[AK98] V. I. Arnold and B. A. Khesin, Topological methods in hydrodynamics, SpringerVerlag, New York, 1998.
[AL65] Holt Ashley and Marten Landahl, Aerodynamics of wings and bodies, AddisonWesley, Reading, MA, 1965, Section 2-7.
[Alt55] M. Altman, A generalization of Newton's method, Bulletin de l'academie Polonaise des sciences III (1955), no. 4, 189-193, Cl.III.
[Arm83] M.A. Armstrong, Basic topology, Springer-Verlag, New York, 1983.
[Bat10] H. Bateman, The transformation of the electrodynamical equations, Proc. Lond. Math. Soc., II, vol. 8, 1910, pp. 223-264.
[BB69] N. Balabanian and T.A. Bickart, Electrical network theory, John Wiley, New York, 1969.
[BLG70] N. N. Balasubramanian, J. W. Lynn, and D. P. Sen Gupta, Differential forms on electromagnetic networks, Butterworths, London, 1970.
[Bos81] A. Bossavit, On the numerical analysis of eddy-current problems, Computer Methods in Applied Mechanics and Engineering 27 (1981), 303-318.
[Bos82] A. Bossavit, On finite elements for the electricity equation, The Mathematics of $\mathrm{Fi}-$ nite Elements and Applications IV (MAFELAP 81) (J.R. Whiteman, ed.), Academic Press, 1982, pp. 85-91.
[Bos98] , Computational electromagnetism: Variational formulations, complementarity, edge elements, Academic Press, San Diego, 1998.
[Bra66] F.H. Branin, The algebraic-topological basis for network analogies and the vector calculus, Proc. Symp. Generalised Networks, Microwave Research, Institute Symposium Series, vol. 16, Polytechnic Institute of Brooklyn, April 1966, pp. 453-491.
[Bra77] _, The network concept as a unifying principle in engineering and physical sciences, Problem Analysis in Science and Engineering (K. Husseyin F.H. Branin Jr., ed.), Academic Press, New York, 1977.
[Bri93] Erik Brisson, Representing geometric structures in d dimensions: Topology and order, Discrete and Computational Geometry 9 (1993), 387-426.
[Bro84] M. L. Brown, Scalar potentials in multiply connected regions, Int. J. Numer. Meth. Eng. 20 (1984), 665-680.
[BS90] Paul Bamberg and Shlomo Sternberg, A course in mathematics for students of physics: 2, Cambridge U. Press, NY, 1990, Ch. 12.
[BT82] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, SpringerVerlag, New York, 1982, pp. 40-42, 51, 234, 258, 240.
[BV82] A. Bossavit and J.C. Verite, A mixed FEM-BIEM method to solve 3-d eddy-current problems, IEEE Trans. Mag. MAG-18 (1982), no. 2, 431-435.
[BV83] \qquad , The "TRIFOU" code: Solving the 3-d eddy-currents problem by using H as state variable, IEEE Trans. Mag. MAG-19 (1983), no. 6, 2465-2470.
[Cai61] S.S. Cairns, Introductory topology, The Ronald Press Company, 1961.
[Cam83] G. Cambrell, Upper and lower bounds, standard and complementary variational principles of primal and dual kind, tonti diagrams for linear self-adjoint problems: Parts i and $i i$, Tech. report, Dept. of Elec. Eng. CADLab Seminars, McGill University, 1983.
[CEG86] Thomas F. Coleman, Anders Edenbrandt, and John R. Gilbert, Predicting fill for sparse orthogonal factorization, Journal of the Association for Computing Machinery 33 (1986), 517-532.
[Chi68] G.E Ching, Topological concepts in networks; an application of homology theory to network analysis, Proc. 11th. Midwest Conference on Circuit Theory, University of Notre Dame, 1968, pp. 165-175.
[CK96] Paula Chammas and P. R. Kotiuga, Sparsity vis a vis Lanczos methods for discrete helicity functionals, Proceedings of the Third International Workshop on Electric and Magnetic Fields (A. Nicolet and R. Belmans, eds.), 1996.
[Coh93] Henri Cohen, A course in computational algebraic number theory, Springer-Verlag, New York, 1993.
[Con54] P. E. Conner, The Green's and Neumann's problems for differential forms on Riemannian manifolds, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 1151-1155.
[Con56] , The Neumann's problem for differential forms on Riemannian manifolds, Mem. Amer. Math. Soc. 1956 (1956), no. 20, 56.
[Cou36] R. Courant, Differential and integral calculus, vol. II, Wiley-Interscience, New York, 1936.
[Cro78] F. H. Croom, Basic concepts of algebraic topology, Springer-Verlag, New York, 1978, Chaps. 2, 7.3, 4.5.
[Des81] Georges A. Deschamps, Electromagnetics and differential forms, IEEE Proc. 69 (1981), no. 6, 676-696.
[Dod74] Jozef Dodziuk, Combinatorial and continuous Hodge theories, Bull. Amer. Math. Soc. 80 (1974), no. 5, 1014-1016.
[Dod76] , Finite-difference approach to the Hodge theory of harmonic forms, Amer. J. Math. 98 (1976), no. 1, 79-104.
[dR31] Georges de Rham, Sur l'Analysis situs des variétés à n dimensions, Journ. de Math. X (1931), no. II, 115-200.
[dR73] , Variétés différentiables. Formes, courants, formes harmoniques, troisième édition revue et augmentée, publications de l'institut de mathématique de l'université de nancago, iii, actualités scientifiques et industrielles, no. 1222b ed., Hermann, Paris, 1973, First edition 1955. English edition published by Springer, 1984, is translation of 1973 French edition.
[DR91] E. Domínguez and J. Rubio, Computers in algebraic topology, The Mathematical Heritage of C.F. Gauss (George M. Rassias, ed.), World Scientific Publ. Co., Singapore, 1991, pp. 179-194.
[DS52] G. F. D. Duff and D. C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Ann. of Math. (2) 56 (1952), 128-156.
[Duf52] G. F. D. Duff, Differential forms in manifolds with boundary, Ann. of Math. (2) 56 (1952), 115-127.
[Dys72] F.J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), no. 5, 635-652.
[ES52] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952.
[Fla89] H. Flanders, Differential forms with applications to the physical sciences, Dover, New York, 1989, pp. 79-81.
[Fri55] K. O. Friedrichs, Differential forms on Riemannian manifolds, Comm. Pure Appl. Math. 8 (1955), 551-590.
[Gau77] C. F. Gauss, Zur mathematischen Theorie der electodynamischen Wirkungen, Werke V, Teubner, 1877, p. 605.
[GH81] Marvin J. Greenberg and John R. Harper, Algebraic topology, Benjamin/Cummings, Reading, MA, 1981, P. 235, 63-66.
[Gib81] P.J. Giblin, Graphs, surfaces and homology: An introduction to algebraic topology, second ed., Chapman and Hall, London, 1981.
[GK95] P. W. Gross and P. R. Kotiuga, A challenge for magnetic scalar potential formulations of 3-d eddy current problems: Multiply connected cuts in multiply connected regions which necessarily leave the cut complement multiply connected, Electric and

Magnetic Fields: From Numerical Models to Industrial Applications (New York) (A. Nicolet and R. Belmans, eds.), Plenum, 1995, Proceedings of the Second International Workshop on Electric and Magnetic Fields, pp. 1-20.
[GK01a] __ Data structures for geometric and topological aspects of finite element algorithms, Progress In Electromagnetics Research (F. L. Teixeira, ed.), vol. PIER 32, EMW Publishing, 2001, pp. 151-169.
[GK01b] , Topological constraints and computational complexity of finite element-based algorithms to make cuts for magnetic scalar potentials, Progress In Electromagnetics Research (F. L. Teixeira, ed.), vol. PIER 32, EMW Publishing, 2001, pp. 207-245.
[Gol82] S.I. Goldberg, Curvature and homology, Dover Publications, New York, 1982.
[GP74] Victor Guillemin and Alan Pollack, Differential topology, Prentice-Hall, Englewood Cliffs, New Jersey, 1974, Page 21.
[GR65] Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N.J., 1965.
[Har08] R. Hargraves, Integral forms and their connection with physical equations, Transactions of the Cambridge Philosophical Society XXI (1908), 107-122.
[Her77] R. Hermann, Differential geometry and the calculus of variations, 2nd ed., Math. Sci. Press, Brookline Mass., 1977.
[Hip02] R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica (2002), 237-339.
[Hir76] Morris Hirsch, Differential topology, GTM \#33, Springer-Verlag, New York, 1976.
[Hod52] W. V. D. Hodge, The theory and applications of harmonic integrals, 2d ed ed., Cambridge, at the University Press, 1952, The first edition, published in 1941 and reissued in 1989, is subject to the criticism raised in [Wey43]. The second edition benefited from the existence of a rigourous proof of the Hodge theorem.
[HS85] C. S. Harrold and J. Simkin, Cutting multiply connected domains, IEEE Trans. Mag. 21 (1985), no. 6, 2495-2498.
[HY61] J.G. Hocking and G.S. Young, Topology, Addison-Wesley, 1961.
[Jac74] N. Jacobson, Basic Algebra I, W.H. Freeman and Company, San Francisco, 1974.
[Jac80] , Basic Algebra II, W.H. Freeman and Company, San Francisco, 1980.
[KG90] P. R. Kotiuga and R. Giles, A topological invariant for the accessibility problem of micromagnetics, J. Appl. Phys. 67 (1990), no. 9, 5347-5349.
[KI59] K. Kondo and M. Iri, On the theory of trees, cotrees, multitrees, and multicotrees, RAAG Memoirs 2 (1959), 220-261.
[Kle63] F. Klein, On Riemann's theory of algebraic functions and their integrals, Dover, New York, 1963.
[Kod49] K. Kodaira, Harmonic fields in Riemannian manifolds (generalised potential theory), Annals of Mathematics 50 (1949), 587-665.
[Koh72] J. J. Kohn, Differential complexes, Les Presses de l'Université Montréal, 1972.
[Kot82] P. R. Kotiuga, Well-posed three dimensional magnetostatics formulations, Master's thesis, McGill University, Montreal, August 1982.
[Kot84] , Hodge decompositions and computational electromagnetics, Ph.D. thesis, McGill University, Montreal, 1984.
[Kot87] , On making cuts for magnetic scalar potentials in multiply connected regions, J. Appl. Phys. 61 (1987), no. 8, 3916-3918.
[Kot88] _, Toward an algorithm to make cuts for magnetic scalar potentials in finite element meshes, J. Appl. Phys. 64 (1988), no. 8, 3357-3359, Erratum: 64, (8), 4257, (1988).
[Kot89a] , An algorithm to make cuts for scalar potentials in tetrahedral meshes based on the finite element method, IEEE Trans. Mag. 25 (1989), no. 5, 4129-4131.
[Kot89b] , Helicity functionals and metric invariance in three dimensions, IEEE Trans. Mag. 25 (1989), no. 4, 2813-2815.
[Kot89c] _, Topological considerations in coupling scalar potentials to stream functions describing surface currents, IEEE Trans. Mag. 25 (1989), no. 4, 2925-2927.
[Kot91] _ Essential arithmetic for evaluating three dimensional vector finite element interpolation schemes, IEEE Trans. Mag. MAG-27 (1991), no. 6, 5208-5210.
[Kro59] G. Kron, Basic concepts of multidimensional space filters, AIEE Transactions 78 (1959), no. Part I, 554-561.
[Lam32] Sir Horace Lamb, Hydrodynamics, Dover, New York, 1932, (1879).
[Lan70] Cornelius Lanczos, The variational principles of mechanics, University of Toronto Press, Toronto, 1970.
[LS68] L.H. Loomis and S. Sternberg, Advanced calculus, Addison-Wesley, Reading, Massachusetts, 1968.
[Lue69] D. G. Luenberger, Optimization by vector space methods, John Wiley, 1969.
[Mac70] A.G.J. MacFarlane, Dynamical system models, George Harrap, London, 1970.
[Mas67] W. S. Massey, Algebraic topology: An introduction, GTM, vol. 56, Springer Verlag, 1967.
[Mas80] _, Singular homology theory, GTM \#70, Springer-Verlag, New York, 1980.
[Max91] James Clerk Maxwell, A treatise on electricity and magnetism, third ed., Oxford University Press, Clarendon, England, 1891, Republished Dover Publications, Inc., New York, 1954.
[MIK59] Y. Mizoo, M. Iri, and K. Kondo, On the torsion characteristics and the duality of electric, magnetic, and dielectric networks, RAAG Memoirs 2 (1959), 262-295.
[MN82] A. Milani and A. Negro, On the quasi-stationary Maxwell equations with monotone characteristics in a multiply connected domain, Journal of Mathematical Analysis and Applications 88 (1982), 216-230.
[Mor66] C.B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966.
[Mül78] Werner Müller, Analytic torsion and R-torsion of Riemannian manifolds, Advances in Mathematics 28 (1978), 233-305.
[Mun84] James R. Munkres, Elements of algebraic topology, Addison-Wesley, Reading, MA, 1984, p. 377-380.
[Ned78] J. C. Nedelec, Computation of eddy currents on a surface in \mathbb{R}^{3} by finite element methods, SIAM J. Numer. Anal. 15 (1978), no. 3, 580-594.
[Neu79] Lee Neuwirth, The theory of knots, Sci. Am. 240 (1979), no. 6, 110-124.
[PF84] J. Penman and J.R. Fraser, Unified approach to problems in electromagnetism, IEE Proc. A 131 (1984), no. 1, 55-61.
[PF90] Alex Pothen and Chin-Ju Fan, Computing the block triangular form of a sparse matrix, ACM Transactions on Mathematical Software 16 (1990), 303-324.
[Pin66] Tad Pinkerton, An algorithm for the automatic computation of integral homology groups., Math. Algorithms 1 (1966), 27-44.
[Pos78] E. J. Post, The gaussian interpretation of ampere's law, Journal of Mathematical Physics 19 (1978), no. 1, 347.
[Pos84] , The metric dependence of four-dimensional formulations of electromagnetism, J. Math. Phys. 25 (1984), no. 3, 612-613.
[PP62] W. K. H. Panofsky and M. Phillips, Classical electricity and magnetism, AddisonWesley, Reading, MA, 1962, pp. 8-10, 20-23, 125-127.
[Rot55a] J. P. Roth, An application of algebraic topology to numerical analysis: On the existence of a solution to the network problem, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 518-521.
[Rot55b] , The validity of Kron's method of tearing, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 599-600.
[Rot59] , An application of algebraic topology: Kron's method of tearing, Quart. App. Math. XVII (1959), no. 1, 1-24.
[Rot71] _, Existence and uniqueness of solutions to electrical network problems via homology sequences, Mathematical Aspects of Electrical Network Theory, SIAMAMS Proceedings III, 1971, pp. 113-118.
[Rot88] Joseph J. Rotman, An introduction to algebraic topology, Springer-Verlag, NY, 1988.
[Sai94] I. Saitoh, Perturbed H-method without the Lagrange multiplier for three dimensional nonlinear magnetostatic problems, IEEE Trans. Mag. 30 (1994), no. 6, 4302-4304.
[Sch95] G. Schwarz, Hodge decomposition: A method for solving boundary value problems, Lecture Notes in Mathematics, 1607, Springer-Verlag, 1995.
[SF73] Gilbert Strang and George Fix, An analysis of the finite element method, WellesleyCambridge Press, Wellesley, MA, 1973.
[SF90] P.P. Silvester and R.L. Ferrari, Finite elements for electrical engineers, Cambridge U. Press, NY, 1990, 2nd Ed.
[Sle68] P. Slepian, Mathematical foundations of network analysis, Springer-Verlag, Berlin, 1968.
[Sma72] S. Smale, On the mathematical foundations of electrical network theory, J. Differential Geom. 7 (1972), 193-210.
[Spa66] E. Spanier, Algebraic topology, Springer-Verlag, New York, 1966.
[Spi65] Michael Spivak, Calculus on manifolds. A modern approach to classical theorems of advanced calculus, W. A. Benjamin, Inc., New York-Amsterdam, 1965.
[Spi79] , A comprehensive introduction to differential geometry. Vol. I, second ed., Publish or Perish Inc., Wilmington, Del., 1979.
[Spr57] George Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, MA, 1957, Section 5-8.
[SS54] Menahem Schiffer and Donald C. Spencer, Functionals of finite Riemann surfaces, Princeton University Press, Princeton, N. J., 1954. MR 16,461g
[SS70] L. M. Sibner and R. J. Sibner, A non-linear Hodge-de-Rham theorem, Acta Math. 125 (1970), 57-73.
[SS79] _ Nonlinear Hodge theory: Applications, Adv. in Math. 31 (1979), no. 1, 1-15.
[SS81] , A sub-elliptic estimate for a class of invariantly defined elliptic systems, Pacific J. Math. 94 (1981), no. 2, 417-421.
[ST80] H. Seifert and W. Threlfall, A textbook on topology, Academic Press, 1980, Translated by W. Heil from original 1934 German edition.
[Ste54] A. F. Stevenson, Note on the existence and determination of a vector potential, Quart. Appl. Math. 12 (1954), 194-198. MR 16,36a
[Sti93] John Stillwell, Classical topology and combinatorial group theory, second edition, Springer-Verlag, NY, 1993, Ch. 3,4.
[Str41] J. A. Stratton, Electromagnetic theory, McGraw-Hill, New York, 1941, pp. 227-228.
[Tar02] Timo Tarhasaari, Mathematical structures and computational electromagnetics, Ph.D. thesis, Tampere University of Technology, Tampere, Finland, 2002.
[Tei01] F. L. Teixeira (ed.), Geometric methods for computational electromagnetics, Progress In Electromagnetis Research, no. 32, Cambridge, MA, EMW Publishing, 2001.
[Tho69] W. Thompson, On vortex motion, Transactions of the Royal Society of Edinburgh XXV (1869), 217-280.
[Thu97] William P. Thurston, Three-dimensional geometry and topology, Princeton University Press, Princeton, New Jersey, 1997.
[Ton68] Enzo Tonti, Gauge transformations and conservation laws, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) XLV (1968), 293-300.
[Ton69] , Variational formulation of nonlinear differential equations. II, Acad. Roy. Belg. Bull. Cl. Sci. (5) 55 (1969), 262-278.
[Ton72a] _, A mathematical model for physical theories. I, II, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52 (1972), 175-181; ibid. (8) 52 (1972), 350356.
[Ton72b] , On the mathematical structure of a large class of physical theories, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52 (1972), 48-56.
[Ton77] , The reason of the analogies in physics, Problem Analysis in Science and Engineering (F. H. Branin Jr. and K. Husseyin, eds.), Academic Press, New York, 1977.
[Vai64] M. M. Vainberg, Variational methods for the study of nonlinear operators, HoldenDay, San Francisco, 1964.
[VB89] A. Vourdas and K. J. Binns, Magnetostatics with scalar potentials in multiply connected regions, IEE Proc. A 136 (1989), no. 2, 49-54.
[Vic94] James W. Vick, Homology theory, second ed., Springer-Verlag, New York, 1994.
[Wal57] A.H. Wallace, An introduction to algebraic topology, vol. 1, Pergamon Press, New York, 1957.
[War71] F.W. Warner, Foundations of differentiable manifolds and lie groups, Scott, Foresman and Company, Glenview, Illinois, 1971.
[Wei52] André Weil, Sur les théorèmes de de Rham, Comment. Math. Helv. 26 (1952), 119145.
[Wey23] Hermann Weyl, Repartición de corriente en una red conductora, Rev. Mat. Hisp. Amer. 5 (1923), 153-164.
[Wey43] , On Hodge's theory of harmonic integrals, Ann. of Math. 44 (1943), 1-6.
[Whi37] Hassler Whitney, On matrices of integers and combinatorial topology, Duke Math. Jnl. 3 (1937), no. 1, 35-45.
[Whi50] , r-Dimensional integration in n-space, Proceedings of the International Congress of Mathematicians, vol. 1, 1950.
[Whi57] , Geometric integration theory, Princeton University Press, Princeton, New Jersey, 1957.
[Yan70] Kentaro Yano, Integral formulas in Riemannian geometry, Marcel Dekker Inc., New York, 1970, Pure and Applied Mathematics, No. 1.

Symbols in the list are sometimes also used temporarily for other purposes...
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5 th ed.

Because the material in the book draws on a variety of fields, there are some resulting conflicts or ambiguities in the notation. In general, these ambiguities can be cleared up by context, and the authors have attempted to avoid situations where like notation overlaps in the same context. Some examples are:
(1) The symbol $[\cdot, \cdot]$ can have three meanings: bilinear form, commutator, and homotopy classes of maps.
(2) χ can have three meanings: Euler characteristic, stream function for a surface current, or a gauge function.
(3) π can be a permutation map or the ratio of circumference to diameter of a circle. In addition, π_{k} signifies the k th homotopy group, while π_{1}^{k} signifies the k th term in the lower central series of the fundamental group.
(4) R can be a resistance matrix, the de Rham map, or a region in \mathbb{R}^{3}.
(5) Pullbacks and pushforwards of many varieties can be induced from a single map. For example, an inclusion map i can induce maps denoted by i^{*}, i_{*}, $i^{\#}, i_{b}, \tilde{\imath}$, etc.
(6) The symbols $\xi, \lambda, \alpha, \beta, \eta, \rho, \nu$, and θ have meanings particular to Chapter 7 (see Figure 7.4, page 211).
Other multiple uses of notation are noted below.

$\beta_{p}(R)$	p th Betti number $=$ Rank $H_{p}(R)$
$\delta^{i j}$	Kronecker delta; 1 if $i=j, 0$ otherwise
δ	Inner product space adjoint to the exterior derivative
δ	Connecting homomorphism in a long exact sequence
∂	Boundary operator
∂^{T}	Coboundary operator.
$\breve{\partial}$	Boundary operator on dual mesh (related to ∂^{T})
ε	Dielectric permittivity
ζ_{j}^{i}	j th 1-cocycle on dual mesh, indexed on 1-cells of $D K: 1 \leq i \leq$
	\breve{m}_{1}

η	Wave impedance
θ	Normalized angle of $f: R \longrightarrow S^{1}$
θ_{j}^{i}	θ discretized on nodes of unassembled mesh
λ	Wavelength
λ_{i}	Barycentric coordinates, $1 \leq i \leq 4$
μ	Magnetic permeability
π	Ratio of circumference to diameter of a circle
π	Permutation map
π_{i}	i th homotopy group (but π_{0} distinguishes path components and is not a group)
ρ	Volume electrical charge density
σ	Electrical conductivity
σ_{s}	Surface electrical charge density
$\sigma_{p, i}$	i th p-simplex in a triangulation of R
τ_{e}	Dielectric relaxation time, $\tau_{e}=\varepsilon / \sigma$
Φ_{i}	i th magnetic flux
ϕ	Electric scalar potential
χ	Euler characteristic
χ	Stream function for surface current distribution
χ	Gauge function
χ_{e}, χ_{m}	Electric and magnetic susceptibilities
ψ	Magnetic scalar potential
$\psi^{+}\left(\psi^{-}\right)$	Value of ψ on plus (minus) side of a cut
ω	Radian frequency
Ω	Subset of \mathbb{R}^{n}
A	Magnetic vector potential
B	Magnetic flux density vector
$B^{p}(K ; R)$	p-coboundary group of K with coefficients in module R
$B_{p}(K ; R)$	p-boundary group or K with coefficients in module R
$B^{p}(K, S ; R)$	Relative p-coboundary group of K (relative to S)
$B_{p}(K, S ; R)$	Relative p-boundary group of K (relative to S)
$B_{c}^{p}(M-S)$	Relative exact form defined via compact supports; $S \subset \partial M$
$\tilde{B}_{p}\left(M, S_{1}\right)$	Coexact p-forms in $\tilde{C}_{p}\left(M, S_{1}\right)$
c	Speed of light in a vacuum, $\left(\varepsilon_{0} \mu_{0}\right)^{-1 / 2}$
c	Curve (or contour of integration)
c_{p}	p-chain
c^{p}	p-cochain
curl	Curl operator
curl	Adjoint to the curl operator in two dimensions
C	Capacitance matrix
C	Constitutive law (see Figure 7.4)

$C_{j k}^{i}$	Connection matrix, $1 \leq i \leq m_{3}, 1 \leq j \leq 4,1 \leq k \leq m_{0}$
$C_{p, j k}^{i}$	Connection matrix of p-dimensional mesh
$C^{p}(K ; R)$	p-cochain group of K with coefficients in module R
$C_{p}(K ; R)$	p-chain group or K with coefficients in module R
$C^{p}(K, S ; R)$	Relative p-cochain group of K (relative to S)
$C_{p}(K, S ; R)$	Relative p-chain group or K (relative to S)
$C_{c}^{p}(M-S)$	Differential forms with compact support on $M-S ; S \subset \partial M$
$\tilde{C}_{p}\left(M, S_{1}\right)$	p-forms in the complex defined by δ, the formal adjoint of d in $C_{c}^{*}\left(M-S_{2}\right)$
d	Coboundary operator; exterior derivative
d	Thickness of current-carrying sheet
div	Divergence operator
div_{S}	Divergence operator on a surface
D	Differential operator
D, δ	Skin depth
D	Electric displacement field
DK	Dual cell complex of simplicial complex K
E	Electric field intensity
E_{M}	Magnetic energy
f_{p}	"Forcing function" associated with the p th cut (a vector with entries $f_{p i}$)
f	Frequency
f	Generic function
$f^{*}(\mu)$	Pullback of μ by f
F	Rayleigh dissipation function
F_{p}	Free subgroup of p th homology group
F^{p}	Free subgroup of p th cohomology group
F	Primary functional
F^{\perp}	Secondary functional needed for convexity
F_{0}^{s}	Number of FLOPs per CG iteration for node-based interpolation of scalar Laplace equation
F_{0}	Number of FLOPs per CG iteration for node-based vector interpolation
F_{1}	Number of FLOPs per CG iteration for edge-based vector interpolation
\mathcal{F}, \mathcal{G}	Spaces of vector fields with elements F and G, respectively
grad	Gradient operator
G	Convex functional
H	Magnetic field intensity
$H^{p}(R ; \mathbb{Z})$	p th cohomology group of R with coefficients in \mathbb{Z}
$H_{p}(R ; \mathbb{Z})$	p th homology group of R, coefficients in \mathbb{Z}

$H^{p}(R, \partial R ; \mathbb{Z}) \quad p$ th cohomology group of R relative to ∂R, coefficients in \mathbb{Z} $H_{p}(R, \partial R ; \mathbb{Z}) \quad p$ th homology group of R relative to ∂R, coefficients in \mathbb{Z} $H_{c}^{p}(M-S) \quad Z_{c}^{p}(M-S) / B_{c}^{p}(M-S)$; harmonic forms
$\mathcal{H}^{p}\left(M, S_{1}\right) \quad \tilde{Z}_{c}^{p}\left(M, S_{2}\right) \cap Z^{p}\left(M-S_{1}\right)$; harmonic fields
i
im
$I \quad$ Electrical current
$I_{i} \quad i$ th current
$I_{f}, I_{p} \quad$ Free and prescribed lumped-parameter currents
Int $(\cdot, \cdot) \quad$ Oriented intersection number
$\mathcal{I} \quad$ Intersection number matrix
$\mathcal{I}_{p}(m, l) \quad$ Indicator function, $1 \leq p \leq \beta_{1}(R), 1 \leq m \leq 4,1 \leq l \leq m_{3}$
j
J
$\boldsymbol{J}_{\text {av }}$
$\mathcal{J}_{j}^{i} \in \mathbb{Z}$
ker
$\boldsymbol{K} \quad$ Surface current density vector
$K \quad$ Simplicial complex
$\mathcal{K}_{m n}^{k}$
Stiffness matrix for k th element in mesh
$\mathcal{K} \quad$ Global finite element stiffness matrix
$l_{\max } \quad$ "Characteristic length" of electromagnetic system
$L \quad$ Inductance matrix
L Lagrangian
$L^{2} \Lambda^{q}(X) \quad$ Space of square-integrable differential q-forms on manifold X
$\operatorname{Link}(\cdot, \cdot) \quad$ Linking number of two curves
$m_{p} \quad$ Number of p-simplexes in a triangulation of R
$\breve{m}_{p} \quad$ Number of p-cells in dual complex
$M \quad$ Magnetization
$M \quad$ Manifold
$n_{c}, n_{v} \quad$ Number of prescribed currents and number of prescribed voltages
$n_{p} \quad$ Number of p-simplexes in a triangulation of ∂R
$\boldsymbol{n} \quad$ Normal vector to a codimension 1 surface
$\boldsymbol{n}^{\prime} \quad$ Normal to a two-dimensional manifold with boundary embedded in \mathbb{R}^{3}
$\mathrm{nz}(A) \quad$ Number of nonzero entries of a matrix A
$\mathcal{O}\left(n^{\alpha}\right) \quad$ Order n^{α}
$\boldsymbol{P} \quad$ Polarization density
$\boldsymbol{P} \quad$ Poynting vector
$P \quad$ Period matrix

P_{J}	Eddy current power dissipation
Q_{i}	i th charge
R	Resistance matrix
R	de Rham map, $R: L^{2} \Lambda^{q}(X) \rightarrow C^{q}(K)(K$ a triangulation of X)
R	Region in \mathbb{R}^{3}, free of conduction currents
\tilde{R}	Three-dimensional manifold with boundary, subset of \mathbb{R}^{3}
R_{S}	Surface resistivity
S	Surface
$S^{\prime}, S_{c k}^{\prime}$	Current-carrying surface after cuts for stream function have been removed, and the k th connected component of S^{\prime}
S_{q}	q th cut
S^{1}	Unit circle, $S^{1}=\{p \in \mathbb{C}\| \| p \mid=1\}$
T	Kinetic energy
T	Vector potential for volumetric current distributions
T_{p}	Torsion subgroup of p th homology group
T^{p}	Torsion subgroup of p th cohomology group
T*	Cotangent space
u_{k}	Nodal potential, $1 \leq k \leq m_{0}$
v	vertex
V	Voltage
V_{j}	Prescribed voltage, $1 \leq i \leq n_{v}$
V	Potential energy
w_{e}	Electric field energy density
w_{m}	Magnetic field energy density
W	Whitney map $W: C^{q}(K) \rightarrow L^{2} \Lambda^{q}(X)$
W_{e}	Electric field energy
W_{m}	Magnetic field energy
X	Riemannian manifold
X_{0}^{s}	\# nonzero entries in stiffness matrix for node-based scalar interpolation
X_{0}	\# nonzero entries in stiffness matrix for node-based vector interpolation
X_{1}	\# nonzero entries in stiffness matrix for edge-based vector interpolation
\bar{z}	Complex conjugate of z
z^{p}	p-cocycle
z_{p}	p-cycle
$Z^{p}(K ; R)$	p-cocycle group of K with coefficients in module R
$Z_{p}(K ; R)$	p-cycle group or K with coefficients in module R
$Z^{p}(K, S ; R)$	Relative p-cocycle group of K (relative to S)

$Z_{p}(K, S ; R) \quad$ Relative p-cycle group or K (relative to S)
$Z_{c}^{p}(M-S) \quad$ Relative closed form defined via compact supports; $S \subset \partial M$
$\tilde{Z}_{p}\left(M, S_{1}\right) \quad$ Coclosed p-forms in $\tilde{C}_{p}\left(M, S_{1}\right)$
Positive (negative) side of an orientable surface with respect to a normal defined on the surface
$A^{c} \quad$ Set-theoretic complement of A
$[A, B] \quad$ Homotopy classes of maps $f: A \rightarrow B$, i.e. $\pi_{0}(\operatorname{Map}(A, B))$
$[\cdot, \cdot] \quad$ Homotopy classes of maps
$[\cdot, \cdot$
Commutator
$[\cdot, \cdot] \quad$ Bilinear pairing
$[\cdot] \quad$ Equivalence class of element
\wedge Exterior multiplication

* Hodge star
$\cap \quad$ Set-theoretic intersection
$\cup \quad$ Set-theoretic union
$\cup \quad$ Cup product
Example 1.1 Chains on a transformer 8
Example 1.2 Concentric spheres: $\Omega \subset \mathbb{R}^{3}, \beta_{2} \neq 0$ 11
Example 1.3 Curves on a knotted tube: $\Omega \subset \mathbb{R}^{3}, \beta_{2} \neq 0$ 11
EXAMPLE 1.4 3-d solid with internal cavities: $\Omega \subset \mathbb{R}^{3}, H_{2}(\Omega)$ and $H_{0}\left(\mathbb{R}^{3}-\Omega\right)$ of interest 11
ExAmple 1.5 Curves on an orientable surface: Ω an orientable surface, $H_{1}(\Omega)$ of interest 13
Example 1.6 Cohomology: $\Omega \subset \mathbb{R}^{3} H^{2}(\Omega)$ is of interest 18
Example 1.7 Cohomology: $\Omega \subset \mathbb{R}^{3}, H^{0}(\Omega)$ is of interest 19
Example 1.8 Cohomology: Ω a 2-dimensional surface, $H^{1}(\Omega)$ is of interest 20
Example 1.9 Cohomology: $\Omega \subset \mathbb{R}^{3}, H^{1}(\Omega)$ is of interest 22
Example 1.10 Fundamental group of the torus 26
Example 1.11 2-dimensional example of relative homology 33
Example 1.12 Torsion phenomena in relative homology 35
Example 1.13 Embedded surfaces and relative homology 39
Example 1.14 Electrostatics: Visualizing $H_{1}(\Omega, S)$ in 3 dimensions 43
Example 1.15 Magnetostatics: Visualizing $H_{2}(\Omega, S)$ in 3 dimensions 44
Example 2.1 The Lorentz gauge 55
Example 2.2 The Coulomb gauge 55
Table 2.1 Lumped parameters and cohomology groups 60
Example 2.3 Steady Current conduction in three dimensions: $n=3, p=2$ 80
Example 2.4 Currents on conducting surfaces: $n=2, p=1$ 85
Example 2.5 A billiard ball on a flat table as a nonholonomic system 90
Example 2.6 Ellipticity of the scalar Laplacian 96
Example 2.7 Ellipticity of the vector Laplacian 96
EXAMPLE 2.8 Nonellipticity of the wave equation 96

Example 3.1 Poincaré-Lefschetz dual of a submanifold 102
Example 3.2 Lefschetz duality in 3-d electrostatics: $n=3, p=1102$
Example 3.3 Lefschetz duality in 3-d magnetostatics: $n=3, p=2 \quad 103$
Example 3.4 Duality and variational principles for magnetostatics 104
Example 3.5 Lefschetz duality and currents on orientable surfaces: $n=2$, $p=1$

107
Example 3.6 Lefschetz duality and stream functions on orientable surfaces: $n=2, p=1$

108
Example 3.7 Lefschetz duality and nonorientable surfaces 109
EXAMPLE 4.1 Quadratic interpolation on 2-simplexes 126
Example 4.2 Lagrange polynomials on p-simplexes 127
TABLE 4.1 More on lumped parameters and cohomology 134
Example 4.3 Whitney form interpolation of the helicity functional 136
TABLE 6.1 Comparison of stiffness matrices in node- and edge-based finite element formulations 167

TABLE 7.1 Instances of the paradigm problem 186
TABLE 7.2 Cross-reference of paradigm problem instances to examples 186
Example 7.1 A convex function without a minimum 195
Example 7.2 Wedge multiplication in three dimensions 222
Example 7.3 Change of variables formula in two dimensions 224
Example 7.4 Change of variables formula for surface integrals in three dimensions 225
Example 7.5 Change of variables formula in three dimensions 225
Example 7.6 Exterior differentiation in one dimension 227
Example 7.7 Complex variables 227
Example 7.8 The classical version of Stokes' theorem 228
Example 7.9 The divergence theorem in three dimensions 228
Example 7.10 Electrodynamics 229
Example 7.11 Vector analysis in 3-d orthogonal curvilinear coordinates 246
Example 7.12 Vector analysis in 2-d orthogonal curvilinear coordinates 247
Example 7.13 The Hodge decomposition and 3-d vector analysis: $n=3$, $p=1 \quad 258$
Example 7.14 The Hodge decomposition and 2-d vector analysis: $n=2$, $p=1$
adjoint operator, $15,16,92,93$
admissible function, 122
admissible variation, 94, 189
Alexander duality theorem, 110-112, 118, 240
Ampère's law, 25-27, 49, 104, 107, 113, 117, 143, 160-161
approximation function, 126
atlas, 216
barrier, see also cut
barycentric coordinates, 124-126, 153, 171
Betti number, 11
for relative homology group, 33
Biot-Savart law, 114, 160, 165
black box model, 59
Bott, Raoul, 25
boundary, 11
operator, $10,16,30,32,42,49,132,227$
relative, 33
boundary value problem, 29, 99
branch cut, 15
branch voltage, 31
calculus
fundamental theorem, see also Stokes' theorem on manifolds, 101, 227
multivariable, 7
variational, 149
cancellation error, 160
capacitance
and energy principles, 66
matrix, $66,69,70$
capacitive
coenergy principle, 65
Cauchy-Riemann equations, 228
chain, 7
group with coefficients in $\mathbb{R}, 9$
group with coefficients in $\mathbb{Z}, 9$
group with coefficients in $R, 9$
homomorphism, 29
charge conservation, 20, 50
charge distribution, 103
chart, 216
Chrystal, G., 243
circuit parameters, 59, 128, 142
coboundary, 16
data structure, 137
operator, $10,29,30,41,42,102,129$
cochain, 8,41
group, 32
homomorphism, 30, 42, 231
maps, 231
cocycle
group, 16
coefficient group, 11, 16, 28, 38
coenergy principle, 63
cohomologous
absolute, 16
relative, 42
cohomology
de Rham, 131
relative, 41
cohomology group
absolute, 16
commutator, 26
subgroup, 26
compact support, 41
compatibility condition, $17,99,106,191$, 193
complex
cellular, 128, 131, 139, 174
chain, 28-30, 32
cochain, 28-31, 42, 132
extraction of, 131
simplicial, $43,124,127$
simplicial data structure, 128
conducting surface, 85
conjugate gradient method, 138,167
constitutive law, 113
constitutive laws, 51
and energy principles, 73
cotangent bundle, 218
Coulomb gauge, 113
Cousin problem, 169
cup product, 100
curl, 20, 109
current, 103
on conducting surface, 85
steady conduction, 80
current power dissipation, 151, 155
current-carrying knot, 25, 114
cut, $14,21,25,27,108,109,112,115,117$
cuts, $102,159,241$
cuts algorithm, 161, 163
cycle, 11
relative, 33
cyclomatic number, 99, 111, 142
Davis, P. J., 181
de Rham isomorphism, 18, 73, 184, 201, 233
relative, 42
differentiable manifold, 18, 43
disc with handles, 13
displacement current, 57, 112, 142, 160, 185
dissipationless system, 89
divergence theorem, 228
duality theorem, 12, 99, 111
Alexander, see also Alexander duality
in electromagnetism, 101
Lefschetz, see also Lefschetz duality
Poincaré, see also Poincaré duality
Dyson, F.J., 215
eddy currents, 141, 142, 152
Eilenberg-MacLane space, 164, 240
electric
field, 46, 49, 160
flux density, 49, 64
vector potential, 64
electrical circuit theory, 24, 30, 128, 138
electrical flux, 103
electrical network, 31, 149
electromagnetic radiation, 58, 98
electromagnetic wave, 53,59
electroquasistatics, 58-62
electrostatics, 19, 20, 43, 45, 67, 185, 214
elliptic equation, 96
elliptic operator, 252
embedded submanifold, 240, 241
energy principle
capacitive, 65
inductive, 72
equivalence class, $25,117,143,216$
equivalence relation, $11,16,42,101$
Euler characteristic, 138, 167, 177
Euler-Lagrange equation, 91, 94, 96, 147, $154,163,168,188$
exterior algebra, 221, 222
exterior derivative, $10,41,226$
exterior product, 100, 221
extraction, 172
Faraday's law, 49, 147, 148, 151
finite element mesh, 124, 152
finite element method, 121, 122, 172, 183
flux density
electric, 19
magnetic, 46
force
electromotive, 64, 85, 106, 142
magnetomotive, 71, 74
form, 41
closed, 16, 18, 184
coclosed, 253
differential, 42, 43, 101, 131, 215, 217, 218, 221, 227, 233
exact, 16
Fourier transform
and constitutive laws, 53
and retarded potentials, 61
fundamental group, see also homotopy group, 128, 130, 178
fundamental theorem of calculus, 10
Galerkin form, 151, 165
gauge
Coulomb, 55, 58
function, 55
Lorentz, 55-58, 207
Gauss, 114
Gauss theorem, 101
Gauss' law, 49, 50
Grassmann, 215
product, 221
Green's function, 113
Green's theorem, 101, 227
Hamilton, Sir William R., 183, 215
Hardy, G. H., 267
harmonic form, 252
harmonic function, 58, 166, 168
harmonic map equation, 165
hexahedral mesh, 128, 131
Hodge decomposition, 252

Hodge star, 187, 244, 256
Hodge theory, 184
holonomic system, 89
homogeneous wave equation, 55
homologous, 11
homology
class, $18,19,22,27,38,42,163$
generators, 39-41
homology group
absolute, 11, 34, 35, 37
relative, $33,134,143,183$
homotopy
class, 25-26, 163, 240
group, 25, 26
incidence matrix, $30,31,124,132,175,178$
inclusion map, 37
inductance
and energy principles, 72
matrix, 80, 97
inductive
coenergy principle, 74
energy principle, 72, 73
inhomogeneous boundary condition, 142
inner product, 93, 243, 244
integer coefficient group, 35
integral law, 21, 50, 51
interface condition, 190
interface conditions, 50, 51, 54, 190
intersection, 110
intersection matrix, 46, 75, 87, 103, 104,
$107,112,117,142,143,149$
intersection pairing, 137
irrotational field, 23
isotropic media, 53, 56, 160
Kirchhoff current law, 31
Kirchhoff voltage law, 31, 58, 149
Klein, Felix, 259
Kron, Gabriel, 31, 215
Lagrange polynomial, 127
Laithwaite, E. R., 141
Laplace's equation, 121, 122, 168
Laplace-Beltrami operator, 57, 252
Lefschetz duality theorem, 46, 60, 100, $103,104,109,110,112,117,119,139$, 166, 238
and currents, 107
and nonorientable surfaces, 109
and stream functions, 108
in electrostatics, 102
in magnetostatics, 103
linear algebra, 124
linking number, 112, 114
long exact sequence
in cohomology, 42
in homology, 37
lumped parameter, 99
and cohomology, 60
magnetic
field, 49
flux density, 49, 70, 103, 104, 160
scalar potential, $113,122,128,138,141$, $143,159,172$
magnetic flux, 103
magnetic scalar potential, 116
magnetoquasistatics, 58-62, 135
magnetostatics, 185, 214
manifold
differentiable, 216, 243
orientable, 100
Riemannian, 135, 243
Maxwell's equations, 49-51, 160, 229
Maxwell, James Clerk, 49, 99, 111, 183
metric tensor, 185, 243
Möbius band, 232
Möbius band, 146
Morse, Marston, 7
Morse-Sard theorem, 241
multiply connected, 26, 28
multiply connected region, 160
multivalued function, 45, 46
nondegenerate bilinear pairing, 9, 43, 100 on cohomology, 100
nonorientable surface, 141, 145, 232
normalized angle, 169, 171
numerical analysis, 126, 135
Ohm's law, 52, 59, 62, 160
orthogonal decomposition, 183, 192, 251, 253
paradigm variational problem, 138, 183
perfect conductor, 103
period, 18
and circuit parameters, 59
relative, 42
periodicity constraint, 150
periphractic number, 13, 103
periphraxity, see also periphractic number
permittivity, 52
Poincaré algorithm, 178
Poincaré duality, 174
Poincaré duality theorem, 100, 133
Poincaré isomorphism, 27
Poincaré map, 27
Poincaré-Lefschetz dual of a submanifold, 102

Poincaré-Lefschetz duality theorem, 102, 134, 163
in magnetoquasistatics, 102
Poincaré-Lefschetz dual, 241
potential difference, 20, 103
potentials
for Maxwell's equations, 53
retarded, 61
Poynting theorem, 148, 151, 152
pullback, 163, 184, 219
quadratic interpolation, 126
quasistatics, 58
quotient group, 11, 32
Rayleigh dissipation function, 89, 91
Riemann surface, 27
Riemannian structure, 185, 217, 243, 245
Ritz method, 122, 123
Russell, Bertrand, 47
scalar wave equation, 56, 59
scleronomic system, 91
simplex, 125, 128
simply connected, 26
single-valued scalar potential, 22, 25, 71, 84, 117
skin depth, $47,51,53,143$
solenoidal field, 58, 160, 228
solid angle, 112, 114
stereographic projection, 117, 118, 231
stiffness matrix, 123
assembly, 127
Stokes' theorem, 10, 15, 101, 102, 227, 228
stream function, $20,21,107,109,141,143$, 187
subcomplex, 30, 130, 131, 134, 172
symbol, 96
Tait, P. G., 49, 183
tangent vector, 217
tetrahedral mesh, 128, 130, 167
three-step procedure (homology generators), 38-40, 43, 44, 63, 74, 106, 187
time-varying, 58
Tonti diagram, 207, 211, 212
torsion subgroup, $35,36,112,118,119$
transverse intersection, 112
trefoil knot, 24, 25, 27, 116, 160, 178
trial function, $123,124,126$
tubular neighborhood, 112, 114
unassembled mesh, 169
universal coefficient theorem, 117, 118
variational principles
and cochain complex, 64, 72
electroquasistatics, 63
magnetoquasistatics, 70
vector
analysis, 7
vector analysis, $10-11,15-18,41,246$
wedge product, 221
Weizenbrock identity, 57
Weyl, Hermann, 159
Whitehead, A. N., 214
Wright, E. M., 267

