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ABSTRACT
BigTable is a distributed storage system that is designed to manage
large-scale structured data. Deploying BigTable in a public cloud
is an economic storage solution to small businesses and researchers
who need to deal with data processing tasks over large amount
of data but often lack capabilities to obtain their own powerful
clusters. As one may not always trust the public cloud provider,
one important security issue is to ensure the integrity of data man-
aged by BigTable running at the cloud. In this paper, we present
iBigTable, an enhancement of BigTable that provides scalable data
integrity assurance. We explore the practicality of different authen-
ticated data structure designs for BigTable, and design a set of se-
curity protocols to efficiently and flexibly verify the integrity of
data returned by BigTable. More importantly, iBigtable preserves
the simplicity, applicability and scalability of BigTable, so that ex-
isting applications over BigTable can interact with iBigTable seam-
lessly with minimum or no change of code (depending on the mode
of iBigTable). We implement a prototype of iBigTable based on
HBase, an open source BigTable implementation. Our experimen-
tal results show that iBigTable imposes reasonable performance
overhead while providing integrity assurance.

Categories and Subject Descriptors
H.2 [Database Management]: Security, integrity, and protection

General Terms
Security, Design, Algorithms

Keywords
Data Integrity; Cloud Storage; Big Data

1. INTRODUCTION
BigTable [10] is a distributed data storage system designed to

scale into the petabyte range across hundreds or even thousands
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of commodity machines. It has been widely used in several prod-
ucts at Google such as Google Maps, Google Analytics and Gmail.
Moreover, in recent years many organizations have adopted the data
model of BigTable, and developed their own implementations of
BigTable such as HBase [4] and Cassandra [2]. HBase is used to
power the messages infrastructure at Facebook [7], and also used
as a data storage for Hadoop [3] and MapReduce [11] to facilitate
large-scale data processing. Cassandra is used in companies such
as Twitter, Cisco and Netflix as a reliable and scalable storage in-
frastructure.

Running BigTable in a cloud managed by a third party is an eco-
nomic storage solution to small businesses and researchers who
need to deal with data processing tasks over large amount of data
but often lack capabilities to obtain their own powerful clusters.
However, it introduces several security issues. In particular, if we
do not fully trust the cloud provider, we have to protect the integrity
of one’s data. Specifically, when we retrieve data from BigTable,
there should be a way to verify that the returned data from the cloud
are indeed what we want, i.e., no data are improperly modified by
the cloud, and it has returned exactly the data we request, nothing
less, nothing more.

This problem shares a lot of similarities with integrity protec-
tion in outsourced databases. Indeed, many techniques have been
proposed in the literature to address data integrity issues, including
correctness, completeness and freshness. Many of these techniques
are based on cryptographic authenticated data structures, which re-
quire a database system to be modified [12, 16, 18]. Some oth-
ers are probabilistic approaches, which do not require to modify
existing systems but may inject some fake data into outsourced
databases [20, 24, 25]. It seems that we can directly apply exist-
ing techniques for database outsourcing to BigTable in the cloud.
However, though the two systems share many similarities (e.g.,
they both host data at an untrusted third party, and support data
retrieval), and the principle ideas of integrity verification can be ap-
plied, the actual design and deployment of authentication schemes
are significantly different, due to several fundamental differences
between DBMSs and BigTable. In fact, such differences bring both
challenges and opportunities to assure the integrity of BigTable.

For instance, on the one hand, BigTable by design distributes
data among large number of nodes. As BigTable horizontally parti-
tions data into tablets across multiple nodes, it is common to merge
or split the data of multiple nodes from time to time for load balanc-
ing or to accommodate new data. How to handle authenticated data
structures during data merging or splitting is not considered in past
work on database outsourcing, as it is commonly assumed that data
are hosted by a single database. Also, because of the distributed na-
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ture of BigTable, it is impractical to store authenticated structures
for data residing in different machines into a single node, due to the
limited storage capacity of a single node. It also brings scalability
issues if we adopt a centralized integrity verification scheme at a
single point (e.g., at a trusted third-party). On the other hand, the
data model of BigTable is significantly simpler than that of tradi-
tional DMBSs. In particular, its query model (or the interface to
retrieve data) is extremely simple. For example, it does not sup-
port join and other complex query operators as in DBMSs. This
may allow us to design much simpler and efficient authenticated
structures and protocols to verify data integrity.

Besides integrity verification and efficiency, another important
consideration is to preserve the interface of BigTable as much as
possible so that existing applications running over BigTable do not
need to be re-implemented or modified significantly. Ideally, it
should only involve minor change (or no change at all) at the appli-
cation to enjoy integrity guarantee from BigTable.

In this paper, we present iBigTable, an enhancement to BigTable
with the addition of scalable data integrity assurance while preserv-
ing its simplicity and query execution efficiency in the cloud. To
be scalable, iBigTable decentralizes integrity verification processes
among different distributed nodes that participate in data retrieval.
It also includes efficient schemes to merge and split authenticated
data structures among multiple nodes, which is a must to preserve
the scalability and efficiency of BigTable. iBigTable tries to utilize
the unique properties of BigTable to reduce the cost of integrity
verification and preserve its interface to applications as much as
possible. Such properties include its column oriented data model,
parallel data processing, and its cache mechanism. Our major con-
tributions are summarized as follows:

• We explore different authenticated data structure designs, and
propose a Two-Level Merkle B+ Tree, which utilizes the column-
oriented data model and achieves efficient integrity verifica-
tion for projected range queries.

• We design efficient mechanisms to handle authenticated data
structure changes for efficient batch update, and tablet split
and merge by introducing a Partial Tree Verification Object.

• We build a prototype of iBigTable based on HBase [4], an
open source implementation of BigTable. The prototype shows
that the security components in iBigTable can be easily inte-
grated into existing BigTable implementations.

• We analyze the security and practicability of iBigTable, and
conduct experimental evaluation. Our analysis and experi-
mental results show that iBigTable can ensure data integrity
while imposing reasonable performance overhead.

Though our discussion in the rest of the paper is for BigTable,
the proposed authenticated data structures and integrity verification
mechanisms can be similarly applied to distributed storage systems
modelled after BigTable.

The rest of the paper is organized as follows. We introduce
BigTable in Section 2. In Section 3, we describe the data outsourc-
ing model we target, state assumptions and attack models. Sec-
tion 4 explains the major design choices of iBigTable, and section
5 illustrate how the data integrity is guaranteed for different data
operations. Section 6 discusses the security and practicability of
iBigTable and provides the experimental evaluation results. Sec-
tion 7 compares our work with related work. Finally, the paper
concludes in Section 8.

2. BACKGROUND
Bigtable is a distributed storage system for managing structured

data. A table in BigTable is a sparse distributed, persistent, mul-
tidimensional sorted map [10]. Columns in BigTable is grouped
together to form a column family. Each value in BigTable is as-
sociated with a row key, a column family, a column and a times-
tamp, which are combined to uniquely identify the value. The row
key, column family name, column name and value can be arbitrary
strings. A key-value pair is called a cell in BigTable. A row con-
sists of a group of cells with the same row key. A tablet is a group
of rows within a row range specified by a start row key and an end
row key and is the basic unit for load balancing in BigTable. In
BigTable, clients can insert or delete rows, retrieve a row based on
a row key, iterate a set of rows similar to range queries, or only re-
trieve specific column families or columns over a set of rows similar
to projected range queries in databases.

Root Tablet

Metadata Tablet … …

User Tablet User Tablet … …

1. Send query request

Receive metadata tablet location

Figure 1: BigTable: Tablet Location Hierarchy.

BigTable consists of a master and multiple tablet servers. It hor-
izontally partitions data into tablets across tablet servers, which
achieves scalability. The master is mainly responsible for assigning
tablets to tablet servers. Each tablet server manages a set of tablets.
Tablet servers handle read and write requests to the tablets that they
serve. There are three types of tablets: root tablet, metadata tablet
and user tablet. All three types of tablets share the same data struc-
ture. There is only one root tablet. The root tablet contains the
locations of all metadata tablets. Each metadata tablet contains the
locations of a set of user tablets. All user data are stored in user
tablets. The root tablet is never split to ensure that the tablet loca-
tion hierarchy has no more than three levels. Figure 1 shows the
tablet location hierarchy and how a query is executed by travers-
ing the tablet location hierarchy, which usually requires three net-
work round-trips (find metadata tablet through the root table, find
user tablet through a metadata tablet, and retrieve data from a user
tablet) if tablet locations are not found in client-side cache.

3. SYSTEM MODEL

3.1 BigTable in Cloud
BigTable can be deployed in either a private cloud (e.g., a large

private cluster), or a public cloud, for example Amazon EC2 [1]. In
a private cloud, all entities belong to a single trusted domain, and
all data processing steps are executed within this domain. There
is no interaction with other domains at all. Thus, security is not
taken into consideration for BigTable in a private cloud. However,
in a public cloud, there are three types of entities from different do-
mains: cloud providers, data owners, and clients. Cloud providers
provide public cloud services. Data owners store and manage their
data in BigTable deployed in public cloud. Clients retrieve data
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owners’ data for analysis or further processing. This data process-
ing model presents two significant differences:

• Cloud providers are not completely trusted by the public -
data owners and clients. Furthermore, could providers may
be malicious or compromised by attackers due to different
vulnerabilities such as software bugs, and careless adminis-
tration.

• The communications and data transmitted between the pub-
lic and cloud providers are through public networks. It is
possible that the communications are eavesdropped, or even
tampered to launch different attacks.

Therefore, before BigTable can be safely deployed and operated
in a public cloud, several security issues need to be addressed, in-
cluding confidentiality, integrity, and availability. In this paper, we
focus on protecting data integrity of BigTable deployed in a public
cloud, which includes three aspects: correctness, completeness and
freshness.

Correctness: it verifies if all rows in a query result are generated
from the original data set without being tampered. It is generally
achieved by verifying signatures or hashes that authenticate the au-
thenticity of the query result.

Completeness: it verifies if all rows in a query result are gener-
ated from the original data set without being tampered. It is gen-
erally achieved by verifying signatures or hashes that authenticate
the authenticity of the query result.

Freshness: it verifies if queries are executed over the up-to-date
data. It is challenging to provide freshness guarantees because old
data is still valid data at some past time point.

3.2 Assumptions and Attack Models
First, we assume that cloud providers are not necessarily trusted

by data owners and clients. Second, we assume that a data owner
has a public/private key pair, its public key is known to all, and it is
the only party who can manage its data, including data updates and
tablet split and merge. Third, we assume that all communications
go through a secure channel (e.g., through SSL) between the cloud
and clients. Any tampered communication can be detected by both
the cloud and clients at each end immediately.

Based on the above assumptions, we concentrate on the analysis
of malicious behavior from the public cloud. We do not limit the
types of malicious actions a cloud provider may take. Instead, they
may behave arbitrarily to compromise data integrity at its side. For
example, the cloud can maliciously modify the data or return an
incorrect result to users by removing or tampering some data in the
result. Moreover, it could just report that certain data does not exist
to save its computation and minimize the cost even if the data does
exist in the cloud. Additionally, it may initiate replay attacks by
returning some old data instead of using the latest data updated by
the data owner.

4. SYSTEM DESIGN
In this section, we illustrate the major design of iBigTable, and

explain the design choices we make to provide scalable integrity
assurance for BigTable. One straightforward way to provide in-
tegrity assurance is to build a centralized authenticated data struc-
ture. However, data in BigTable is stored across multiple nodes,
and may go up to the scale of petabytes. The authentication data
could also go up to a very large size. Thus, it is impractical to
store authentication data in a single node. Moreover, the single
node will become a bottleneck for data integrity verification. To
ensure performance and scalability, we propose to build a Merkle

Hash Tree (MHT) based authenticated data structure for each tablet
in BigTable, and implement a decentralized integrity verification
scheme across multiple tablet servers to ensure data integrity of
BigTable. Note that we assume that readers have certain knowl-
edge of MHT. If readers are not familiar with MHT, please refer to
Appendix A for details.

4.1 Distributed Authenticated Data Structure
BigTable horizontally partitions data into tablets across tablet

servers. A natural solution is to utilize BigTable’s distributed nature
to distribute authenticated data across tablets. Figure 2(a) shows
a distributed authenticated data structure design. First, it builds a
MHT-based authenticated data structure for each tablet in BigTable,
including the root tablet, metadata tablets, and user tablets. Second,
it stores the root hash of the authenticated data structure of a tablet
along with the tablet location record in its corresponding higher
level tablet (either the root tablet or a metadata tablet), as shown in
Figure 2(a). Third, the root hash of the root tablet is stored at the
data owner so that clients can always retrieve the latest root hash
from the data owner for integrity verification. To improve perfor-
mance, clients may not only cache the location data of tablets, but
also their root hashes for efficient integrity verification.

Figure 2: Distributed Authenticated Data Structure Design.

This design distributes authenticated data across tablets, which
are served by different tablet servers. To guarantee integrity, it
only requires the data owner to store a single hash for the whole
data set in BigTable. However, any data update requires authenti-
cated data structure update to be propagated from a user tablet to
a metadata tablet and from the metadata tablet to the root tablet.
The update propagation process requires either the data owner or
tablet servers get involved, either of which complicates the existing
data update process in BigTable and downgrades the update per-
formance. Moreover, as the root hash of the root tablet is updated,
the root hashes of other tablets cached in clients to improve per-
formance are not valid any more. Thus, clients have to retrieve the
latest root hash of the root tablet, and contact tablet servers to re-
trieve the latest root hashes of other tablets for their requests even
if the location data of the tablets stored in metadata tablets or the
root tablet is not changed, which hurts read performance.

To address the above issues, we propose a different distributed
MHT-based design, which is shown in Figure 2(b). This design
also distributes authenticated data across tablets like what the pre-
vious design does. But it makes two major design changes. First, it
removes the dependency between the authenticated data structures
of tablets so that there is no need to propagate an authenticated data
update across multiple tablets. In this way, the authenticated data
update process is greatly simplified since it does not require either
the data owner or tablet servers to propagate any update, which pre-
serve the existing data update protocols in BigTable and minimize
communication cost. Second, instead of storing one hash in the
data owner, it stores the root hash of each tablet in the data owner,
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which requires more storage compared with the previous design.
However, note that the root hash that the data owner stores for each
tablet is only of a few bytes (e.g., 15 bytes for MD5 and 20 bytes
for SHA1), while the data stored in a tablet is usually from several
hundred megabytes to a few gigabytes [10]. Therefore, even for
BigTable with data of petabyte scale, the root hashes of all tablets
can be easily maintained by the data owner with moderate storage.
Our discussion in the rest of the paper is based on this design.

4.2 Decentralized Integrity Verification
As the authenticated data is distributed into tablets across tablet

servers, the integrity verification process is naturally distributed
across tablet servers, shown in Figure 3. Like a query execution in
BigTable, the query execution with integrity assurance in iBigTable
also requires three roundtrip communications between a client and
tablet servers in order to locate the right metadata and user tablet,
and retrieve data. However, for each round-trip, the client needs a
way to verify the data sent by a tablet server. To achieve that, first a
tablet server generates a Verification Object (VO) for the data sent
to the client, which usually contains a set of hashes. Since the au-
thenticated data for a tablet is completely stored in the tablet server,
the tablet server is able to generate the VO without communicating
with anyone else, which greatly simplifies the VO generation pro-
cess and adds no communication cost. Second, the tablet server
sends the VO along with the data to the client. Third, when the
client receives the data and the corresponding VO, the client runs
a verification algorithm to verify the integrity of the received data.
One step that is not shown in Figure 3 is that in order to guaran-
tee the freshness of the data, the client needs to retrieve the root
hash of the tablet from the data owner on demand or update the
cached root hash of the tablet from time to time. How often the
client makes such updates depends on the freshness requirement of
specific applications, which is a tradeoff between freshness and per-
formance. With the cached root hashes and locations of tablets, the
query execution may only require one round-trip between a client
and a tablet server, which is exactly the same as that in the orig-
inal BigTable. This is important as iBigTable strives to preserve
the original BigTable communication protocol so that its adoption
requires minimum modification to existing BigTable deployment.

1.1 meta key (root, meta, table name, start row key)

Tablet Server 
serving Root tabletClient

1.3 meta row (meta tablet location, start and end keys)

2.1 meta key (meta, table name, start row key)

Tablet Server 
serving Metadata tabletClient

2.3 meta row (user tablet location, start and end keys)

3.1 start and end row keys

Tablet Server 
serving User tabletClient

3.3 rows within the start and end row keys

1.2 generate VO

2.2 generate VO

3.2 generate VO

, VO 

, VO 

, VO 

Figure 3: Decentralize Integrity Verification.

As can be seen from Figure 3, the major performance overhead
in iBigTable comes from three parts: the computation cost at tablet
servers for VO generation, the communication cost between clients
and tablet servers for VO transmission, and the computation cost
at clients for VO verification. We will evaluate and analyze the
performance overhead added by the three parts in section 6.3.

Note that although in our design we assume that the data owner
as a trusted party stores the root hashes and handles the root hash
retrieval requests to guarantee that clients can always get the latest

root hashes for freshness verification, many approaches that have
been studied extensively in the field of certificate validation and
revocation for ensuring the freshness of signed messages can be
directly applied to our design, which do not requires that the data
owner be online to handle the root hash retrieval requests [16, 17,
25]. For example, the data owner can sign the root hashes with
an expiration time and publish those signatures at a place that can
be accessed by clients, and reissues the signatures after they are
expired. In the rest of the paper, for simplicity, we still assume
that the data owner stores the root hashes and handles the root hash
retrieval requests.

4.3 Tablet-based Authenticated Data Structure
In BigTable, since all three types of tablets share the same data

structure, we propose to design an authenticated data structure based
on the tablet structure, and use it for all tablets in BigTable. We
compare different authenticated data structures by analyzing how
well they can support the major operations provided in BigTable.
Authenticated data structure based approaches are mainly divided
into two categories, signature aggregation based approaches [16,
18] and Merkle Hash Tree(MHT) based approaches [12, 16]. Al-
though both of them can guarantee correctness and completeness, it
is unknown how to efficiently guarantee freshness using signature
aggregation based approaches [16]. Moreover, techniques based on
signature aggregation incur significant computation cost in client
side and much larger storage cost in server side compared with
MHT-based approaches [16]. Thus, we focus on exploring MHT-
based authenticated data structures in the following.

… …

column key, column hash

the only one root

row 1 row 2 row n

Figure 4: SL-MBT: Single-Level Merkle B+ Tree.

SL-MBT: A single-level Merkle B+ tree. BigTable is column-
oriented data storage. Each column value is stored with a key as
a key value pair (keyc, valuec), where keyc includes row key and
column key specified by column family name and column name.
It is straightforward to build a Merkle B+ tree based on all key
value pairs in a tablet, which is called SL-MBT shown in Figure
4. In a SL-MBT, all leaves are the hashes of key value pairs. In
this way, it is simple to generate a VO for a single column value.
Now that all column values are strictly sorted based on row key and
column key, the hashes of the key value pairs belonging to a row
are adjacent to each other among the leaves of the tree. Thus, it is
also straightforward and efficient to generate a VO for a single row
query. The same logic can be applied to row-based range queries.

Suppose the fan-out of SL-MBT is f , there are nr rows in a
tablet, each row ri has ncf column families, and each column fam-
ily has nc columns. Then, the height of SL-MBT in the tablet is
equal to ht = logf (nr · ncf · nc). Say we run a range query
with nq rows returned, where nq is greater than 0. The height of
the partial tree built based on all key value pairs returned equals to
hp = logf (nq · ncf · nc). The number of hashes Hr returned in
the VO is:

Hr = (f − 1) · (ht − hp)

= (f − 1) · logf (nr/nq)
(1)
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The number of hashes Hc that need to be computed at the client
side includes: 1) the number of hashes in the partial tree built based
on all received key value pairs; 2) the number of hashes for com-
puting the root hash using hashes in the VO, computed as follows:

Hc =

logf (nq ·ncf ·nc)∑

i=0

f i + logf (nr/nq) (2)

If the range query is projected only to one column, it means that
the server only needs to return the column values for nq rows. To
verify those column values, one way we can do is to verify each
column value separately. In this case, both Hr and Hc are linear to
nq , which are computed as follows:

Hr = nq · (f − 1) · ht (3)
Hc = nq · (1 + ht) (4)

Based on SL-MBT, it is expensive to generate and verify VOs
for projected range queries.
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row key, root hash of a MBT 
in column family level
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column name, column hash

column family name, 
root hash of a MBT 

in column level

… …

… …

Figure 5: ML-MBT: Multi-Level Merkle B+ Tree.

ML-MBT: A multi-level Merkle B+ tree. Different from SL-
MBT, ML-MBT builds multiple Merkle B+ trees in three different
levels shown in Figure 5:

1. Column Level: we build a Merkle B+ tree based on all col-
umn key value pairs within a column family for a specific
row, called Column Tree. Each leaf is the hash of a column
key value pair. We have one column tree per column family
within a row.

2. Column Family Level: we build a Merkle B+ tree, based on
all column family values within a row, called Column Fam-
ily Tree. Each leaf is the root hash of the column tree of a
column family. We have one column family tree per row.

3. Row Level: we build a Merkle B+ tree based on all row val-
ues within a tablet, called Row Tree. Each leaf is the root
hash of the column family tree of a row. We only have one
row tree in a tablet.

Given the same range query mentioned above, the Hr in ML-
MBT is the same as that returned in SL-MBT. However, Hc in ML-
MBT is much smaller than that in SL-MBT, computed as follows:

Hc =

logf nq∑

i=0

f i + logf (nr/nq) (5)

The partial tree built at the client side for ML-MBT is based
on all received rows instead of all received key value pairs. Thus,
the number of hashes in the partial tree is much smaller than that

for SL-MBT. Compared with SL-MBT, another advantage of ML-
MBT is that the client is able to cache the root hashes for trees in
different levels to improve the performance of some queries. For
example, by caching a root hash of a column family tree, for pro-
jected queries within the row, we only need to return hashes from
trees under the column family level. Although ML-MBT presents
some advantages over SL-MBT, it shares the same disadvantage
with SL-MBT for projected range queries.

TL-MBT: A two-level Merkle B+ tree. Considering the unique
properties of column-oriented data storage, where a column may
not have values for many rows, it seems reasonable to build a col-
umn tree based on all values of a specific column over all rows.
Due to missing column values in rows, the height of different col-
umn trees may be different. Based on this observation, we can also
build a column family tree based on all values of a specific col-
umn family over all rows. To facilitate row-based queries, we can
also build a row tree based on all rows in a tablet. In this way, we
may build a Merkle B+ tree for rows, for each column family, and
for each column respectively. We call them Data trees. Further,
we build another Merkle B+ tree based on all root hashes of Data
trees in the tablet, which is called an Index tree. Figure 6 shows the
structure of such a two-level Merkle B+ tree. The top level is the
Index level where the Index tree is, and the bottom level is the Data
level where all Data trees are. Each leaf of Index tree points to a
Data tree. Its key is a special value for row tree, the column family
name for a column family tree, or the column name for a column
tree, and its hash is the root hash of its corresponding Data tree.
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Row Tree Column Family Tree Column Tree

Index Tree

row key, row hash row key, column family hash row key, column hash

identifier of a Data tree, 
the root hash of the Data tree

Figure 6: TL-MBT: Two-Level Merkle B+ Tree.

To generate a VO based on TL-MBT, we first need to find all
necessary Data trees of a query through the Index tree, which can
be done by checking what column families or columns are returned
or if the whole row is returned. Second, based on the Index tree
and the related Data trees, we use a standard Merkle B+ tree VO
generation process to construct a VO for the query. For instance,
for row-based range queries, servers only need to find the row tree
through the Index tree and use both the Index tree and the row tree
to generate a VO, and clients can verify data integrity using the VO
efficiently. We argue that although the Index tree increases the total
height of the authenticated data structure, its height is relative small
since the number of table columns is much less than the number
of rows, and the Index tree could be completely cached in both the
server side and the client side, which can reduce the communication
cost and verification cost. Thus, the performance of TL-MBT is
comparable to ML-MBT for row-based queries.

However, it is much more efficient than SL-MBT and ML-MBT
for single column projection. Considering the aforementioned range
query with single column projection, Hr and Hc in TL-MBT are:

Hr = (f − 1) · (hm + logf (nr/nq)) (6)
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Hc =

logf nq∑

i=0

f i + logf (nr/nq) + hm (7)

In Equation 6 and 7, hm is the height of the Index tree. Neither
of Hr and Hc is linear to nq . For a projection on multiple columns,
we need to verify results for each column separately. In this case,
the cost is linear to the number of columns projected in the query.
However, compared with SL-MBT and ML-MBT, the update cost
may increase by about 3 times since we need to update column tree,
column family tree and row tree, which may have the same height,
plus the Index tree. We argue that TL-MBT provides a flexible data
structure for clients to specify how they want to build such a TL-
MBT based on their own needs. For example, if they will never
run queries with column-level projection, then it is not necessary
to build column trees. In this case, we may only have row tree and
column family trees in Data level.

Based on the above analysis, we choose to use TL-MBT as the
authenticated data structure for the design of iBigTable.

5. DATA OPERATIONS
Based on TL-MBT, we describe how clients ensure the integrity

of the major data operations of BigTable. We address several chal-
lenges, including range query across multiple tablets, efficient batch
updates, tablet merge and split. In our design, the data owner stores
the root hash of each tablet, and any client can request the latest
root hash of any tablet from the data owner for integrity verifica-
tion. Without loss of generality, we assume that clients always have
the latest root hashes of tablets for integrity verification.

5.1 Data Access
We start our discussion from range queries1. In Section 4.2, we

illustrate a general process to run query with integrity protection in
iBigTable. The execution of range queries within a tablet follows
exactly the same process shown in Figure 3. However, we need to
handle range queries across multiple tablets differently. Figure 7
shows a running example for data query and updates. Initially, we
have 10 rows with keys from 0 to 90 in a tablet. Figure 7(a) and 7(b)
show the initial MB+ tree for the tablet and the result returned for a
range query from 15 to 45 including data and VO. We will explain
in detail of major operations based on the running example.

Range Queries Across Tablets. To provide integrity assurance
for range queries across tablets, it is necessary to retrieve authenti-
cated data from different tablets since the authenticated data struc-
ture built for a tablet is only used to verify integrity of data within
the tablet. We observe that to handle a range query across tablets,
the range query is usually split into multiple sub-queries, each of
which retrieves rows from one tablet. More importantly, the query
ranges of the sub queries are continuous since the query split is
based on the row range that each tablet serves, which is stored along
with the tablet location in a meta row as shown in Figure 3. Sup-
pose that there are two tablets, one serves rows from 1 to 10 and the
other serves rows from 11 to 20, and a range query is to retrieves
rows from 5 to 15 across the two tablets. In this case, the query is
splits into two sub queries with query ranges from 5 to 10 and from
11 to 15. In this way, we can apply the same process of range query
answering within a tablet to guarantee integrity for each sub query.

However, the completeness of the original range query across
tablets may not be guaranteed since a tablet server may return a
wrong row range for a user tablet, which results in an incomplete
result set returned to clients. Thus, we want to make sure that the

1A single row query as a special case of range query can be handled
in the same way that a range query is executed.

row range of the user tablet is correctly returned. During the query
verification process, it is guaranteed by the verification of meta row
performed by clients because the row range of a user tablet is part
of the data of the meta row, which has been authenticated. It is also
why we not only need to guarantee integrity of data stored in user
tablets, but also data stored in the root and metadata tablets.

Single Row Update. In iBigTable, we support integrity protec-
tion for dynamic updates such as insertion, modification and dele-
tion. Due to the space limit, we focus on discussing how to insert
a new row into the data storage, which covers most of aspects of
how modification and deletion are handled. Insertion shares the
same process to find the user tablet where the new row should be
inserted based on the key of the new row. Here we do not reiterate
this process again. The rest of the steps to insert a row into the user
tablet are shown in Figure 8.

3.1 new row

Tablet Server 
serving USER tabletData Owner

3.3 Partial Tree VO 

3.4 verify and update 
tablet root hash

3.2 generate PT-VO, insert new row
update tablet root hash

Figure 8: Single Row Insert with Integrity Protection.

Here, we introduce a new type of VO called Partial Tree Verifi-
cation Object (PT-VO). The difference between a VO and a PT-VO
is that a PT-VO contains keys along with hashes, while a VO does
not. With those keys, a PT-VO allows us to insert new data within
the partial tree range directly. Thus, when the data owner receives
a PT-VO from the tablet server, it can directly update the PT-VO
locally to compute the new root hash of the original authenticated
data structure. Figure 7(c) shows the PT-VO returned for an inser-
tion at key 45. As can be seen from Figure 8, an insertion with
integrity protection is completed without additional round-trip, and
its integrity is guaranteed since the verification and the root hash
update are done directly by the data owner.

Efficient Batch Update. In iBigTable, we can execute a range
query to retrieve a set of rows at one time and only run verification
once. Motivated by this observation, we think about how we can do
a batch update, for example inserting multiple rows without doing
verification each time a new row is inserted. We observe the fact
from single row update that the data owner is able to compute the
new root hash based on a PT-VO. Based on this observation, we
propose two simple yet effective schemes to improve the efficiency
of insertions for two different cases.

In the first case where we assume that the data owner knows
within which range new rows falls, the data owner can require
servers to return a PT-VO for the range before any insertion re-
ally happens. Any new row falling into the range can be inserted
directly without requiring the server to return a VO again because
the data owner is able to compute the new root hash of the tablet
with the PT-VO and the new row. Thus, even if 1000 rows are in-
serted within this range, no additional VO needs to be returned for
them. But both the data owner and tablet servers have to update the
root hash locally, which is inevitable in any case.

In the second case where we assume that a PT-VO for a range
is already cached in the data owner side, the data owner does not
need to request it. As long as we have the PT-VO for a range, we do
not need any VO from servers if we insert rows within the range.
For example, Figure 7(b) and 7(d) show such an example. First, the
data owner runs a range query from 15 to 45 with a request for a
PT-VO instead of a VO without keys. Then, the data owner inserts
a row with key 45. In this case, there is no need requiring any VO
from the tablet server for the insertion.
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Figure 7: A running example.
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Figure 9: Split the tablet at key 45.

5.2 Tablet Changes
As the size of a tablet changes, the data owner may want to split a

tablet or merge two tablets for load balancing. For both tablet split
and merge, we need to rebuild an authenticated data structure and
update the root hashes for newly created tablets. One straightfor-
ward way is to retrieve all data hashes in tablets involved and com-
pute new root hashes for newly created tablets in the data owner
side. However, this incurs high communication and computation
overhead in both the data owner side and tablet servers. In the fol-
lowing, we explain how we can efficiently compute the root hashes
for newly created tablets when tablet split or merge happens. For
simplicity, we assume that there is only one Data tree and no Index
tree in tablets when we discuss tablet split or merge, since the In-
dex tree of TL-MBT in a tablet can be rebuilt based on Data trees.
Further, all Data trees are split or merged in the same way.

Tablet Split. Regarding tablet split, a straightforward way is to
split the root of each tree and form two new roots using its children.
For example, given the current root we can split it in the middle,
and use the left part as the root of one tablet and the right part as
the root of the other tablet. In this way, to split a Data tree and
compute new root hashes for newly created tablets, the data owner
only needs to retrieve the hashes of children in the root of the Data
tree from an appropriate tablet server.

The main advantage of the above approach is its simplicity. It
can be easily implemented. However, splitting at the middle of
the root (or any pre-fixed splitting point) prevents us from doing
flexible load balancing dynamically based on data access patterns
and work loads. Here, we propose a simple yet effective approach
to allow the data owner to specify an arbitrary split point for a tablet
(instead of always along one child of the root), which can be any
key within the range served by the tablet. The approach works as
follows: 1) The data owner sends a tablet split request with a key as
the split point to the appropriate tablet server. For example, the data
owner splits the previous tablet at key 45; 2) The server returns a
VO for the split request to the data owner shown in Figure 9(a). The
VO for split not only contains all data in a PT-VO, but also includes
keys and hashes of the left and right neighbors of each left-most or
right-most node in the PT-VO; 3) When the data owner receives the
VO, the data owner splits it into two partial trees shown in Figure
9(b). The left tree contains all keys less than the split key, and the
right tree contains all keys larger than or equal to the split key; 4)

Algorithm 1 Adjust left partial tree VO
Require: Tl {the left partial tree}
Ensure: Ta {the adjusted left partial tree}
1: p← GetRoot(Tl)
2: while p �= null do
3: remove any key without right child in p
4: prm ← the rightmost child of p
5: if IsValidNode(p) is false then
6: pls ← the left sibling of p
7: if CanMergeNodes(p, pls) then
8: merge p and pls
9: else

10: shift keys from pls to p through their parent
11: end if
12: end if
13: p← prm
14: end while
15: return Ta ← Tl

The data owner adjusts both trees using two similar processes and
computes the root hashes for the two new tablets. The adjusted
trees are shown in both Figure 9(c) and 9(d). Due to the similarity
of adjustments for both trees and space limit, we only describe the
process for left tree in Algorithm 1.

Left Partial Tree Right Partial Tree
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Figure 10: Tablet Merge.

Tablet Merge. Tablet merge is a reverse process of table split.
It tries to merge two continuous tablets into a new one. As two
tablets merge, we need to merge the authenticated data structures.
Motivated by the tablet split approach and the Partial Tree VO, we
describe an efficient tablet merge approach as follows: 1) The data
owner sends a tablet merge request to the appropriate tablet servers
serving two continuous tablets to be merged; 2) The server serv-
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ing the tablet with smaller keys returns a VO for its largest key,
and the server serving the tablet with larger keys returns a VO for
its smallest key, which are shown in Figure 10; 3) When the data
owner receives two VOs for the two tablets, it directly merges them
into one using the process described in Algorithm 2. Then, the
data owner computes the root hash for the new tablet based on the
merged VO.

Our discussion focus on the tablet-based authenticated data struc-
ture split and merge at the data owner side. The same process can
be applied at the server side.

Algorithm 2 Merge two partial tree VOs
Require: Tl and Tr {represent two partial trees separately}
Ensure: Tm {the merged partial tree}
1: k ← the least key in Tr

2: hl ← GetHeight(Tl)
3: hr ← GetHeight(Tr)
4: hmin ← GetMin(hl, hr)
5: if hl ≤ hr then
6: plm ← the leftmost node in Tr at hmin

7: add k to plm
8: pmerged ← merge the root of Tl and plm
9: if IsValidNode(pmerged) is false then

10: run a node split process for pmerged

11: end if
12: return Tm ← Tr

13: else
14: prm ← the rightmost node in Tl at hmin

15: add k to prm
16: pmerged ← merge the root of Tr and prm
17: if IsValidNode(pmerged) is false then
18: run a standard node split process for pmerged

19: end if
20: return Tm ← Tl

21: end if

6. ANALYSIS AND EVALUATION

6.1 Security Analysis
We analyze in the following how iBigTable achieves the three

aspects of data integrity protection.
Correctness. In iBigTable, the Merkle tree based authenticated

data structure is built for each tablet, and the root hash of the au-
thenticated data structure is stored in the data owner. For each
client request to a tablet, a tablet server serving the tablet returns
a VO along with the data to the client. The client is able to com-
pute a root hash of the tablet using the VO and the data received.
To guarantee the integrity of the data received, the client needs to
retrieve the root hash of the tablet from the data owner, and then
compare the root hash received from the data owner and the com-
puted root hash. The comparison result indicates if the data has
been tampered. Thus, the correctness of iBigTable is guaranteed.
Any malicious modification can be detected by the verification pro-
cess.

Completeness. The completeness of range queries within a tablet
is guaranteed by the MHT-based authenticated data structure built
for each tablet. For range queries across tablets, each of them is
divided into several sub-range queries with continuous range based
on the original query range and data range served by tablets so that
each sub-range query only queries data within a tablet. Thus, the
completeness of range queries across tablets is guaranteed by two

points: 1) the sub-range queries are continuous without any gap;
2) the completeness of each sub-range query is guaranteed by the
authenticated data structure of its corresponding tablet.

Freshness. In iBigTable, the data owner is able to compute the
new root hash of the authenticated data structure for a tablet when
any data in the tablet is updated. Thus, clients can always get the
latest root hash of a tablet from the data owner to verify the au-
thenticity of data in the tablet. Even though there is no data update
to any tablet, tablet split or merge may happen since a tablet may
become a bottleneck because of too much load or for better tablet
organization to improve performance. In this case, iBigTable also
enables the data owner to compute the new root hashes for new
tablets created during the split or merge process to guarantee the
freshness of tablet root hashes, which is the key for freshness veri-
fication.

6.2 Practicability Analysis
We argue that iBigTable achieves simplicity, flexibility and effi-

ciency, which makes it practical as a scalable storage with integrity
protection.

Simplicity. First, we add new interfaces and change part of ex-
isting implementation to achieve integrity protection while keep-
ing existing BigTable interface, which enables existing applications
to run on iBigTable without any change. Second, iBigTable pre-
serves BigTable existing communication protocols while provid-
ing integrity verification, which minimizes modification to existing
BigTable deployment for its adoption.

Flexibility. We provide different ways to specify how and when
clients want to enable integrity protection. Existing client applica-
tions can enable or disable integrity protection by configuring a few
options without any code change, and new client applications may
use new interfaces to design a flexible integrity protection scheme
based on specific requirements. There is no need to change any
configuration of iBigTable servers when integrity protection is en-
abled or disabled at the client side.

Efficiency. We implement iBigTable without changing existing
query execution process, but only attach VOs along with data for
integrity verification. We make the best use of cache mechanisms
to reduce communication cost. We introduce the Partial Tree Ver-
ification Object to design a set of mechanisms for efficient batch
updates, and for efficient and flexible tablet split and merge.

Note that though iBigTable only allows the data owner to modify
data, most applications running on top of BigTable do not involve
frequent date updates. So it is unlikely that the data owner becomes
a performance bottleneck.

6.3 Experimental Evaluation
System Implementation. We have implemented a prototype

of iBigTable based on HBase [4], an open source implementation
of BigTable. Although HBase stores data in a certain format and
builds indexes to facilitate the data retrieval, we implement the au-
thenticated data structure as a separated component loosely cou-
pled with existing components in HBase, which not only simplifies
the implementation but also minimize the influence on the exist-
ing mechanisms of HBase. We add new interfaces so that clients
can specify integrity options in a flexible way when doing queries
or updates. We also enable them to configure such options in a
configuration file in the client side without changing their applica-
tion code. Besides, we add new interfaces to facilitate the integrity
protection and efficient data operations. For example, for efficient
batch updates a client may want to pre-fetch a PT-VO directly based
on a range without returning actual data. Finally, iBigTable auto-
matically reports any violation against data integrity to the client.
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Experiment Setup. We deploy HBase with iBigTable extension
across multiple hosts deployed in Virtual Computing Lab (VCL),
a distributed computing system with hundreds of hosts connected
through campus networks [8]. All hosts used have similar hardware
and software configuration (Intel(R) Xeon(TM) CPU 3.00GHz, 8G
Memory, Red Hat Enterprise Linux Server release 5.1, Sun JDK 6,
Hadoop-0.20.2 and HBase-0.90.4). One of the hosts is used for the
master of HBase and the NameNode of HDFS. Other hosts are run-
ning as tablet servers and data nodes. We consider our university
cloud as a public cloud, which provides the HBase service, and run
experiments from a client through a home network with 30Mbps
download and 4Mbps upload. To evaluate the performance over-
head of iBigTable and the efficiency of the proposed mechanisms,
we design a set of experiments using synthetic data sets we build
based on some typical settings in BigTable [10]. We use MD5 [6]
to generate hashes.
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Baseline Experiment. Before we evaluate the performance of
write and read operations in iBigTable, we run a simple data trans-
mission through the targeting network because the result is going
to be helpful to understand the performance result later. In the ex-
periment, the client sends a request to a server for a certain amount
of data. The server generates the amount of random data and sends
the data back to the client. Figure 11 shows the time to receive a
certain amount of data from a server using logarithmic scale. The
result shows that it almost takes the same time to transmit data less
than 4KB, where the network connection initialization may dom-
inate the communication time. The time is doubled from 4KB to
8KB till around 64KB. After 64KB, the time linearly increases,
which is probably because the network is saturated.

To understand how the VO size changes for range queries, we run
an experiment to quantify the VO size for different ranges based on
a data set with about 256MB data, which is the base data set for
later update and read experiments. Figure 12 shows the VO size
per row for different sizes of range queries. For a range with more
than 64 rows, the VO size per row is around 10 bytes. Although
the total VO size increases as the size of range queries increases,
the VO size per row actually decreases, shown in Figure 12 with
logarithmic scale.

Write Performance. Regarding different data operations, we
first conduct experiments to evaluate the write performance over-
head caused by iBigTable, where we sequentially writes 8K rows
into an empty table with different write buffer sizes. The data
size of each row is about 1KB. Figure 13 shows the number of
rows written per second by varying the write buffer size for HBase,
iBigTable and iBigTable with Efficient Update (EU). The result
shows the performance overhead caused by iBigTable ranges from
10% to 50%, but iBigTable with EU only causes a performance
overhead about 1.5%, and the write performance increases as the
write buffer size increases. Figure 14 shows the breakdown of

performance overhead introduced by iBigTable, which shows the
client computation overhead, the server computation overhead and
the communication overhead between client and server. As can be
seen from the figure, the major performance overhead comes from
transmitting the VOs. The computation overhead from both client
and server ranges from 2% to 5%.
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Based on our observation, the large variation of performance
overhead is caused by the network transmission of VOs generated
by iBigTable for data integrity protection. Although the total size
of VOs generated for different write buffer sizes is the same, the
number of data with VOs transmitted in each remote request is dif-
ferent in different cases. Different sizes of data may cause a dif-
ferent delay of network transmission, but it may not be always a
case, which is shown in Figure 11. iBigTable with EU shows a
great performance improvement since there is at most one time VO
transmission in this case, and the major overhead of iBigTable with
EU is the client-side computation overhead of computing the new
root hash for newly inserting data, which is very small, compared
with iBigTable.
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Read Performance. We also run experiments to evaluate the
read performance overhead of iBigTable. Figure 15 shows how the
number of rows read per second changes based on different num-
ber of rows cached per request for a scan. The result shows that
the read performance overhead ranges from 1% to 8%. Figure 16
shows the breakdown of iBigTable read overhead. The communi-
cation overhead can be explained by the result shown in Figure 11
because the total amount of data transmitted for the first two cases
ranges from 8KB to 32KB. In the rest of cases, the size of data is
about or larger than 64KB, which results in a large network delay
for data transmission. In this case, as the VO size increases, the
communication overhead becomes more visible. Based on our ob-
servation from experiments, the computation overhead of both the
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client and servers is about 1%. Still, the major part of performance
downgrade is caused by the variation of data transmission between
the client and servers.

TL-MBT Performance. To illustrate how TL-MBT affects the
performance, we execute a single column update of 16K rows on
an existing table with about 30GB data across all tablets, each of
which has 256MB data or so. The experiments run against differ-
ent authenticated data structure configurations of TL-MBT: Row
Level, Column Family Level and Column Level, which decides
what data trees we build for a tablet. For example, regarding Col-
umn Level, we build trees for rows, each column family and each
column. It means that for a single column update, we need to up-
date four authenticated trees, which are row tree, column family
tree, column tree and Index tree. Due to the small size of Index
tree, the VO size of Column Level is roughly tripled compared with
those of Row Level, and the client-side computation and server-
side computation overhead are about triple too. Figure 17 shows
the number of rows updated per second versus the write buffer size
for three different configurations of TL-MBT. The result indicates
that as the number of trees that need to be updated increases, the
performance decreases dramatically in some cases. The major rea-
son for the performance downgrade is still caused by the additional
data transmitted for data verification.
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We also evaluate the read performance for projected queries in
iBigTable with TL-MBT by executing a single column scan for
16K rows. For TL-MBT with Row Level, even though we only
need a single column value, we still need to retrieve the whole row
for data verification in the client side. Similarly, we need to retrieve
the whole column family for TL-MBT with Column Family Level.
Thus, the TL-MBT with Column Level minimizes the communi-
cation overhead since there is no need to transmit additional data
for data verification for column projection. Although its computa-
tion cost is the lowest one among three different configurations, the
major difference is the size of data transmitted between the client
and servers. Figure 18 shows how much the TL-MBT can improve
the read efficiency for projected queries. Due to the network delay
for different data sizes, we see the large performance variation for
different cases in the figure.

Overall, the computation overhead in both client and servers for
different cases ranges from 1% to 5%. However, the generated VOs
for data verification may affect the performance to a large extent
for different cases, which depends on how much data is transmitted
between the client and servers in a request. Due to the space limit,
we do not analyze the performance overhead for tablet split and
merge. In general, since the performance overhead for tablet split
and merge only involves several hashes transmission and computa-
tion, it is negligible compared with the time needed to complete

tablet split and merge, which involves a certain amount of data
movement across tablet servers.

7. RELATED WORK
Several open-source, distributed data storages have been imple-

mented modelled after BigTable, for example HBase [4] and Hy-
pertable [5], which are widely used for both academia research and
commercial companies. Carstoiu et al. [9] focused on the perfor-
mance evaluation of HBase. You et al. [27] proposed a solution
called HDW, based on Google’s BigTable, to build and manage a
large scale distributed data warehouse for high performance OLAP
analysis. Few work pays attention to the data integrity issue of
BigTable in a public cloud. Although Ko et al. [21] mentioned the
integrity issues of BigTable in a hybrid cloud, no further discussion
on a practical solution was elaborated.

Data integrity issues have been studied for years in the field of
outsourcing database [12–14,18,19,24]. Different from traditional
database, BigTable is a distributed data storage system involving
multi-entity communication and computation, which presents chal-
lenges to directly adopt any of existing authenticated data struc-
ture. Xie et al. [24] proposed a probabilistic approach by inserting
a small amount of fake records into outsourced database so that
the integrity of the system can be effectively audited by analyz-
ing the inserted records in the query results. Yang et al. [26] dis-
cussed different approaches to handling some types of join queries
for outsourced database, which is not relevant to the query model of
BigTable. Xie et al. [25] analyzed the different approaches to pro-
vide freshness guarantee over different integrity protection schemes,
which is complementary to our work for BigTable.

Additionally, Lee et al. [15] proposed algorithms to attach branch
to or remove branch from B+ tree for self-tuning data placement in
parallel database system, but the branch attaching algorithm is only
for two branches that have the same height, and the branch removal
algorithm is not flexible because no split point can be specified. Sun
et al. [22] designed algorithm to merge B+ tree covering the same
key range, which is different from our problem since the row range
in each tablet is non-overlapping. Zhou et al. [23] discussed data
integrity verification in the cloud, and proposed an approach called
partitioned MHT (P-MHT) that may be applied to data partitions.
But it may not be scalable since when an update happens to one data
partition, the update has to be propagated across all data partitions
to update the P-MHT, which renders it as an impractical solution for
BigTable. To the best of our knowledge, iBigTable is the first work
to propose a practical solution to address the unique challenges and
ensure the data integrity for running BigTable in a public cloud.

8. CONCLUSION AND FUTURE WORK
In this paper, we have presented iBigTable, which enhances BigTable

with scalable data integrity assurance while preserving its simplic-
ity and query execution efficiency in public cloud. We have ex-
plored the practicality of different authenticated data structure de-
signs for BigTable, designed a scalable and distributed integrity
verification scheme, implemented a prototype of iBigTable based
on HBase [4], evaluated the performance impact resulted from the
proposed scheme, and tested it across multiple hosts deployed in
our university cloud. Our initial experimental results show that the
proposed scheme can ensure data integrity while imposing reason-
able performance overhead.

As a storage system, BigTable is often used in conjunction with
MapReduce [11] for big data processing. In future, we plan to in-
vestigate on the integrity protection of MapReduce with iBigTable
for secure big data processing.
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APPENDIX

A. MERKLE HASH TREE

h1=H(d1)

h12=H(h1|h2) h34=H(h3|h4)

hroot=H(h12|h34)
sroot=S(hroot)

h2=H(d2) h1=H(d3) h1=H(d4)

Figure 19: A Merkle Hash Tree Example.
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A Merkle Hash Tree (MHT) is a type of data structure, which
contains hash values representing a summary information about a
large piece of data, and is used to verify the authenticity of the
original data. Figure 19 shows an example of a Merkle Hash Tree.
Each leaf node is assigned a digest H(d), where H is a one-way
hash function. The value of each inner node is derived from its
child nodes, e.g. hi = H(hl|hr) where | denotes concatenation.
The value of the root node is signed, usually by the data owner. The
tree can be used to authenticate any subset of the data by generating
a verification object (VO). For example, to authenticate d1, the VO
contains h2, h34 and the root signature sroot. The recipient first
computes h1 = H(d1) and H(H(h1|h2)|h34), then checks if the
latter is the same with the signature sroot. If so, d1 is accepted;
otherwise, it indicates that d1 has been altered.
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