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Symbols in the list are sometimes also used temporarily for other

purposes. . .

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,

5th ed.

Summary of Notation

Because the material in the book draws on a variety of fields, there are some
resulting conflicts or ambiguities in the notation. In general, these ambiguities
can be cleared up by context, and the authors have attempted to avoid situations
where like notation overlaps in the same context. Some examples are:

(1) The symbol [ · , · ] can have three meanings: bilinear form, commutator, and
homotopy classes of maps.

(2) χ can have three meanings: Euler characteristic, stream function for a surface
current, or a gauge function.

(3) π can be a permutation map or the ratio of circumference to diameter of a
circle. In addition, πk signifies the kth homotopy group, while πk

1 signifies
the kth term in the lower central series of the fundamental group.

(4) R can be a resistance matrix, the de Rham map, or a region in R
3.

(5) Pullbacks and pushforwards of many varieties can be induced from a single
map. For example, an inclusion map i can induce maps denoted by i∗, i∗,
i#, i[, ı̃, etc.

(6) The symbols ξ, λ, α, β, η, ρ, ν, and θ have meanings particular to Chapter 7
(see Figure 7.4, page 211).

Other multiple uses of notation are noted below.

βp(R) pth Betti number = Rank Hp(R)
δij Kronecker delta; 1 if i = j, 0 otherwise
δ Inner product space adjoint to the exterior derivative
δ Connecting homomorphism in a long exact sequence
∂ Boundary operator
∂T Coboundary operator.

∂̆ Boundary operator on dual mesh (related to ∂T )
ε Dielectric permittivity
ζi
j jth 1-cocycle on dual mesh, indexed on 1-cells of DK: 1 ≤ i ≤

m̆1
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η Wave impedance
θ Normalized angle of f : R −→ S1

θi
j θ discretized on nodes of unassembled mesh
λ Wavelength
λi Barycentric coordinates, 1 ≤ i ≤ 4
µ Magnetic permeability
π Ratio of circumference to diameter of a circle
π Permutation map
πi ith homotopy group (but π0 distinguishes path components and

is not a group)
ρ Volume electrical charge density
σ Electrical conductivity
σs Surface electrical charge density
σp,i ith p-simplex in a triangulation of R
τe Dielectric relaxation time, τe = ε/σ
Φi ith magnetic flux
φ Electric scalar potential
χ Euler characteristic
χ Stream function for surface current distribution
χ Gauge function
χe, χm Electric and magnetic susceptibilities
ψ Magnetic scalar potential
ψ+ (ψ−) Value of ψ on plus (minus) side of a cut
ω Radian frequency
Ω Subset of Rn

A Magnetic vector potential
B Magnetic flux density vector
Bp(K;R) p-coboundary group of K with coefficients in module R
Bp(K;R) p-boundary group or K with coefficients in module R
Bp(K,S;R) Relative p-coboundary group of K (relative to S)
Bp(K,S;R) Relative p-boundary group of K (relative to S)
Bp

c (M − S) Relative exact form defined via compact supports; S ⊂ ∂M

B̃p(M,S1) Coexact p-forms in C̃p(M,S1)
c Speed of light in a vacuum, (ε0µ0)

−1/2

c Curve (or contour of integration)
cp p-chain
cp p-cochain
curl Curl operator

curl Adjoint to the curl operator in two dimensions
C Capacitance matrix
C Constitutive law (see Figure 7.4)
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Ci
jk Connection matrix, 1 ≤ i ≤ m3, 1 ≤ j ≤ 4, 1 ≤ k ≤ m0

Ci
p,jk Connection matrix of p-dimensional mesh

Cp(K;R) p-cochain group of K with coefficients in module R
Cp(K;R) p-chain group or K with coefficients in module R
Cp(K,S;R) Relative p-cochain group of K (relative to S)
Cp(K,S;R) Relative p-chain group or K (relative to S)
Cp

c (M − S) Differential forms with compact support on M − S; S ⊂ ∂M

C̃p(M,S1) p-forms in the complex defined by δ, the formal adjoint of d in
C∗

c (M − S2)
d Coboundary operator; exterior derivative
d Thickness of current-carrying sheet
div Divergence operator
divS Divergence operator on a surface
D Differential operator
D, δ Skin depth
D Electric displacement field
DK Dual cell complex of simplicial complex K
E Electric field intensity
EM Magnetic energy
fp “Forcing function” associated with the pth cut (a vector with

entries fpi)
f Frequency
f Generic function
f∗(µ) Pullback of µ by f
F Rayleigh dissipation function
Fp Free subgroup of pth homology group
F p Free subgroup of pth cohomology group
F Primary functional
F⊥ Secondary functional needed for convexity
F s

0 Number of FLOPs per CG iteration for node-based interpolation
of scalar Laplace equation

F0 Number of FLOPs per CG iteration for node-based vector in-
terpolation

F1 Number of FLOPs per CG iteration for edge-based vector inter-
polation

F , G Spaces of vector fields with elements F and G, respectively
grad Gradient operator
G Convex functional
H Magnetic field intensity
Hp(R; Z) pth cohomology group of R with coefficients in Z

Hp(R; Z) pth homology group of R, coefficients in Z
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Hp(R, ∂R; Z) pth cohomology group of R relative to ∂R, coefficients in Z

Hp(R, ∂R; Z) pth homology group of R relative to ∂R, coefficients in Z

Hp
c (M − S) Zp

c (M − S)/Bp
c (M − S); harmonic forms

Hp(M,S1) Z̃p
c (M,S2) ∩ Z

p(M − S1); harmonic fields
i inclusion map
im Image of map
I Electrical current
Ii ith current
If ,Ip Free and prescribed lumped-parameter currents
Int ( · , · ) Oriented intersection number
I Intersection number matrix
Ip(m, l) Indicator function, 1 ≤ p ≤ β1(R), 1 ≤ m ≤ 4, 1 ≤ l ≤ m3

j Map inducing a third map in a long exact sequence
J (Volumetric) current density vector
Jav Average current density in effective depth of current sheet
J i

j ∈ Z Nodal jumps on each element, 1 ≤ i ≤ m3, 1 ≤ j ≤ 4
ker Kernel of map
K Surface current density vector
K Simplicial complex
Kk

mn Stiffness matrix for kth element in mesh
K Global finite element stiffness matrix
lmax “Characteristic length” of electromagnetic system
L Inductance matrix
L Lagrangian
L2Λq(X) Space of square-integrable differential q-forms on manifold X
Link( · , · ) Linking number of two curves
mp Number of p-simplexes in a triangulation of R
m̆p Number of p-cells in dual complex
M Magnetization
M Manifold
nc, nv Number of prescribed currents and number of prescribed volt-

ages
np Number of p-simplexes in a triangulation of ∂R
n Normal vector to a codimension 1 surface
n

′ Normal to a two-dimensional manifold with boundary embedded
in R

3

nz(A) Number of nonzero entries of a matrix A
O(nα) Order nα

P Polarization density
P Poynting vector
P Period matrix
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PJ Eddy current power dissipation
Qi ith charge
R Resistance matrix
R de Rham map, R : L2Λq(X) → Cq(K) (K a triangulation of

X)
R Region in R3, free of conduction currents

R̃ Three-dimensional manifold with boundary, subset of R3

RS Surface resistivity
S Surface
S′, S′

ck Current-carrying surface after cuts for stream function have
been removed, and the kth connected component of S ′

Sq qth cut
S1 Unit circle, S1 = {p ∈ C | |p| = 1}
T Kinetic energy
T Vector potential for volumetric current distributions
Tp Torsion subgroup of pth homology group
T p Torsion subgroup of pth cohomology group
T ∗ Cotangent space
uk Nodal potential, 1 ≤ k ≤ m0

v vertex
V Voltage
Vj Prescribed voltage, 1 ≤ i ≤ nv

V Potential energy
we Electric field energy density
wm Magnetic field energy density
W Whitney map W : Cq(K) → L2Λq(X)
We Electric field energy
Wm Magnetic field energy
X Riemannian manifold
Xs

0 # nonzero entries in stiffness matrix for node-based scalar in-
terpolation

X0 # nonzero entries in stiffness matrix for node-based vector in-
terpolation

X1 # nonzero entries in stiffness matrix for edge-based vector in-
terpolation

z̄ Complex conjugate of z
zp p-cocycle
zp p-cycle
Zp(K;R) p-cocycle group of K with coefficients in module R
Zp(K;R) p-cycle group or K with coefficients in module R
Zp(K,S;R) Relative p-cocycle group of K (relative to S)
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Zp(K,S;R) Relative p-cycle group or K (relative to S)
Zp

c (M − S) Relative closed form defined via compact supports; S ⊂ ∂M

Z̃p(M,S1) Coclosed p-forms in C̃p(M,S1)
S+(−) Positive (negative) side of an orientable surface with respect to

a normal defined on the surface
Ac Set-theoretic complement of A
[A,B] Homotopy classes of maps f : A→ B, i.e. π0(Map(A,B))
[ · , · ] Homotopy classes of maps
[ · , · ] Commutator
[ · , · ] Bilinear pairing
[ · ] Equivalence class of element ·
∧ Exterior multiplication
∗ Hodge star
∩ Set-theoretic intersection
∪ Set-theoretic union
∪ Cup product



Examples and Tables

Example 1.1 Chains on a transformer 8

Example 1.2 Concentric spheres: Ω ⊂ R
3, β2 6= 0 11

Example 1.3 Curves on a knotted tube: Ω ⊂ R3, β2 6= 0 11

Example 1.4 3-d solid with internal cavities: Ω ⊂ R
3, H2(Ω) and

H0(R
3 − Ω) of interest 11

Example 1.5 Curves on an orientable surface: Ω an orientable surface,
H1(Ω) of interest 13

Example 1.6 Cohomology: Ω ⊂ R
3 H2(Ω) is of interest 18

Example 1.7 Cohomology: Ω ⊂ R3,H0(Ω) is of interest 19

Example 1.8 Cohomology: Ω a 2-dimensional surface, H1(Ω) is of interest 20

Example 1.9 Cohomology: Ω ⊂ R
3, H1(Ω) is of interest 22

Example 1.10 Fundamental group of the torus 26

Example 1.11 2-dimensional example of relative homology 33

Example 1.12 Torsion phenomena in relative homology 35

Example 1.13 Embedded surfaces and relative homology 39

Example 1.14 Electrostatics: Visualizing H1(Ω, S) in 3 dimensions 43

Example 1.15 Magnetostatics: Visualizing H2(Ω, S) in 3 dimensions 44

Example 2.1 The Lorentz gauge 55

Example 2.2 The Coulomb gauge 55

Table 2.1 Lumped parameters and cohomology groups 60

Example 2.3 Steady Current conduction in three dimensions: n = 3, p = 2 80

Example 2.4 Currents on conducting surfaces: n = 2, p = 1 85

Example 2.5 A billiard ball on a flat table as a nonholonomic system 90

Example 2.6 Ellipticity of the scalar Laplacian 96

Example 2.7 Ellipticity of the vector Laplacian 96

Example 2.8 Nonellipticity of the wave equation 96

273



274 EXAMPLES AND TABLES
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