠 = √𝑑𝑥2 (1 +
𝑑𝑦2

𝑑𝑥2
) 

= √1 + (
𝑑𝑦

𝑑𝑥
)2𝑑𝑥 

Figure 5: Diagram of a right-angled triangle  
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Thus, the formula for the surface area of a solid of revolution in the interval [𝑎, 𝑏] is shown to be: 

𝐴 = ∫ 2𝜋𝑦 𝑑𝑠 =
𝑏

𝑎

∫ 2𝜋𝑦
𝑏

𝑎

√1 + (
𝑑𝑦

𝑑𝑥
)2𝑑𝑥 

Graphing the ceramic pot  
To calculate the surface area of the ceramic pot, the formula indicates that the equation of the curve must 

be found. Prior to finding the functions of the graph of the ceramic pot, I had to first record the coordinates 

of several points on the ceramic pot in order to plot out its graph. This was initially done by wrapping a 

tape measure made of ribbon around the several points on the ceramic pot to find their circumferences. 

However, I had difficulty doing so as the tape measure kept slipping as the ceramic pot was too smooth. 

Hence, I decided instead to only measure the circumferences of the bottom and top tips of the ceramic 

pot as this was easier. After finding the circumferences, the formula for the area of a circle was used to 

find the radius of each circular cross section: 

𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑐𝑖𝑟𝑐𝑙𝑒 = 2𝜋𝑟 

The radius of the circle, which then corresponds to its positive𝑥-coordinate on the graph, is then given 

by: 

𝑟 =
𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑐𝑖𝑟𝑐𝑙𝑒

2𝜋
 

For example, the circumference of the bottom cross section of the ceramic pot gives a radius of: 

𝑟 =
13

2𝜋
≈ 2.1 𝑐𝑚 (1 𝑑. 𝑝. ) 

The radii of the bottom and top cross sections of the ceramic pot are recorded below in Table 1.  

 

 

 

The values of the radii, 13 cm and 15 cm, give the upper and lower bounds of the domain of the graph 

respectively. I used Adobe Photoshop to superimpose the photograph of the ceramic pot onto the 

background layer of a math grid template found online. The opacity of the layer with the ceramic pot 

photograph was reduced to 70% so that the grid lines would show through clearly and the coordinates of 

the curves could be recorded accurately. Finding the radii values of the bottom and top cross sections of 

the ceramic pot allowed me to scale the image of the pot accurately onto the math grid. The rest of the 

points were then recorded using the graph rather than by hand using the tape measure which reduced 

the margin for human error.  

 Circumference (cm) Radius (cm) 

Bottom 13 2.1 

Top 15 2.4 

Table 1: Circumference and radius of bottom and top tips  
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In total, 7 points were chosen to derive a piecewise function that will allow me to calculate the total surface 

area of the ceramic pot. I chose points located at the bottom/top tips of the ceramic pot or where shape 

of the ceramic pot curves noticeably to form points of inflexion. The x-coordinates and y-coordinates of 

the points were then plotted onto the graph of the ceramic pot as shown below in Figure 7. The x-

coordinates and y-coordinates of the points chosen are shown in below in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

Coordinate x y 

1 0 2.1 

2 3 3.7 

3 6.5 1.4 

4 6.8 1.4 

5 7.2 1.5 

6 7.6 2.1 

7 8.5 2.4 

Figure 6: Using Adobe Photoshop to plot the graph of the ceramic pot  

Table 2: Coordinates of the graph  

Figure 7: Graph of the ceramic pot   
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There will be three different function equations to be found, divided into the bottom, middle and top section 

of ceramic pot. The bottom section is represented by the orange coloured curve line in Figure 7, the 

middle section represented by the green coloured curve line and the top section by the pink coloured 

curve line. Each section is comprised of three coordinates that will be used to find their respective curve 

equations.  

Finding the functions 
The three function equations were found analytically using the Lagrange interpolation formula. I assumed 

that the functions are all polynomial functions as the Lagrange interpolation formula only applies to 

polynomial functions. I felt that this method was appropriate as I recorded down values of 𝑥 at unequal 

intervals which the formula takes into account. The formula is as follows that for a unique 

polynomial 𝑃(𝑥): 

𝑃(𝑥) = ∑ 𝑦𝑖

(𝑥 − 𝑥0) … (𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖+1) … (𝑥 − 𝑥𝑛)

(𝑥𝑖 − 𝑥0) … (𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1) … (𝑥𝑖 − 𝑥𝑛)

𝑛

𝑖=0

 

Where 0 ≤ 𝑖 ≤ 𝑛 and 𝑃(𝑥𝑖) = 𝑦𝑖  

Bottom section: 

The polynomial function of the bottom section of the ceramic pot is first found. From the shape of the 

curve, it appears to be a quadratic function; the graph is concave downwards with one maximum point at 

(3.0, 3.7). I could have chosen a function of a higher-degree polynomial, such as a cubic polynomial, 

since the characteristics of the curve also apply to part of a cubic graph. But although the accuracy of the 

interpolated data points would have been greater with a cubic polynomial, this does not necessarily mean 

that the graph will be a smooth fit for the curve of the ceramic pot. Thus, I chose simplicity over accuracy 

and decided to use a quadratic function instead. The Lagrange interpolation formula finds the equation 

of a unique polynomial of order 𝑛 passing through (𝑛 + 1) data points. Hence, three data points were 

chosen since I am finding a polynomial of order 2. Their 𝑥 and 𝑦 coordinates are shown below.  

Coordinates: 

𝑖 𝑥 𝑦 

0 0 2.1 

1 3.0 3.7 

2 6.5 1.4 

 

When 𝑖 = 2 and for a sequence of 𝑥 coordinates of values {0, 3, 6.5}, the function 𝑃1(𝑥) is given by: 

𝑃1(𝑥) =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
𝑦

0
+

(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
𝑦

1
+

(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
𝑦

2
 

=
(𝑥 − 3)(𝑥 − 6.5)

(0 − 3)(0 − 6.5)
(2.1) +

(𝑥 − 0)(𝑥 − 6.5)

(3 − 0)(3 − 6.5)
(3.7) +

(𝑥 − 0)(𝑥 − 3)

(6.5 − 0)(6.5 − 3)
(1.4) 

≈ −0.183150𝑥2 + 1.082784𝑥 + 2.100000 (6 𝑑. 𝑝. ) 

Table 3: Coordinates of bottom section 
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Thus, the function of the bottom section of the ceramic pot is given by the equation −0.183150𝑥2 +

1.082784𝑥 + 2.100000. 

Note: Expanding the algebraic expressions individually utilising a calculator would have been tedious. 

Thus, the expressions were expanded to give the function using C programming. I wrote a simple code 

that allowed me to find the coefficients of the quadratic polynomial. According to the Lagrange 

interpolation formula, for a polynomial of order 2 in the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐: 

𝑎 =
𝑦0

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
+

𝑦1

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
+

𝑦2

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
 

 

𝑏 =
−𝑥2𝑦0

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
+

−𝑥1𝑦0

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
+

−𝑥2𝑦1

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
+

−𝑥0𝑦1

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)

+
−𝑥1𝑦2

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
+

−𝑥0𝑦2

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
 

𝑐 =
𝑥1𝑥2𝑦0

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
+

𝑥0𝑥2𝑦1

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
+

𝑥0𝑥1𝑦2

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
 

 

I then merely needed to give the values of each x and y coordinate as my input data. The C programme 

for the code was then compiled and run at https://www.codechef.com/ide. The output for the code gave 

me the values of 𝑎, 𝑏 and 𝑐. This is illustrated below in Figure 8.  The output values are precise up to 6 

decimal places. I was more satisfied with the degree of precision for the programme compared to several 

online algebraic expression expansion calculators online that were only precise up to 5 decimal places.  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 8: Illustration of the code and output it yields  
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Middle section: 

The same method I illustrated to find the function of the bottom section of the ceramic pot was applied to 

find the function of the middle section. Similarly, the graph appears to be a quadratic function from the 

shape of the curve as it is concave upwards with one minimum point at (6.8, 1.4). Hence, three points 

were chosen. Their 𝑥 and 𝑦 coordinates are shown below.  

Coordinates: 

𝑖 𝑥 𝑦 

0 6.5 1.4 

1 6.8 1.4 

2 7.2 1.5 

 

 

I then utilised the Lagrange interpolation formula and expanded the algebraic expressions with the C 

programme. Thus, the function of the middle section of the ceramic pot, 𝑃2(𝑥), is given by the equation 

0.357143𝑥2 − 4.750008𝑥 + 17.185715, precise up to 6 decimal places. 

Top section: 

The same method I illustrated to find the function of the bottom section of the ceramic pot was applied to 

find the function of the middle section. Similarly, the graph appears to be a quadratic function from the 

shape of the curve as it is concave downwards with one maximum point at (8.5, 2.4). Hence, three 

points were chosen. Their 𝑥 and 𝑦 coordinates are shown below.  

Coordinates: 

𝑖 𝑥 𝑦 

0 7.2 1.5 

1 7.6 2.1 

2 8.5 2.4 

 

 

I then utilised the Lagrange interpolation formula and expanded the algebraic expressions with the C 

programme. Thus, the function of the middle section of the ceramic pot, 𝑃3(𝑥), is given by the equation 

−0.8974385𝑥2 + 14.782037𝑥 − 58.407654, precise up to 6 decimal places. 

 

The graph of the ceramic pot can then be represented by the piecewise function: 

𝑓(𝑥) = {
−0.183150𝑥2 + 1.082784𝑥 + 2.100000 0 ≤ 𝑥 ≤ 6.5
0.357143𝑥2 − 4.750008𝑥 + 17.185715 6.5 ≤ 𝑥 ≤ 7.2

−0.8974385𝑥2 + 14.782037𝑥 − 58.407654 7.2 ≤ 𝑥 ≤ 8.5
 

 

Table 4: Coordinates of middle section 

Table 5: Coordinates of top section 

ALL TEXTS BELONG TO OWNERS 
TAKEN FROM https://internalassessments.wordpress.com/ 



10 
 

I then graphed the three functions using an online graphing calculator from:  

https://www.desmos.com/calculator 

 

 

 

 

 

 

 

 

 

The three function graphs were then superimposed onto the image of the ceramic pot using Adobe 

Photoshop. This is shown below in Figure 10. The green curve line drawn represents the piecewise 

function. As shown, the green curve models the shape of the ceramic pot very closely. This proves that 

my decision to use a lower degree polynomial of order 2 instead of higher degree polynomials for the 

three functions was safe.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Graphs of the bottom, middle and top sections of the ceramic 

pot  

𝒚 = −𝟎. 𝟏𝟖𝟑𝟏𝟓𝟎𝒙𝟐 + 𝟏. 𝟎𝟖𝟐𝟕𝟖𝟒𝒙 + 𝟐. 𝟏𝟎𝟎𝟎𝟎𝟎 

𝒚 = −𝟎. 𝟖𝟗𝟕𝟒𝟑𝟓𝒙𝟐 + 𝟏𝟒. 𝟕𝟖𝟐𝟎𝟑𝟕𝒙 − 𝟓𝟖. 𝟒𝟎𝟕𝟔𝟓𝟒 

𝒚 = 𝟎. 𝟑𝟓𝟕𝟏𝟒𝟑𝒙𝟐 − 𝟒. 𝟕𝟓𝟎𝟎𝟎𝟖𝒙 + 𝟏𝟕. 𝟏𝟖𝟓𝟕𝟏𝟓 

Figure 10: Superimposed image of the graph functions onto the ceramic pot  

𝑷𝟏(𝒙) = −𝟎. 𝟏𝟖𝟑𝟏𝟓𝟎𝒙𝟐 + 𝟏. 𝟎𝟖𝟐𝟕𝟖𝟒𝒙 + 𝟐. 𝟏𝟎𝟎𝟎𝟎𝟎 

 

𝑷𝟐(𝒙) = 𝟎. 𝟑𝟓𝟕𝟏𝟒𝟑𝒙𝟐 − 𝟒. 𝟕𝟓𝟎𝟎𝟎𝟖𝒙 + 𝟏𝟕. 𝟏𝟖𝟓𝟕𝟏𝟓 

𝑷𝟑(𝒙) = −𝟎. 𝟖𝟗𝟕𝟒𝟑𝟖𝟓𝒙𝟐 + 𝟏𝟒. 𝟕𝟖𝟐𝟎𝟑𝟕𝒙 − 𝟓𝟖. 𝟒𝟎𝟕𝟔𝟓𝟒 
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Calculating the surface area of the ceramic pot 
The surface area of the ceramic pot was then calculated with the formula for the surface area of a solid 

of revolution I derived: 

𝐴 = ∫ 2𝜋𝑦𝑑𝑠 = ∫ 2𝜋𝑦√1 + (
𝑑𝑦

𝑑𝑥
)2𝑑𝑥 since  𝑑𝑠 = √1 + (

𝑑𝑦

𝑑𝑥
)2𝑑𝑥 

Bottom section: 

To find 𝑑𝑠, the derivative of the equation of the function 𝑃1(𝑥) = −0.183150𝑥2 + 1.082784𝑥 +

2.100000 needs to be found. This gives me: 

𝑑𝑦

𝑑𝑥
= −0.3663𝑥 + 1.082784 

As 𝐴 = ∫ 2𝜋𝑦𝑑𝑠 = ∫ 2𝜋𝑦√1 + (
𝑑𝑦

𝑑𝑥
)2𝑑𝑥  since 𝑑𝑠 = √1 + (

𝑑𝑦

𝑑𝑥
)2𝑑𝑥 , 

𝑑𝑦

𝑑𝑥
= −0.3663𝑥 +

1.082784 can be substituted into the formula for surface area. Thus, the surface area of the bottom 

section of the ceramic pot is given by: 

𝐴𝐵 = ∫ 2𝜋(
6.5

0

− 0.183150𝑥2 + 1.082784𝑥 + 2.100000)√1 + (−0.3663𝑥 + 1.082784)2𝑑𝑥 

I then used a graphic display calculator (GDC) to evaluate 𝐴𝐵 . This gives me: 

𝐴𝐵 = 145.209 𝑐𝑚2 

≈ 145 𝑐𝑚2(3 𝑠. 𝑓. ) 

Middle section: 

I used the same method illustrated above to find the surface area of the middle section of the ceramic 

pot. Thus, the surface area of the middle section of the ceramic pot represented by the function    

𝑃2(𝑥) = 0.357143𝑥2 − 4.750008𝑥 + 17.185715 is given by: 

𝐴𝑀 = ∫ 2𝜋(
7.2

6.5

0.357143𝑥2 − 4.750008𝑥 + 17.185715)√1 + (0.714286𝑥 − 4.750008 )2𝑑𝑥 

I then used a GDC to evaluate 𝐴𝑀.This gives me: 

𝐴𝑀 = 6.37808 𝑐𝑚2 

≈ 6.38 𝑐𝑚2(3 𝑠. 𝑓. ) 

Top section:  

I used the same method illustrated above to find the surface area of the top section of the ceramic pot. 

Thus, the surface area of the top section of the ceramic pot represented by the function                        

𝑃3(𝑥) = −0.8974385𝑥2 + 14.782037𝑥 − 58.407654 is given by: 
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𝐴𝑇 = ∫ 2𝜋(
8.5

7.2

− 0.8974385𝑥2 + 14.782037𝑥 − 58.407654)√1 + (−1.794877𝑥 + 14.782037)2𝑑𝑥 

I then used a GDC to evaluate 𝐴𝑇 .This gives me: 

𝐴𝑇 = 23.4394 𝑐𝑚2 

≈ 23.4 𝑐𝑚2(3 𝑠. 𝑓. ) 

Total surface area: 

The value for the total surface area of the ceramic pot is given by adding up the values of the surface 

area of the top, middle and bottom sections together. This gives me: 

𝐴𝑡𝑜𝑡𝑎𝑙 = 𝐴𝐵 + 𝐴𝑀 + 𝐴𝑇  

= 145 + 6.38 + 23.4 

≈ 175𝑐𝑚2(3 𝑠. 𝑓. ) 

Thus, the total surface area of the ceramic pot can be approximated as 175 cm². 

Limitations and Improvements 
However, there were some limitations present as I carried out my exploration, the most significant being 

that the value for the surface area of the ceramic pot I calculated is a mere estimate, thus limiting its 

accuracy to three significant figures. Also, the C programme I utilised to expand and simplify the function 

equations of the ceramic pot was only precise to 6 decimal places despite the equations going on for 

many more decimals. Admittedly, a calculator or mathematical tool that rounded off to more than five 

decimal places could have been found to improve the accuracy of my exploration. But with the limited 

tools I had at my disposal and after checking through several online calculators, the coding programme I 

used seemed the most precise. Furthermore, this exploration could have been subject to human error. I 

had to first measure the circumference of the bottom and top edges of the ceramic pot with a tape 

measure and hence, could have read off the wrong values. Also, the measurements for the circumference 

of the bottom and top edges had to be rounded off to 0.1 cm as this was the smallest division for the 

measuring tape I used. I could have used an instrument like a vernier caliper to measure the radius 

instead as it is precise up to 0.01cm.  

Conclusion 
In conclusion, I was gratified to be able to apply the calculus and the formula for the surface area of a 

solid of revolution to real life. Moreover, it was satisfying to be able to uncover the mathematical reasoning 

behind the formula as well as understand it intuitively. Though my exploration was based off too many 

assumptions to allow for the surface area calculated to be a truly accurate value, I felt that it was enough 

for me to be able to tie together mathematics and my personal interest in art. Personally, I am also 

interested in taking this further and perhaps investigating the formula for finding the volume of a solid of 

revolution or using the surface area calculated to calculate the volume of the ceramic pot. This gives rise 

to other sorts of possibilities such as the volume of clay needed to mould such a ceramic pot which would 

be applicable if I wanted to extend my art project and make a series of such ceramic pots.  
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