
V10.1

cover
IBM Training Front cover

Student Exercises

IBM MQ V8 Application Development (Linux Labs)
Course code WM508 ERC 1.0
Middleware
IBM Cloud

Student Exercises
Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide.

The following are trademarks of International Business Machines Corporation, registered in many
jurisdictions worldwide:

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

VMware and the VMware “boxes” logo and design, Virtual SMP and VMotion are registered
trademarks or trademarks (the “Marks”) of VMware, Inc. in the United States and/or other
jurisdictions.

Other product and service names might be trademarks of IBM or other companies.

AIX® Bluemix™ CICS®
developerWorks® IMS™ MVS™
Notes® PartnerWorld® Passport Advantage®
Redbooks® Tivoli® WebSphere®
z/OS®
June 2016 edition

The information contained in this document has not been submitted to any formal IBM test and is distributed on an “as is” basis without
any warranty either express or implied. The use of this information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate them into the customer’s operational environment. While
each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will
result elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own risk.

 © Copyright International Business Machines Corporation 2016.
This document may not be reproduced in whole or in part without the prior written permission of IBM.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Student Exercises
V10.1

TOC
 Contents

Trademarks . vii

Exercises description . ix

Exercise 1. Working with IBM MQ to find your message . 1-1
Section 1: Determine the status of queue managers in your server 1-6
Section 2: Ensure that both queue managers have a stated dead-letter queue, and channel
authentication is set to disabled . 1-7
Section 3: Review the queue and channel definitions for MQ01 . 1-8
Section 4: Define queues and channel objects in queue manager MQ01 1-9
Section 5: Examine the objects that you defined in queue manager MQ01 1-11
Section 6: Put and get messages from the queues . 1-12
Section 7: Get the message put to the alias queue . 1-14
Section 8: Define queues and channel objects for queue manager MQ03 1-15
Section 9: Anticipate the places where your message might be found 1-17
Section 10: Put messages to remote queue TO.MQ03 in queue manager MQ01 1-17
Section 11: Start channel MQ01.MQ03 on queue manager MQ01 1-18
Section 12: Put messages to remote queue TO.MISSING.Q . 1-19
Section 13: Check whether local queue NOT.THERE exists in MQ03 1-20
Section 14: Check the IBM MQ error logs . 1-21
Section 15: Alter alias queue FREQ.CHANGED.Q to point to queue TO.MQ03 1-27

Exercise 2. Getting started with IBM MQ development . 2-1
Section 1: Compile and run a C program . 2-5
Section 2: Define and review queues EX2PERS, EX2NONPERS, and alias queue TO.PERS
. 2-7
Section 3: Examine the putmsg.c and cmqc.h header code . 2-9
Section 4: Put a message to non-persistent alias queue TO.PERS in queue manager MQ01
. 2-10
Section 5: Change program twoqput.c to open and put the same message to a second queue.
. 2-12
Section 6: Add the MQOPEN for the second queue to the program 2-15
Section 7: Add the MQPUT for the second queue . 2-17
Section 8: Add the MQCLOSE for the second queue . 2-18
Section 9: Test the updated twoqput application with the MQMD Persistence attribute set to
MQPER_PERSISTENCE_AS_Q_DEF . 2-19
Section 10: Test the updated twoqput application with the MQMD Persistence attribute set to
MQPER_PERSISTENT . 2-21
Section 11: Does the MQMD Persistence attribute set to MQPER_PERSISTENT supersede
the alias queue persistence? . 2-22
Section 12: Resume the test with the MQMD Persistence attribute set to
MQPER_PERSISTENT . 2-23
Section 13: Test the updated twoqput application with the MQMD Persistence attribute set to
MQPER_NOT_PERSISTENT . 2-23
Section 14: Review the connection authentication initial value in the cmqc.h header . . . 2-25
Section 15: Display the queue manager connection authentication settings 2-27
Section 16: Test the authentication code with the MQSAMP_USER_ID variable 2-28
Section 17: Repeat the test but do not provide a valid password 2-29
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Contents iii

Student Exercises
Section 18: If the MQCNO version number is set to 1, what happens? 2-29

Exercise 3. Working with MQOPEN and queue name resolution, MQPUT, and MQMD fields
. .3-1

Section 1: Review the MQCONNX and MQOPEN queue manager name use in qnmres.c 3-6
Section 2: Check or start queue managers MQ01 and MQ03, and channel MQ01.MQ03 3-7
Section 3: Test the qnmres program with the MQOPEN MQOD queue name set to
EX3.SAME.QNAME and the MQOPEN MQOD queue manager name set to blanks 3-8
Section 4: Alter program qnmres to set the MQOD queue manager name to MQ03 3-9
Section 5: Test the qnmres program with the MQOPEN MQOD queue name set to
EX3.SAME.QNAME, and the MQOPEN MQOD queue manager name set to MQ03 3-9
Section 6: Review the crtdynq.c program source . 3-11
Section 7: Run the first test of the program by using the option to allow the queue manager to
generate the full dynamic queue name . 3-12
Section 8: Change and test program crtdynq to create a dynamic queue name with a
specified prefix . 3-13
Section 9: Alter crtdynq and test to use a user-generated queue name 3-16
Section 10: Update program exprep.c (copied from putmsg.c) to set expiry and request a COA
and an expiry report. 3-19
Section 11: Review, set up, and test . 3-21
Section 12: Put messages in queue EX3.CAPX.REQ and observe the expiration behavior when
the lowest expiry value is set on the queue definition . 3-22
Section 13: Put messages in queue EX3.REQUEST and observe the expiration behavior when
an expiry value is not set on the queue definition . 3-24
Section 14: Review the report messages by using the amqsbcg formatted browse sample
. .3-25
Section 15: Review the report messages by using IBM MQ Explorer 3-26

Exercise 4. Correlating requests to replies .4-1
Section 1: Back up application ex4req.c . 4-5
Section 2: Review application ex4req.c . 4-5
Section 3: Type the code necessary to create a report message and preserve the original
message MsgId and CorrelId in the report message . 4-6
Section 4: Compile and test the ex4req application . 4-7
Section 5: Confirm that the MsgId of the request and report messages match 4-8
Section 6: Backup application ex4repl.c . 4-9
Section 7: Put a few messages to queue EX4REPL . 4-10
Section 8: Review the base ex4repl.c source . 4-10
Section 9: Make necessary additions to ex4repl.c . 4-11
Section 10: Baseline what messages you have now . 4-13
Section 11: Compile and test the ex4repl application . 4-14
Section 12: Check the MsgId and CorrelId values . 4-15
Section 13: Review the ex4match.c code sections already implemented 4-18
Section 14: Set up the queue object descriptor names, and queue manager names . . . 4-19
Section 15: Set up the MQGET for queue EX4REPL to get messages by the correlation
identifier . 4-20
Section 16: Compile and test the ex4match application . 4-20

Exercise 5. Commit and backout review .5-1
Section 1: Locate the sample commit and backout application . 5-2
Section 2: Observe the manual tracking of resources outside IBM MQ 5-3
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iv IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

TOC
 Section 3: Review the MQCMIT and MQBACK function calls . 5-4

Exercise 6. Asynchronous messaging review . 6-1
Section 1: Check the callback function . 6-3
Section 2: Check the asynchronous messaging-related declarations 6-4
Section 3: Review the standard MQCONNX and MQOPEN calls 6-4
Section 4: Find and review the callback code . 6-4
Section 5: Find and review the MQCTL invocation to start consumption of messages . . . 6-5
Section 6: Review how to end message consumption . 6-6
Section 7: Check for the standard IBM MQ ending function calls 6-6
Section 8: Start the asynchronous callback sample amqscbf . 6-7

Exercise 7. Working with an IBM MQ client . 7-1
Section 1: Compile program putmsg.c to run as an IBM MQ client application 7-5
Section 2: Check your client channel definition table (CCDT) CLNTCONN type channel . 7-6
Section 3: Start the test of the putmsgc application by using the CCDT definition 7-8
Section 4: Check the channel status from queue manager MQ01 7-8
Section 5: Resume the putmsgc test . 7-9
Section 6: Use a sample application to remove the message from the MQ01 EX7.LOCALQ queue
. 7-10
Section 7: Set up your client to connect to queue manager MQ03 by using the MQSERVER
environment variable . 7-10
Section 8: Test the putmsgc application by using the MQSERVER environment variable
. 7-12
Section 9: Modify an existing IBM MQ application to use the MQCONNX call to set up
connectivity to queue manager MQ01 . 7-13
Section 10: Code change 1: Add extra header file that is required for MQCD structure . 7-14
Section 11: Code change 2: Declare the MQCD structure . 7-14
Section 12: Code change 3: Define hardcoded variables . 7-16
Section 13: Code change 4: Set the MQCD fields, point the MQCNO to the MQCD structure,
and set the queue manager name for the MQCONNX call . 7-16
Section 14: Save changes, and compile your code . 7-18
Section 15: Test the codeconn application . 7-19
Section 16: Confirm that the message put with the codeconn application was put to queue
manager MQ01 . 7-20
Section 17: Use putmsgc to put another message to queue EX7.LOCALQ 7-21

Exercise 8. Working with publish/subscribe basics . 8-1
Section 1: Back up the source code for both applications in this exercise 8-2
Section 2: Review and change the ex8sub.c application . 8-3
Section 3: Compile and do a preliminary test of ex8sub.c . 8-4
Section 4: Review and make necessary changes to the ex8pub.c copy of putmsg.c 8-5
Section 5: Compile and test the publisher . 8-7
Section 6: Use the runmqsc utility to check information about the managed storage that the
subscription MQSUB creates . 8-10
Section 7: Use IBM MQ Explorer to check your subscription. 8-10

Exercise 9. Connecting IBM MQ Light applications to IBM MQ applications 9-1
Section 1: Start queue manager MQ15 . 9-6
Section 2: Confirm that the AMQP capability is enabled in the queue manager 9-6
Section 3: Start and check the AMQP service and channel MQ15.AMQP 9-8
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Contents v

Student Exercises
Section 4: Set up your windows session to work with the IBM MQ Light clients 9-12
Section 5: Use the recv.js IBM MQ Light sample to subscribe to the default topic 9-13
Section 6: Open a second terminal window and check the subscription 9-14
Section 7: Use the second terminal window to publish the send.js IBM MQ Light client sample
default message . 9-15
Section 8: Set up to exchange messages between IBM MQ applications and IBM MQ Light
applications . 9-16
Section 9: Create an IBM MQ Light subscription to topic “Sports/soccer” 9-17
Section 10: Use IBM MQ to publish to the IBM MQ Light “Sports/soccer” subscription . 9-18
Section 11: Publish messages to both IBM MQ applications and IBM MQ Light subscribers at
the same time . 9-19
Section 12: Use the IBM MQ Light sample client recv.js to receive messages that a
queue-based application puts . 9-21
Section 13: Use a queue-based IBM MQ application to receive messages that the IBM MQ
Light send.js client publishes . 9-23
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

vi IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

TMK
 Trademarks

The reader should recognize that the following terms, which appear in the content of this training
document, are official trademarks of IBM or other companies:

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide.

The following are trademarks of International Business Machines Corporation, registered in many
jurisdictions worldwide:

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

VMware and the VMware “boxes” logo and design, Virtual SMP and VMotion are registered
trademarks or trademarks (the “Marks”) of VMware, Inc. in the United States and/or other
jurisdictions.

Other product and service names might be trademarks of IBM or other companies.

AIX® Bluemix™ CICS®
developerWorks® IMS™ MVS™
Notes® PartnerWorld® Passport Advantage®
Redbooks® Tivoli® WebSphere®
z/OS®
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Trademarks vii

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

viii IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

pref
 Exercises description

The exercises in this course play a major role in reinforcing the lecture
material. This narrative expands on the stated exercise objectives:

 • Exercise 1: Work with IBM MQ to find your message

In this exercise you learn how to:

 - Work with different types of queues.

 - Follow the trajectory of a message that goes to a remote queue
manager.

 - Determine “where is my message” when you test in an IBM MQ
environment.

 - Find the IBM MQ queue manager error logs.

 - Become familiar with the dead-letter queue. Learn how to find the
reason that a message was placed there.

 • Exercise 2: Getting started with IBM MQ development

This exercise provides experience with critical items, such as:

 - Learn to compile IBM MQ programs

 - Learn how to initialize IBM MQ structures

 - Understand how changes that are made in development override
attributes defined in IBM MQ objects

 - Determine the behavior of persistence in different scenarios

 - Observe what happens when you overlook to set the version number
of an IBM MQ structure

 - Learn about connection authentication configuration in the queue
manager

 - Learn how to include connection authentication in your code

 • Exercise 3: Working with MQOPEN and queue name resolution,
MQPUT, and MQMD fields

This exercise helps you:

 - Understand how the code of different fields in the MQOPEN
influences queue name resolution

 - Code report options

 - Create dynamic queues

 - Work with message expiry

 • Exercise 4: Correlating requests to replies

This exercise shows how to:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercises description ix

Student Exercises
 - Create a request and save details to retrieve the reply later

 - Reply to a request and preserve information that is needed to match
the reply

 - Select a specific message from a queue

 • Exercise 5: Commit and backout review

This exercise provides a view of transaction code, and shows you:

 - Which resources are controlled with IBM MQ function calls

 - Which resources must be manually tracked with your code

 • Exercise 6: Asynchronous messaging review

This exercise:

 - Walks through an asynchronous message application and shows
how the IBM MQ function calls interact

 - Includes a test of the asynchronous application to demonstrate how
the code works

 • Exercise 7: Working with an IBM MQ client

This exercise teaches you:

 - How to compile an application with the IBM MQ client libraries

 - The different ways your client can be configured to connect to a
queue manager

 - Which connection method takes precedence

 - How to create the connection to the queue manager in your code

 • Exercise 8: Working with publish/subscribe basics

In this exercise you work with the MQI for integrated publish/subscribe to:

 - Learn to use the MQSUB call to create a subscriber application

 - Convert a point-to-point application to publish messages

 • Exercise 9: Exchanging messages between IBM MQ applications
and IBM MQ Light applications

While Exercise 9 does not have dependencies on previous labs, it is
advisable to complete Exercise 8 first. Exercise 8 establishes the
publish/subscribe background helpful for Exercise 9.

In this exercise, you work IBM MQ Light applications and IBM MQ
applications.

 - Review how a V8.0.0.4 queue manager is configured to enable
AMQP

 - Exchange messages between IBM MQ integrated publish/subscribe
applications and IBM MQ Light applications
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

x IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

pref
 - Exchange messages between IBM MQ queued applications and IBM
MQ Light applications

In the exercise instructions, you can check off the line before each step as
you complete it to track your progress.

Exercise solutions

In this course, you alter IBM MQ application code as required in most of the exercises.

The LabFiles directory structure shows one source and one solution directory for each lab
(except for units that use IBM MQ samples for source). The presence of solution source is
documented in the Exercise Requirements section of each lab.

You find source in the solution directory for:

 • One solution file for Exercise 2
 • One solution file for Exercise 7
 • Two solution files for Exercise 8

The remaining solution directories are expected to be empty.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercises description xi

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

xii IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise 1. Working with IBM MQ to find your
message

What this exercise is about

This exercise explains how to test your application by showing you where
and how to look for messages that you need to put or get with your code. It
also provides basic familiarity with the technology for which you are
developing code. In addition, it shows you how to define various types of
queues, which, if you are given the authority to define in a test system,
reduces your dependency on infrastructure services.

What you should be able to do

After completing this exercise, you should be able to:

 • Determine the status of queue managers in a server

 • Start a queue manager

 • Use the runmqsc utility and command scripts to create IBM MQ objects
and check results

 • Put messages to local and alias queues and determine whether the
messages arrived at the intended destination

 • Determine the trajectory and possible stops of a message put to a remote
queue

 • Start a sender channel and check the channel status

 • Check the queue manager error logs

 • Determine where your message is

 • Examine the dead-letter queue and identify the reason that a message
was placed in the queue

Introduction

The purpose of the exercise is to teach you to use IBM MQ to work with
messages for the applications you develop. It gives you experience by using
IBM MQ to exchange messages between two queue managers, and helps
you answer the question “where is my message”.

Requirements

Queue manager MQ01, and IBM MQ object definition scripts
ex1.MQ01.mqsc and ex1.MQ03.mqsc at <dir>/LabFiles/Lab1/source.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-1

Student Exercises
Platform-dependent notes for all exercises

In this exercise guide, you work with either a Linux or Windows VMware image.

STOP StopSTOP Stop

As you log on and work with the VMware image, disregard and ignore any operating system or
application request to either register or update the software.

When you log into the VMWare image, use ID root and password web1sphere.

Throughout the guide, it includes separate instructions for Linux and Windows where needed. It
also includes frequently occurring tasks, which are provided one time in this section. In the
sections of this course, the tasks are mentioned specifically, for example, “Edit file”. Refer to this
section for operating-system-specific instructions for these repeating tasks.

In all exercises, unless otherwise stated, press the Enter key at the end of each command.

Linux

Frequently occurring Linux tasks:

Open a terminal command window

To open a terminal command window and set it to the correct user and path, follow these
instructions, and the instructions in section Change to the mqadmin8 user.

1. The terminal icon is the second icon to the right of the “Red Hat” icon.
2. Click the terminal icon and wait until the command terminal opens. The terminal comes

up, and the command prompt is prefixed with [root@rhel6base ~].
3. You must complete the next task, “Change to the mqadmin8 user”, next in this

Linux text box.

Change to the mqadmin8 user

When you open a new terminal command window in Linux, since you are logged on as the
root user, the window opens under the root ID. The root ID is not authorized to run certain
IBM MQ tasks, and does not have the path set to use all the IBM MQ sample programs and
utilities. DO NOT SET ANY PATHS MANUALLY; the script takes care of it.

You must change to the mqadmin8 user to have the path set correctly, and have
authorization to work with the queue managers.

4. Type su - mqadmin8 and press the Enter key.
5. The profile for the IBM MQ user runs. Results are:

PATH set at
/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/s
bin:/sbin:/home/mqadmin8/bin:/opt/mqm/samp/bin:/opt/node/node-v0.12.9-lin
ux-x64/bin

You are in your home directory at /home/mqadmin8
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-2 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 6. The directory prefix should now be mqadmin8@rhel6base ~].

Directory LabFiles can be found in the mqadmin8 user home directory.

List the directory

 • Type ls -l and press the Enter key. The letters in the command are lowercase
alpha-L, not the number 1.

 • Sometimes the list of files is too large. If you know part of the name of the file you need,
you can use double commands such as:

ls -l /opt/mqm/inc | grep amq

The expanded command limits the output to those file names that contain string amq.

Determine your current directory

 • To determine your current directory in a terminal command window, type pwd and press
the Enter key. The response is your current directory.

View or edit a file:

You have different options to view or edit a file, and these options depend on your comfort level with
each tool.

 • You can use gedit to view and edit most text files such as the IBM MQ logs, or the
mqsc definition files. To use gedit, look for the icon that shows a sheet or paper and a
pencil that is located directly to the left of the Firefox icon.

 • To view files by using the vi editor, use the browse-only version if you need to prevent
making inadvertent changes. Type view filename from the directory where the file is
located.

 • If you are proficient with the vi editor, you can opt to use vi to edit files.

Type vi filename from the directory where the file is located.

Change directories to the queue manager error files

 • From the terminal command prompt, type:

cd /var/mqm/qmgrs/<qmname>/errors where you replace <qmname> with the queue
manager name.

Make a backup copy of the source (before you change anything)

 • Ensure that you are in the /home/mqadmin8/LabFiles/Lab#/source directory, where
you replace the # with the exercise number you are working with. For example, if you
are working on Exercise 1, then it is: /home/mqadmin8/LabFiles/Lab1/source

 • Type cp sourcename.c sourcename.c.bkp and press the Enter key, where
sourcename is the name of the program.

Compile code

 • In the course environment, the code is in directory
/home/mqadmin8/LabFiles/Lab#/source where # is the Exercise number.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-3

Student Exercises
 • The course environment has the path set for the IBM MQ libraries. To compile programs,
move to the code directory and type:

gcc -I/opt/mqm/inc -lmqm -o executable_name program_name.c

where program_name.c is the source, and executable_name is the name of the
compiled executable program.

Windows

Frequently occurring Windows tasks include the following tasks:

 • Open a terminal command window:

You can open a terminal command window by either:

 - Clicking the command prompt icon on your Windows taskbar

 - Using Start > All Programs > Accessories > Command Prompt

 • View or edit a file:

notepad++ is the suggested editor, although other options are available. notepad++
shows line numbers, which are referenced in some of the exercises. It also formats the
files.

Warning: If you get any requests to upgrade notepad++, ignore them.

 • Change directories to the queue manager error files.

 - From the terminal command prompt, type:
cd C:\ProgramData\IBM\MQ\qmgrs\<qmname>\errors where you replace
<qmname> with the queue manager name.

 - Use Windows Explorer to find directory
C:\ProgramData\IBM\MQ\qmgrs\<qmname>\errors where you replace <qmname>
with the queue manager name whose logs you need to view.

 • Make a backup copy of the source (before you change anything).

 - Ensure that you are in the C:\LabFiles\Lab#\source directory, where you replace
the # with the exercise number you are working with. For example, if you are
working Exercise 1, then you should be at: C:\LabFiles\Lab1\source

 - Type copy sourcename.c sourcename.c.bkp and press the Enter key, where
sourcename is the name of the program.

 • Compile code.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-4 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 - Open a visual studio command prompt by going to Start > All Programs > Visual
Studio 2015 > Visual Studio Tools > Developer Command Prompt for VS2015.

 - Change to the source directory for the exercise you are working with.

 - File copy_edit.txt at C:\LabFiles\Lab#\source can be used to copy and paste
the compile command. You need to replace the program_name.c placeholder with
the name of your C source.

 - Type the command as shown, or change and use the copy_edit.txt file to paste
the compile command:

cl program_name.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqm.lib

where program_name.c is the name of the program source.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-5

Student Exercises
Exercise 1 instructions

Section 1: Determine the status of queue managers in your server

Important

The first part of this exercise is intended to provide the student experience by using the IBM MQ
script processor, runmqsc, and work with command-line utilities.

Do not use IBM MQ Explorer until requested.

__ 1. Open a terminal command session as indicated by the instructions for your operating
system.

__ 2. Type the command to examine the queue managers in the server:

dspmq

The expected results are:

QMNAME(MQ15) STATUS(Ended normally)
QMNAME(MQ01) STATUS(Ended normally)
QMNAME(MQ03) STATUS(Ended normally)

__ 3. Start queue manager MQ01 and queue manager MQ03 by typing the commands that are
shown. Do not start MQ15.

.

strmqm MQ01

strmqm MQ03

Expected results:

Start messages that are similar to the MQ01 results in the display should appear for each
queue manager.

The queue manager is associated with installation 'Installation1'.
5 log records accessed on queue manager 'MQ01' during the log replay
phase.
Log replay for queue manager 'MQ01' complete.
Transaction manager state recovered for queue manager 'MQ01'.
WebSphere MQ queue manager 'MQ01' started using V8.0.0.4.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-6 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 4. Check the messages that are displayed for each queue manager and ensure that the queue
managers started without errors. Resolve any problems or request assistance as needed
before you proceed to the next step.

Section 2: Ensure that both queue managers have a stated dead-letter
queue, and channel authentication is set to disabled

Note

Dead-letter queue:

When a queue manager is created, the dead-letter queue needs to be specified. Course queue
managers MQ01 and MQ03 should have the dead-letter queue declared by using the
SYSTEM.DEAD.LETTER.QUEUE. However, if the dead-letter queue is not declared, other steps in this
exercise do not work correctly.

If the dead-letter queue is not set for either queue manager MQ01 or MQ03, alter the queue
manager object and set it as shown in the steps that follow.

Channel authentication:

Channel authentication (CHLAUTH) is a powerful feature in IBM MQ. In the IBM MQ administration
courses, it is advisable to keep CHLAUTH enabled and rules set. Setting CHLAUTH rules is an
administrative topic. For purposes of this course, the time is dedicated to development topics, and
channel authentication is set to disabled. However, disabling CHLAUTH should not be construed
as a good practice.

Failure to disable CHLAUTH causes blocked channel errors in some exercises, particularly the
work with IBM MQ Clients. Ensure that channel authentication is disabled as shown in the
steps that follow.

__ 5. Type runmqsc MQ01 and press the Enter key.

__ 6. Display the dead-letter queue configuration for MQ01 by typing dis qmgr deadq and
pressing the Enter key. The expected results are:

dis qmgr deadq chlauth
 1 : dis qmgr deadq chlauth
AMQ8408: Display Queue Manager details.
 QMNAME(MQ01) CHLAUTH(DISABLED)
 DEADQ(SYSTEM.DEAD.LETTER.QUEUE)

__ 7. If the DEADQ attribute of the queue manager is set as shown, proceed to the next step. If the
DEADQ attribute of the queue manager is blank, declare the dead-letter queue by typing
alter qmgr deadq(SYSTEM.DEAD.LETTER.QUEUE) and pressing the Enter key.

__ 8. If the CHLAUTH attribute of the queue manager is set as shown, proceed to the next step.

If the CHLAUTH attribute of the queue manager is set to ENABLED, disable CHLAUTH by
typing alter qmgr CHLAUTH(DISABLED) and pressing the Enter key.

__ 9. Exit runmqsc for queue manager MQ01 by typing end and pressing the Enter key.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-7

Student Exercises
__ 10. Repeat the process in this section for both the DEADQ and CHLAUTH queue manager
attributes by following the same steps for queue manager MQ03.

__ 11. Before you continue, ensure that both queue managers have:

 • A declared dead-letter queue, and
 • Channel authentication disabled

Section 3: Review the queue and channel definitions for MQ01

__ 12. Move to the LabFiles directory by using the instructions for your operating system, or by
using the LabFiles directory shortcut towards the lower left of your VMware display.

__ 13. Move to the Lab1 directory, then to the source subdirectory. You should be in the
<dir>/LabFiles/Lab1/source directory.

__ 14. List the directory by using the instructions appropriate for your operating system.

__ 15. Ensure that the command script file ex1.MQ01.mqsc is in the directory.

__ 16. Browse file ex1.MQ01.mqsc by using the editor applicable to your operating system.
Review the objects that you are about to define. The commands in the file should look as
displayed:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-8 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

*** MQSC definitions for queue manager MQ01 - exercise 1 ***

* Local queue
DEF QLOCAL(EX1.LOCALQ)
*
* One more local queue to use as target for QALIAS
DEF QLOCAL(UNDER.COVER.QUEUE)
*
* Alias queue
DEF QALIAS(FREQ.CHANGED.Q) TARGTYPE(QUEUE) TARGET(UNDER.COVER.QUEUE)
*
* Local queue of usage type transmit for channel to MQ03 - not triggered
DEF QLOCAL(MQ03) USAGE(XMITQ)
*
* Remote queue to MQ03 - uses XMITQ and name of MQ03 queue
DEF QREMOTE(TO.MQ03) XMITQ(MQ03) RQMNAME(MQ03) RNAME(FROM.MQ01)
*
* One more remote queue. The queue in the RNAME attribute
* is missing from MQ03
DEF QREMOTE(TO.MISSING.Q) XMITQ(MQ03) RQMNAME(MQ03) RNAME(NOT.THERE)
*
* Sender channel to MQ03
DEF CHL(MQ01.MQ03) CHLTYPE(SDR) trptype(TCP) XMITQ(MQ03) +
 CONNAME('localhost(1623)')

__ 17. Close script file ex1.MQ01.mqsc. Ensure that you are still in the
<dir>/LabFiles/Lab1/source directory.

Section 4: Define queues and channel objects in queue manager MQ01

__ 18. You start the runmqsc utility by using a script file. If you have any errors, you must be sure
to capture the results.

Important

Be careful that you use the correct queue manager name.

Type the command exactly as shown, and press the Enter key:

runmqsc MQ01 < ex1.MQ01.mqsc > ex1.MQ01.txt
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-9

Student Exercises
__ 19. Check the results by editing file ex1.MQ01.txt. You must see messages “No commands
have a syntax error” and “All valid MQSC commands were processed” at the end of the
results:

* : **
 : * Local queue
 1 : DEF QLOCAL(EX1.LOCALQ)
AMQ8006: WebSphere MQ queue created.
 : *
 : * One more local queue to use as target for QALIAS
 2 : DEF QLOCAL(UNDER.COVER.QUEUE)
AMQ8006: WebSphere MQ queue created.
 : *
 : * Alias queue
 3 : DEF QALIAS(FREQ.CHANGED.Q) TARGTYPE(QUEUE) TARGET(UNDER.COVER.QUEUE)
AMQ8006: WebSphere MQ queue created.
 : *
 : * Local queue of usage type transmit for channel to MQ03 - not triggered
 4 : DEF QLOCAL(MQ03) USAGE(XMITQ)
AMQ8006: WebSphere MQ queue created.
 : *
 : * Remote queue to MQ03 - uses XMITQ and name of MQ03 queue
 5 : DEF QREMOTE(TO.MQ03) XMITQ(MQ03) RQMNAME(MQ03) RNAME(FROM.MQ01)
AMQ8006: WebSphere MQ queue created.
 : *
 : * One more remote queue. The queue in the RNAME attribute
 : * is missing from MQ03
 6 : DEF QREMOTE(TO.MISSING.Q) XMITQ(MQ03) RQMNAME(MQ03) RNAME(NOT.THERE)
AMQ8006: WebSphere MQ queue created.: *
 : * Sender channel to MQ03
 7 : DEF CHL(MQ01.MQ03) CHLTYPE(SDR) trptype(TCP) XMITQ(MQ03) +
 : CONNAME('localhost(1623)')
AMQ8014: WebSphere MQ channel created.
 : *
7 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

__ 20. The script files that are provided should not contain any errors. If errors are found, make any
needed corrections before proceeding.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-10 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

STOP StopSTOP Stop

If your definitions completed as expected, do not run these steps. These alphabetic-numbered
steps are for use only if you had problems with the definitions. If your script ran as expected,
proceed to the next section.

__ a. Open a runmqsc session by typing runmqsc MQ01 and pressing the Enter key. You are
placed in the interactive IBM MQ command processor.

__ b. You define one object at a time, but you need to type definitions for only those objects
that failed to be defined.

__ c. Type the name of the object that failed to be defined, omitting the number shown on the
left of the display. For example, if a problem is found with UNDER.COVER.QUEUE, type
DEF QLOCAL(UNDER.COVER.QUEUE) and omit the “2 :” that is shown on the display.

runmqsc should provide positive feedback on each step, such as:
AMQ8006: WebSphere MQ queue created.

__ d. However, if you need to reenter the channel definition, you can continue typing so it
wraps around to a new line if needed. It ensures that you type the channel CONNAME
attribute exactly as shown in this step, including the quotation marks where placed:

CONNAME('localhost(1621)')

__ e. To exit runmqsc, type end and press the Enter key.

Section 5: Examine the objects that you defined in queue manager
MQ01

For convenience, you might refer to the definitions results shown in the previous display. Answers
are at the end of this exercise under heading First group of questions.

__ 21. How many local queues (QLOCAL) did you define?___________________________

__

__

__ 22. What is the difference between local queue MQ03 and the other local queues?

__

__ 23. If you place a message in the alias queue FREQ.CHANGED.Q, where can you expect to
find the message?

__ 24. The remote queues and the sender channel point to a transmission queue (XMITQ). What
local queue is used as the transmission queue? __________________________
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-11

Student Exercises
__ 25. In a remote queue definition, the RNAME attribute points to the name of a local queue in the
remote queue manager. Two remote queues (QREMOTE) are defined. What are the names
of the two local queues that are expected to be in the remote queue manager?

__

__

__ 26. When a channel is running, messages put to a remote queue are expected to flow to the
remote queue manager. If the channel is not running, messages put to a remote queue wait
in the transmission queue until the channel starts. If messages are put to both remote
queues TO.MQ03 and TO.MISSING.Q and the channel is stopped, where do you expect to
find the messages that you put on the remote queues? (This question arises since remote
queues do not hold messages.)

__

Section 6: Put and get messages from the queues

Information

In this exercise, you use sample program amqsput to put messages to queues. For the labs,
amqsput takes two parameters:

 • The queue name, and
 • The queue manager name

After the program initializes, it confirms that it is waiting for messages to be typed by returning:

Sample AMQSPUT0 start
target queue is queue_name

When you see this message, amqsput is waiting for you to type in some messages.

You type one line and press the Enter key to send one message.

To stop sending messages, you send a blank message by pressing the Enter key twice after the
last message you need to send.

Remember the instructions in this text box. You use sample programs that work in a similar
way many times throughout the course.

__ 27. Ensure that queue EX1.LOCALQ is empty by listing the queue depth attribute (CURDEPTH) of
the queue. For this part of the exercise, you use the runmqsc utility.

__ a. From your terminal window, start a runmqsc session by typing runmqsc MQ01 and
pressing the Enter key. You are now in interactive mode of the IBM MQ script command
processor.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-12 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ b. Display the attribute that keeps count of the messages in the queue by typing:

DIS Q(EX1.LOCALQ) CURDEPTH

Expected results are shown, and the number of messages should be 0 in CURDEPTH:
AMQ8409: Display Queue details.
 QUEUE(EX1.LOCALQ) TYPE(QLOCAL)
 CURDEPTH(0)

__ c. Type end and press the Enter key to exit runmqsc.

__ 28. Put one message to queue EX1.LOCALQ in queue manager MQ01 by using the amqsput
sample program.

__ a. Type amqsput EX1.LOCALQ MQ01 and be careful to press Enter one time only.

The result should be:
Sample AMQSPUT0 start
target queue is EX1.LOCALQ

__ b. When you see this prompt, the program waits for input. Type one line and press the
Enter key one time to put one message to the queue. You can type any text, for
example: message1

__ c. Press the Enter key for a second time to end amqsput. The result should be:

Sample AMQSPUT0 end

__ 29. Check the message count for queue EX1.LOCALQ with runmqsc. Type runmqsc MQ01 and
press the Enter key. You should now be in the IBM MQ script command utility.

__ a. Type DIS Q(EX1.LOCALQ) CURDEPTH and press the Enter key.

Results should be:
AMQ8409: Display Queue details.
 QUEUE(EX1.LOCALQ) TYPE(QLOCAL)
 CURDEPTH(1)

__ b. Leave the messages in the queue. Type end and press the Enter key to exit runmqsc.

__ 30. Get your message from EX1.LOCALQ by using the amqsget sample program. amqsget
does a destructive read of the queue, that is, it removes the messages from the queue. The
syntax is similar to amqsput. Type the command amqsget EX1.LOCALQ MQ01 and press the
Enter key one time. amqsget runs for 15 seconds and then ends. (You can use Ctrl-C if you
do not want to wait for amqsget to end.)

amqsget EX1.LOCALQ MQ01

Expected reply:
Sample AMQSGET0 start
message <one message>
no more messages
Sample AMQSGET0 end

__ 31. Put a message to alias queue FREQ.CHANGED.Q.

__ a. Type amqsput FREQ.CHANGED.Q MQ01 and press the Enter key.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-13

Student Exercises
__ b. Type some text such as message2 and press the Enter key two times to end amqsput.

__ 32. Alias queues do not store messages. You need to determine where FREQ.CHANGED.Q is
pointing to, so you can check whether the message arrived. Do not worry about checking
the name of the target queue; you find out in the next step.

__ a. Open a runmqsc session by typing: runmqsc MQ01

__ b. Confirm the target of messages that are put to alias queue FREQ.CHANGED.Q by typing
the command DIS Q(FREQ*) TARGET exactly as shown and pressing the Enter key. If
you use an asterisk, you do not need to type the full queue name.

Results should be:
AMQ8409: Display Queue details.
 QUEUE(FREQ.CHANGED.Q) TYPE(QALIAS)
 TARGET(UNDER.COVER.QUEUE)

__ c. The previous display confirmed that the message put to alias queue FREQ.CHANGED.Q
should be in local queue UNDER.COVER.QUEUE. Display the message count in
UNDER.COVER.QUEUE by typing:

dis q(UNDER.COVER.QUEUE) curdepth

Results should be:
AMQ8409: Display Queue details.
 QUEUE(UNDER.COVER.QUEUE) TYPE(QLOCAL)
 CURDEPTH(1)

Note

In this exercise, you used “DIS Q” to display local and alias queues. It is important to differentiate
that if you need to change the attributes of a queue, the correct type of queue must be used, such
as:

ALTER QLOCAL(queue_name)
CLEAR QLOCAL(queue_name

The correct queue type name is needed to define queues.

Section 7: Get the message put to the alias queue

Note

While alias queues do not hold messages, when you work with the queue manager local to the
alias queue, that is, the queue manager where the alias queue is defined, you can get messages
from the alias queue. However, you cannot get messages from a remote queue.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-14 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 33. Get the message from the alias queue by typing: amqsget FREQ.CHANGED.Q MQ01

Expected reply:
Sample AMQSGET0 start
message <one message>
^C <=== In this example, Ctrl-C was used to break out of the amqsget wait.

Section 8: Define queues and channel objects for queue manager MQ03

Warning

Do not start the channel for which you are about to complete the definitions until explicitly
instructed

__ 34. Move to your LabFiles/Lab1/source directory by using the instructions for your operating
system.

__ 35. Ensure that the command script file ex1.MQ03.mqsc is in the directory. The contents of this
file get displayed when you check the result of your definitions.

__ 36. You start the runmqsc utility by using a script file. You must be sure to capture the results to
ensure that all commands completed successfully. Also, check that you use the correct
queue manager name. Type the command exactly as shown:

.

runmqsc MQ03 < ex1.MQ03.mqsc > ex1.MQ03.txt

__ 37. Check the results by editing file ex1.MQ03.txt. You must see messages “No commands
have a syntax error” and “All valid MQSC commands were processed” at the end of the
results for the two mqsc objects defined.

__ 38. The name of the local queue, or QLOCAL, that you defined in queue manager MQ03, called
FROM.MQ01, should match the RNAME attribute of QREMOTE TO.MQ03, defined in queue
manager MQ01. Do not go back through the instructions to check the names. Check by
typing the command that is shown in a runmqsc session for queue manager MQ01. The
command and expected output are both shown:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-15

Student Exercises
.

runmqsc MQ01
5724-H72 (C) Copyright IBM Corp. 1994, 2015.
Starting MQSC for queue manager MQ01.

dis q(TO.MQ03) RNAME XMITQ
 1 : dis q(TO.MQ03) RNAME XMITQ
AMQ8409: Display Queue details.
 QUEUE(TO.MQ03) TYPE(QREMOTE)
 RNAME(FROM.MQ01) XMITQ(MQ03)

__ 39. You confirmed that the local queue you defined in queue manager MQ03 matches the queue
that is expected when you put messages to the TO.MQ03 remote queue. In the command as
given, you also listed the name of the transmission queue that is associated with TO.MQ03.

Reminder

When channels run, they take messages from the transmission queues associated in the channel
definition, and transfer them to the remote queue manager. If the channel is not running, messages
wait in the transmission queue.

Do not start the channel until explicitly instructed.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-16 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Section 9: Anticipate the places where your message might be found

The diagram in this section illustrates the possible stops for your message.

Figure 1-1. Trajectory of a message put to a remote queue

__ 40. Review the definitions in the diagram and answer the questions. Answers are at the end of
this exercise under heading Second group of questions.

__ a. You put a message to remote queue TO.MQ03 in queue manager MQ01. You
remember that remote queues do not hold messages. If the channel is not running, at
what queue manager and queue do you expect your message to be?
__.

__ b. If the channel is running, at what queue manager and queue do you expect your
message to be?
__.

__ c. Assume that the queue manager is not restarted and the message you put is persistent.
Look at the queues in the diagram. If your message is not in queue MQ03 at MQ01 or at
FROM.MQ01 at MQ03, where else would you check for your message?

___.

Section 10:Put messages to remote queue TO.MQ03 in queue manager
MQ01

__ 41. Do not start the channel.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-17

Student Exercises
__ 42. Put a message to queue remote TO.MQ03 in queue manager MQ01.

__ a. Type amqsput TO.MQ03 MQ01 and press the Enter key.

__ b. Type some text such as message3 and press the Enter key two times to end amqsput.

__ 43. Since the channel is not running, check the message count in transmission queue MQ03 to
determine whether the message is there. Open a runmqsc session for queue manager
MQ01 and type:

.

dis q(MQ03) curdepth
 1 : dis q(MQ03) curdepth

Expected results:
AMQ8409: Display Queue details.
 QUEUE(MQ03) TYPE(QLOCAL)
 CURDEPTH(1)

Important

The channels that are defined from MQ01 to MQ03 are a sender-receiver pair. When you use a
sender-receiver channel pair, the sender is started. Ensure that you start the sender channel from
the MQ01 queue manager as indicated.
.

Section 11:Start channel MQ01.MQ03 on queue manager MQ01

__ 44. Use the existing MQ01 runmqsc session, or if needed, reopen a runmqsc session for queue
manager MQ01 by typing runmqsc MQ01 and pressing the Enter key.

__ 45. Start the channel by typing start channel(MQ01.MQ03) and press the Enter key. Expected
result is:

1 : start channel(MQ01.MQ03)
AMQ8018: Start WebSphere MQ channel accepted.

__ 46. While you are still in the runmqsc session, check the status of the channel by typing:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-18 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
.

dis chs(MQ01.MQ03)
Expected result:
 2 : dis chs(MQ01.MQ03)
AMQ8417: Display Channel Status details.
 CHANNEL(MQ01.MQ03) CHLTYPE(SDR)
 CONNAME(127.0.0.1(1623)) CURRENT
 RQMNAME(MQ03) STATUS(RUNNING)
 SUBSTATE(MQGET) XMITQ(MQ03)

You c

__ 47. Type end and press the Enter key to exit runmqsc for queue manager MQ01.

__ 48. The channel is running. The message channel agent is expected to pick up the message
from transmission queue MQ03 in the MQ01 queue manager, and forward it to queue
manager MQ03. The message is then placed in its destination queue, queue local to MQ03,
FROM.MQ01. Open a runmqsc session for queue manager MQ03 and check for messages in
queue FROM.MQ01. The command and results are shown:

.

runmqsc MQ03
5724-H72 (C) Copyright IBM Corp. 1994, 2015.
Starting MQSC for queue manager MQ03.

dis q(FROM.MQ01) curdepth
 1 : dis q(FROM.MQ01) curdepth
AMQ8409: Display Queue details.
 QUEUE(FROM.MQ01) TYPE(QLOCAL)
 CURDEPTH(1)

__ 49. Close the runmqsc session by typing end and pressing the Enter key.

Section 12:Put messages to remote queue TO.MISSING.Q

Note

When remote queue TO.MISSING.Q was defined in queue manager MQ01, the intended target
QLOCAL on queue manager MQ03, queue NOT.THERE, was deliberately omitted. You now test
what happens when you put messages to queue TO.MISSING.Q in queue manager MQ01.

__ 50. Open a runmqsc session for queue manager MQ01 by typing runmqsc MQ01 and pressing
the Enter key.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-19

Student Exercises
__ 51. Check that the channel is still running by typing: DIS CHS(MQ01.MQ03)

__ 52. If the channel is no longer in RUNNING status, start it again by typing

START CHL(MQ01.MQ03)

__ 53. Exit runmqsc by typing end and pressing the Enter key.

Note

In most organizations, channels are “triggered”. It is not necessary to continue starting the channels
(after the first time they are started) because the channel automatically restarts when a message
arrives in the transmission queue. The transmission queue is what is triggered.

For the objectives of this development course, the channels are not triggered.

__ 54. Put a message to queue remote TO.MQ03 in queue manager MQ01. Type

amqsput TO.MISSING.Q MQ01 and press the Enter key.

__ 55. Type some text such as message4 and press the Enter key two times to end amqsput.

Section 13:Check whether local queue NOT.THERE exists in MQ03

__ 56. Open a runmqsc session for queue manager MQ03 by typing runmqsc MQ03 and pressing
the Enter key.

__ 57. Display any queues in queue manager MQ03 that start with string NOT by typing the
command that is shown and pressing the Enter key:

DIS Q(NOT*)

Note

You confirmed that the expected target queue was not defined on queue manager MQ03. To
continue the search for where you message went, you now check whether the message is in
transmission queue MQ03, of queue manager MQ01.

__ 58. Open IBM MQ Explorer. Click the IBM MQ Explorer icon in your VMware image and wait a
few moments until it starts.

__ 59. Expand the Queue Managers heading to see all queue managers.

__ 60. Place your cursor on queue manager MQ01.

__ 61. Click heading Queues, and locate queue MQ03.

__ 62. Place your cursor over queue MQ03. Confirm whether column Current queue depth for
queue MQ03 has any messages. For this test, Current queue depth is expected to have
zero messages.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-20 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Important

Ensure that you checked column Current queue depth, which is the fourth column from the left of
the queue name, for the message count.

If the channel is still running, the channel has queue MQ03 open for input (getting messages from
the local queue manager) and for output (sending messages to the remote queue manager). In the
case that the channel s running, the Open input count and Open output count columns show
the count of open handles, which are both 1 in the display.

Note

A note about IBM MQ Explorer. Note the two icons at the upper right of the IBM MQ Explorer
graphic. These icons represent toggle switches. The first icon allows the view of objects whose
names start with SYSTEM. If, when you start looking for SYSTEM.DEAD.LETTER.QUEUE you do not
find any queue with a name that starts with the word SYSTEM, that is system queues, toggle the
first icon and the system queues are displayed.

The second icon shows dynamic queues. For example, the queue name that starts with AMQ at the
start of the display is a dynamic queue that is used by IBM MQ Explorer. If you need to see dynamic
queues in later exercises and they do not show, you can use this second icon to the upper right.

Section 14:Check the IBM MQ error logs

__ 63. Minimize IBM MQ Explorer and return to your command terminal window.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-21

Student Exercises
STOP StopSTOP Stop

IBM MQ error information is kept in different logs. When you need to find queue manager-related
errors, look in the queue manager logs, under the <install>/qmgrs/<qmname>/errors directory,
by substituting the queue manager name that you need to investigate for the <qmname>
placeholder. These files contain information pertinent to the queue managers.

Another errors directory, which is at the same level as the qmgrs directory, exists. This directory
holds IBM MQ software errors, and does not provide any help to resolve queue manager-related
problems. This IBM MQ software directory contains information that you might exchange with the
IBM support team if you suspect an IBM MQ problem.

In this course, you work with the queue manager-related errors exclusively, at the
<install>/qmgrs/<qmname>/errors directory.

__ 64. Change directories to the IBM MQ error log files for queue manager MQ03. Use the
instructions applicable to the operating system you are working with.

Replace <qmname> with: MQ03

Linux

From the terminal command prompt, type:

cd /var/mqm/qmgrs/<qmname>/errors

Where you replace <qmname> with the queue manager name.

Windows

You can access the queue manager error files in two ways:

 • From the terminal command prompt, type:

cd C:\ProgramData\IBM\MQ\qmgrs\<qmname>\errors

Where you replace <qmname> with the queue manager name.

 • Use Windows Explorer to find directory
C:\ProgramData\IBM\MQ\qmgrs\<qmname>\errors where you replace <qmname> with
the queue manager name whose logs you need to view.

__ 65. Open file AMQERR01.LOG for viewing by using the view or edit method for your operating
system.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-22 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 66. Proceed to the end of the file. View the error log from the bottom to the top of the error file.

__ a. The queue manager error log contains many entries. You are after an entry that shows:
AMQ9544: Messages not put to destination queue.

__ b. If you see message AMQ9545: Disconnect interval expired followed by a
message, which indicates that the channel is stopped, this message is not a problem. It
is possible that some time elapsed before you continued this exercise, and the channel
closed normally since it was not being used. You might not see the AMQ9545 entry
unless you pause before you get to this step.

__ c. Scroll backwards to the next entry in the log until you find message AMQ9544. An
example of the AMQ9544 message is shown:

.

---- amqrmrca.c : 1051 ---
02/08/2016 01:21:36 PM - Process(439675.1) User(mqadmin8) Program(runmqchl)
 Host(rhel6base) Installation(Installation1)
 VRMF(8.0.0.4) QMgr(MQ01)

AMQ9544: Messages not put to destination queue.

EXPLANATION:
During the processing of channel 'MQ01.MQ03' one or more messages could not be
put to the destination queue and attempts were made to put them to a
dead-letter queue. The location of the queue is 2, where 1 is the local
dead-letter queue and 2 is the remote dead-letter queue.
ACTION:
Examine the contents of the dead-letter queue. Each message is contained in a
structure that describes why the message was put to the queue, and to where it
was originally addressed. Also look at previous error messages to see if the
attempt to put messages to a dead-letter queue failed. The program identifier
(PID) of the processing program was '439675'.

__ d. Always check the date and time stamp. It should be close to the date and time when
you put a message to queue remote TO.MISSING.Q on MQ01.

__ e. Write the time and date stamp of message AMQ9544: here. You might need it later:
___.

__ f. Look at the sentence that is highlighted in bold in the display, which refers to which
queue manager dead-letter queue that the message was sent to. In this message, the
terms “local” and “remote” apply if the dead-letter queue of the originating queue
manager is 1, or the dead-letter queue of the target queue manager is 2.

__ g. Close the error log.

__ 67. Return to IBM MQ Explorer.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-23

Student Exercises
__ 68. Click queue manager MQ03 on the IBM MQ Explorer Navigation pane. Expand the “+”
menu under queue manager MQ03 if necessary.

__ 69. Click Queues.

__ 70. From the list of queues, you must now scroll down by using the bar on the right of the queue
list. Find SYSTEM.DEAD.LETTER.QUEUE. If you do not see the dead-letter queue, you might
need to use the toggle switch that is on the upper right of IBM MQ Explorer to allow
SYSTEM named objects to display.

__ 71. Place your cursor over SYSTEM.DEAD.LETTER.QUEUE. Notice that one message is in the
fourth column, Current queue depth.

__ 72. Right-click SYSTEM.DEAD.LETTER.QUEUE and select Browse messages. A pop-up pane that
is named Message Browser appears.

Hint

If you have more than one message in the dead-letter queue, check the time and date stamp that
you captured from the error log. Select the message with the closest time stamp right before the
AMQ9544 message. This statement is repeated a couple of times in the lab because it is important
to look at the current issue, not something that happened earlier.

__ 73. Place your cursor on the message, and double-click. A pop-up display pane with a title
Message n - Properties appears, where n is usually 1, or the message number selected
if other than 1. An example display is shown:

__ 74. Place your cursor on the Dead-letter header entry label. Look at the Reason field. This
field shows an interpreted message code, MQRC_UNKNOWN_OBJECT_NAME, which is reason
code 2085. The second formatted field provides the name of the “unknown object”, which is
local queue MQRC_UNKNOWN_OBJECT_NAME, whose definition was deliberately omitted.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-24 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 75. A different way to look at the reason code is to check the Data entry label. In the lecture for
the next unit, you learn about structures such as the dead-letter header. You take an early
view of one of these headers. Click the Data label in the same pane. You see the
unformatted dead-letter header.

__ a. Look at the diagram that follows these steps for a view of the message data. For this
display, it was necessary to scroll the data portion to the right to show the structure
identifier, DLH. It has scroll bars to the right and bottom of the data display. The figure
that follows shows the scroll bars:

__ b. The data is in hex. To the right of the structure identifier is a version number and the
reason code. The reason code, which is decimal 2058, appears in hex, or X'0825'.

__ c. However, in the operating systems that you use for the lab exercises the data is in
Little Endian format, so it shows as X'2508'.

__ d. You can also see the name of the missing queue after the reason code, and the
message data you typed (in this example message 4) at the end of the character text
portion of the message.

__ 76. Click Close in each of the pop-up displays to close all boxes except IBM MQ Explorer.

__ 77. Minimize IBM MQ Explorer and return to your terminal command window.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-25

Student Exercises
__ 78. The sample program amqsbcg can also be used to do a non-destructive get, so the
messages are not removed from a queue. amqsbcg reads the message, formats the MQMD
header, and dumps the data portion of the message in hex. Type the amqsbcg request as
shown:

amqsbcg SYSTEM.DEAD.LETTER.QUEUE MQ03

__ 79. Check the output. Bypass the formatted message descriptor and start your review at the hex
dump below the *** Message *** header. In the output, find:

__ a. The dead-letter structure header, DLH.

__ b. The name of the missing queue.

__ c. The operating systems that are used for the lab exercises use Little Endian encoding.
The reason code, in Little Endian format, is X'2508' instead of X'0825' for decimal
2058 reason code.

.

[mqadmin8@rhel6base ~]$ amqsbcg SYSTEM.DEAD.LETTER.QUEUE MQ03

AMQSBCG0 - starts here

 MQOPEN - 'SYSTEM.DEAD.LETTER.QUEUE'

 MQGET of message number 1, CompCode:0 Reason:0
****Message descriptor****
* For purposes of this exercise, message descriptor is omitted from this display *

**** Message ****
 length - 181 of 181 bytes

00000000: 444C 4820 0100 0000 2508 0000 4E4F 542E 'DLH%...NOT.'
00000010: 5448 4552 4520 2020 2020 2020 2020 2020 'THERE '
00000020: 2020 2020 2020 2020 2020 2020 2020 2020 ' '
00000030: 2020 2020 2020 2020 2020 2020 4D51 3033 ' MQ03'
00000040: 2020 2020 2020 2020 2020 2020 2020 2020 ' '
00000050: 2020 2020 2020 2020 2020 2020 2020 2020 ' '
00000060: 2020 2020 2020 2020 2020 2020 2202 0000 ' "...'
00000070: B804 0000 4D51 5354 5220 2020 0600 0000 '....MQSTR '
00000080: 616D 7172 6D70 7061 2020 2020 2020 2020 'amqrmppa '
00000090: 2020 2020 2020 2020 2020 2020 3230 3136 ' 2016'
000000A0: 3032 3038 3138 3231 3335 3739 6D65 7373 '020818213579mess'
000000B0: 6167 6520 34 'age 4 '

 No more messages
 MQCLOSE
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-26 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Section 15:Alter alias queue FREQ.CHANGED.Q to point to queue
TO.MQ03

__ 80. Open a runmqsc session for queue manager MQ01 by typing runmqsc MQ01 and pressing
the Enter key.

__ 81. Change the target of alias queue FREQ.CHANGED.Q to point to remote queue TO.MQ03 by
typing:

ALTER QALIAS(FREQ.CHANGED.Q) TARGET(TO.MQ03)

Expected results:
 1 : ALTER QALIAS(FREQ.CHANGED.Q) TARGET(TO.MQ03)
AMQ8008: WebSphere MQ queue changed.

__ 82. Exit runmqsc by typing end and pressing the Enter key.

__ 83. Put a message to alias queue FREQ.CHANGED.Q.

__ a. Type amqsput FREQ.CHANGED.Q MQ01 and press the Enter key.

__ b. Type message text This is the last message for Exercise 1 and press the Enter
key two times to end amqsput.

__ 84. Return to IBM MQ Explorer.

__ 85. Under Queue managers, select MQ01.

__ 86. Place your cursor on the Channels label, taking care that you are still under queue manager
MQ01.

__ 87. Locate channel MQ01.MQ03. If the Overall channel status column shows as Running,
proceed to the next numbered step. If the channel shows inactive under the Overall
channel status column, start the channel by:

__ a. Placing your cursor over sender channel name MQ01.MQ03. Make sure that the
channel type is Sender. If the channel type is receiver, you are in the wrong queue
manager.

__ b. Right-click and select Start channel. After a few moments, the channel status might
briefly change to Initializing, but it should soon turn to Running as shown on the
display:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-27

Student Exercises
__ 88. In the last few steps, you changed alias queue FREQ.CHANGED.Q to point to remote queue
TO.MQ03. You also ensured that channel MQ01.MQ03 was in running status.

Where do you expect the last message put to FREQ.CHANGED.Q, which contained text This
is the last message for Exercise 1, to be? The answer is at the end of this exercise
under heading Last question.

___.

Reminder

When you use the Message Browser in IBM MQ Explorer, sometimes it is necessary to scroll with
the bar along the hex part of the message to see the character data portion of the message dump.

__ 89. Use IBM MQ Explorer to confirm your prediction of where the queue manager and queue
where the last message was placed. From IBM MQ Explorer:

__ a. Click your predicted queue manager name.

__ b. Click queues, and place the cursor on your predicted queue. Remember you might
need to scroll up or down to find the queue name.

__ c. Right-click the queue name and select Browse messages.

__ d. Double-click the right message and select the Data label. Scroll to the right as needed to
see the message data you typed: This is the last message for Exercise 1.

__ 90. If you find your message, you completed Exercise 1. Click Close to close all the extra
display boxes.

__ 91. If you did not find your message, look at the answers in the next section to determine
whether your prediction was correct.

__ 92. If your prediction was correct and you cannot find the last message, check alias queue
FREQ.CHANGED.Q to ensure that no errors were present when you changed the queue
name. You can use either a runmqsc session for queue manager MQ01, or IBM MQ
Explorer to check the alias queue.

__ 93. If you still cannot find your message, obtain assistance from your instructor.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-28 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise 1 answers.

Questions are repeated. Answers are in bold.

First group of questions:

 • How many local queues (QLOCAL) did you define?

 - Three QLOCAL type queues: EX1.LOCALQ, UNDER.COVER.Q, and MQ03

 • What is the difference between local queue MQ03 and the other local queues?

 - MQ03 is a transmission queue. The USAGE attribute is set to XMITQ.

 • If you place a message in the alias queue FREQ.CHANGED.Q, where can you expect
to find the message?

 - The message is in QLOCAL UNDER.COVER.Q.

 • The remote queues and the sender channel point to a transmission queue (XMITQ).
What local queue is used as the transmission queue?

 - MQ03

 • In a remote queue definition, the RNAME attribute points to the name of a local queue in
the remote queue manager. Two remote queues (QREMOTE) are defined. What are the
names of the two local queues that are expected to be in the remote queue manager?

 - Remote queue TO.MQ03 points to queue FROM.MQ01 in queue manager
MQ03.

 - Remote queue TO.MISSING.Q expects to find a queue that is named NOT.THERE
in queue manager MQ03. However, NOT.THERE is deliberately omitted. Do not
define the missing queue.

 • When a channel is running, messages put to a remote queue are expected to flow to the
remote queue manager. If the channel is not running, messages put to a remote queue
wait in the transmission queue until the channel starts. If messages are put to both
remote queues TO.MQ03 and TO.MISSING.Q and the channel is stopped, where do you
expect to find the messages that you put on the remote queues? (This question arises
since remote queues do not hold messages.)

 - If the channel is not running, messages are held in the transmission queue
that is associated with the remote queue definition. For this exercise, both
remote queues use transmission queue MQ03.

Second group of questions

 • Review the definitions in the diagram and answer the questions. Answers are at the end
of this exercise under heading Second group of questions.

 • You put a message to remote queue TO.MQ03 in queue manager MQ01. You remember
that remote queues do not hold messages. If the channel is not running, at what queue
manager and queue do you expect your message to be?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-29

Student Exercises
 - Queue manager MQ01, queue MQ03 (transmission queue for both the channel
and the TO.MQ03 remote queue definition)

 • If the channel is running, at what queue manager and queue do you expect your
message to be?

 - Queue manager MQ03, queue FROM.MQ01

 • Assume that the queue manager was not restarted and the message you put is
persistent. If your message is not MQ03 at MQ01 or at FROM.MQ01 at MQ03, where else
would you check for your message?

 - In this case, you need to check the dead-letter queue in each queue manager.
You might need to check the queue manager logs at
<install_data_dir_path>/qmgrs/QMNAME/errors, where
<install_data_dir_path> is the platform-dependent directory where the data
for your IBM MQ configuration and logs is kept.

If you find the message in the dead-letter queue, you might use IBM MQ Explorer or
any other tool that formats the dead-letter queue header, and look up the reason why
the message was rejected. You can find the reason by typing mqrc xxxx and
pressing the Enter key. Replace the xxxx placeholder with the reason code that is
found in the dead-letter header. You can also look up the reason code in the IBM MQ
Reference manual.

The message might be in the dead-letter queue of the remote queue manager, in the
dead-letter queue of the originating (local) queue manager, or even returned to the
transmission queue, depending on the situation. The error logs usually show a
message that explains where the message went, and why.

Do not forget the dead-letter queue that is associated with a queue manager is
not always SYSTEM.DEAD.LETTER.QUEUE. To confirm the correct queue that
the queue manager currently uses, open a runmqsc session, and type the
command: DIS QMGR DEADQ

1+1
= 2 Example

.

DIS QMGR DEADQ
 1 : DIS QMGR DEADQ

AMQ8408: Display Queue Manager details.
 QMNAME(MQ03)
DEADQ(SYSTEM.DEAD.LETTER.QUEUE)

Last question

Where do you expect the last message put to FREQ.CHANGED.Q, which contained text This
is the last message for Exercise 1, to be?

___ The message should be in queue FROM.MQ01 of queue manager MQ03. _____

End of exercise
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-30 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise review and wrap-up

In this exercise, you learned to complete basic tasks to help you test your programs and find your
messages. You also learned to do some basic troubleshooting by checking the IBM MQ queue
manager logs, and by locating the failing reason code in the dead-letter queue header. You were
able to:

 • Determine the status of queue managers in a server

 • Start a queue manager

 • Use the runmqsc utility and command scripts to create IBM MQ objects and check
results

 • Put messages to local and alias queues and determine whether the messages arrived at
the intended destination

 • Determine the trajectory and possible stops of a message put to a remote queue

 • Start a sender channel and check the channel status

 • Check the queue manager error logs

 • Determine where your message is

 • Examine the dead-letter queue and identify the reason that a message was placed in
the queue
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 1. Working with IBM MQ to find your message 1-31

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-32 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise 2. Getting started with IBM MQ
development

What this exercise is about

In this exercise, you start work with IBM MQ development by learning how to
make basic changes, and compile an MQI program. You use named
constants to determine the superseding IBM MQ behavior when the same
object attribute and MQI attribute use different values. In the last section of
the exercise, you experience the outcome of an incorrect version number in a
structure. You learn about the missed version number by learning how to
code connection authentication in the MQCONNX call. You also learn how to
check the queue manager connection authentication settings.

What you should be able to do

After completing this exercise, you should be able to:

 • Compile and test a copy of the put message sample program

 • Review the cmqc.h structure and the initialization values for the message
descriptor structure

 • Review selected default values of a local queue definition

 • Add MQOPEN, MQPUT, and MQCLOSE calls to an application

 • Change persistence attributes in a program by using named constants

 • Determine the outcome of persistence behavior when the queue
definition attributes and the MQI attributes use different values

 • Check the queue manager environment to determine the connection
authentication settings

 • Set a variable to test connection authentication with a program

 • Determine the results of not setting the correct version number in a
structure

Introduction

In this exercise, you start by compiling an IBM MQ C program. You learn how
to check the contents of the cmqc.h header file to find information and items
necessary for your code. After you add processing of a second queue to a
program, you learn the importance of controlling certain behaviors such as
persistence by using your code, instead of deferring it to the queue definition.
In the last section of the exercise, you learn the relationship between the
queue manager connection authentication configuration and your connection
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-1

Student Exercises
authentication code. You learn about key MQCNO structure fields that affect
the processing of connection authentication.

When you work with persistence, your focus is on checking the number of
messages in the queues before and after a restart of the queue manager.

When you work with connection authentication, your focus is on observing
how your inputs to the code correlate with the queue manager connection
authentication configuration.

Requirements

 • Queue manager MQ01

 • IBM MQ object definition scripts ex2.MQ01.mqsc

 • Source for putmsg.c and twoqput.c at
<dir>\LabFiles\Lab2\source

 • Solution source for twoqput.c at <dir>\LabFiles\Lab2\solution
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-2 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Platform-dependent notes

Repeating platform-dependent tasks are detailed in Exercise 1. Some of the tasks are repeated one
time for convenience. If you need to review details that are repeated frequently, refer to Exercise 1.

Linux

Compiling code (repeated from Exercise 1)

 • In the course environment, the code is in directory
/home/mqadmin8/LabFiles/Lab#/source

 • The course environment has the path set for the IBM MQ libraries. To compile programs,
move to the code directory and type:

gcc -I/opt/mqm/inc -lmqm -o executable_name program_name.c

where program_name.c is the source, and executable_name is the name of the
executable program.

Making a backup copy of the source

 • Ensure that you are in the /home/mqadmin8/LabFiles/Lab#/source directory.

 • Type cp sourcename.c sourcename.c.bkp and press the Enter key, where
sourcename is the name of the program.

Windows

Frequently occurring Windows tasks:

Make a backup copy of the source (before you change anything)

 • Ensure that you are in the C:\LabFiles\Lab#\source directory, where you replace the
with the exercise number you are working with. For example, if you are working
Exercise 1, then you should be at C:\LabFiles\Lab1\source.

 • Type copy sourcename.c sourcename.c.bkp and press the Enter key, where
sourcename is the name of the program.

Compile code

 • Open a visual studio command prompt by going to Start > All Programs > Visual
Studio 2015 > Visual Studio Tools > Developer Command Prompt for VS2015.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-3

Student Exercises
 • Change to the source directory for the exercise you are working with.

 • File copy_edit.txt at C:\LabFiles\Lab#\source can be used to copy and paste the
compile command. You need to replace the program_name.c placeholder with the
name of your C source.

 • Type the command as shown, or change and use the copy_edit.txt file to paste the
compile command:

cl program_name.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqm.lib

where program_name.c is the name of the program source.

Important

All work in Exercise 2 uses queue manager MQ01.

Hint

Throughout the exercises, you can recall past commands that were typed on your terminal
command session by using the up arrow in your keyboard. You can then alter part of the command
as needed and resubmit.

To save time, it is suggested that, for those of you working on Windows, after you open the
Developer Command Prompt for VS 2015, you leave that window open. When you start a new
exercise, change directories as needed from the same window. You can also recall the CL
command with the up arrow, and change the source name as needed, rather than typing or copying
the entire command.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-4 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Part 1: Compile and use the MQI

Section 1: Compile and run a C program

Note

Program putmsg.c is a slightly modified copy of sample program amqsput0.c. You use putmsg.c
to try your first compile, and later you alter and recompile the code.

Linux

Before you work with putmsg.c, make a backup copy by typing: cp putmsg.c putmsg.c.bkp

__ 1. Change to the LabFiles/Lab2/source directory where the putmsg.c code is located
according to your platform-specific instructions.

__ 2. Compile putmsg.c and place the results in module putmsg as shown in your
platform-specific instructions.

gcc -I/opt/mqm/inc -lmqm -o putmsg putmsg.c

Windows

Before you work with putmsg.c, make a backup copy by typing: copy putmsg.c putmsg.c.bkp

__ 3. Open a visual studio command prompt by going to Start > All Programs > Visual Studio
2015 > Visual Studio Tools > Developer Command Prompt for VS2015.

__ 4. Change to the C:\LabFiles\Lab2\source directory.

__ 5. File copy_edit.txt at C:\LabFiles\Lab2\source can be used to copy and paste the
compile command. You need to replace the program_name.c placeholder with the name of
your C source.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-5

Student Exercises
__ 6. Type the command as shown, or change and use the copy_edit.txt file to paste the
compile command:

cl putmsg.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqm.lib

Expected results are:

putmsg.c
Microsoft (R) Incremental Linker Version 14.00.23506.0
Copyright (C) Microsoft Corporation. All rights reserved.

/out:putmsg.exe
putmsg.obj
C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqm.lib

__ 7. Test that the compiled source runs by typing putmsg without any parameters. You can
type the test commands in the VS Developer Command Prompt window.

If the usage information is displayed, the program compiled correctly.

.

putmsg
Expected result:
Lab source putmsg start
Required parameter missing - queue name

Hint

To save time, you might want to leave the Developer Command Prompt window open. Remember
to change directories as needed for the different exercises.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-6 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Part 2: Work with code to override object attributes

Information

The next set of steps demonstrates the importance of specifying the required persistence in the
code, rather than relying on the queue definitions. Many other attributes, besides persistence,
exhibit the same behavior where the coded attributes supersede the object definition.

The table shows six combinations of persistence named values and persistence queue attributes.
You define local EX2NONPERS queue with default initial values of no persistence, and local queue
EX2PERS with persistence.

You change source twoqput.c as needed to have the program write to both queues at the same
time. After you have the code to put messages to both queues, you use it one time to test with the
“persistence per queue definition” MQMD initial default. Then, you change the code again to have
the MQMD Persistence set to use the persistent and non-persistent named values. At the end,
you test all six iterations of persistence queue attribute and code combinations.

Every time that you put messages to both queues with one persistence code value, you restart the
queue manager to confirm results.

In addition, you define a non-persistent alias queue whose target is a persistent queue. With this
definition, you demonstrate the case where the attributes of the original object, that is, the alias
queue, supersedes the attributes of target objects. You test the alias queue first with the putmsg
program.

Section 2: Define and review queues EX2PERS, EX2NONPERS, and
alias queue TO.PERS

__ 8. From the terminal command prompt window, change to your LabFiles/Lab2/source
directory.

__ 9. Create the queues for this exercise in queue manager MQ01 by using the mqsc script
ex2.MQ01.mqsc. Type your command as shown. Ensure that you selected the correct
queue manager and script before you proceed:

runmqsc MQ01 < ex2.MQ01.mqsc > ex2.out.txt
Edit the results file ex2.out.txt and review the results. The results at the end of the
file should indicate that all valid MQSC commands were processed as shown in the
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-7

Student Exercises
display. No errors are expected. If you find an error, make any corrections before you
proceed. Request assistance if necessary.

.

*** MQSC definitions for queue manager MQ01 exercise 2 ***
 : **
 : * Persistent local queue
 1 : DEF QLOCAL(EX2PERS) DEFPSIST(YES)
AMQ8006: WebSphere MQ queue created.
 : *
 : * Non-Persistent local queue
 2 : DEF QLOCAL(EX2NONPERS) <=== DEFPSIST defaults to NO
AMQ8006: WebSphere MQ queue created.
 : *
 : * Non-Persistent alias queue
 3 : DEF QALIAS(TO.PERS) TARGTYPE(QUEUE) +
 : TARGET(EX2PERS) DEFPSIST(NO)
AMQ8006: WebSphere MQ queue created.
 : *
3 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

__ 10. Review the three queue definitions:

__ a. Queue EX2PERS has the DEFPSIST attribute set to YES. If a message is put to this
queue with the Persistence field of the message descriptor set to
MQPER_PERSISTENCE_AS_Q_DEF, that message is stored on this queue as a
persistent message.

__ b. Queue EX2NONPERS has the DEFPSIST attribute set to NO. If a message is put to this
queue with the Persistence field of the message descriptor set to
MQPER_PERSISTENCE_AS_Q_DEF, that message is stored on this queue as a
non-persistent message.

__ c. Queue TO.PERS is an alias queue with the DEFPSIST attribute set to NO, with a target
queue of EX2PERS with the DEFPSIST attribute set to YES. If a message is put to this
alias queue with the Persistence field of the message descriptor set to
MQPER_PERSISTENCE_AS_Q_DEF, that message is stored on the queue EX2PERS
as a non-persistent message.

__ 11. Open a runmqsc session for queue manager MQ01 to confirm that queue EX2NONPERS is
defined with the persistence attribute set to NO. Type runmqsc MQ01 and press the Enter
key.

__ 12. Type DIS Q(EX2NONPERS) DEFPSIST and press the Enter key.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-8 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
.

dis q(EX2NONPERS) defpsist

Expected results are:
 1 : dis q(EX2NONPERS) defpsist
AMQ8409: Display Queue details.
 QUEUE(EX2NONPERS) TYPE(QLOCAL)
 DEFPSIST(NO) <=== confirms that default queue attribute is not persistent

__ 13. You can see all initial default values in a queue definition by typing dis q(QNAME) ALL and
pressing the Enter key. If you try this display, you can use the Reference documentation in
your desktop to learn what the different attributes represent.

__ 14. Type end to exit the runmqsc session.

Section 3: Examine the putmsg.c and cmqc.h header code

__ 15. Move to your LabFiles/Lab2/source directory by following the instructions for the
operating system you are working with.

__ 16. Edit to browse program putmsg.c.

__ a. Find string MQMD. You should see a line of code as shown:

MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

__ b. In the same line, md is initialized with the initial default values for the MQMD structure,
kept in a named variable structure named MQMD_DEFAULT.

__ 17. Move to the installation include file directory according to the instructions for the operating
system you are working with, and browse file cmqc.h.

__ a. Find the MQMD_DEFAULT named-value structure.

__ b. Check the initial value that is used for the persistent attribute of the MQMD structure.
Partial results should be:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-9

Student Exercises
.

#define MQMD_DEFAULT {MQMD_STRUC_ID_ARRAY},\
 MQMD_VERSION_1,\
 MQRO_NONE,\
 MQMT_DATAGRAM,\
 MQEI_UNLIMITED,\
 MQFB_NONE,\
 MQENC_NATIVE,\
 MQCCSI_Q_MGR,\
 {MQFMT_NONE_ARRAY},\
 MQPRI_PRIORITY_AS_Q_DEF,\
 MQPER_PERSISTENCE_AS_Q_DEF,\

__ 18. Confirm that the “persistence as queue definition” is maintained in the code by checking for
the md label until you get to the MQPUT to ensure that no changes are done to the
md.Persistence value.

Information

Before you proceed to change the code, check what happens when you use:

 • An alias queue that is defined with no persistence, DEFPSIST(NO)
 • Its target queue that is defined with persistence, DEFPSIST(YES)
 • An application with MQPER_PERSISTENCE_AS_Q_DEF in the Persistence attribute of the

MQMD structure

Section 4: Put a message to non-persistent alias queue TO.PERS in
queue manager MQ01

__ 19. You confirmed that program putmsg.c uses the MQPER_PERSISTENCE_AS_Q_DEF option in
the MQMD. Use putmsg to put a message to alias queue TO.PERS by typing:

putmsg TO.PERS MQ01

Expected results:
Lab source putmsg start
target queue is TO.PERS

__ 20. Type some text, such as “this message does not survive a restart” and press the
Enter key two times to end the putmsg application.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-10 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 21. The target for alias queue TO.PERS is EX2PERS. Check that the message is in the queue by
using the non-destructive get sample amqsbcg as shown. Take special care that you do
use amqsbcg, as any other sample application might remove the message. Type the
command as shown in the first line of the text box and press the Enter key.

.

amqsbcg EX2PERS MQ01
Results should be (partial display with relevant data shown):
MQGET of message number 1, CompCode:0 Reason:0
****Message descriptor****
StrucId : 'MD ' Version : 2
 Report : 0 MsgType : 8

 Expiry : -1 Feedback : 0
 Encoding : 546 CodedCharSetId : 1208
 Format : 'MQSTR '
 Priority : 0 Persistence : 0 <=== 0 denotes message is not persistent
 MsgId : X'414D51204D513031
...
... (remainder of formatted MQMD bypassed for purposes of this step)
...
**** Message **** Message data displays the text that you typed
length - 39 of 39 bytes
00000000: 7468 6973 206D 6573 7361 6765 2064 6F65 'this message doe'

00000010: 7320 6E6F 7420 7375 7276 6976 6520 6120 's not survive a '
00000020: 7265 7374 6172 74 'restart '

__ 22. You have one message in queue EX2PERS. EX2PERS is set to DEFPSIST(YES), so the
putmsg application puts a persistent message to this queue. However, the alias queue that
uses EX2PERS as its target, TO.PERS, has the DEFPSIST attribute set to NO. Restart the
queue manager and check the message by typing both the endmqm and strmqm
commands shown. Wait a few seconds after the queue manager stops before you type the
command to start it. Type the commands as shown in the text box:

.

endmqm MQ01
Expected results are:
Quiesce request accepted. The queue manager will stop when all outstanding
work is complete.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-11

Student Exercises
strmqm MQ01

Expected results are:
WebSphere MQ queue manager 'MQ01' starting.
The queue manager is associated with installation 'Installation1'.
5 log records accessed on queue manager 'MQ01' during the log replay phase.
Log replay for queue manager 'MQ01' complete.
Transaction manager state recovered for queue manager 'MQ01'.
WebSphere MQ queue manager 'MQ01' started using V8.0.0.4

__ 23. Check the messages in queue EX2PERS by using amqsbcg. It is assumed that no other
messages were in queue EX2PERS at this stage of the lab. What you need to check is
that the message that you put by using queue TO.PERS is gone. Ignore any other
message other than the one you put before the restart of the queue manager.
Expected results are:

.

amqsbcg EX2PERS MQ01

AMQSBCG0 - starts here

MQOPEN - 'EX2PERS'

 No more messages
 MQCLOSE
 MQDISC

Section 5: Change program twoqput.c to open and put the same
message to a second queue.

Important

Source twoqput.c needs to be changed to add processing of a second queue. After the change,
when you put to a first queue whose queue name you provide as an input parameter, the same
message is also put to queue EX2NONPERS.

twoqput.c is an adaptation of the amqsput0.c sample program. To ensure that the application
works for both queues, some buffer and string manipulation of the message data was necessary.
These changes are general programming tasks (versus IBM MQ programming), and are done for
you.

You code the MQOPEN, MQPUT, and MQCLOSE function calls for the second queue. Both queues
use the same queue manager connection to open them, which means that the same connection
handle works for both queues. However, you need different object and return code declarations for
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-12 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 the second queue, which are already coded for you. You use these declarations in the MQOPEN,
MQPUT, and MQCLOSE for the second queue.

Be careful to differentiate which code artifacts can be used for both queues, and which ones
need separate resources.

Warning

Before you proceed with the rest of the exercise, ensure that you made a backup copy of the
twoqput.c source by using your operating system-dependent instructions that were given at
the start of this exercise!

If time becomes a challenge, directory LabFiles/Lab2/solution contains a completed solution
file, which can be used to copy the code.

__ 24. Locate source that is named twoqput.c in your LabFiles/Lab2/source directory, and
open it for edit.

__ 25. The source is marked with the string ex2 where changes are made, or need to be made, to
add the second queue to the program. Find the first instance of the ex2 marker and review
the declarations added for the second queue. You might want to refer to this section when
coding your function calls. This section is for review. No changes are made here:

Hint

You might want to copy and paste these declarations so that you do not need to be scrolling
in your code.

For Linux

Open a second command prompt. Copy and paste the definitions into a vi editor session. Save
them to a temporary file. Use the “cat” command to display your file in the second command prompt
session.

For Windows

Copy and paste these definitions to a new Notepad++ file, so you can refer to them easily when you
code the MQOPEN and MQPUT call.

You then toggle the two Notepad++ tabs to check the declarations, without having to scroll.
Notepad++ also presents you with a choice of declarations to select when you are coding your
function calls.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-13

Student Exercises
/* ***ex2 declarations*** */
47 MQOD npod = {MQOD_DEFAULT}; /* ex2 second q object desc */
 48 MQHOBJ Hnpobj; /* ex2 second queue handle */
 49 MQLONG npOC; /* ex2 open return code) */
 50 MQLONG npReas; /* ex2 open reason code */
 51 MQLONG npputOC; /* ex2 put return code) */
 52 MQLONG npputReas; /* ex2 put reason code */
 53 char npq[] = "EX2NONPERS"; /* ex2 2nd q name for MQOPEN */
 54 MQLONG savelen = 0; /* ex2 save length of msg for put */
 55 char npbuff[65535]; /* ex2 copy buffer after fgets */
 56 int loopctr = 0; /* ex2 used to copy full buffer */
 57 /* end of ex2 declarations */

__ a. Review the first four definitions, which are required for the second queue.

__ b. You need to isolate the return codes from the queue, so the return and reason were also
duplicated.

__ c. You use the npq initialization variable to provide the name of the second queue. While
the original queue name is obtained from input parameters, the second queue name is
hardcoded in the EX2NONPERS variable.

__ d. npbuff is a string that is used to save the message that was typed in for the first queue.
You use npbuff for the second MQPUT.

__ e. savelen keeps the original length of the input message.

__ f. loopctr is not directly related to IBM MQ code; it is used to adapt the existing code to
add the second queue.

__ 26. Do a find for the original MQCONNX call. You need the same connection handle for the
MQOPEN and MQPUT calls. Record the name of the connection handle here for later use:
_________. Do not worry about the ID and password code for now; you do not use it in this
part of the lab.

__ 27. Find comment label Open the target message queue for output and review the
MQOPEN call and the options set.

__ 28. Proceed to where the O_options (open options) are set. Note the format that is used when
you need to provide multiple options. You use the same options in your open call, so make
note of the O_options parameter name; you reuse the same parameter as set in this call.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-14 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
.

O_options = MQOO_OUTPUT /* open queue for output */
 | MQOO_FAIL_IF_QUIESCING /* but not if MQM stopping */
 ;

__ 29. Continue to review the MQOPEN call as an example to complete the MQOPEN for the
second queue. Note how the fields in the structure are addressed.

Hint

If you need to confirm the name or initialized values of any fields, or the name of any field names in
the object descriptor structure (MQOD) or any other structure:

 • Open a second terminal and browse file /opt/mqm/inc/cmqc.h
 • Browse for the structure and initializing values

For example, for the object descriptor structure, search for “Object desc”. You should see the
object descriptor structure.

The initializing values for a structure are usually kept in the named value with the structure name
followed by _DEFAULT. For MQOD, it is MQOD_DEFAULT. You can browse or scroll forward to find
the initial values; for MQOD, they are directly following the structure definition in cmqc.h.

Section 6: Add the MQOPEN for the second queue to the program

In your MQOPEN work for the second queue, you:

 • Reuse the connection handle

 • Use the newly declared object descriptor

 • Reuse the open options

 • Replace the last three MQOPEN parameters with the newly declared fields.

__ 30. Proceed to the section titled MQOPEN for queue EX2NONPERS. You can search for that title
or scroll forward through the code.

__ a. Look at the string-copy to name npod.ObjectName, which is shown in bold. This copy is
done for you. Note how it is using the object descriptor instance that was defined for the
second queue, followed by the object descriptor name field.

__ b. Uncomment the MQOPEN call, and add the needed parameters.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-15

Student Exercises
Hint

If you need help with the syntax for the function calls, you can refer to either the course material, or
to the code provided in the solution folder for this exercise.

.

/* MQOPEN for queue EX2NONPERS in ex2 */
 /* The queue name is already copied to the object descriptor */
 /* A line to display the name of the second queue is added */
 strncpy(npod.ObjectName, npq, (size_t)MQ_Q_NAME_LENGTH);
 printf("second target queue is %s\n", npod.ObjectName);

 /* Complete your MQOPEN here by using ex2 declarations */
 /* where needed. Return code checking is done for you */
 /* below the MQOPEN call. Note use of ex2 declarations */
 /* Uncomment the MQOPEN call and adjust comment lines */

 /* MQOPEN */ /* connection handle NO CHANGE */
 /* ex2 object descriptor for queue */
 /* open options NO CHANGE */
 /* ex2 object handle */
 /* ex2 MQOPEN completion code */
 /* ex2 reason code */

__ 31. The code that is used to check the status of the MOPEN call is completed for you. This
status checking code should use the return and reason codes field that is defined for this
exercise, which you should use in your MQOPEN call.

__ 32. You should be in the C:\LabFiles\Lab2\source directory.

__ 33. Compile the partially changed code to eliminate any problems by typing:

Linux

.

gcc -I/opt/mqm/inc -lmqm -o twoqput twoqput.c

Windows

__ 34. If not already done, open a visual studio command prompt by going to Start > All Programs
> Visual Studio 2015 > Visual Studio Tools > Developer Command Prompt for VS2015.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-16 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 35. File copy_edit.txt at C:\LabFiles\Lab2\source can be used to copy and paste the
compile command. You need to replace the program_name.c placeholder with the name of
your C source.

__ 36. Type the command as shown, or change and use the copy_edit.txt file to paste the
compile command:

cl putmsg.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqm.lib

__ 37. If errors surface with the code added, make corrections before you proceed.

Information

Do not change persistence now. If you see the comment that is shown here, ignore it now.

* ex2 This is where you change the persistence options */

After your MQPUT to the two queues is working, and you complete the first test that uses the
“persistent as queue definition” default setting, then you return to change persistence. Now you
focus on adding the calls to process the second queue.

Section 7: Add the MQPUT for the second queue

Warning

The line numbers that are shown in the displays are approximate and might differ in the actual file.

__ 38. Locate the Uncomment the MQPUT string and add the code for the new queue.

__ a. Remove the comment text around the MQPUT function call.

__ b. Reuse the original connection handle.

__ c. Use the object handle defined for this exercise.

__ d. Reuse the message descriptor and put message options.

__ e. Use the savelen field for the message length.

__ f. Use the npbuff saved message buffer for the data.

__ g. Ensure that you use the separate npputOC and npputReas completion and reason
code fields that are defined for the MQPUT in the new declarations for this exercise.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-17

Student Exercises
/* ex2 Uncomment the MQPUT and add the remaining parameters */
320 /* starting here */
321 /* MQPUT */ /* connection handle */
322 /* ex2 object handle */
323 /* message descriptor */
324 /* put message options */
325 /* ex2 saved message length */
326 /* ex2 message buffer */
327 /* ex2 put completion code */
328 /* ex2 put reason code */

__ 39. Recompile the code as instructed in the MQOPEN section, and if necessary, make any
corrections before you proceed.

Section 8: Add the MQCLOSE for the second queue

__ 40. Open the twoqput.c source for edit and search for string Uncomment for MQCLOSE until
you find the section of code shown:

.

/* ex2 Uncomment the MQPUT and add the remaining parameters */

370 /* ex2 MQCLOSE for second queue */
371 /* add your MQCLOSE whre indicated */
372 /* Status handling is coded for you */
373 if (npOC != MQCC_FAILED)
374 {
375 /* ex2 Uncomment the MQCLOSE call function and - */
376 /* ex2 start adding your code to close second queue here */
377 /* MQCLOSE */ /* connection handle */
378 /* ex2 object handle */
379 /* closing options unchanged */
380 /* ex2 completion code */
381 /* ex2 reason code */
382

__ 41. Code the MQCLOSE call for the second queue.

__ a. Use the same connection handle as in the MQOPEN call.

__ b. Use the object handle defined for the second queue.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-18 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ c. Use the same closing options.

__ d. Use the completion and reason codes that are used in the MQOPEN call.

__ 42. Recompile the code as instructed in the MQOPEN section and, if necessary, make any
corrections before you proceed.

Section 9: Test the updated twoqput application with the MQMD
Persistence attribute set to
MQPER_PERSISTENCE_AS_Q_DEF

Important

The updated program is expected to place the first message that is typed in the second queue,
EX2NONPERS, and also in queue EX2PERS. For the tests in this section, and the sections that
follow, type one message and press the Enter key to end the program.

If you type more than one message, queue EX2PERS receives all messages that are typed, but
EX2NONPERS gets the first message. For purposes of this exercise, type one message.

However, this first test is also checking the success of the changes that you made to the
program to add the second queue. If the program is not working as described, you need to
make corrections before proceeding.

Note

You changed the program to write to both the queue that is defined as persistent, EX2PERS, and the
queue that is defined as non-persistent, EX2NONPERS, in the same program. You need to run the
program three times to test with each iteration. You revisit the table that was presented earlier in
this exercise. This first test is for the first row, MQPER_PERSISTENCE_AS_Q_DEF. You write to both the
persistent and the non-persistent queue.

__ 43. Open IBM MQ Explorer. Select the MQ01 queue manager.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-19

Student Exercises
__ 44. Select the Queues menu and locate the EX2PERS and EX2NONPERS queues.

__ 45. For each queue, look under the Current queue depth column. Make sure that queue
manager MQ01 is selected. If the queue count is greater than zero on any of the queues:

__ a. Place your cursor on the queue name and right-click.

__ b. Select Clear messages.

__ c. Check that the Current queue depth was reset to zero.

__ 46. When both EX2 queues have zero messages, run program twoqput by typing:

twoqput EX2PERS MQ01

Expected results are:
Lab source putmsg start
target queue is EX2PERS
second target queue is EX2NONPERS

__ 47. Type one message such as Message with code pers per q def and press the Enter key
two times to exit the program.

__ 48. Return to IBM MQ Explorer and check that there is at least one message in queue EX2PERS
and one message in queue EX2NONPERS. You might see other messages in queue EX2PERS.

STOP StopSTOP Stop

This run is your first run of the program after the changes. If the code is not working as
described, make necessary corrections, and return to the start of this section until your
code runs as expected. Ensure that the queues are back to zero messages.

__ 49. Both queues were put with the code option to use the persistence of the queue definition.
One queue is defined as persistent, and the other is not. If the queue manager is restarted,
what happens to the messages?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-20 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 50. Return to your terminal command window. Stop the queue manager by typing
endmqm MQ01 and wait a few seconds for the queue manager for the end process to
complete.

__ 51. Remaining in your terminal command window, type strmqm MQ01 to start the queue
manager.

__ 52. Return to IBM MQ Explorer.

Note

It might take a few moments for IBM MQ Explorer to refresh its view and show queue manager
MQ01 restarted. You can request a refresh of the IBM MQ Explorer view by clicking the Refresh
icon. The Refresh icon is at the upper-right corner of IBM MQ Explorer.

__ 53. Return to the Queues view for queue manager MQ01. The code is using the same
persistence as the queue definition. The expected results are:

__ a. Queue EX2PERS, defined with attribute DEFPSIST(YES), has one (or more) messages.

__ b. Queue EX2NONPERS, with initial default attribute DEFPSIST(NO), has no messages.

__ c. If your results are different, review your code and your queue definitions and resolve the
problem.

__ 54. Return to IBM MQ Explorer, locate queue EX2PERS in queue manager MQ01, and clear
messages by right-clicking the queue name and selecting Clear Messages.

__ 55. Ensure that the Current queue depth for each EX2PERS and EX2NONPERS is zero
before you continue.

Section 10:Test the updated twoqput application with the MQMD
Persistence attribute set to MQPER_PERSISTENT

__ 56. If your twoqput.c is working correctly, make a backup copy before you continue.

__ 57. Open twoqput.c for edit.

__ 58. Locate the first MQPUT function call.

__ 59. Directly before the first MQPUT function call, type code to change md.Persistence to
MQPER_PERSISTENT as shown:

md.Persistence = MQPER_PERSISTENT;
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-21

Student Exercises
Reminder

The message descriptor is an input and output field. The md.Persistence set in the first MQPUT
call might change. Repeat the addition to set persistence before the second MQPUT call.

__ 60. Find the second MQPUT call, and add the same code right above the MQPUT.

__ 61. Save and recompile twoqput.c.

__ 62. Run program twoqput by typing:

twoqput EX2PERS MQ01

Expected results are:
Lab source putmsg start
target queue is EX2PERS
second target queue is EX2NONPERS

__ 63. Type one message such as Message with mqper_persistent coded and press the Enter
key two times to exit the program.

Section 11:Does the MQMD Persistence attribute set to
MQPER_PERSISTENT supersede the alias queue
persistence?

Information

Earlier in this exercise you put a message to queue TO.PERS, which uses queue EX2PERS as its
target, and confirmed that the alias queue definition supersedes the target queue definition. What
happens when the code specifies persistence?

__ 64. Run program twoqput by typing the command that is shown.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-22 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Warning

Ensure that you use queue name TO.PERS for this alias queue test.

twoqput TO.PERS MQ01

Expected results are:
Lab source putmsg start
target queue is TO.PERS
second target queue is EX2NONPERS

__ 65. Type one message such as Message put to alias queue and press the Enter key two
times to exit the program.

Section 12:Resume the test with the MQMD Persistence attribute set to
MQPER_PERSISTENT

__ 66. Return to IBM MQ Explorer and verify that two messages are in each queue, EX2PERS and
EX2NONPERS. The second message is the one put with the alias queue.

__ 67. Return to your command input terminal and restart the queue manager by first typing:
endmqm MQ01
Wait a few moments, and then type: strmqm MQ01

__ 68. Return to IBM MQ Explorer. It might be necessary to wait a few moments or refresh the
view.

__ 69. When queue manager MQ01 is available, check the messages. Since you made the
messages persistent in the code, it is expected that the messages remained in each queue.
The Current queue depth for queues EX2PERS and EX2NONPERS should be 2.

__ 70. If your results are not as expected, resolve the problem before you proceed. Request
assistance if necessary.

__ 71. Clear the messages from both queues as previously instructed before you proceed.

Section 13:Test the updated twoqput application with the MQMD
Persistence attribute set to MQPER_NOT_PERSISTENT

__ 72. Open twoqput.c for edit.

__ 73. Go to the location of the first MQPUT.

__ 74. Change the md.Persistence setting to make the messages non-persistent by setting the
persistence attribute to MQPER_NOT_PERSISTENT as shown:

md.Persistence = MQPER_NOT_PERSISTENT;
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-23

Student Exercises
__ 75. Repeat the change for the second MQPUT call.

__ 76. Save and recompile twoqput.c.

__ 77. Run program twoqput by typing:

twoqput EX2PERS MQ01

Expected results are:
Lab source putmsg start
target queue is EX2PERS
second target queue is EX2NONPERS

__ 78. Type one message such as Message with mqper_not_persistent coded and press the
Enter key two times to exit the program.

__ 79. You do not test with the alias queue again. You should be able to deduce the outcome.

__ 80. Return to IBM MQ Explorer and verify that one message is in each queue, EX2PERS and
EX2NONPERS.

__ 81. Return to your command input terminal and restart the queue manager by first typing:
endmqm MQ01
Wait a few moments, and then type: strmqm MQ01

__ 82. Return to IBM MQ Explorer. It might be necessary to wait a few moments or refresh the
view.

__ 83. When queue manager MQ01 is available, check the messages. Since you made the
messages not persistent in the code, it is expected that the messages did not survive the
restart of the queue manager. The Current queue depth for EX2PERS and EX2NONPERS
should be 0.

__ 84. If your results are not as expected, resolve the problem before proceeding. Request
assistance if necessary.

You completed the second section of Exercise 2.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-24 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Part 3: MQCONNX and connection authentication

Warning

Failure to set the required version number in a structure can lead to behavior in a program that
might be difficult to correct when you do not realize that the problem is an incorrect version number.

While this part of the exercise teaches how to code connection authentication, it also shows you
what happens when you overlook the version number in a structure.

Information

The IBM MQ authentication service is accessed by using the MQCONNX function call and the
connection security parameters in the MQCSP structure. The MQCONNX connection options structure
(MQCNO) holds a pointer to the MQCSP structure.

The MQCNO structure contains a version number parameter that must be set in order for the MQCSP
information to be considered. Without the version number, the MQCSP is ignored.

 • Know the underlying queue manager settings to successfully test connection
authentication in your code.

 • Be familiar with the initial default values of the connection security parameters(MQCSP)
structure.

 • Work with the IBM MQ administrator to ensure that the password is protected when
connecting to a remote queue manager.

The connection options structure MQCNO points to the security structure MQCSP.

For this part of the exercise, your focus is connection authentication. It is not necessary to check
the messages that are put to the queue.

Section 14:Review the connection authentication initial value in the
cmqc.h header

__ 85. Open file cmqc.h according to the instructions for the operating system you are using.

__ 86. Find string MQCNO_DEFAULT to see the connection options default values related to
connection authentication. Partial initialization values are shown:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-25

Student Exercises
.

##define MQCNO_DEFAULT {MQCNO_STRUC_ID_ARRAY},\
 MQCNO_VERSION_1,\
 MQCNO_NONE,\
...

__ 87. Review the MQCNO_VERSION_1 setting. To use connection authentication, this value must be
changed to MQCNO_VERSION_5 or the MQCSP structure processing is ignored.

__ 88. Close the cmqc.h file

__ 89. Open program putmsg.c for browse.

__ 90. Review the code comments on how to code connection authentication for the MQCONNX
call. These comments and code can be located, approximately, between lines 65 and 85 of
the putmsg.c source. The code and comments are also included in the display that
follows.

Information

Line numbers in the code are approximate.

No action is necessary now; you review this section, but do not change any code.

When you need to include connection authentication in your code:

 • Look at the course putmsg.c or IBM MQ sample amqsput0.c, from which putmsg.c
was created:

a. The code uses variable MQSAMP_USER_ID to input the User ID.
b. It prompts for the password.

 • Lines 38 – 39: The MQCNO and MQCSP structures are declared and initialized with the
default structure names.

 • Lines 89 – 90: In the MQCNO structure, you:

a. Set the pointer to the MQCSP structure.
b. Set the cno.Version to MQCNO_VERSION_5 so that the MQCSP structure is

acknowledged. Make note of this line; you work with it later in the exercise.

 • Line 91: In the MQCSP structure, you:

a. Set AuthenticationType to MQCSP_AUTH_USER_ID_AND_PWD so that you can use
name and password authentication.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-26 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 b. Provide a pointer and the corresponding length to the user ID and password strings.

38 MQCNO cno = {MQCNO_DEFAULT}; * connection options */
39 MQCSP csp = {MQCSP_DEFAULT}; /* security parameters */
85 /**/
86 /* Set the connection options to use the security structure and */
87 /* set version information to ensure the structure is processed.*/
88 /**/
89 cno.SecurityParmsPtr = &csp;
90 cno.Version = MQCNO_VERSION_5;
91
92 csp.AuthenticationType = MQCSP_AUTH_USER_ID_AND_PWD;
93 csp.CSPUserIdPtr = UserId;
94 csp.CSPUserIdLength = strlen(UserId);

106 csp.CSPPasswordPtr = Password;
107 csp.CSPPasswordLength = strlen(csp.CSPPasswordPtr);

__ 91. Close putmsg.c.

Section 15:Display the queue manager connection authentication
settings

__ 92. Open or return to a command terminal window and open a runmqsc session by typing:
runmqsc MQ01

__ 93. Type the dis qmgr connauth and dis authinfo commands exactly as shown in the text
box to see the current connection authentication settings of the queue manager.

dis qmgr connauth

Expected results:
 1 : dis qmgr connauth
AMQ8408: Display Queue Manager details.
 QMNAME(MQ01)
 CONNAUTH(SYSTEM.DEFAULT.AUTHINFO.IDPWOS)

dis authinfo(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) CHCKCLNT CHCKLOCL
Expected results:
 2 : dis authinfo(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) CHCKCLNT CHCKLOCL
AMQ8566: Display authentication information details.
 AUTHINFO(SYSTEM.DEFAULT.AUTHINFO.IDPWOS)
 AUTHTYPE(IDPWOS) CHCKCLNT(REQDADM)
 CHCKLOCL(OPTIONAL)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-27

Student Exercises
Your results should resemble the text box. In the lecture, you learned that the OPTIONAL
setting means that if no ID is provided, no authentication is done – but if an ID is provided, then
a valid password must be entered. The sample programs and putmsg are set up to prompt for
the password when the MQSAMP_USER_ID variable is used.

If CHCKCLNT and CHCKLOCL are both OPTIONAL, do not be concerned.

__ 94. Type end and press the Enter key to exit the runmqsc session.

Section 16:Test the authentication code with the MQSAMP_USER_ID
variable

__ 95. Set the MQSAMP_USER_ID variable to the ID you are using for your operating system.

Linux

export MQSAMP_USER_ID=mqadmin8

Windows

set MQSAMP_USER_ID=administrator

__ 96. Run the putmsg program to put one message to queue EX2PERS as shown. Before you are
able to type any text, you are prompted provide the password:

.

putmsg EX2PERS MQ01

Expected result:
Lab source putmsg start
Enter password:

__ 97. Type the password web1sphere and press the Enter key as shown.

After you complete the test, keep this command prompt window open!

.

Enter password: web1sphere
target queue is EX2PERS

__ 98. Type any text and press the Enter key two times to end the putmsg program.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-28 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Section 17:Repeat the test but do not provide a valid password

__ 99. Type putmsg EX2PERS MQ01 and press the Enter key.

__ 100.When prompted for the password, type xyz or any other invalid password as shown:

putmsg EX2PERS MQ01

Expected result:
Lab source putmsg start

Enter password: xyz

Expected result:
MQCONNX ended with reason code 2035

__ 101.If you need help in determining the meaning of reason code 2035, type mqrc 2035 as
shown:

.

mqrc 2035
2035 0x000007f3 MQRC_NOT_AUTHORIZED

__ 102.Leave the MQSAMP_USER_ID variable set.

Section 18:If the MQCNO version number is set to 1, what happens?

__ 103.From the same command terminal window where the MQSAMP_USER_ID variable is set, edit
program putmsg.c and locate the line of code where the MQCNO version is set to 5.

__ 104.Comment out the line of code that sets the MQCNO version to MQCNO_VERSION_5 as shown.
After you recompile, the cno.Version uses the initial default value, MQCNO_VERSION_1.

.

/* cno.Version = MQCNO_VERSION_5; */

__ 105.Save putmsg.c and recompile.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-29

Student Exercises
STOP StopSTOP Stop

When you test putmsg after you recompile, you are still prompted for a password due to the
MQSAMP_USER_ID variable setting.

Do not provide a password; press the Enter key at the password prompt.

__ 106.From the same terminal window where the MQSAMP_USER_ID is set, test the putmsg
code now by typing putmsg EX2PERS MQ01 as shown, but do not provide a password.
Press the Enter key at the Password prompt.

putmsg EX2PERS MQ01

Expected return:
Lab source putmsg start
Enter password: <=== press the Enter key without typing a password

Expected return:
target queue is EX2PERS

Note

When the MQCNO version was set to 1, connection authentication was ignored.

MQSAMP_USER_ID causes the sample program to prompt for a password, but as expected, the
program continued to accept input without a valid password.

Remember, structures might require a version number to be set for a feature to work. A missed
structure number might result in time that is wasted in “problem” determination.

End of exercise
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-30 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise review and wrap-up

In this exercise, you learned to:

 • Compile an IBM MQ C program

 • Check the cmqc.header to check names of fields in structures to obtain initialization
constants for structures, and find numerous items that are needed to work with the MQI

 • Review selected default values of a local queue definition

 • Change a program that puts to one queue to add an MQOPEN, MQPUT, and
MQCLOSE to process a second queue

 • Change persistence in a program by using named constants

 • Recognize the importance of setting persistence in the application instead of deferring it
to the queue definition

 • Determine queue manager connection authentication settings

 • Add connection authentication structures and code to the MQCONNX call

 • Alter the connection options structure to disable connection authentication processing

 • Recognize the importance of setting the version of a structure, so certain features are
processed
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 2. Getting started with IBM MQ development 2-31

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-32 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise 3. Working with MQOPEN and queue
name resolution, MQPUT, and MQMD
fields

What this exercise is about

This exercise reinforces topics that are related to the MQOPEN and MQPUT
calls. In the first part of the exercise, you learn about queue name resolution
by coding a program to put a message to a remote queue manager without
using a remote queue. You learn how to create dynamic queues with different
naming options. You then learn how to use the Report field to request
confirmation on arrival and expiry messages. You also learn how to work with
the IBM MQ V8.0.0.4 expiry cap object attribute.

What you should be able to do

After completing this exercise, you should be able to:

 • Code various combinations of queue manager and queue name in the
object descriptor to test and confirm how queue name resolution takes
place

 • Code report options and review the results in the reply-to queue

 • Create and display a dynamic queue where the queue manager
determines the name

 • Create and display a dynamic queue by specifying a partial prefix of the
queue name

 • Create and display a dynamic queue by specifying the exact queue name

 • Request a confirm-on-arrival with data report message

 • Set the expiry attribute in a message and request an expiry report

 • Set the expiry attribute in a message for a queue with a lower expiry cap
value in the queue definition

Introduction

This exercise has three distinct parts. The first part of this exercise is critical
in understanding how the parameters used during the MQOPEN call control
queue name resolution. Next, you learn to create dynamic queues and use
different naming techniques. In Part 3 of this exercise, you learn to request
report messages. As part of the report messages, you also test expiry with a
queue altered with the IBM MQ V8.0.0.4 cap expiry feature.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-1

Student Exercises
Requirements

 • Queue manager MQ01 at IBM MQ V8.0.0.4

 • Source for qnmres.c, crtdyn.c, and putmsg.c at
<dir>/LabFiles/Lab3/source
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-2 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Platform-dependent notes

Repeating platform-dependent tasks are detailed in Exercise 1. Some of the tasks are repeated one
time for convenience. If you need to review details that are repeated frequently, refer to Exercise 1.

Linux

Compiling code (repeated from Exercise 1)

 • In the course environment, the code is in directory
/home/mqadmin8/LabFiles/Lab#/source where # is the number of the exercise with
which you are working.

 • The course environment has the path set for the IBM MQ libraries. To compile programs,
move to the code directory and type:

gcc -I/opt/mqm/inc -lmqm -o executable_name program_name.c

where program_name.c is the source, and executable_name is the name of the
executable program.

Making a backup copy of the source

 • Ensure that you are in the correct /home/mqadmin8/LabFiles/Lab#/source directory

 • Type cp sourcename.c sourcename.c.bkp and press the Enter key, where
sourcename is the name of the program.

Windows

Compiling code (repeated from Exercise 1)

 • In the course environment, the code is in directory C:\LabFiles\Lab#\source where #
is the number of the exercise with which you are working.

 • Open a visual studio command prompt by going to Start > Programs > Visual Studio
2015 > Visual Studio Tools > Developer Command Prompt for VS2015.

 • Change to the C:\LabFiles\Lab#\source directory.

 • File copy_edit.txt at C:\LabFiles\Lab#\source can be used to copy and paste the
compile command. You need to replace the program_name.c placeholder with the
name of your C source.

 • Type the command as shown, or change and use the copy_edit.txt file to paste the
compile command:

cl source_name.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqm.lib

 • Leave the Developer Command Prompt window open so you can reuse it. These
instructions are not repeated in their entirety!

Making a backup copy of the source
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-3

Student Exercises
 • Ensure that you are in the correct C:\LabFiles\Lab#\source directory

Type copy sourcename.c sourcename.c.bkp and press the Enter key, where sourcename is the
name of the program.

Reminder

Remember to always back up the source code before you change any code.
xx
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-4 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Part 1: Queue name resolution

In earlier exercises, you used alias and remote queues. In this exercise, you change attributes in
the MQOD structure to observe the behavior of queue name resolution. You see how the values
you set in the MQOD structure result in selection of a locally defined or remotely defined queue.
Later in the exercise you use code to work with model and dynamic queues.

For the first part of the exercise, you work with queue managers MQ01 and MQ03. Local queue
EX3.SAME.QNAME is predefined in each queue manager. These queues are non-clustered, local
queues.

You learn where your message goes, depending on the attribute you set for the MQOPEN.

All connections (MQCONNX calls) for all tests in this exercise use queue manager MQ01 as
the second parameter that you provide to the program.

Figure 3-1. Local queue EX3.SAME.QNAME exists in MQ01 and MQ03

__ 1. Log on to your VMware image and open two terminal command windows.

__ 2. On both terminals, move to directory <dir>/LabFiles/Lab3/source where the <dir>
prefix depends on the operating system you are working with.

__ 3. Back up your copy of program qnmres.c to a file named qnmres.bkp.c.

__ 4. Open qnmres.c for edit. The code should look familiar; it is a modified copy of sample
amqsput0.c.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-5

Student Exercises
Section 1: Review the MQCONNX and MQOPEN queue manager name
use in qnmres.c

Important

In this section you do not change the code; you review and compile.

__ 5. Locate string Ex3 taking care to use exact case and review the contents of the declaration
as shown. You should advance to the declaration shown, located approximately in line 51 of
the source. You use this variable to specify the queue manager name in the MQOD for the
MQOPEN call. Its initial value is blanks. Do not change this line for the first compile.

.

51 char OpenQMN[50] = ""; /*Ex3 open qmgr name */

__ 6. Find the next occurrence of string Ex3, which should take you to approximately line 102.

__ 7. Look at the code that follows. QMName is taken from the program input parameter and set in
the MQCNO structure for the MQCONNX call.

__ 8. Repeat the search for the Ex3 string so that you are at approximately line 137. You see
where the queue manager name is set in the MQOD for the MQOPEN call. Do not change
any code.

.

137 /* Ex 3 changes */
138 strncpy(od.ObjectQMgrName, OpenQMN, (size_t) MQ_Q_MGR_NAME_LENGTH);
139 printf("target queue manager is %s\n", od.ObjectQMgrName);

__ 9. Compile qnmres.c by using the method appropriate for the operating system you are
using.

Linux

.

gcc -I/opt/mqm/inc -lmqm -o qnmres qnmres.c
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-6 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Windows

You should be:

 • At an open developer command window.
 • At the source directory for the lab that you are working with. For this lab, you should be

at C:\LabFiles\Lab3\source.

If you need help setting up the Developer Command Windows, refer to the notes at the start of this
exercise.

To compile, type:

cl qnmres.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqm.lib

Section 2: Check or start queue managers MQ01 and MQ03, and channel
MQ01.MQ03

__ 10. Display the status of the queue managers MQ01 and MQ03 in your VMware image by
typing dspmq and pressing the Enter key. Do not start MQ15.

__ 11. If the status of MQ01 or MQ03 is Ended, start the Ended queue manager by typing strmqm
queuemanagername and pressing the Enter key. Replace queuemanagername with the
queue manager name that shows the Ended status. You might need to repeat the start
command for both MQ01 and MQ03.

__ 12. Start a runmqsc session for the MQ01 queue manager by typing: runmqsc MQ01

__ 13. Start the MQ01.MQ03 sender channel by typing start channel(MQ01.MQ03) and pressing
the Enter key.

__ 14. Type end and press the Enter key to exit the runmqsc session.

__ 15. Open IBM MQ Explorer. Under the Queue Managers label in the left navigation pane, you
should see that both MQ01 and MQ03 started, as denoted by the up green arrow icon.

__ 16. Under queue manager MQ01, click the Channels label. On the channel listing in the right
pane, confirm that channel MQ01.MQ03 is started by looking for the up green arrow icon. It
might take a few moments to show the channel active. You can also click the refresh
icon to obtain the channel status update.

__ 17. Locate queues EX3.SAME.QNAME on both the MQ01 and MQ03 queue managers. You
check the queue depth, or number of messages in these queues, throughout the next
two sections.

__ 18. Ensure the current queue depth for queue EX3.SAME.QNAME is zero in both queue
managers.

__ 19. If the starting number of messages is not zero, clear the queue by right-clicking in queue
name EX3.SAME.QNAME and selecting Clear Messages. Be careful that you select Clear
Messages, and no other option.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-7

Student Exercises
__ 20. If you did not need to clear messages from the queues, proceed to the next section.

__ 21. If you cleared messages from the queues, press Accept or OK the confirmation panels to
finish clearing the messages so that you start the next section with both queues empty.

Section 3: Test the qnmres program with the MQOPEN MQOD queue name
set to EX3.SAME.QNAME and the MQOPEN MQOD queue manager
name set to blanks

Important

This information is detailed here. In subsequent steps, the instruction requests to “test the program
by using specific queue and queue manager name.”

Program qnmres works like the amqsput0.c sample program. To start the program:

 • Type the program name
 • Type the queue name
 • Type the connecting queue manager name
 • Press the Enter key one time

Program qnmres hardcodes the queue manager name for the MQOPEN.

When you start the program, it responds by confirming:

 • qnmres EX3.SAME.QNAME MQ01 <=== Program execution, MQ01 for MQCONNX

 • Lab source qnmres start <=== Program responds with parameters used for
MQOPEN

 • target queue is EX3.SAME.QNAME <=== MQOPEN queue name

 • target queue manager is <=== MQOPEN value of OpenQMN variable; it might be blank

You then type one message. Each time that you press the Enter key, you send the line that you
typed as a message.

To end the program, press the Enter key two times consecutively, without data.

Reminder

Remember, the local queue that you use to test qnmres, EX3.SAME.QNAME, exists in both MQ01 and
MQ03.

__ 22. Test the first test with the blank queue manager name.

__ a. Type qnmres EX3.SAME.QNAME MQ01 and press the Enter key.

__ b. Type Message 1 and press the Enter key two times to end qnmres.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-8 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 23. Check the contents of queue EX3.SAME.QNAME in both queue managers by using IBM MQ
Explorer. What queue manager did the message resolve to, MQ01 or MQ03?

_____________________________.

Information

The correct result should be MQ01. When the queue manager name that is used in the MQOPEN
call is left blank, the queue manager looks for a local queue that matches the queue name provided
in the MQOD.

Section 4: Alter program qnmres to set the MQOD queue manager name
to MQ03

__ 24. Open program qnmres.c for edit.

__ 25. Find the MQOPEN queue manager name declaration: OpenQMN

__ 26. Alter the initialization value for the OpenQMN string from blanks to "MQ03", taking care to
type the new value inside the quotation marks. The new line should look as shown:

.

51 char OpenQMN[50] = "MQ03"; /*Ex3 open qmgr name */

__ 27. Recompile qnmres.c by using the method appropriate for your operating system. If you
need help with the compile, refer to the instructions provided earlier in this exercise.

Section 5: Test the qnmres program with the MQOPEN MQOD queue
name set to EX3.SAME.QNAME, and the MQOPEN MQOD
queue manager name set to MQ03

__ 28. Test the second compilation of qnmres.c with value MQ03 hardcoded in the MQOD queue
manager name.

__ a. Type qnmres EX3.SAME.QNAME MQ01 and press the Enter key.

__ b. Type Message 2 and press the Enter key two times to end qnmres.

__ 29. Check the contents of queue EX3.SAME.QNAME in both queue managers by using IBM MQ
Explorer. Do not consider the one message in MQ01 for the previous test. What queue
manager did the message resolve to, MQ01 or MQ03? Answer in the information box.

_____________________________.

__ 30. Stop queue manager MQ03 by typing: endmqm MQ03

__ 31. Leave the two terminal command windows open.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-9

Student Exercises
Information

The correct result should be MQ03. When a queue manager name is provided to the MQOPEN, the
queue manager looks for a local transmission queue that matches the queue manager name
specified in the MQOD.

You completed the first part of this exercise.

In this first section of the exercise, you tested the difference of specifying a queue manager name in
the MQOPEN call.

In previous exercises, you used a locally defined remote queue to place messages to a remote
queue manager. In this lab, you used a transmission queue, with a name that matched the
MQOPEN supplied queue manager name, to send messages to a remote queue manager without
the need of a local remote queue.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-10 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Part 2: Creating dynamic queues

In this part of the exercise, you check the code and change the values that are used in the MQOD
DynamicQName attribute to create a dynamic queue with different naming options:

 • Use an asterisk (“*”) in the MQOD DynamicQName to allow the queue manager to
generate the entire unique queue name.

 • Use a partial name followed by the “*” in the MQOD DynamicQName to establish a prefix
for the first part of the queue name, and allow the queue manager to generate the
remainder of the queue name.

 • Use a complete queue name without an “*” in the MQOD DynamicQName to have the
code create the queue name in its entirety.

The program that you check and alter, is another copy of the amqsput0.c sample. The parameters
that follow the program name, crtdynq:

 • Provide the queue name SYSTEM.DURABLE.MODEL.QUEUE as the first parameter
 • Provide the queue manager name MQ01 as the second parameter
 • Alter the DynQN character string declaration with the needed prefixes or full queue name

To expedite completion of the exercise, much of the work that is needed to adapt the program to
use a hardcoded dynamic queue name was completed. You review the work that was required, and
later change the dynamic queue name value.

Hint

To expedite your work, you can use the up arrow in your workstation to recall repetitive commands
in your terminal command prompt.

Section 6: Review the crtdynq.c program source

__ 32. Open the crtdynq.c source for edit.

__ 33. Search for string Ex3 to find the declaration that is made for the variable that holds the
name of the dynamic queue, DynQN. The definition is approximately at line 52.

.

52 char DynQN[48] = "*"; /* Ex3 part 2 dynamic queues */

__ 34. For the first test iteration, do not change to this value.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-11

Student Exercises
__ 35. Search for string Ex3 again to locate the place where the DynQN is used to set the
DynamicQName value in the MQOD. This statement should be around line 143.

You might need to repeat the search more than one time to reach line 143.

Ensure that this strcpy statement is not commented out in your source.

.

143 strcpy(od.DynamicQName,DynQN);

Information

The MQOD DynamicQName field is set for the first iteration in this exercise.

The name of the model queue to open, SYSTEM.DURABLE.MODEL.QUEUE, is provided in the crtdynq
program invocation parameter.

You now need to check that the queue is deleted in the MQCLOSE statement by checking the options
that are provided.

__ 36. Do a find for string: MQCLOSE

__ 37. Check above the MQCLOSE call to ensure that the option to delete the dynamic queue with
purge of the messages in it is specified, as shown. This code should be at approximately
line 256.

.

256 C_options = MQCO_DELETE_PURGE;

__ 38. If all the expected items are confirmed, close the source file, and compile crtdynq.c
by using the compile method appropriate for the operating system that you are using.

Section 7: Run the first test of the program by using the option to allow
the queue manager to generate the full dynamic queue name

This test demonstrates the first iteration on how the queue name is generated.

__ 39. Run program crtdynq by typing as shown and pressing the Enter key one time only
following the command:

crtdynq SYSTEM.DURABLE.MODEL.QUEUE MQ01
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-12 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

STOP StopSTOP Stop

Be careful not to stop the program by accidentally typing a blank line until instructed. Since
the MQCLOSE uses the delete-purge option, the queue goes away when the MQCLOSE function runs.

__ 40. Type some text and press the Enter key one time; do not press the Enter key again
until instructed.

__ 41. Open IBM MQ Explorer, and look at the list of queue names for queue manager MQ01.
Towards the top of the queue list, look for a queue with a name composed of a series of
alphanumeric characters, which are similar but not equal to: 56C39A62206E5602

Troubleshooting

If you cannot see the dynamic queue, ensure that the toggle switch that allows dynamic queues to
display in IBM MQ Explorer is set correctly. To check for the icon, check the upper-right corner of
IBM MQ Explorer for the icon selected by the arrow.

Note

When the MQOD DynamicQName field is provided with an “*”, the queue manager generates the
entire queue name.

__ 42. Minimize IBM MQ Explorer.

__ 43. Press the Enter key to stop crtdynq.

__ 44. After stops, check IBM MQ Explorer again. The dynamic queue should be gone.

Section 8: Change and test program crtdynq to create a dynamic queue
name with a specified prefix

__ 45. Open crtdynq.c for edit.

__ 46. Search for the Ex3 string to locate the dynamic queue name variable DynQN towards the
start of the source code.

__ 47. Change the initialization value of the variable from “*” to “BRIEF.*”. Ensure that you:

__ a. Have a period that is followed by an asterisk at the end.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-13

Student Exercises
__ b. Use the quotation marks as shown.

__ 48. Recompile crtdynq.c by using the process appropriate for your operating system.

__ 49. Run program crtdynq by typing:

crtdynq SYSTEM.DURABLE.MODEL.QUEUE MQ01

STOP StopSTOP Stop

Be careful not to stop the program by accidentally typing a blank line until instructed. Since
the MQCLOSE uses the delete-purge option, the queue goes away when the MQCLOSE is run.

This test demonstrates the second iteration on how the queue name is generated.

__ 50. Type some text and press the Enter key one time; do not press the Enter key again
until instructed.

__ 51. Return to one of the command prompt windows and start a runmqsc session by typing:
runmqsc MQ01

__ 52. You know the starting characters for the dynamic queue name. Display the dynamic queue
by typing:

.

dis q(BRI*) DEFTYPE

Expected results should be similar, but not equal to the results shown:
 5 : dis q(BRI*) DEFTYPE
AMQ8409: Display Queue details.
 QUEUE(BRIEF.56C39A62206DB802) TYPE(QLOCAL)
 DEFTYPE(PERMDYN)

__ 53. Keep the runmqsc session open until instructed to end.

Note

Observe the details of this display:

 • You see that the queue name was generated by using the provided prefix, along with a
random alphanumeric string.

 • Look at the type of queue created; while the dynamic queue exists, it is a QLOCAL.
 • Observe the definition type, or DEFTYPE attribute of the queue. The DEFTYPE attribute

of PERMDYN, or permanent dynamic, was inherited from the model queue that was
provided to the MQOPEN call. In this case, it was SYSTEM.DURABLE.MODEL.QUEUE.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-14 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 54. Still in the runmqsc session, type the command shown. Your results are similar, but not
identical to the corresponding display:

.

dis q(A*) DEFTYPE
Expected results should be similar, but not equal to the results shown:
 2 : dis q(A*) DEFTYPE
AMQ8409: Display Queue details.
 QUEUE(AMQ.MQEXPLORER.56C39A6220002503)
 TYPE(QLOCAL) DEFTYPE(TEMPDYN)

__ 55. In the text box that follows, review the note for this last display.

Note

Observe the details of this display:

 • This queue is used by your IBM MQ Explorer session.
 • The type of queue that is created, as expected, is also a QLOCAL.
 • It is similar to the previous case, where the queue name is generated by using the

provided prefix, along with a random alphanumeric string.
 • Notice a difference in the definition type, or DEFTYPE attribute of the queue. In this case,

the DEFTYPE is TEMPDYN. The DEFTYPE attribute was inherited from the model queue
used by the IBM MQ Explorer application in the MQOPEN call.

 • In the next step, you see how the DEFTYPE of the dynamic queue makes a difference
when using IBM MQ Explorer.

The IBM MQ Explorer application uses prefix “AMQ.MQEXPLORER.*” for the temporary dynamic
queue it creates to interface with the queue manager.

Be aware of one other detail on creating dynamic queues. If you do not provide any value in the
MQOD DynamicQName field, the value in the MQOD_DEFAULT initialization structure precedes the
queue (assuming that you used the MQOD_DEFAULT structure in your program). The MQOD_DEFAULT
default value is “AMQ.*” for distributed platforms, and “CSQ.*” for z/OS.

The use of the MQOD_DEFAULT initial value and omitting the setting of a new value string in
the MQOD DynamicQName field is the third way of naming a dynamic queue. This method is
similar to using a prefix, but in this case you use the IBM MQ default prefix, “AMQ.*”.

In the first two cases, the MQOD DynamicQName had a value set. In this third case, the MQOD
DynamicQName uses the MQOD_DEFAULT initial value.

__ 56. Type end and press the Enter key to exit the runmqsc session.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-15

Student Exercises
__ 57. Open IBM MQ Explorer, and look at the list of queue names for queue manager MQ01. You
should see the same queue displayed in the runmqsc session, prefixed by string BRIEF.
This name should be similar to, but with different ending characters from:
BRIEF.56C39A62206DB802

__ 58. But where is the AMQ.MQEXPLORER.* named queue? If you recall, the IBM MQ Explorer
queue was a temporary dynamic queue. A toggle switch that is on the upper-right section of
IBM MQ Explorer can provide a view of the temporary queues. When you move your cursor
over the icon, it should display as shown:

__ 59. If you cannot see the IBM MQ Explorer temporary dynamic queue, click the Show
Temporary Queues icon. You should now see the IBM MQ Explorer queue.

__ 60. Minimize IBM MQ Explorer.

__ 61. In your crtdynq session, press the Enter key to end crtdynq.

Section 9: Alter crtdynq and test to use a user-generated queue name

__ 62. Open crtdynq.c for edit.

__ 63. Search for the Ex3 string to locate the dynamic queue name variable DynQN.

__ 64. Change the initialization value of the variable from “*”, to “BRIEF.EX3.Q”. Ensure that the
name you type in does not have a “*” at the end.

__ 65. Recompile crtdynq.c by using the method appropriate to the operating system that you
are working with.

This test demonstrates the third iteration on how the queue name is generated.

__ 66. Run program crtdynq by typing:

crtdynq SYSTEM.DURABLE.MODEL.QUEUE MQ01

STOP StopSTOP Stop

Be careful not to stop the program by accidentally typing a blank line until instructed. Since
the MQCLOSE uses the delete-purge option, the queue goes away when the MQCLOSE is run.

__ 67. Type some text and press the Enter key one time; do not press the Enter key again
until instructed.

__ 68. Return to IBM MQ Explorer and check the queues under MQ01.

__ 69. You should find queue name BRIEF.EX3.Q.

__ 70. In your crtdynq session, press the Enter key to end crtdynq.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-16 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 71. Return to IBM MQ Explorer and look for the queue now. BRIEF.EX3.Q should no longer
appear. You might need to press the Refresh to get the updates reflected in IBM MQ
Explorer.

Proceed to Part 3.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-17

Student Exercises
Part 3: Using message expiry and report options

Figure 3-2. Request queues and reply queue for Exercise 3

In this exercise, you request report options for confirm-on-arrival with data, and you request an
expiry report.

The request and reply queues are predefined.

You use two local queues to put requests, and one queue to receive COA report messages:

 • Queue EX3.REQUEST has no special attributes set in its object definition. You set an
expiry of 30 seconds in your code.

 • Queue EX3.CAPX.REQ is defined with a 1-minute expiry. For messages placed in queue
EX3.CAPX.REQ, since the queue CAEXPRY has a smaller value than the expiry set in the
code, the CAEXPRY 1-minute expiry value overrides the 3 minutes in the code.
The capped message expiry feature works opposite to other MQI features, where the
code attribute overrides the queue parameter specification for the same attribute. In this
case, if the defined capped message attribute is less than the coded Expiry attribute, the
object attribute overrides the coded MQI attribute.

 • You see a COA report message that arrives on the EX3.REPLY queue for each of the
request queues (EX3.REQUEST and EX3.CAPX.REQ).

 • The expiry report message is sent to the EX3.REPLY queue when you attempt to
browse the message in either of the request queues after the expiry time is reached.

 • The message expires upon the first browse or get of the queue after the expiration
period elapses.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-18 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Important

The time and date time of the expiry report message are associated with the time at which you did
the browse or get.

If you subtract the COA report put time from the expiry report time stamp, the results should be
close to the expiry period. How close depends on how quickly after the end of the expiry time you
browsed or got the message.

Note

The capped message expiry feature is available with the IBM MQ V8.0.0.4 distribution and later.
Refer to IBM Knowledge Center for z/OS availability requirements.

You start by working on the source code.

Section 10:Update program exprep.c (copied from putmsg.c) to set
expiry and request a COA and an expiry report.

__ 72. If you are not at the <dir>/LabFiles/Lab3/source directory for the operating system you
are using, move to that directory.

__ 73. Copy putmsg.c source to a new file called exprep.c. putmsg is your backup source for
this part of the exercise.

__ 74. Open exprep.c for edit.

__ 75. Find string pass (for password) in the exprep.c source. You should be approximately in
line 54 of the code.

__ 76. Position your cursor to type the next line below the declaration for QMName[50].

__ 77. Add the declaration for a 50-character array field that is named ReplyQName[50] and set its
initial value to EX3.REPLY as shown. Do not include the line number; it is shown for
reference.

.

55 char ReplyQName[50] = "EX3.REPLY"; /* Ex3 reply queue */

__ 78. Save the ReplyQName declaration in your code.

__ 79. Find string md.Msg by using the exact case in the string. The string should be
approximately in code line 238, right before the MQPUT.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-19

Student Exercises
__ 80. Alter the program to:

__ a. Add comments to indicate that these changes are from Exercise 3.

__ b. Set the md.Expiry field to 3000.

__ c. Request a confirm on arrival report with data.

__ d. Request an expiry report.

An example of the required code is shown in the text box that follows this step.

Ensure that you type the changes to the MQMD fields directly above the MQPUT to mitigate
risk of having them reset in other parts of the code.

1+1
= 2 Example

241 /* Ex3 md changes for report and expiry */ <= Your code
 242 md.Expiry = 3000;
 243 md.Report = MQRO_COA_WITH_DATA | MQRO_EXPIRATION;
 244 strncpy(md.ReplyToQ, ReplyQName, MQ_Q_NAME_LENGTH);
 245 /* end of Ex3 changes */ <= Your code
 246
 247 MQPUT(Hcon, * connection handle */ <= Existing code

__ 81. Compile the program by typing:

Linux

.

gcc -I/opt/mqm/inc -lmqm -o exprep exprep.c

Windows

 • Ensure that you are at a Developer Command Prompt, and that you are positioned at
directory C:\LabFiles\Lab3\source in the Developer Command Prompt.

 • Type:

cl exprep.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqm.lib
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-20 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Section 11:Review, set up, and test

Your test consists of putting one message in each of the request queues, EX3.REQUEST and
EX3.CAPX.REQ, and then checking as the reports arrive in the reply queue, EX3.REPLY. The COA
reports should arrive shortly after you put them to each queue. The expiry reports arrive after you
attempt to get the expired messages.

If you take care to put one message to each request queue, you should have four reply messages
at the end of the test: two COA reports and two expiry reports. If you inadvertently put extra
messages, you receive one extra COA report per message put, and one extra expiry report for the
first attempt to get an expired message.

__ 82. Open a runmqsc session for queue manager MQ01 from a command terminal window and
display queue EX3.CAPX.REQ to review the CAPEXPRY setting by typing:

dis q(EX3.CAPX.REQ) custom

Expected results are:
 1 : dis q(EX3.CAPX.REQ) custom
AMQ8409: Display Queue details.
 QUEUE(EX3.CAPX.REQ) TYPE(QLOCAL)
 CUSTOM(CAPEXPRY(1000))

__ 83. Review the results, type end and press the Enter key to exit runmqsc. Notice that
CAPEXPRY is a name-value pair of the CUSTOM attribute, available with IBM MQ V8.0.0.4.
and later.

__ 84. Set up your IBM MQ Explorer in a way that you can easily view the EX3-named queues. You
can use the scroll bar to the right of the queue list for queue manager MQ01, as shown:

Figure 3-3. IBM MQ Explorer setup for report message testing
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-21

Student Exercises
Note

Program exprep.c is a copy of putmsg.c. To use the program, you start like putmsg.c, by:

 • Providing the program name, target queue, and queue manager name in one line and
pressing the Enter key

 • Typing one line and pressing the Enter key one time to send the message
 • Pressing the Enter key on an empty line to end the program

You did not change the program name, so upon execution and ending, it is expected that you
see “Lab source putmsg start” and “Course PUTMSG end”. Leave the display names of the
program unchanged. The focus of this exercise is to test the capabilities that are used.

All work in this section uses queue manager MQ01.

Warning

When you use exprep.c to put your messages, you start the expiry timer.

Work expeditiously to browse the messages before the expiry period runs out.

 • You have 3 minutes for the message in queue EX3.REQUEST (your coded value).
 • You have 1 minute for queue EX3.CAPX.REQ (the queue CAPEXPRY value).

Section 12:Put messages in queue EX3.CAPX.REQ and observe the
expiration behavior when the lowest expiry value is set on the
queue definition

__ 85. Maximize the IBM MQ Explorer window so you can see all three queues used in this part of
the exercise near the top of the queue list.

__ 86. Use a command terminal session to put one message to queue EX3.CAPX.REQ by typing
exprep EX3.CAPX.REQ MQ01 and pressing the Enter key one time.

__ 87. Type messagea and press the Enter key two times to end the program.

__ 88. Look at IBM MQ Explorer. Under queue manager MQ01, you should see one message in
queue EX3.CAPX.REQ and one COA report message in queue EX3.REPLY.

__ 89. Right-click queue EX3.CAPX.REQ and select Browse messages.

__ 90. Double-click the one message, and look at the Expiry field. You see that it is decreasing
from the initial 1000 set by the CAPEXPRY value.

__ 91. Close the Message properties pane and the Message browser pane.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-22 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Important

You need to repeat the following step quickly so that you get a time stamp in the report message
that is close to the actual expiry for this message. The time stamp in the expiry report is the time
stamp that you last browsed before the expiry timer ran out. You want to get this close to the actual
expiry time.

__ 92. Repeat the process to browse queue EX3.CAPX.REQ until the Browse messages pane
shows that no messages are available for browsing, as shown:

__ 93. After you see the information that no more messages are available for browsing, close
message browser.

__ 94. Look at the count of messages. The count should have 0 messages in queue
EX3.CAPX.REQ. The count should have two report messages in queue EX3.REPLY: one COA
report message and one expiration report message.

__ 95. Browse queue EX3.REPLY. You should see two messages. Review the time stamps of the
messages. If you browsed the queue frequently as instructed, the time difference between
the two time stamps (one from the COA when the message was put, the other from the
expiry when the message expired) should be approximately 1 minute apart, as shown:

__ 96. Close the Message browser pane.

__ 97. Clear the messages in the EX3.REPLY queue by right-clicking EX3.REPLY and selecting
Clear messages.

__ 98. Select Clear to proceed and then close the confirmation pane.

Information

In the first test, your code requested a 3-minute expiry. The CAPEXPRY value of queue
EX3.CAPX.REQ specified a 1-minute expiry. This test confirmed how the queue EX3.CAPX.REQ
CAPEXPRY value superseded the Expiry value in your code.

If the CAPEXPRY value of queue EX3.CAPX.REQ is higher than the Expiry value in the code, then the
Expiry value in the code would be used.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-23

Student Exercises
Note

If you put more than one message per request queue, and returned to browse both queues after the
expiry time elapsed, the reply queue should have extra messages.

Section 13:Put messages in queue EX3.REQUEST and observe the
expiration behavior when an expiry value is not set on the
queue definition

__ 99. Put one message to queue EX3.REQUEST by typing exprep EX3.REQUEST MQ01 and
pressing the Enter key one time.

__ 100.Type messageb and press the Enter key two times to end the program.

__ 101.Look at IBM MQ Explorer. You should see one message in queue EX3.REQUEST and one
message (the COA report message) in queue EX3.REPLY.

__ 102.Use IBM MQ Explorer to browse the message at queue EX3.REQUEST.

__ 103.Double-click the message, and use the scroll bar to see the decrease in the Expiry time.

__ 104.Close the Message browser pane.

Note

If you want to see the Expiry timer decrease, you must exit the Message browser pane and repeat
the browse messages.

__ 105.Continue to exit the Message browser pane, and repeat the browse messages process for
queue EX3.REQUEST at 15-second intervals until you see the “no messages available for
browsing” message in the Browse messages pane.

__ 106.Look at the count of messages. You should see 0 messages in queue EX3.REQUEST. You
should see two report messages in queue EX3.REPLY: one COA report message and one
expiration report message.

__ 107.Browse queue EX3.REPLY. You should see two messages. Review the time stamps of the
messages. If you browsed the queue frequently as instructed, the time difference between
the two time stamps (one from the COA when the message was put, the other from the
expiry when the message expired) should be approximately 3 minutes. The time difference
might be higher depending on the frequency in which you repeated the browse of the
EX3.REPLY queue.

__ 108.Close the Browse messages pane.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-24 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Information

In the second test, your code requested a 3-minute expiry, and no CAPEXPRY value was set on the
queue. This test confirms the behavior of traditional message expiry, without a capped expiry limit
set on the queue.

Section 14:Review the report messages by using the amqsbcg formatted
browse sample

Note

Most application developers have access to IBM MQ Explorer. However, in case you are not able to
use IBM MQ Explorer, this section shows you how to look at the report messages by using the
amqsbcg sample program in a command line.

__ 109.Leave IBM MQ Explorer open.

__ 110.Return to a command terminal prompt and browse all the messages from the reply queue
into a file by typing the command shown and then pressing the Enter key:

amqsbcg EX3.REPLY MQ01 > reports.txt

__ 111.Browse the first message of the reports.txt file and locate the formatted Message Type
(MsgType) and Feedback fields for the first message. Write them here as you need them for
the next steps:

Feedback: _______________________ MsgType: ___________________________

__ 112.If you started with an empty EX3.REPLY queue, the first report is expected to be a COA
report. You requested to get the first 100 bytes of the message. Scroll down to the end for
the first formatted message, and see your message data. The data is displayed in both
hexadecimal and text formats.

__ 113.Browse the last message of the reports.txt file and locate the formatted Message Type
(MsgType) and Feedback fields for the last message. Write them here as you need them for
the next steps:

Feedback: _______________________ MsgType: ___________________________

__ 114.While still on the formatted MQMD for the last report message, locate the origin context and
capture Put Application Type and Put Application Name in the Origin Context section.
Record the names:

PutApplType: __________________________ PutApplName: ____________________

__ 115.Close the reports.txt file.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-25

Student Exercises
__ 116.You might remember the meaning of some of the values you recorded from the lecture
material. However, you confirm now by looking up the values. Open the cmqc.h header file
at the platform-dependent directory.

__ 117.Do a find for string “Message Types”. If you recorded 4 in your review of the report
messages, you confirm that 4 in the message type is for MQMT_REPORT.

__ 118.Find string “Feedback Values”. The information that you recorded should match as follows:

 • 259 is MQFB_COA
 • 258 is MQFB_EXPIRATION

__ 119.Search for string “Application Types”.

 • The application type 7 is MQAT_QMGR, which confirms that the queue manager sent the
report messages.

 • The application name should be MQ01, the queue manager you are using.

Section 15:Review the report messages by using IBM MQ Explorer

__ 120.Return to IBM MQ Explorer.

__ 121.Right-click queue EX3.REPLY and select Browse Messages. The Message Browser pane
is displayed:

Note

You should see two messages in your display; disregard the extra messages in this figure.

Figure 3-4. IBM MQ Explorer Message browser

__ 122.Double-click any of the messages. The information in IBM MQ Explorer shows the field
names in a descriptive manner, rather than showing the actual field name.

__ 123.The General menu shows the type of message, which is spelled out as Report.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-26 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 124.From the left menu, select Report, and the type of report is displayed.

__ 125.From the left menu, select Context. Look at the application type and application name.

You completed Exercise 3.

End of exercise
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 3. Working with MQOPEN and queue name resolution, 3-27

Student Exercises
Exercise review and wrap-up

In this exercise, you learned to:

 • Code different combinations of queue manager and queue name in the
object descriptor to test and confirm how queue name resolution takes
place

 • Code report options in an MQPUT call and review the results in the
reply-to queue

 • Create and display a dynamic queue by letting the queue manager
specify the name

 • Create and display a dynamic queue by specifying a partial prefix of the
queue name

 • Create and display a dynamic queue by specifying the exact queue name

 • Request a confirm-on-arrival with data report message

 • Set the expiry attribute in a message and request an expiry report

 • Set the expiry attribute in a message for a queue with a lower expiry cap
value in the queue definition

 • Contrast the expiry behavior when the capped message expiry attribute
is set on a queue
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-28 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise 4. Correlating requests to replies

What this exercise is about

In this exercise, you learn how to work with the common task of correlating a
reply message with a request message.

What you should be able to do

After completing this exercise, you should be able to:

 • Code or modify an application to generate a confirm-on-arrival (COA)
report message that preserves the original message identifier (MsgId)

 • Code or modify an application reply to a request message by setting up
the correlation identifier of the reply message to the message identifier of
the request message

 • Use a formatted message descriptor display to check the correct setting
of your message and correlation identifier fields

 • Alter or code an application to get a reply message from a queue with a
correlation identifier that matches the message identifier of its
corresponding request message

Introduction

Earlier in this course you learned:

 • How to get messages in browse, or non-destructive mode, which leaves
the messages in the queue

 • How to get messages in destructive mode, where the MQGET removes
the messages from the queue

 • To use programs to get messages from a queue in first-in, first-out order
 • How to set a wait for the MQGET

In this exercise, you learn how to select a specific message from a queue, a
common task when developing IBM MQ applications.

Requirements

 • Queue manager MQ01
 • Basel source modules ex4req.c, ex4repl.c, and ex4match.c at

<dir>/LabFiles/Lab4/source
 • Predefined local queues EX4REQ, EX4REPT, and EX4REPL

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 4. Correlating requests to replies 4-1

Student Exercises
Exercise description

Important

Review this description carefully before commencing work on this exercise.

A common task when developing IBM MQ applications is the need to correlate a request message
with its reply message. Many scenarios exist where messages need to be correlated:

 • A user sends a request and waits for the message; that is, the same application that sent the
request waits and processes the reply.

 • A requester does not wait for a message, but rather sends a reply, and a later application
checks for responses. In this case, a method is necessary to keep the correct information that
needs to be used to match the reply to the request.

This exercise takes the second approach; the replies are correlated in a different application from
the request. You work with three applications and three queues, as depicted in the diagram.

The requests and replies consist of partial names of football clubs. You send the first part of the
name and receive the second part of the name as a reply. For purposes of the lab, the valid
requests are limited to four teams, detailed later.

In this exercise, you modify three applications.

Figure 4-1. Architecture of Exercise 4

1. Program ex4req.c takes the queue name and queue manager name as input parameters and
takes the message contents from text you type on the terminal.

 - To get a valid reply, the text that is typed must be limited to the first part of selected names
of football teams.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-2 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 - The queue name that is provided must be EX4REQ and the queue manager MQ01. It works
similarly to putmsg, and requires a blank line to signal an end to the program.

 - ex4req.c also generates a confirm-on-arrival report message to track the message
identifier of the request in queue EX4REPT. It ensures that the message identifier of the
report message is the same as the message identifier of the original request message.

 - It sends one message per line typed.

 - The valid input per line that is typed must be either ASTON, BAYERN, ORLANDO, or
REAL.

2. Program ex4repl.c gets messages from queue EX4REQ, checks the input text in the
message, and matches ASTON with VILLA, BAYERN with MUNICH, ORLANDO with CITY, and
REAL with MADRID.

 - The program sends the reply, which consists of the matched text, as a message to queue
EX4REPL.

 - This program copies the MsgId field of the request message to the CorrelId field of the reply
message.

3. Program ex4match.c gets messages from queue EX4RPT, where a report copy of the original
request message that contains the original MsgId value is kept. The program then uses the
saved MsgId in the report message to get the reply message from queue EX4REPL by
CorrelId.

Warning

The design of the applications in this exercise is for the sole purpose of reinforcing coding details
such as preservation or generation of new MsgID and CorrelId fields in report messages. Other
actions that are taken by the three applications in this exercise also concentrate on showing
specific points: for example, the convention of moving the MsgID of the request message into the
CorrelId of the reply message for later retrieval.

The design of the three applications is not intended to show robustness. They are kept simple to
demonstrate the topics that are tested.

No part of this code is intended to denote a “best practice”.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 4. Correlating requests to replies 4-3

Student Exercises
Exercise instructions

Platform-dependent notes

Repeating platform-dependent tasks are detailed in Exercise 1. Some of the tasks are repeated one
time for convenience. If you need to review details that are repeated frequently, refer to Exercise 1.

Linux

Compiling code (repeated from Exercise 1)

 • In the course environment, the code is the /home/mqadmin8/LabFiles/Lab#/source directory,
where # is a placeholder for the number of the exercise you are working on.

 • The course environment has the path set for the IBM MQ libraries. To compile programs, move
to the code directory and type:

gcc -I/opt/mqm/inc -lmqm -o executable_name program_name.c

where program_name.c is the source and executable_name is the name of the executable
program.

Making a backup copy of the source

 • Ensure that you are in the /home/mqadmin8/LabFiles/Lab#/source directory

 • Type cp sourcename.c sourcename.c.bkp and press the Enter key, where sourcename is
the name of the program.

Windows

Compiling code (repeated from Exercise 1)

 • In the course environment, the code is in directory C:\LabFiles\Lab#\source where # is the
number of the exercise with which you are working.

 • Open a visual studio command prompt by going to Start > Programs > Visual Studio 2015 >
Visual Studio Tools > Developer Command Prompt for VS2015.

 • Change to the C:\LabFiles\Lab#\source directory.

 • File copy_edit.txt at C:\LabFiles\Lab#\source can be used to copy and paste the
compile command. You need to replace the program_name.c placeholder with the name of
your C source.

 • Type the command as shown, or change and use the copy_edit.txt file to paste the compile
command:

cl source_name.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqm.lib

 • Leave the Developer Command Prompt window open so you can reuse it. These
instructions are not repeated in their entirety!
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-4 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Making a backup copy of the source

 • Ensure that you are in the correct /home/mqadmin8/LabFiles/Lab#/source directory.

Type copy sourcename.c sourcename.c.bkp and press the Enter key, where sourcename is the
name of the program.

Modify application ex4req.c

Reminder

Remember to always back up the exercise source code before you change any code.

Section 1: Back up application ex4req.c

__ 1. You should be in directory <dir>/LabFiles/Lab4/source. Use the method appropriate for
the operating system you are using to make a copy of source ex4req.c by copying the
source to ex4reqBkp.c.

Section 2: Review application ex4req.c

__ 2. After you back up ex4req.c, open application ex4req.c for edit by using your
application-dependent editor.

__ 3. Locate the first occurrence of label “Exercise 4” and review the hardcoded queue and
queue manager name to put the COA report messages. You should see:

.

/* Exercise 4 */
char ReplyQueueName[] = "EX4REPT";
char ReplyQMName[] = "MQ01";

Reminder

Queue EX4REPT is where you keep a copy of the message, to later obtain the MsgId value to
match to your reply CorrelId.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 4. Correlating requests to replies 4-5

Student Exercises
Section 3: Type the code necessary to create a report message and
preserve the original message MsgId and CorrelId in the
report message

__ 4. Locate the next “Exercise 4” marker. You should be right above comment “Type your
code here”, and see the MQPUT function call as shown. Scroll to the bottom of the next step
for an example of the code.

.

{
 /* Exercise 4 */
 /* Type your code here */

 MQPUT(Hcon, /* connection handle */

__ 5. Type the code necessary to achieve the objectives that are detailed in the following steps.
An example of the code that is required is displayed in the box that follows this set of
steps and substeps. Do not copy and paste the code directly from the Exercises guide,
as you might introduce special characters that cause problems.

__ a. Set the ReplyToQ in the MQMD by using the ReplyQueueName variable that was
reviewed in an earlier step. This variable represents the queue where the report
message is sent.

__ b. Set the ReplyToQMgr in the MQMD by using the ReplyQMName variable that was
reviewed in an earlier step. This variable represents the queue manager where the
report message is sent.

__ c. Request a confirm on arrival (COA) Report message with full data. Ensure to
preserve the MsgId and CorrelId of the original message in the report message.

__ d. Set the MQMD message type (MsgType) to be a request message by using the
MQMT_REQUEST named variable.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-6 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 1+1
= 2 Example

strncpy(md.ReplyToQ, ReplyQueueName, (size_t)MQ_Q_NAME_LENGTH);
strncpy(md.ReplyToQMgr, ReplyQMName,
(size_t) MQ_Q_MGR_NAME_LENGTH);
md.Report = MQRO_COA_WITH_FULL_DATA |
MQRO_PASS_MSG_ID |
MQRO_PASS_CORREL_ID;
md.MsgType = MQMT_REQUEST;

Section 4: Compile and test the ex4req application

__ 6. Compile application ex4req.c by using the method appropriate for the operating system
you are using for the labs. Name the executable: ex4req

Linux

gcc -I/opt/mqm/inc -lmqm -o ex4req ex4req.c

Windows

 • Ensure that you are at a Developer Command Prompt, and that you are positioned at directory
C:\LabFiles\Lab4\source in the Developer Command Prompt.

 • Type:

cl ex4req.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqm.lib

__ 7. Test ex4req by typing the name of the module, followed by the request queue name,
EX4REQ, queue manager name MQ01, and typing the Enter key one time. An example is
shown in the next box.

Do NOT type any messages yet. Proceed to the next step after you reach the “target
queue us EX4REQ” message.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 4. Correlating requests to replies 4-7

Student Exercises
ex4req EX4REQ MQ01

Expected reply: <=== Do not press the Enter key!
Program ex4req start
target queue is EX4REQ

Reminder

Each message input to ex4req must be one of ASTON, BAYERN, ORLANDO, or REAL. Any other text
that is typed returns an “Invalid team name requested” response later in this exercise. ex4req
does not validate the data that is typed.

__ 8. Type one message, by using any one of the four documented names. Type exactly ASTON
for the first message. Press the Enter key two times to end ex4req.

target queue is EX4REQ
ASTON

Program ex4req end

Section 5: Confirm that the MsgId of the request and report messages
match

__ 9. Use the amqsbcg sample to format the MQMD of both the EX4REQ and EX4REPT queues,
and pipe the display to show the MsgId line. You can accomplish this task as shown in the
following text boxes, depending on the operating system you are using. You type the
command two times, one time for EX4REQ and then the second time for EX4REPT.

__ 10. Check that MsgId fields match. If they match, proceed to the next step. If they do not
match, check your code.

__ 11. The CorrelId is expected to be zeros and does not need to be checked now. It is checked
later in last program of this exercise.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-8 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Linux

.

$ amqsbcg EX4REQ MQ01 | grep MsgId

Expected result:
MsgId : X'414D51204D513031202020202020202087261E5702950A20' <==Check

$ amqsbcg EX4REPT MQ01 | grep MsgId

Expected result
MsgId : X'414D51204D513031202020202020202087261E5702950A20' <==Check

'

.

C:\>amqsbcg EX4REQ MQ01| find /n "MsgId"
Expected reply:
[17] MsgId : X'414D51204D51383420202020202020202393265720002205'<==Check

C:\>amqsbcg EX4REPT MQ01| find /n "MsgId"
Expected reply:

[17] MsgId : X'414D51204D51383420202020202020202393265720002205'<==Check

Warning

While the message ID in your message is different from the message ID shown in the display, it is
expected that the MsgId value in your corresponding EX4REQ and EX4REPT messages match. If
these fields do not match, program ex4match.c does not find any matching replies in the last
part of this exercise. It is important that these MsgId values are carefully compared.

Modify application ex4repl.c

Section 6: Backup application ex4repl.c

__ 12. Use the method appropriate for the operating system you are using to make a backup copy
of source ex4repl.c by copying the source to ex4replBkp.c.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 4. Correlating requests to replies 4-9

Student Exercises
Section 7: Put a few messages to queue EX4REPL

Important

Why is this step necessary? It is not, but you want to ensure that you are selecting the right reply
from among several messages, not just the next message. If you have one reply in the queue, you
get the next message, and you do not prove that you selected a specific message.

__ 13. Use sample program amqsput to send three messages to queue EX4REPL. Sample
amqsput was the base for putmsg and works the same; you provide the queue name and
queue manager name, then a blank line to stop sending messages. It does not matter what
text is in the messages. Remember to press Enter two times after the last message typed to
end the amqsput application. An example amqsput run is shown in the next box.

1+1
= 2 Example

.

amqsput EX4REPL MQ01

Expected reply and input:

Lab source putmsg start
target queue is EX4REPL
decoy msg 1
decoy msg 2
decoy msg 3

Sample AMQSPUT0 end

Section 8: Review the base ex4repl.c source

__ 14. Make a backup copy of source ex4repl.c.

__ 15. Find the first occurrence of string “Exercise 4” in the ex4repl.c source; it should be at
approximately line 62.

__ a. In this segment of the code, you see the declarations that are made for this program.

__ b. Write down the name of the queue and queue manager name variables that you need
to set the fields for the MQPUT later in this exercise.

Queue manager variable name:___________________________

Reply queue variable name: _____________________________

__ 16. Directly below the declarations, find the MQCONN call for this program. Subsequent IBM MQ
function calls use the same connection handle, Hcon.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-10 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
Repeat the search for string “Exercise 4”. This section sets up the MQOPEN options. Some of the
options are updated “left over” from the original amqsecha.c code. Remember, line numbers
that are shown in the examples are approximate.

__ a. Remember that structures have a version number; if you overlook updating the
structure’s version number, the features that are supported at the higher version number
are ignored. The MQMO_NONE option is available with MQGMO structure version 2 and
higher.

__ b. The remaining options were kept from the original code sample, but the wait interval was
changed to 0. For purposes of this lab, the remaining MQGMO options are not needed.

133 /* Exercise 4 - review only section */

134
135 gmo.Version = MQGMO_VERSION_2; /* Avoid need to reset Message */
136 gmo.MatchOptions = MQMO_NONE; /* ID and Correlation ID after */
137 /* every MQGET */
138 gmo.Options = MQGMO_ACCEPT_TRUNCATED_MSG
139 | MQGMO_CONVERT /* receive converted messages */
140 | MQGMO_WAIT /* wait for new messages */
141 | MQGMO_NO_SYNCPOINT; /* No syncpoint */
142 gmo.WaitInterval = 0; /* no need to wait */

145

Section 9: Make necessary additions to ex4repl.c

__ 17. Repeat the find of string “Exercise” until you find the section with a comment that starts with
“Type your code ...”

__ 18. Type the four lines of required code in the section marked. A sample of the code that is
required is shown in the next text box.

__ a. Set the MQMD queue and queue manager name as required for the MQPUT1 call to
respond to the reply queue.

__ b. Set the MQMD field for the MQPUT1 call so that no report messages are sent from
ex4repl.c.

__ c. Set the MQMD message type to indicate that this message is a reply message.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 4. Correlating requests to replies 4-11

Student Exercises
.

/* Exercise 4 */
 /* Type your code to copy queue and queue manager name here */
 /* Type code to disable sending any Report messages */

strncpy(odR.ObjectName, ReplQName, MQ_Q_NAME_LENGTH);
strncpy(odR.ObjectQMgrName, QMgrName, MQ_Q_MGR_NAME_LENGTH);
md.Report = MQRO_NONE;
md.MsgType = MQMT_REPLY;

__ 19. Repeat the search for string “Exercise 4”, or slowly scroll down until you find a section with
a comment that indicates “copy the incoming MQMD MsgId to the outgoing MQMD
CorrelId.” Type code to do the actions in the substeps. An example of the code can be
found in the text box directly below the substeps.

__ a. Copy the message identifier of the incoming message to the correlation identifier of the
outgoing message.

__ b. Clear the message identifier of the outbound message to ensure that all messages have
a unique message identifier.

__ c. It is assumed that you know to omit the line number.

225 /* Exercise 4 */

226 /* Type your code to copy the incoming MQMD MsgId to the */
227 /* outgoing MQMD CorrelId. Clear the outgoing MsgId */
228
229 memcpy(md.CorrelId, md.MsgId, sizeof(md.MsgId));
230 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));

__ 20. Save your changes; leave your source file open.

Important

You are now done with your code for ex4repl.c. Do not change any other part of the
ex4repl.c application.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-12 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Section 10:Baseline what messages you have now

Information

It is not imperative to track the number of messages in each queue, but you might find it helpful to
do a baseline before you run ex4repl. (An example that shows two ways to see the number of
messages in each queue follows this box.)

Before you run ex4repl, you should have:

 • One request message in queue EX4REQ (unless you typed more than one request, in which
case each message typed has one request message)

 • One report message in queue EX4REPT (unless you typed more than one request, in which
case each request message typed has one report message)

 • The number of messages you put by using amqsput in queue EX4REPL (these messages are
throw-away messages later; none of them match any of the request messages)

After you run ex4repl, there should be:

 • No messages in queue EX4REQ (ex4repl does a destructive MQGET)
 • Same number of messages in EX4REPT as before you ran ex4repl

 • One extra message in queue EX4REPL as compared to before you ran ex4repl (unless you
typed more than one request, in which case each request message typed earlier has one reply
message)

Hint

Method 1:

Use the runmqsc utility.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 4. Correlating requests to replies 4-13

Student Exercises
runmqsc MQ01 <=== you type

... Starting MQSC for queue manager MQ01.

dis q(EX4R*) curdepth <=== you type
 1 : dis q(EX4R*) curdepth
AMQ8409: Display Queue details.
 QUEUE(EX4REPL) TYPE(QLOCAL)
 CURDEPTH(3)
AMQ8409: Display Queue details.
 QUEUE(EX4REPT) TYPE(QLOCAL)
 CURDEPTH(1)
AMQ8409: Display Queue details.
 QUEUE(EX4REQ) TYPE(QLOCAL)
 CURDEPTH(1)
end
 2 : end <=== you type

Method 2:

Use IBM MQ Explorer, and look at the Queues view for queue manager MQ01.

Section 11: Compile and test the ex4repl application

__ 21. Compile source ex4repl.c to executable ex4repl by using the instructions appropriate
for the operating system you are using.

__ 22. The ex4repl application does not require any parameters. You type ex4repl in your
terminal command screen. The test and expected reply as shown in the box assume that
you typed one request message.

ex4repl

Program ex4repl start
Connecting to queue manager MQ01
Opening queue EX4REQ
Incoming message is: <ASTON>
Reply returned is <VILLA>
All EX4REQ messages processed
Program ex4repl end

__ 23. If your results resemble the display, proceed to the next step. If your results are not as
expected, resolve the problem before you continue. Request assistance from the instructor
if necessary.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-14 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Section 12:Check the MsgId and CorrelId values

__ 24. Display messages in queues EX4REPT and EX4REPL by using the method appropriate to
the operating system you are using. Remember, EX4REPT has a copy of your original
request message. You need to:

__ a. Display the message identifier (MsgId) field for the message in the EX4REPT queue.

__ b. Display the correlation identifier (CorrelId) field for the message in the EX4REPL
queue.

__ c. Ensure that the CorrelId of the EX4REPL message matches the MsgID of the
message in queue EX4REPT.

Warning

The message and correlation identifier comparison is a critical milestone for this exercise. If
your values do not match, the third application, ex4match, is not able to find a matching
reply. If these values do not match, fix it now before you proceed to the next program in this
exercise.

Reminder

Remember that EX4REPL does have extra messages in it. Some of the messages in queue
EX4REPL have zero values in the CorrelId field. However, one CorrelId field should match
the MsgId field of the message in the EX4REPT queue.

Linux

.

$ amqsbcg EX4REPT MQ01 | grep MsgId

Expected result:
 MsgId : X'414D51204D513031202020202020202087261E5702950A20' <==Check

$ amqsbcg EX4REPL MQ01 | grep CorrelId

Expected result:
 CorrelId : X'414D51204D513031202020202020202087261E5702950A20' <==Check

'

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 4. Correlating requests to replies 4-15

Student Exercises
Windows

.

C:\>amqsbcg EX4REPT MQ01| find /n "MsgId"
Expected reply:
[17] MsgId : X'414D51204D51383420202020202020202393265720002205'<==Check

C:\>amqsbcg EX4REPL MQ01| find /n "CorrelId"
Expected reply:
[17] CorrelId : X'414D51204D51383420202020202020202393265720002205'<==Check

__ 25. If the correlation identifier was set correctly, proceed to the next application. If your results
are not as expected, resolve the problem before you continue.

Note

For future consideration:

You completed the work with application ex4repl, which was created for the use of this lab
exercise. However, if you code an application, are there other fields that need to be correctly set? If
you use the IBM MQ amqsbcg sample, which formats the MQMD, you might find some oversights.
For instance, did you intend to have the ReplyToQ and ReplyToQMgr set as displayed?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-16 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 This Notes box is a reminder for your future reference; do not make any other changes.

****Message descriptor****
StrucId : 'MD ' Version : 2
 Report : 0 MsgType : 2
 Expiry : -1 Feedback : 0
 Encoding : 546 CodedCharSetId : 1208
 Format : 'MQSTR '
 Priority : 0 Persistence : 0
 MsgId : X'414D51204D513031202020202020202087261E5702322E20'
 CorrelId : X'414D51204D513031202020202020202087261E5702950A20'
 BackoutCount : 0
 ReplyToQ : 'EX4REPT '
 ReplyToQMgr : 'MQ01 '
 ** Identity Context
 UserIdentifier : 'mqadmin8 '
 AccountingToken :
 X'033530320006'
 ApplIdentityData : ' '
 ** Origin Context
 PutApplType : '6'
 PutApplName : 'ex4repl '
 PutDate : '20160502' PutTime : '15513263'
 ApplOriginData : ' '
GroupId : X'00'
 MsgSeqNumber : '1'
 Offset : '0'
 MsgFlags : '0'
 OriginalLength : '-1'
**** Message ****
length - 5 of 5 bytes
00000000: 5649 4C4C 41 'VILLA '

Proceed to the next section to work with the last application in this exercise, ex4match.c.

Modify application ex4match.c

Information

In this part of the exercise, you match request messages to their corresponding reply messages.

The ex4match application is a modification of the amqsget0.c sample, changed to get messages
from an extra queue and match the request and reply.

ex4match processes one request per execution.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 4. Correlating requests to replies 4-17

Student Exercises
ex4match:

 • Does not take any parameters. You type in the terminal command ex4match window after
successfully running ex4req and ex4repl.

 • Does a destructive MQGET of one message from the EX4REPT queue.
 • Sets up a second destructive MQGET for queue EX4REPL by using the MsgId from the

EX4REPT message to match the CorrelId of the EX4REPL message.
 • Displays the request string followed by the reply string, for example, ASTON VILLA.
 • If you typed several request messages, run one iteration of ex4match for each request

message you typed.

Section 13:Review the ex4match.c code sections already implemented

Important

This section is for review. You do not change any code.

__ 26. Review the code already added to ex4match.c. Your review should be similar to the text
box directly below this step. Remember, line numbers that are shown are approximate.

__ a. Search the ex4match.c source for string “Ex4”.

__ b. The extra object descriptor, MQMD structure, and MQGMO structure are named with the
letters “Rpt” following the od, md, and gmo corresponding declaration prefixes.

__ c. Extra fields are also added for the different return and reason codes.

__ d. Review the highlighted declaration setup to hold the hardcoded values of the queue
manager and queues to connect to. You use these variables in the following step.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-18 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
.

31 /* Declare MQI structures needed */
 32 MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
 33 MQOD odRpt = {MQOD_DEFAULT}; /* Ex4 Object Descriptor */
 34 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 35 MQMD mdRpt = {MQMD_DEFAULT}; /* Ex4 Message Descriptor */
 36 MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
 37 MQGMO gmoRpt = {MQGMO_DEFAULT}; /* Ex4 get message options */
 38 MQCNO cno = {MQCNO_DEFAULT}; /* connection options */

48 MQLONG CompCodeRpt;
 49 MQLONG OpenCode; /* MQOPEN completion code */
 50 MQLONG OpenCodeRpt;
 51 MQLONG Reason; /* reason code */
 52 MQLONG ReasonRpt;
61
 62 /* Exercise 4 */
 63 char replQNm[] = "EX4REPL";
 64 char reptQNm[] = "EX4REPT";
 65 char QMNm[] = "MQ01";
 66

Section 14:Set up the queue object descriptor names, and queue
manager names

__ 27. Scroll down until you find string “Exercise 4”. You should be at approximately line 70,
directly before the comment that starts with “Type code to set up ...”.

__ 28. Use the names of the variables that you reviewed to set up the object descriptor queue
names, and the queue manager name for the function calls. An example of the code is
shown in the box directly following this set of steps.

__ a. Copy the hardcoded queue manager name to the QMName parameter used in the
MQCONNX function call.

__ b. Use the variable that holds the name of the EX4REPT queue to set up the queue name
for object descriptor “odRpt”.

__ c. Use the variable that holds the name of the EX4REPL queue to set up the queue name
for object descriptor “od”.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 4. Correlating requests to replies 4-19

Student Exercises
.

70 /* Exercise 4 */
 71 /*Type code to set up the name of the queue manager forhe MQCONNX here */
72 /*Type code to set up the queue names in both object descriptors here */
 73
 74 strncpy(odRpt.ObjectName, reptQNm, MQ_Q_NAME_LENGTH);
 75 strncpy(od.ObjectName, replQNm, MQ_Q_NAME_LENGTH);
 76 strncpy(QMName, QMNm, MQ_Q_MGR_NAME_LENGTH);

Section 15:Set up the MQGET for queue EX4REPL to get messages by
the correlation identifier

__ 29. Search forward for string “Exercise 4” until you find comment /*Exercise 4 - set up
EX4REPL MQGET by CorrelId*/. This comment should be approximately at line 233 of the
ex4match.c source.

__ 30. Type the code necessary to get a specific message by correlation ID. An example of the
code that is needed is provided in the text box directly following this set of substeps.

__ a. Ensure that the MQGMO version is set to version 2. Failure to set the MQGMO version
causes the match option to be ignored.

__ b. Set the MQGMO match options to match correlation identifier.

__ c. Copy the MQMD message identifier from the MQREPT message to the MQMD
correlation identifier of the MQREPL message.

.

233 /* Exercise 4 - set up the EX4REPL MQGET by CorrelId */
234 /* Type the code needed to match by correlation identifier here */
235
/**/
236 gmo.Version = MQGMO_VERSION_2;
237 gmo.MatchOptions = MQMO_MATCH_CORREL_ID;
238 memcpy(md.CorrelId, mdRpt.MsgId, sizeof(md.MsgId));

Section 16: Compile and test the ex4match application

__ 31. Compile the ex4match.c application into executable ex4match by using the instructions
applicable to the operating system you are using.

__ 32. Test the application by typing ex4match without any parameters. The application gets the
first message in queue EX4REPT. Search EX4REPL for a matching message. The expected
test results are shown in the text box that follows this step.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-20 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
ex4match

Expected results:
Program ex4match start
Matching first EX4REPT message to corresponding message in EX4REPL
Request/Reply ASTON VILLA
Program ex4match end

__ 33. If you received the results that are shown, you successfully completed Exercise 3. If you did
not get the expected results, resolve the problem or request assistance from your instructor.

You completed Exercise 3.

End of exercise
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 4. Correlating requests to replies 4-21

Student Exercises
Exercise review and wrap-up

During this exercise, you:

 • Modified an application to generate a confirm-on-arrival (COA) report message that preserves
the original message identifier (MsgId)

 • Modified an application to reply to a request message by setting up the correlation identifier of
the reply message to the message identifier of the request message

 • Used a formatted message descriptor display to check the correct setting of your message and
correlation identifier fields

 • Altered an application to get a reply message from a queue with a correlation identifier that
matches the message identifier of its corresponding request message
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-22 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise 5. Commit and backout review

What this exercise is about

This exercise reinforces the topics in the commit and backout unit by
reviewing the sample program amqsxag0.c.

What you should be able to do

After completing this exercise, you should be able to:

 • Locate an example of a commit and backout application in the IBM MQ
installation

 • Include the backout structure declaration and initialization in your
application

 • Code the MQBEGIN function call

 • Design and code the flow of tasks that are required for a commit or
backout application

 • Code the MQCMIT and MQBACK function calls

Introduction

In this exercise, you review a sample application to reinforce the material that
is presented in the corresponding unit. You do not need to compile or test the
application. You review how the MQBEGIN function call is coded, how
different indicators are set in the program logic to check the progress of
database updates, and how either MQCMIT or MQBACK is selected.

Requirements

 • IBM MQ sample application amqsxag0.c
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 5. Commit and backout review 5-1

Student Exercises
 Exercise instructions

Section 1: Locate the sample commit and backout application

__ 1. Open one command prompt terminal window.

__ 2. Locate and open IBM MQ sample amqsxag0.c. This application is found on a different
directory based on the operating system you selected for your exercises.

Linux

amqsxag0.c can be found in directory: /opt/mqm/samp/xatm

Windows

amqsxag0.c can be found in directory:

C:\Program Files\IBM\WebSphere MQ\tools\c\Samples\xatm

__ 3. Browse the program description, and scroll down to the function prototypes of the SQL
routines. You find these routines started throughout amqsxag0.c. You also find different
return codes that are checked through the application flow.

__ 4. Scroll until you find the comment /* MQI structures*/. You see a new declaration for the
IBM MQ begin options structure, initialized by its corresponding initial value default
structure.

/* MQI structures */
/***/

 MQOD od = {MQOD_DEFAULT}; /* object descriptor */
 MQMD md = {MQMD_DEFAULT}; /* message descriptor */
 MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
 MQBO bo = {MQBO_DEFAULT}; /* begin options */

__ 5. If you look at the other declarations below the MQI structures, you also find declarations for
return codes that are checked throughout the progress of the application.

__ 6. Scroll slowly and you pass the code segment where the input parameters are processed:
the MQCONN function call, setting of some options for the MQOPEN, and the MQOPEN call.

__ 7. Proceed until you find documentation string /* Get messages from the message queue,
loop until there is a failure */. The code to review is displayed in the following text
box.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-2 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Section 2: Observe the manual tracking of resources outside IBM MQ

while (rc == OK)

 {

/**/
 /* Set flags so that we can back out if something goes wrong and not */
 /* lose the message. */
/**/
 gotMsg = FALSE;
 committedUpdate = FALSE;
/**/
 /* Start a unit of work */
/**/
 MQBEGIN (hCon, &bo, &compCode, &reason);

__ 8. The while loop continues while the flag rc continues to have the value OK. This flag is used
to track of the IBM MQ function call returns. Note the other details in this code:

__ a. The developer managers the next two flags, gotMsg and committedUpdate, which
apply to the results of the database routines. Database status is not tracked
automatically. Tracking results of IBM MQ and database resources lies within the
application developer.

__ b. After setting all tracking flags, the MQBEGIN function call is run. Aside from the return
code and return reason parameters at the end of the parameter list, this call uses the
connection handle and the begin options, or MQBO structure.

__ c. You might want to review some of the specific errors that are checked following the
MQBEGIN function call.

__ 9. Find the additional manual synchronization check below the comment that starts with /*
The number of transactions to the two databases...*/. The code that is referenced
is displayed in the text box:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 5. Commit and backout review 5-3

Student Exercises
/* The number of transactions to the two databases should be */
/* identical, stop if not. */
/***/

 if (rc == OK)
 {
 if (temp != transactions)
 {
 printf("Databases are out of step !\n");
 rc = NOT_OK; /* stop looping */
 } /* endif */
 } /* endif */

__ 10. amqsxag0.c processes two databases. Depending on the application, the developer might
also need to manually check whether the outcome is as expected before reaching the end
of the logic to determine whether to commit or back out the change. This observation is not
an IBM MQ-specific coding detail. However, they key point is to ensure, before you code the
MQCMIT, that all resources are ready and as expected.

Section 3: Review the MQCMIT and MQBACK function calls

__ 11. Scroll to find the MQCMIT and MQBACK calls. For this application, both calls are included in
the while loop. Also, notice the continued use of the status flags throughout the code.

__ 12. Review the parameters used by the MQCMIT and MQBACK calls. Both calls use the same
parameters:

 • The connection handle

 • The function return code and return reason

You completed Exercise 5.

End of exercise
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-4 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise review and wrap-up

In this exercise, you:

 • Reviewed how to include the backout structure declaration and initialization in your
application

 • Reviewed how to code the MQBEGIN function call

 • Located the example of a commit and backout application in the IBM MQ installation

 • Looked at the details to consider when you design and code an application that
coordinates IBM MQ and database resources

 • Reviewed how to code the MQCMIT and MQBACK function calls
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 5. Commit and backout review 5-5

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-6 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise 6. Asynchronous messaging review

What this exercise is about

This exercise reinforces and extends the asynchronous messaging concepts
and mechanics that are covered in the lecture. Rather than writing code, you
follow the actions that are taken in sample program amqcbf0.c, and identify
key portions of the process. You analyze the code and run the precompiled
binary file to see asynchronous messaging in action.

What you should be able to do

After completing this exercise, you should be able to:

 • Describe the mechanics and component exchanges of asynchronous
messaging applications

 • Explain the role of the MQCB function call and its required parameters

 • Differentiate between the IBM MQ MQCB callback function and the
application callback module represented by the MQCB_FUNCTION
parameter definition

 • Describe how to initiate and end consumption of messages with the
MQCTL function call

 • Explain how to code and exchange information in an application callback
function

Introduction

The objective of this exercise is to reinforce the mechanics of asynchronous
message consumption, rather than adding the code yourself. Asynchronous
message consumption can pose a challenging task. This exercise extends
the concepts that are learned in the lecture, and serves as an example on
which to base your own development.

Requirements

 • Queue manager MQ01 with local queue EX6.ASYNC defined
 • IBM MQ sample applications amqscbf0.c and amqsput0.c
 • One terminal command session to run the callback sample
 • One terminal command session to run the put message sample
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 6. Asynchronous messaging review 6-1

Student Exercises
 Exercise instructions

Preface

In this exercise, you focus on reinforcing the mechanics of how the asynchronous message
consumption is coded by reviewing sample program amqscbf0.c. Following the review, you start
the precompiled amqscbf binary to processes that arrive at queue EX6.ASYNC, then send
messages to the same queue by using sample amqsput, and observe the behavior. In the sample
callback function for amqscbf0.c, the messages are printed to the console. In your program, you
would have your business logic process your message. The diagram depicts the test that you run in
this lab.

Part 1: Asynchronous messaging code review

__ 1. Open two command prompt terminal screens.

__ 2. Use one terminal screen to find sample code amqscbf0.c according to your operating
system location, and open it for browse.

Linux

amqscbf0.c is in the /opt/mqm/samp/ directory.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-2 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Windows

amqscbf0.c is in the C:\Program Files\IBM\WebSphere MQ\Tools\c\Samples directory.

Information

All code line numbers that are provided are approximate.

__ 3. Scroll through the start of the program and review the documentation.

Section 1: Check the callback function

__ 4. Continue scrolling to approximately line 85, where you find the comment /* FUNCTION:
MessageConsumer */. This part of the code is the callback function.

__ a. Compare the syntax of this code with the documentation for MQCB_FUNCTION.
Remember, MQCB_FUNCTION is not a function call, but rather the syntax that the
queue manager expects when it calls this code.

__ b. Note how the CallType from the callback context (MQCBC) structure is checked.

__ c. For sample amqscbf0.c, the MessageConsumer function prints the contents of the
message up to 200 bytes.

__ d. Note the pointer to a type MQCBC structure named pContext.

User-written, started callback function in sample program amqscb0.c (to distinguish from
actual MQCB function call):

85 /* FUNCTION: MessageConsumer */
 86 /* PURPOSE : Callback function called when messages arrive */
 87 /**/
 88 void MessageConsumer(MQHCONN hConn,
 89 MQMD * pMsgDesc,
 90 MQGMO * pGetMsgOpts,
 91 MQBYTE * Buffer,
 92 MQCBC * pContext) <= MQCBC type structure pointer.

...
 96
 97 switch(pContext->CallType) <= CallType from MQCBC structure type pointer.
 98 {
 99 case MQCBCT_MSG_REMOVED:
 100 case MQCBCT_MSG_NOT_REMOVED:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 6. Asynchronous messaging review 6-3

Student Exercises
Section 2: Check the asynchronous messaging-related declarations

__ 5. Scroll to the start of the main section and review the two structure declarations that are
associated with asynchronous consumption, the callback descriptor and control options
structures:

Declaration of structures that are used for asynchronous messaging:

146 MQCBD cbd = {MQCBD_DEFAULT}; /* Callback Descriptor */
147 MQCTLO ctlo= {MQCTLO_DEFAULT}; /* Control Options

Section 3: Review the standard MQCONNX and MQOPEN calls

__ 6. Search for string MQCONNX. You should be at the MQCONNX invocation around code line
267. This code shows the standard connection to the queue manager.

__ 7. Continue to scroll until you find the MQOPEN call. This code shows the standard open for the
queue from which the callback function gets messages. So far, the code looks as usual.

Section 4: Find and review the callback code

__ 8. Find the documentation comment “Register a consumer” at approximately line 307. This
code is also displayed in the text box directly following this numeric step, and might be in the
following page.

__ a. This portion of code registers the callback and specifies the function that the callback
starts.

__ b. Notice how the name of the callback function, MessageConsumer, is set in the
CallbackFunction field of the MQCBD structure in line 310 of the display, ahead of the
MQCB call invocation.

__ c. Notice that the gmo.Options are also set before the MQCB call. A key difference of
asynchronous messaging is that no MQGET call is coded. The MQCTL call gets the
messages when its Operation field is set to MQOP_START or MQOP_START_WAIT. The
gmo.Options are set in the MQCB call since the MQCTL call uses the same thread from
the MQCB call.

__ d. Check how the Operations field is now replaced with the actual defined value for the
required operation, in this case MQOP_REGISTER.

__ e. Next, you see the use of the callback descriptor, or cbd field, and later the gmo
structure.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-4 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
MQCB IBM MQ callback function setup and invocation:

/**/
 306 /* */
 307 /* Register a consumer */
 308 /* */
 309
/**/
 310 cbd.CallbackFunction = MessageConsumer;
 311 gmo.Options = MQGMO_NO_SYNCPOINT;
 312
 313 MQCB(Hcon,
 314 MQOP_REGISTER,
 315 &cbd,
 316 Hobj,
 317 &md,
 318 &gmo,
 319 &CompCode,
 320 &Reason);
 321 if (CompCode == MQCC_FAILED)
 322 {

Section 5: Find and review the MQCTL invocation to start consumption
of messages

__ 9. Carefully scroll until you see the invocation for the MQCTL function call.

__ 10. The MQCB function call registered and set up the process so that the MessageConsumer
callback function is started when messages arrive. Next, you need the MQCTL function with
an MQOP_START or MQOP_START_WAIT operation to initiate the consumption of messages
and “hand these messages over” to the MessageConsumer callback function. Review the
MQCTL call.

MQCTL IBM MQ control callback function set to start consumption by having the
Operations field set to MQOP_START:

332 MQCTL(Hcon,
 333 MQOP_START,
 334 &ctlo,
 335 &CompCode,
 336 &Reason);
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 6. Asynchronous messaging review 6-5

Student Exercises
Section 6: Review how to end message consumption

__ 11. In the callback function that you code for your application, you need to include code to end
the consumption of messages. In the sample program, the end of the program is started by
pressing the Enter key. For purposes of this exercise, the process that is used to signal
an end to the program in the sample is not important; what matters is how to use the
MQCTL function to end consumption. Scroll until you find the second MQCTL call and
review the operation that is used. The second CTL should be near line 357.

The MQCTL IBM MQ control callback function is set to stop consumption of messages by
having the Operations field set to MQOP_STOP:

352 /**/
 353 /* */
 354 /* Stop consumption of messages */
 355 /* */
 356
/**/
 357 MQCTL(Hcon,
 358 MQOP_STOP,
 359 &ctlo,
 360 &CompCode,
 361 &Reason);

Section 7: Check for the standard IBM MQ ending function calls

__ 12. The next logical step is to code an MQCLOSE on queue EX6.ASYNC, and MQDISC on
queue manager MQ01. However, the sample amqscbf0.c code has a reported error, in that
it omitted the MQCLOSE. If you look at the program description, the MQCLOSE is included,
but the function call is omitted.

Warning

The omission of the MQCLOSE call has an open problem report (APAR), and the regular
maintenance processes are to rectify it.

__ 13. Scroll and check the standard MQDISC.

You finished the code review portion of the exercise. Continue to Part 2 of the exercise to see this
code in action.

Part 2: Test the asynchronous messaging sample

You should have two command prompt windows open.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-6 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 The local queue that is used for this test, EX6.ASYNC, is predefined.

Section 8: Start the asynchronous callback sample amqscbf

Warning

The syntax to invoke this sample program is different from the put and get samples. Take care to
type the commands exactly as shown.

Windows

If you have problems when you look for the amqscbf binary in your Windows environment, change
to the bin64 directory as shown, and run amqscbf from that directory:

cd C:\Program Files\IBM\WebSphere MQ\Tools\c\Samples\Bin64

__ 14. Start the amqscbf sample program by using the instructions in the box that follows this
step, and move to the second window. Do not press Enter after you start amqscbf. If you
press the Enter key a second time, amqscbf stops. Start amqscbf by typing the command
that is provided, and press the Enter key one time only to activate the callback sample. Use
queue EX6.ASYNC and queue manager MQ01.

amqscbf EX6.ASYNC -m MQ01

Expected response:
Sample AMQSCBF0 start

Press Enter to end.

__ 15. amqscbf registered the callback. The MQCB function uses the MessageConsumer callback
function, which has the task to print messages as they are received. Leave this screen
open where you can view it, and move to the second terminal command screen.

__ 16. In the second command prompt screen, put three messages to queue EX6.ASYNC by using
the instructions for the amqsput sample program that is provided in the next box. As you
type each message, observe how the registered callback in the first screen intercepts
the arrival of the messages. Remember to press Enter on a blank line to end amqsput
after you type the messages.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 6. Asynchronous messaging review 6-7

Student Exercises
amqsput EX6.ASYNC MQ01

Expected response:
Sample AMQSPUT0 start
target queue is EX6.ASYNC

This is the first message
This is the second message <=== Messages you type
This is the third message

Sample AMQSPUT0 end

__ 17. As you type the messages, each message should display on the first screen, where
amqscbf is running with the callback. Expected results are shown in the next box, but your
output data will vary depending on the text you type.

Messages display in the screen where amqscbf is running as you type them in amqsput.

..
Press enter to end
Message Call (25 Bytes) :
This is the first message
Message Call (26 Bytes) :
This is the second message
Message Call (25 Bytes) :
This is the third message

<=== In the next step, you end amqscbf by pressing Enter on
<=== the first screen

Sample AMQSCBF0 end

__ 18. After you see your messages on the amqscbf screen, press Enter to end amqscbf.

You completed Exercise 6.

End of exercise
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-8 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise review and wrap-up

In the first part of the exercise, you used a sample program to review the sequence of calls and
information that is exchanged to complete an asynchronous messaging program.

In the second part of the exercise, you tested the code that you reviewed to see the results of
asynchronous message consumption in action.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 6. Asynchronous messaging review 6-9

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-10 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise 7. Working with an IBM MQ client

What this exercise is about

This exercise shows you how to compile a program with the IBM MQ client
libraries. You also learn how to connect the IBM MQ client to the queue
manager in three different ways, which types of connections supersede
others, and how to connect with code without configuring the IBM MQ client.

What you should be able to do

After completing this exercise, you should be able to:

 • Compile an existing program as an IBM MQ client

 • Review a client connection channel definition and test connectivity to a
queue manager by using the client channel definition table

 • Configure and test connectivity to the queue manager by using the
MQSERVER environment variable

 • Alter the client program to use the MQCONNX call to establish
connectivity to the queue manager

Introduction

The objective of this exercise is to provide experience with IBM MQ clients in
areas you face when developing a client application. You learn to compile a
client application, but most important, you learn how to set up your test
environment. When you work with an IBM MQ client, you might not have an
administrator to set it up, as an IBM MQ client does not have a queue
manager. You must know how to connect to a queue manager from your
client. You also work with an MQCONNX call as a connectivity option.

Requirements

 • putmsg.c base source at <dir>/LabFiles/Lab7/source.

 • codeconn.c solution source at <dir>/LabFiles/Lab7/solution.

 • Queue manager MQ01 with predefined server connection (SVRCONN)
channel EX7.CLNTCONN.

 • IBM MQ Client with predefined client connection (CLNTCONN) channel
EX7.CLNTCONN.

 • Queue manager MQ03 with server connection channel EX7.MQSERVER.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 7. Working with an IBM MQ client 7-1

Student Exercises
 • Local queue EX7.LOCALQ predefined in each queue manager, MQ01, and
MQ03. EX7.LOCALQ is not a clustered queue.

 • For purposes of this lab exercise, both queue managers must have
channel authentication (CHLAUTH) disabled. If unsure, refer to the
section on how to check the queue manager channel authentication,
provided towards the start of Exercise 1.

 •

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-2 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Environment description

Figure 7-1. IBM MQ client connectivity options

Important

Take time to read through the narrative for this exercise so you understand the concepts presented.

In this exercise:

 • You compile an existing program as an IBM MQ client to compare and check how the
same code works in the IBM MQ client as in the IBM MQ server.

 • The sequence of the next steps is important because it shows you how different types
of channel connections supersede each other. Which connection is used might be
important when trying to determine where your message was sent.

 • To complete the exercise correctly, use the same command prompt terminal screen for
all work, unless explicitly directed otherwise, so that you can observe what connection
types supersede other connection types.

This exercise uses two queue managers. Each queue manager has a queue with the same name
defined, EX7.LOCALQ. However, server connection channels in the two queue managers have
different names.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 7. Working with an IBM MQ client 7-3

Student Exercises
What queue manager receives the message depends on the client channel used at the time
of your test.

1. After you compile the test program, you use the client channel definition table (CCDT)
connection to send a message to the queue manager. Since the CCDT channel
connects to queue manager MQ01, the message that is sent should be found in the
EX7.LOCALQ queue defined in the MQ01 queue manager.

2. You now configure the MQSERVER environment variable to connect to queue manager
MQ03. An MQSERVER connection supersedes a CCDT connection, so after you
configure your MQSERVER variable, messages that are put to queue EX7.LOCALQ are
found in queue manager MQ03.

3. Last you modify the program so that you specify the connectivity in the MQCONNX call.
You use the information for queue manager MQ01 in MQCONNX, so any calls put to
queue EX7.LOCALQ return to queue manager MQ01.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-4 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise instructions

Section 1: Compile program putmsg.c to run as an IBM MQ client
application

In an earlier lab, you worked with program putmsg.c. You now use the same code, but prepare
your program with the IBM MQ client libraries so putmsg.c runs as an IBM MQ client.

STOP StopSTOP Stop

In this exercise you use:

 • One terminal command prompt to test the different connectivity options. Ensure that you
use this terminal for all tests to the queue managers.

 • One terminal command prompt to use the runmqsc utility, since some of the tests have
you use runmqsc while an application is active in the other screen.

 • If you are using Windows, one Developer Command Prompt for VS2015 screen, also at
the source directory for Lab 7.

In this exercise you use two different implementations of the runmqsc utility:

 • The “traditional” runmqsc utility, which you start followed by a queue manager name.
 • The client runmqsc utility, which you start followed by a -n.

__ 1. Except for the Developer Command Prompt for VS2015 if you use Windows, close all
other command prompt terminal screens that you might have open. It is critical to start
with a fresh command prompt window. If any unexpected environment variables
remain, the results of the lab might be invalid.

__ 2. Open a new command prompt terminal screen.

Linux

Change to the IBM MQ administrator user by typing:

su - mqadmin8

Ensure that you see the response message “You are in your home directory at
/home/mqadmin8” after you change users.

__ 3. Proceed to the LabFiles/Lab7/source directory, by using the commands according to the
operating system used.

__ 4. Type the command as shown, taking care to use the different libraries other than the earlier
putmsg.c, and naming your executable file: putmsgc
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 7. Working with an IBM MQ client 7-5

Student Exercises
Linux

It is not imperative that you rename the compiled module to putmsgc. The step is highlighting a
convention that is used in the IBM MQ provided samples, which append a “c” to client modules. In
the last part of this exercise, you omit adding a “c” to the name of the last program. The addition of
the “c” to the name is optional. Ensure that you are consistent in the name you use for your module
and the name you use to test.

gcc -I/opt/mqm/inc -lmqic -o putmsgc putmsg.c

Windows

It is not imperative that you copy the source to putmsgc.c. The step is highlighting a convention
that is used in the IBM MQ provided samples, which append a “c” to client modules. In the last part
of this exercise, you omit adding a “c” to the name of the last program. Ensure that you are
consistent in the name you use for your client program and the name you use to test.

===> Copy putmsg.c to putmsgc.c

 • Ensure that you are at a Developer Command Prompt, and that you are positioned at
directory C:\LabFiles\Lab7\source in the Developer Command Prompt.

 • If you choose to use the copy_ed_clt.txt file, it is updated to use the client library,
mqic.lib.

 • Type:

cl putmsgc.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqic.lib

Section 2: Check your client channel definition table (CCDT)
CLNTCONN type channel

__ 5. Start a runmqsc session in the client. Remember to use the runmqsc command in the IBM
MQ client. You follow the command with a -n as shown, followed by pressing the Enter
key:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-6 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
.

[mqadmin8@rhel6base source]$ runmqsc -n

Expected results:
5724-H72 (C) Copyright IBM Corp. 1994, 2015.
Starting local MQSC for 'AMQCLCHL.TAB'.

Reminder

When you use the -n command, you are using the IBM MQ client version of the runmqsc utility.

__ 6. You are now in the IBM MQ command processor. Type the command to show the client
channel, as shown:

dis chl(*) conname

Expected response:
 1 : dis chl(*) conname

AMQ8414: Display Channel details.
 CHANNEL(EX7.CLNTCONN) CHLTYPE(CLNTCONN)
 CONNAME(localhost(1621))

__ 7. Check the connection information for this channel definition. What channel and port does
this connection point to? ___

__ 8. Save the channel name that you recorded in the previous step. You use it in a later step.

__ 9. From your knowledge of what ports point to which queue manager in this course, which
queue manager does this connection point to? __________________________

Note

Queue manager MQ01 is in your VMware image; it listens on port 1621. You can deduce that this
CLNTCONN type channel, which is defined in your IBM MQ client, connects to the SVRCONN type
channel of the same name, in queue manager MQ01.

__ 10. Exit the runmqsc client process by typing end and pressing the Enter key.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 7. Working with an IBM MQ client 7-7

Student Exercises
Section 3: Start the test of the putmsgc application by using the CCDT
definition

Note

Since the only connection from the IBM MQ client to the queue manager at this stage of the
exercise uses the type CLNTCONN channel to port 1621, the message is expected to go to the
EX7.LOCALQ queue that is defined in queue manager MQ01.

__ 11. Type the command as shown to put a message to local queue EX7.LOCALQ. You need to
provide the queue name; the queue manager is not used when you test. The queue
manager is implicit in channel definition that is in use.

putmsgc EX7.LOCALQ

Expected response:
Sample PUTMSG start
target queue is EX7.LOCALQ

__ 12. Do not press the Enter key again until instructed. Leave the putmsgc program in a
state of waiting for input. If you pressed the Enter key, repeat the putmsgc
EX7.LOCALQ.

Note

The client program is now waiting for input. Do not be concerned that the displayed name of the
program is PUTMSG instead of PUTMSGC; you did not update the program before compiling it as an
IBM MQ client application. For purposes of this exercise, the displayed name is not important.

If you receive the “Sample PUTMSG start”, then it means that your client program connected to the
queue manager, and the client channel started. In the next section, you see how, for a client
channel, it is not necessary to manually start the channel.

Section 4: Check the channel status from queue manager MQ01

__ 13. Type runmqsc MQ01 and press the Enter key to start an IBM MQ command script session.
You are now in the traditional, queue manager version of the runmqsc utility.

__ 14. Type dis chstatus(EX7.CLNTCONN) and press the Enter key. Your results should
resemble the text box. The channel should be in running status.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-8 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
dis chstatus(EX7.CLNTCONN)

Expected results:
 2 : dis chs(EX7.CLNTCONN)

AMQ8417: Display Channel Status details.
 CHANNEL(EX7.CLNTCONN) CHLTYPE(SVRCONN)
 CONNAME(127.0.0.1) CURRENT
 STATUS(RUNNING) <===check! SUBSTATE(RECEIVE)

__ 15. Type end and press the Enter key to exit runmqsc.

Section 5: Resume the putmsgc test

__ 16. Type the following message: message 1 uses ccdt definition

__ 17. Press the Enter key two times to end the putmsgc application.

__ 18. Confirm that the message was sent to queue manager MQ01. Open a runmqsc session for
queue manager MQ01 by typing runmqsc MQ01 and pressing the Enter key.

__ 19. Display the number of messages in queue EX7.LOCALQ in queue manager MQ01 by
typing:

dis q(EX7.LOCALQ) curdepth

Expected results:
 1 : dis q(EX7.LOCALQ) curdepth
AMQ8409: Display Queue details.
 QUEUE(EX7.LOCALQ) TYPE(QLOCAL)
 CURDEPTH(1)

__ 20. The value in the CURDEPTH attribute of queue EX7.LOCALQ for queue manager MQ01
should be 1. If you do not see a count of 1 in this display, resolve the problem before
continuing. If necessary, request help from your instructor.

__ 21. Type end and press the Enter key to exit runmqsc.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 7. Working with an IBM MQ client 7-9

Student Exercises
Section 6: Use a sample application to remove the message from the
MQ01 EX7.LOCALQ queue

Reminder

The IBM MQ client, or MQI channels are bidirectional; that is, messages flow in both directions, to
and from the IBM MQ client and the queue manager. You sent messages from the client to the
queue manager. You now access the queue manager from the client to retrieve messages.

__ 22. amqsgetc is a client compilation of the amqsget sample application, assembled to use the
client libraries, similar to your work with putmsgc. amqsgetc starts to retrieve messages,
and continues for 15 seconds. Use amqsgetc to retrieve the message you just put in queue
EX7.LOCALQ by typing the command shown:

amqsgetc EX7.LOCALQ

Expected result:
Sample AMQSGET0 start
message <message 1 uses the CCDT definition>

__ 23. After the message is displayed, you can either wait a few seconds for amqsgetc to end, or
break out of the application by typing Ctrl-C.

Section 7: Set up your client to connect to queue manager MQ03 by
using the MQSERVER environment variable

Information

You are setting up a configuration with the MQSERVER environment variable for two reasons:

 • To show an alternative way to connect without a client channel definition table, or CCDT

 • To confirm how the MQSERVER environment variable supersedes a CCDT connection

The CCDT connection was made to queue manager MQ01. The MQSERVER environment variable
connects to queue manager MQ03. Remember, both queue managers have local queue defined
named EX7.LOCALQ. When you test this next configuration, you check queue manager MQ03 for
the message put to the queue by IBM MQ client application putmsgc.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-10 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Warning

To test how the MQSERVER environment variable supersedes the CCDT table, you must run
this next test in the same command prompt terminal screen where you tested the first
connection.

Be careful to set up the MQSERVER environment variable exactly as shown per the operating system
platform used, including quotation marks and parentheses as shown.

__ 24. Set up and confirm the MQSERVER environment variable to connect to queue manager
MQ03, listening on port 1623, as shown per operating system used.

Linux

Set up by typing the export as shown. Ensure that you include the quotation marks and correct
port number.

export MQSERVER="EX7.MQSERVER/TCP/localhost(1623)"

Confirm the setup by typing the echo command, and precede the variable with “$” to show
contents of variable, as shown:

echo $MQSERVER

The expected response is:

EX7.MQSERVER/TCP/localhost(1623)

Windows

Configure the MQSERVER variable by typing the set statement as shown. Ensure that you
include the correct port number.

set MQSERVER=EX7.MQSERVER/TCP/localhost(1623)

Confirm the setup by typing the echo command, and enclose the variable with “%” to show
contents of variable, as shown:

echo %MQSERVER%

The expected response is:

MQSERVER/TCP/localhost(1623)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 7. Working with an IBM MQ client 7-11

Student Exercises
Section 8: Test the putmsgc application by using the MQSERVER
environment variable

Note

You now have two connections to find one of the two queue EX7.LOCALQ definitions:

 • The CLNTCONN type channel in the CCDT, which connects to queue manager MQ01
 • The MQSERVER variable, which connects to queue manager MQ03

The MQSERVER connection is expected to supersede the CCDT connection. Any messages put to
queue EX7.LOCALQ should now go to queue manager MQ03.

__ 25. Type the command as shown to put a message to local queue EX7.LOCALQ. You need to
provide the queue name; do not provide the queue manager name.

The queue manager is implicit in the one existing channel definition in use. If you receive a
return 2035 when you typed this command, refer to the Troubleshooting section at the end
of this exercise.

putmsgc EX7.LOCALQ

Expected response:
Sample PUTMSG start
target queue is EX7.LOCALQ

Application is now waiting for messages to be typed.

__ 26. Type message “message 2 using MQSERVER variable” and press the Enter key two times
to end the application.

__ 27. Confirm that the message was sent to queue manager MQ03. To expedite checking, rather
than runmqsc, you can use the IBM MQ server sample amqsget to get the message
specifically from queue manager MQ03, as shown in the text box.

Note

The server version of the application, putmsg or amqsput, requires the queue manager name as
an input parameter.

The client version of the applications putmsgc, amqsputc, and amqsgetc, require the queue name,
without the queue manager name. For these superseding tests, do not include the queue
manager name when you work with the client version of the application.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-12 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 By typing the queue manager name, you can confirm that the message went to the queue manager
you typed as the parameter for the application that runs the MQGET function call.

__ a. Be sure to supply the parameter with queue manager MQ03 following the queue name.

__ b. The expected result is shown below the amqsget command.

__ c. You might want to press Ctrl-C to stop the wait for extra messages to arrive.

amqsget EX7.LOCALQ MQ03

Expected results:
Sample AMQSGET0 start
message <message 1 using MQSERVER variable>
^C

__ 28. If the message that you typed is found in queue manager MQ03, you can proceed to the next
section.

__ 29. If the message went to queue manager MQ01, correct any problems before you continue.
Request help from your instructor if necessary.

Information

You observed how the MQSERVER environment variable took precedence over the CCDT
(CLNTCONN definition). The initial CCDT connection was to queue manager MQ01. However,
when you set the MQSERVER variable to queue manager MQ03, the connection to MQ03
prevailed.

In the next section, you see how to use the MQCONNX call with a channel descriptor (MQCD)
structure in an application. An application that builds the channel description by using the MQCD
does not use the CCDT or the MQSERVER variable. The application that uses the MQCD
configures its own connectivity.

Section 9: Modify an existing IBM MQ application to use the MQCONNX
call to set up connectivity to queue manager MQ01

__ 30. Copy the putmsg.c application to a file called: codeconn.c

__ 31. Open the codeconn.c source file as documented for the operating system you are using.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 7. Working with an IBM MQ client 7-13

Student Exercises
Warning

All references to specific code line numbers might not be exact; refer to the cited code. References
to the cited code segments should be obvious. However, if in doubt, consult your instructor.

The sections of this exercise where you add your code are prefixed with “Code change #” in
the section name.

Section 10:Code change 1: Add extra header file that is required for
MQCD structure

The MQCD structure that is required to create a client connection channel by using the MQCONNX
function is located in a separate header file, cmqxc.h. This file needs to be added to your source.

__ 32. Locate the include statements for the cmqc.h header file declaration, at approximately line
27 of the code.

__ a. Add the cmqxc.h include statement directly below the cmqc.h statement. Do not
include the line number; start at the #.

__ b. Include comments that indicate you added this code. Your results should resemble the
display:

.

27 #include <cmqc.h>
28 #include <cmqxc.h> /* Added for Exercise 7 */

Section 11:Code change 2: Declare the MQCD structure

__ 33. Locate line 40 in the codeconn.c source.

__ a. You should be looking at the MQCSP declaration as shown in the box.

__ b. Insert a comment at the start of your changes that shows /* Exercise 7 */ as shown
in the display in the box.

__ c. Type your channel definition (MQCD) structure declaration, as shown in the box. Note the
name of the structure that is used to initialize the MQCD for an IBM MQ client.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-14 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
40 MQCSP csp = {MQCSP_DEFAULT}; /* security parameters */
41 /* Exercise 7 */
42 MQCD cltConn = {MQCD_CLIENT_CONN_DEFAULT}; /* declare MQCD structure
*/

__ 34. Open file cmqxc.h by looking at the operating system-specific location.

__ 35. Find string MQCD_CLIENT and scroll down to review the initialization values noted in the box
that follows:

.

#define MQCD_CLIENT_CONN_DEFAULT {""},\
MQCD_VERSION_6,\ <===MQCD version number.
MQCHT_CLNTCONN,\<===MQCD channel type, which is used like the CHLTYPE field in DEF
CHANNEL
MQXPT_TCP,\ <===MQCD transport type, which is used like the TRPTYPE field in DEF
CHANNEL

__ 36. Close cmqxc.h.

Warning

A couple of caveats:

 • When you type the code into the source file, do not copy and paste from the lab guide to
prevent introducing special characters that might cause errors that are difficult to
resolve.

 • Code samples are intended to show you how to code the function calls, not to be used
as an application. If you choose to base your proof-of-concept application on a code
sample, ensure that you either:

 - Set all the function call parameters directly above the specific function code, or
 - Remove extraneous code, such as code that processes input arguments, or code

that blanks out fields used in function call structures or parameters
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 7. Working with an IBM MQ client 7-15

Student Exercises
Section 12:Code change 3: Define hardcoded variables

Hardcoded values are used for purposes of this exercise. When you code an application, you might
use different methods to provide these values.

__ 37. Type the following declarations, which start in approximately line 56 of the codeconn.c
source:

.

/* Exercise 7 declarations */
char chlName[] = "EX7.CLNTCONN"; /* hard code channel name */
char connName[] = "localhost(1621)"; /* hard code connect info */
char qmgrName[] = "MQ01"; /* hard code queue mgr name */

Section 13:Code change 4: Set the MQCD fields, point the MQCNO to the
MQCD structure, and set the queue manager name for the
MQCONNX call

__ 38. Locate string csp.CSPUser. The search should take you to the segment of code shown at
approximately line 91 in your code, depending on how you spaced the declarations:

This step is browse only. Correct instructions are provided in a later step.

87 cno.SecurityParmsPtr = &csp;
 88 cno.Version = MQCNO_VERSION_5; <=== Check value is 2 or greater
 89 ===> this code does not get run!
 90 csp.AuthenticationType = MQCSP_AUTH_USER_ID_AND_PWD;
 91 csp.CSPUserIdPtr = UserId;
 92 csp.CSPUserIdLength = strlen(UserId);
 93 } <=== Any code before the bracket does not run. Must start below bracket!
 94 /***

__ 39. Scroll down until you are below the last bracket (any code above the bracket is not run), and
directly above the /*
Connect to queue manager */ text box. The code that you type appears to be duplicated,
but earlier code does not run due to an if statement. Extra clarification of the same step is
shown in the next text box:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-16 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
csp.CSPPasswordLength = strlen(csp.CSPPasswordPtr);
 } <=== Last bracket
. Start to type your code here
 /**/
 /* */
 /* Connect to queue manager */
 /* */
 /**/
 QMName[0] = 0; /* default */
 if (argc > 2)
 strncpy(QMName, argv[2], (size_t)MQ_Q_MGR_NAME_LENGTH);
MQCONNX(QMName, /* queue manager */

__ 40. Type the first five lines of code as shown in the box below the alphabetic substeps. Start
below the line that contains code: csp.CSPUserIdLength = strlen(UserId). You should
be above the MQCONNX call. Be careful to start below the last } bracket, or code does
not run. The positioning of your code is critical.

__ a. Mark the start of your code with a commented line.

__ b. The MQCNO structure version must be at 2 or greater in order for the MQCD to be
acknowledged. This exercise uses a sample where these fields get set if certain
parameters are supplied. You need to set the MQCNO version.

__ c. Copy the channel name and connection name values to the MQCD structure

__ d. Copy the queue manager name to the object descriptor.

__ e. Point the MQCNO structure to the MQCD structure.

Hint

The code that is shown in the text box is included in the codeconn.c source located in the solution
directory for this exercise.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 7. Working with an IBM MQ client 7-17

Student Exercises
111 /***/

112 /* Code added for Exercise 7 */
113 /***/
114 cno.Version = MQCNO_VERSION_5;
115 strncpy(cltConn.ChannelName, chlName, (size_t)MQ_CHANNEL_NAME_LENGTH);
116 strncpy(cltConn.ConnectionName, connName,(size_t)MQ_CONN_NAME_LENGTH);
117 strncpy(QMName, qmgrName,(size_t)MQ_Q_MGR_NAME_LENGTH);
118 cno.ClientConnPtr = &cltConn; /* point MQCNO to MQCD definition */
119 /* Optional Exercise 7 displays */
120 printf("Channel name set to %s\n",cltConn.ChannelName);
121 printf("Connname set to %s\n",cltConn.ConnectionName);
122 printf("MQCD Queue manager name set to %s\n",cltConn.QMgrName);
123 printf("Queue manager name set to %s\n",QMName);
124 printf("MQCD Version is %d\n",cltConn.Version);
125 printf("MQCD trptype is %d\n",cltConn.TransportType);
126 printf("MQCD chltype is %d\n",cltConn.ChannelType);
127 printf("MQCNO ClientConnPtr is set to %x\n",cno.ClientConnPtr);

Section 14:Save changes, and compile your code

__ 41. Save your programming changes.

__ 42. Compile your new application by using the method appropriate for the operating system
that you selected.

Warning

When you compile codeconn.c, you might see the following compile warning. For purposes of this
lab exercise, you can safely ignore the warning. It is expected.

The warning that is shown is for Windows. Linux might give a similar warning. If your module is
created in the compile, proceed with the next step and ignore the warning.

codeconn.c
codeconn.c(120): warning C4477: 'printf' : format string '%08X' requires an
argu
ment of type 'unsigned int', but variadic argument 1 has type 'MQPTR'
Microsoft (R) Incremental Linker Version 14.00.23506.0
Copyright (C) Microsoft Corporation. All rights reserved.

/out:codeconn.exe <=== Module is created
codeconn.obj
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-18 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Linux

Ensure that the link library that is used is the client library; it is different from previous
compiles.

gcc -I/opt/mqm/inc -lmqic -o codeconn codeconn.c

Windows

Ensure that the link library that is used is the client library; it is different from previous
compiles.

 • Ensure that you are at a Developer Command Prompt, and that you are positioned at
directory C:\LabFiles\Lab7\source in the Developer Command Prompt.

 • Type:

cl codeconn.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqic.lib

Section 15:Test the codeconn application

Important

To demonstrate how different types of connections override other connections in the IBM MQ client,
it is important that you use the same command prompt terminal that you used for the CCDT
and MQSERVER tests.

 • The CCDT connection was to queue manager MQ01.
 • The MQSERVER connection changed to queue manager MQ03.
 • The codeconn application, which built its own channel in the MQCONNX call by using

the MQCD structure, should go to queue manager MQ01.

__ 43. Test your codeconn client application by typing the command in the box. Results that are
shown assume that the display statements were included in the code.

__ a. If you do not get the “target queue is EX7.LOCALQ” message displayed as shown in
the next text box, look for an error code.

__ b. If you do encounter an error, ensure that you determine whether the error is in the
MQCONNX call, or in the MQOPEN call.

__ c. If the application stops by presenting the “target queue is...” message as shown in
the text box, your code is waiting for the MQPUT. You need to type a message as
directed in the next numeric step.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 7. Working with an IBM MQ client 7-19

Student Exercises
codeconn EX7.LOCALQ

Expected results:
Lab source putmsg start
Channel name set to EX7.CLNTCONN
Connname set to localhost(1621)
MQCD Queue manager name set to
Queue manager name set to MQ01 <=== Refers to queue manager set in MQOD
MQCD Version is 6
MQCD trptype is 2
MQCD chltype is 6
MQCNO ClientConnPtr is set to 002DF070
target queue is EX7.LOCALQ
target queue manager is MQ01<=== MQCD connection superseded MQSERVER

__ 44. If your program did not return errors and paused after the display “target queue is
EX7.LOCALQ”, type the suggested message:

codeconn app message should go to MQ01

__ 45. Press the Enter key two times to end your program. The expected result is:

codeconn app message should go to MQ01

Course PUTMSG end

Note

Remember, the codeconn.c code is a copy of the putmsg.c source. For purposes of expediting
this exercise, the displayed application name was left unchanged, so it shows PUTMSG.

Section 16:Confirm that the message put with the codeconn application
was put to queue manager MQ01

__ 46. Use the amqsget program to confirm that the message from the application was put to the
queue in MQ01.

__ a. Type the command as shown in the text box.

__ b. The expected results are shown in text box.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-20 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ c. If you prefer to interrupt the wait for extra messages, you can type Ctrl-C to end
amqsget.

amqsget EX7.LOCALQ MQ01

Expected results:
Sample AMQSGET0 start
message <codeconn app message should go to MQ01>
^C <=== typed Ctrl-C to end wait for extra messages

Section 17:Use putmsgc to put another message to queue EX7.LOCALQ

__ 47. Based on the completed earlier in this exercise, to which queue manager do you anticipate
that this message goes to? Write your answer: ________________________

__ 48. Type the command as shown in the text box to put a message to local queue EX7.LOCALQ.
Expected results are shown:

putmsgc EX7.LOCALQ

Expected response:
Sample PUTMSG start
target queue is EX7.LOCALQ

The application is now waiting for messages to be typed.

__ 49. Type message “where is this message going” and press the Enter key two times to end
the application.

__ 50. What queue manager did you anticipate to be the target of this message? If you guessed
MQ03, that should be correct because the MQSERVER variable is set to use MQ03. The
MQSERVER variable supersedes the client connection table, which is set to MQ01.

__ 51. Confirm results by using the amqsget application, as shown in the box. Expected results
are included in the display.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 7. Working with an IBM MQ client 7-21

Student Exercises
amqsget EX7.LOCALQ MQ03

Expected results:
Sample AMQSGET0 start
message <where is this message going?>
^C

Information

If you clear the MQSERVER variable by setting it to blanks, the putmsg test returns to queue
manager MQ01. The extra test is omitted to allow time to complete other labs.

You completed Exercise 7.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-22 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Troubleshooting

2035 return code when testing a client

When you work with IBM MQ connections, you should have channel authentication rules in place.
However, channel authentication rules are a topic for an IBM MQ administration course.

To expedite the work, CHLAUTH must be disabled for the queue managers in this course.

__ 1. Use the runmqsc utility to check the queue manager by typing runmqsc #### where ####
is a placeholder for the queue manager name.

__ 2. Type the command dis qmgr chlauth followed by the Enter key in a runmqsc session to
display the setting of channel authentication for the queue manager.

__ 3. If channel authentication (CHLAUTH) is enabled:

__ a. Disable channel authentication by typing:

alter qmgr chlauth(disabled)

and pressing the Enter key.

__ b. Confirm that the command completed successfully with message:

AMQ8005: WebSphere MQ queue manager changed

__ c. Repeat the putmsgc test with MQSERVER; it should now work.

__ 4. If channel authentication is disabled, go to the queue manager error logs according to
instructions for the operating system you use, and starting from the end of the file, look for
the reason the connection failed.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 7. Working with an IBM MQ client 7-23

Student Exercises
Exercise review and wrap-up

In this exercise you learned:

 • How to compile IBM MQ client applications

 • Three different ways to connect an IBM MQ client application to an IBM queue manager:

 - By using the client channel connection table (CCDT) and a CLNTCONN type channel
defined on the client side with runmqsc -n

 - By using the MQSERVER environment variable

 - By using the MQCD structure and MQCONNX call to code the channel definition in the
client application

 • How to code an MQCONNX function call, and create the connection by using the MQCD
structure

 • How to check and set the different structure version numbers to ensure that the code
works as expected

 • How some connectivity options supersede other connectivity options, and the order in
which IBM MQ client connections are superseded by testing and confirming the three
connectivity scenarios
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-24 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise 8. Working with publish/subscribe
basics

What this exercise is about

In this exercise, you learn how to use the integrated publish/subscribe API to
complete the code in a subscriber application. As part of the exercise, you
convert the putmsg.c program to publish messages to a topic instead of
putting messages to a queue.

What you should be able to do

After completing this exercise, you should be able to:

 • Add code to an application to use the subscription descriptor and the
MQSUB function call to create a subscription

 • Explain how to pass the managed queue handle from the MQSUB
function call to access the managed queue in a subsequent MQGET
function call

 • Convert an application that puts messages to a queue to publish
messages to a topic

 • Use IBM MQ Explorer to obtain more details about your subscription

Introduction

In the first part of this exercise, you use integrated publish/subscribe and the
native API to complete the code in a subscriber application. Next, you use a
copy of the putmsg.c application and convert it to publish to a topic. You
also review the IBM MQ Explorer publish/subscribe capabilities.

Requirements

 • Queue manager MQ01

 • Partially coded subscriber application ex8sub.c at
<dir>/LabFiles/Lab8/source

 • A copy of the putmsg.c application, renamed ex8pub.c at
<dir>/LabFiles/Lab8/source

 • Solution source for both applications at
<dir>/LabFiles/Lab8/solution
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 8. Working with publish/subscribe basics 8-1

Student Exercises
Exercise instructions

Figure 8-1. Subscriber and publisher applications for Exercise 8

Information

In this exercise, application ex8sub.c subscribes and gets messages that are associated with a
topic, and application ex8pub.c publishes to a topic.

You use two terminal command prompt screens. One screen is for the subscriber, which you start
first, and the second screen is used to publish.

Important

When you test these two applications, be consistent about typing the topic to subscribe or
publish to the same exact topic, in quotation marks. If the topics do not match exactly, the
publications do not find the corresponding subscription.

In this exercise, use topic “Course/IBMMQ” and queue manager MQ01 as input parameters for both
applications: ex8sub and ex8pub.

Section 1: Back up the source code for both applications in this
exercise

__ 1. Open a terminal command screen and proceed to the <dir>/LabFiles/Lab8/source
directory.

__ 2. Make a backup copy of the two base source files for this exercise by using the copy method
appropriate to the operating system you are using.

__ a. Copy subscriber source member ex8sub.c to a backup file name, such as:
ex8subBkp.c

__ b. Copy publisher source member ex8pub.c to a backup file name, such as:
ex8pubBkp.c
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-2 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Complete the code in a subscriber application

Information

In this part of the exercise, you complete the key parts of the code that is required to use the MQSUB
function call. You also follow the program to see how the MQGET uses the handle that is provided by
the MQSUB call to use a managed queue in the application.

Section 2: Review and change the ex8sub.c application

__ 3. Open application source ex8sub.c for edit by using the editor applicable to the operating
system you are using for this course.

__ 4. Search for string “Exercise 8” one time. It should take you to the subscription descriptor
definition, as shown in the text box. Review the definition and default value setting.

/* Exercise 8 No changes needed - Review only */

 MQSD sd = {MQSD_DEFAULT}; /* Subscription Descriptor */

__ 5. Search on string “Exercise 8” again. This search should take you to the MQCONN call at
approximately line 93. MQCONN needs no changes; it is the same as for point-to-point IBM
MQ messaging style, and returns connection handle Hcon.

__ 6. Repeat the search on string “Exercise 8”. You now need to type to complete the partial
code. An example of the code is included in the text box that follows this set of steps. After
you type your code, stay in the same place in the source. For the first part of your
additions, set MQSD options as follows:

__ a. Create a subscription where the queue manager handles storage of the messages.

__ b. In addition, the options should specify that the subscription is not durable, and request
that the call fails if the queue manager is quiescing.

sd.Options = MQSO_CREATE
 | MQSO_NON_DURABLE
 | MQSO_FAIL_IF_QUIESCING
 | MQSO_MANAGED;
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 8. Working with publish/subscribe basics 8-3

Student Exercises
__ 7. Directly below the line where you set the subscription options, for the second part of your
code, you need to complete the MQSUB call parameters. An example of the code is shown in
the text box that follows these substeps.

MQSUB(Hcon, /* connection handle */

 &sd, /* object descriptor for queue */
 &Hobj, /* object handle (output) */
 &Hsub, /* object handle (output) */
 &S_CompCode, /* completion code */
 &Reason); /* reason code */

__ 8. Save your code, but keep the source open.

__ 9. Search for the next occurrence of string “Exercise 8”. This search should bring you to the
MQGET call at approximately line 220. Notice how the Hobj handle that is used in the
MQSUB call is used for the MQGET. It represents the managed storage for the
subscription-related messages.

__ 10. Search for the last occurrence of string “Exercise 8”. You should be right above the
MQCLOSE function call. Note how the MQCLOSE is for the topic handle Hsub.

__ 11. Close the ex8sub.c application source file.

Section 3: Compile and do a preliminary test of ex8sub.c

__ 12. Compile your ex8sub.c code according to the operating system you are using.

Linux

Ensure that you are positioned at directory C:\LabFiles\Lab8\source.

gcc -I/opt/mqm/inc -lmqm -o ex8subx ex8sub.c

Windows

 • Ensure that you are at a Developer Command Prompt, and that you are positioned at
directory C:\LabFiles\Lab8\source in the Developer Command Prompt.

 • Type:

cl ex8sub.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqm.lib
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-4 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 13. If your results are satisfactory, proceed to the next step. If any errors are found, resolve any
issues before you proceed to the next step.

__ 14. Although you do not have your publisher, you can test the ex8req subscriber and allow it to
time out waiting for publications. To test, type the application named followed by the topic
and queue manager as shown in the text box. The application times out after it waits for
publications for 45 seconds.

ex8sub 'Courses/MQDev' MQ01

Expected reply:
Sample ex8sub.c start
Calling MQGET : 45 seconds wait time
no more messages
Sample ex8sub.c end

Convert a copy of the putmsg.c application to publish to a topic

Information

For this part of the exercise, the putmsg.c source is copied to source file ex8pub.c. The only
additions to ex8pub.c are some comment lines that contain string “Exercise 8” to indicate either
a place in the code where you need to change, or a place in the code to review.

Except for the commented lines, ex8pub.c is an exact copy of putmsg.c.

Section 4: Review and make necessary changes to the ex8pub.c copy of
putmsg.c

__ 15. Open application source ex8pub.c for edit by using the editor applicable to the operating
system you are using for this course.

__ 16. Search for string “Exercise 8” one time. It should bring you to approximately source line
135. You should be right below comment “Use parameter as ...” and above comment
“Open the target ...”

__ 17. Change the code between the original comments to take the following actions described.
The text box that follows the steps shows an example of how the code should look after your
changes:

__ a. Remove the code that sets up the queue name and displays its name.

__ b. Remove the two “if” statements that check for the number of input parameters, and
remove all the actions taken by these “if” statements. Ensure that you remove all
associated brackets.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 8. Working with publish/subscribe basics 8-5

Student Exercises
__ c. Set the objectString pointer and length to the topic passed in the first application
parameter, as shown in the next text box.

__ d. Display the contents of the topic string.

The previous code segment should now look as shown in the text box:

131 /* Use parameter as the name of the target queue */

 132 /* */
 133 /**/
 134
 135 /* Exercise 8 - remove the setup of the ObjectName */
 136 /* Replace the code to set up the object string with the topic string */
 137 /* Remove the two "if" statements and actions for argcs 5 and 6 */
 138
 139 od.ObjectString.VSPtr=argv[1];
 140 od.ObjectString.VSLength=(MQLONG)strlen(argv[1]);
 141 printf("target topic is %s\n", od.ObjectString.VSPtr);
 142
 143
 144 /**/
 145 /* */
 146 /* Open the target message queue for output

*/

__ 18. Save your code, and search for the next occurrence of the “Exercise 8” string. This search
should take you right above the MQOPEN function call, at approximately line 163.

Note

In the next string search, be careful where your cursor ends. You might need to carefully scroll
down a couple of lines, as you might still be looking at the line that shows
od.ObjectString.VSPtr=argv[1], but your search ended below that code, above the MQOPEN.

__ 19. Below the “Exercise 8” marker, but above the MQOPEN, type the code requested in the
earlier substeps. The text box at the end of the substeps has an example of the code:

__ a. Set the object descriptor structure version to version 4.

__ b. Set the object descriptor object type to be a topic.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-6 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
/* Exercise 8 - type your code below this comment line */

/* Set the object type and MQOD version */
od.Version = MQOD_VERSION_4;
od.ObjectType = MQOT_TOPIC;

__ 20. Search for string “Exercise 8” again. You should now be above the MQPUT function call.
When you use publish/subscribe, you use the MQPUT function to publish your messages.
The difference is that the object to which it is publishing is a topic, not a queue. No updates
are necessary in this step, only your review of the MQPUT function call.

__ 21. Save your changes and close the ex8pub.c application source file.

Section 5: Compile and test the publisher

__ 22. Compile the application by using the method appropriate for the operating system that you
are using.

Linux

.

gcc -I/opt/mqm/inc -lmqm -o ex8pub ex8pub.c

Windows

 • Ensure that you are at a Developer Command Prompt, and that you are positioned at
directory C:\LabFiles\Lab8\source in the Developer Command Prompt.

 • Type:

cl ex8pub.c.c C:\PROGRA~1\IBM\WEBSPH~1\Tools\Lib\mqm.lib

Important

The ex8pub application is tested simultaneously with the ex8sub application. You use two
terminal command prompt screens. ex8sub runs for 45 seconds. To test:

 • On one terminal, start the subscriber, ex8sub. ex8sub ends after it waits for
publications for 45 seconds.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 8. Working with publish/subscribe basics 8-7

Student Exercises
 • On the second terminal, start the publisher, ex8pub. Then, type some news about the
courses to publish them. Type the Enter key two times after the last message you need
to publish to end ex8pub.

 • Return to the first terminal and view the subscriber that is receiving the publications.

Although you do not need to rush, you need to work expeditiously during the test so that you get to
publish your news before the subscriber application ends.

__ 23. If you have one terminal command prompt screen open, open a second terminal.

__ 24. On your first terminal, start your subscriber by typing ex8sub 'Courses/IBMMQ' MQ01. An
example is displayed in the text box.

ex8sub 'Courses/IBMMQ' MQ01

Expected results:
Sample ex8sub.c start
Calling MQGET : 45 seconds wait time

__ 25. Proceed to the second terminal screen and publish some messages by typing the sequence
that is detailed in the substeps. An example is shown in the text box that follows.

__ a. Type ex8pub 'Courses/IBMMQ' MQ01 and press the Enter key one time. Be careful.
The topic that is requested must match the topic of the subscription exactly.

__ b. After you see the application start and confirmation of your topic, type some news and
press the Enter key one time after each publication.

__ c. To end ex8pub, press the Enter key two times.

ex8pub 'Courses/IBMMQ' MQ01

Expected return:
Lab source g start
target topic is Courses/IBMMQ
New courses <=== Your typed news to publish
WM302 IBM MQ V8 Administration for z/OS
WM312 IBM MQ V8 Advanced Administration for z/OS
WM507 IBM MQ V8 Application Development <=== press the Enter key two times

Course G end
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-8 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Note

For purposes of this exercise, the displayed application name in the ex8pub.c source is not
changed. Unless you decided to change the displayed names, the original application name
displays at the start and end of the test.

__ 26. Return to the subscriber screen. You should now see the published messages that arrived
at the subscriber. An example is shown in the text box display.

ex8sub 'Courses/IBMMQ' MQ01

Sample ex8sub.c start
Calling MQGET : 45 seconds wait time
message <New courses>
Calling MQGET : 45 seconds wait time
message <WM302 IBM MQ V8 Administration for z/OS>
Calling MQGET : 45 seconds wait time
message <WM312 IBM MQ V8 Advanced Administration for z/OS>
Calling MQGET : 45 seconds wait time
message <WM507 IBM MQ V8 Application Development>
Calling MQGET : 45 seconds wait time
no more messages
Sample ex8sub.c end

__ 27. Leave both terminal command screens open. You use them in the next section.

Check information about your subscription

Note

When you used the MQSO_NON_DURABLE option in the MQSUB function, you created a non-durable
subscription. In the ex8sub application, when the MQCLOSE function call that uses subscription
object handle runs, the subscription is removed.

In this section, you must complete the runmqsc and IBM MQ Explorer steps while ex8sub
is running, or the subscription is removed.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 8. Working with publish/subscribe basics 8-9

Student Exercises
Section 6: Use the runmqsc utility to check information about the
managed storage that the subscription MQSUB creates

__ 28. In one of the terminal screens that you have open, start a runmqsc session by typing:
runmqsc MQ01

Leave this session open and move to the second terminal screen.

__ 29. In the second terminal screen, start the subscriber application by typing
ex8sub 'Courses/IBMMQ' MQ01 and pressing the Enter key.

__ 30. Return to the first terminal screen and in your runmqsc session, type the command
dis q(SYSTEM.MANAGED.NDUR*) and press the Enter key. A partial display of the expected
response is shown in the text box.

dis q(SYSTEM.MANAGED.NDUR*) all

AMQ8409: Display Queue details.
 QUEUE(SYSTEM.MANAGED.NDURABLE.571E3C5E2017CD09)
 TYPE(QLOCAL) ACCTQ(QMGR)
 ALTDATE(2016-05-04) ALTTIME(12.27.50)

CURDEPTH(0) CUSTOM()
 DEFBIND(OPEN) DEFPRTY(0)
 DEFPSIST(NO) DEFPRESP(SYNC)
 DEFREADA(YES) DEFSOPT(SHARED)
 DEFTYPE(TEMPDYN)
 DESCR(Model for managed queues for non durable subscriptions)
 DISTL(NO) GET(ENABLED)
...

__ 31. Review your display. Since your subscription is the only one in the system, it is showing the
dynamic queue that the queue manager for your subscription created.

__ a. By default, the queue name prefix is SYSTEM.MANAGED.NDURABLE followed by a
differentiating alphanumeric string.

__ b. Notice that the definition type shows a temporary dynamic queue (TEMPDYN), but for the
time the queue exists, it is a queue of type QLOCAL.

Section 7: Use IBM MQ Explorer to check your subscription.

__ 32. Wait until ex8sub ends, and start a new subscription by typing
ex8sub 'Course/IBMMQ' MQ01 and pressing the Enter key.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-10 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 33. Open IBM MQ Explorer. Select as follows:

__ a. Under the Queue Managers heading, select MQ01.

__ b. Under the MQ01 heading, select Subscriptions.

Figure 8-2. IBM MQ Explorer Subscriptions view

__ 34. Under the subscription pane, find the scroll bar. You might need to scroll to the right until you
can view the “Topic string” column. You should see “Courses/IBMMQ” in the Topic
string column.

__ 35. Scroll to the right until you see columns Destination class, Destination name, and
Durable. An example of the view is shown in the display.

Figure 8-3. View of additional subscription detail fields

__ 36. After you scroll to the right in the subscription pane, you see more details of your
subscription:

 • Under Destination class, the queue manager manages the storage of the message, and
thus the destination is called Managed.

 • The name of the dynamic queue in the destination name. If you ran these tests with two
different iterations of the ex8sub application, the alphanumeric portion of the dynamic
queue name is different from the name that the runmqsc command displays.

 • The lifetime property of the subscription is non-durable.

You completed Exercise 8.

End of exercise
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 8. Working with publish/subscribe basics 8-11

Student Exercises
Exercise review and wrap-up

In this exercise, you:

 • Coded the MQSUB function to create a managed, non-durable subscription
 • Learned what handle to pass to subscriber MQGET calls to receive messages in the

managed queue that the MQSUB created
 • Converted a point-to-point application to a publish/subscribe application
 • Used the runmqsc utility to show information about the managed queue
 • Used IBM MQ Explorer to look at details of the subscription
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-12 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise 9. Connecting IBM MQ Light applications
to IBM MQ applications

What this exercise is about

This lab gives you hands-on experience with connecting IBM MQ Light
applications to IBM MQ applications. You review the preconfigured
AMQP-IBM MQ Light environment, and start the AMQP service and channel.
You then use the queue manager as an IBM MQ Light messaging provider,
and exchange messages between IBM MQ and IBM MQ Light.

What you should be able to do

After completing this exercise, you should be able to:

 • Examine the IBM MQ Light components configured in the queue
manager

 • Start and check the status of the AMQP service

 • Start and check the status of an AMQP channel

 • Use an IBM MQ V8.0.0.4 IBM MQ Light application and the sample
node.js IBM MQ Light client application to subscribe to a topic of interest

 • Use an IBM MQ V8.0.0.4 IBM MQ Light application and the sample
node.js IBM MQ Light client application to publish messages to interested
subscribers

 • Use a sample IBM MQ publish/subscribe application to publish
messages of interest to subscribed IBM MQ and IBM MQ Light node.js
applications

 • Use a sample IBM MQ publish/subscribe application to subscribe to
messages of interest that might proceed from IBM MQ applications or
IBM MQ Light publish applications

 • Examine the IBM MQ objects that are necessary for a queue-based
application to receive messages of interest from an IBM MQ Light
message producer application

 • Use a sample IBM MQ application to get messages from a queue that an
IBM MQ Light application publishes

 • Examine the IBM MQ object that is necessary for a queue-based
application to put messages on a queue that can go to an interested IBM
MQ Light client application

 • Use a sample IBM MQ application to put messages to a queue destined
to interested IBM MQ Light subscriber applications
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-1

Student Exercises
Introduction

This exercise does not require any programming; the programming concepts
used in this exercise were completed in earlier labs with MQPUT, MQGET,
and publish/subscribe. In this exercise, you use sample IBM MQ Light
clients, and sample IBM MQ programs. You also use the IBM MQ Light
samples with an extra parameter to use a specific topic string.

You check and start the AMQP components in the queue manager. Next, you
test with IBM MQ Light to IBM MQ Light clients, and then you exchange
messages between IBM MQ and IBM MQ Light.

Requirements

 • IBM MQ queue manager at V8.0.0.4 with command level converted to
8.0.1 level

 • AMQP channel MQ15.AMQP defined

 • npm and node.js at version 0.12.9 must be installed (for RHEL 6)

 • node.js option of the IBM MQ Light clients

 • Other IBM MQ publish/subscribe objects that are used with queue-based
applications defined as displayed in the exercise

The applications that are used in this exercise are all sample IBM MQ Light
applications and IBM MQ applications.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-2 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 Exercise instructions

Important

If you want to reproduce this work in your environment, read the following material
carefully:

Assumption: You have an IBM MQ installation at the IBM MQ V8.0.0.4 manufacturing refresh.

To mitigate dependency on infrastructure services, you can create a new queue manager by using
script SampleMQM.sh on Linux, or SampleMQM.bat on Windows. After the queue manager is
created, you need to address the security considerations that are detailed in the next section,
Details of preconfiguration for queue manager MQ15. Each of the scripts referenced:

 • Creates a queue manager that is called AMQP_SAMPLE_QM, already converted to
command level 801

 • Starts service SYSTEM.AMQP.SERVICE
 • Creates channel SAMPLE.AMQP.CHANNEL with port 5672
 • Starts channel SAMPLE.AMQP.CHANNEL

The script is at the <mqinstall>/amqp/samples directory.

All programs that are used are available as IBM MQ publish/subscribe samples, or IBM MQ Light
sample node.js clients. You can use IBM MQ Light Java, Ruby, or other sample clients and node.js
by downloading them from the sites noted in the lecture material for this unit.

For this exercise, a different new queue manager called MQ15 and channel MQ15.AMQP were
created to show an alternative to the default configuration.

You can have more than one AMQP channel, but they must use different ports. In this exercise, you
use one channel.

Warning

This warning applies to the Linux environment. If you plan to work with the node.js IBM MQ
Light client in the RHEL 6 environment, specific requirements must be observed for the GLIBC
library. For the update level of the RHEL 6 class environment, the node.js level had to be lowered to
0.12.9, rather than the most recent version of node.js. Failure to use node.js at v0.12.9 with RHEL 6
results in the error that is shown in the display:

Error: /lib64/libc.so.6: version 'GLIBC_2.14' not found (required by
/opt/mqlight/node_modules/mqlight/lib/node-v46-linux-x64/proton.node)
...

If you encounter this error with node.js and RHEL 6, replace your node.js version with node.js
V0.12.9. The blog entry that follows was posted to assist with the selection of what node.js version
to use: https://developer.ibm.com/messaging/2015/12/23/which-version-of-node-js-to-use/
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-3

Student Exercises
Details of preconfiguration for queue manager MQ15

Important

You use queue manager MQ15 for this exercise. MQ15 is preconfigured for this exercise as
described in this section.

STOP StopSTOP Stop

Do not type these commands! This section is for review only to show the
configuration that was done before this exercise.

Your work starts after the Section 1 subheading.
:

 • The queue manager is created to use port 1625.

crtmqm -p 1625 MQ15 -u SYSTEM.DEAD.LETTER.QUEUE

 • The command level for MQ15 is converted to 801.

strmqm -e CMDLEVEL=801 MQ15
WebSphere MQ queue manager 'MQ15' starting.
The queue manager is associated with installation 'Installation1'.
5 log records accessed on queue manager 'MQ15' during the log replay
phase.
Log replay for queue manager 'MQ15' complete.
Transaction manager state recovered for queue manager 'MQ15'.
Migrating objects for queue manager 'MQ15'.
Default objects statistics : 3 created. 0 replaced. 0 failed.
New functions up to command level 801 enabled.<== -e option converted CMD

Note

The security-related steps in the next three bullets are for purposes of the class environment. The
class environment security settings are not, and should not be, construed as optimal.
Authentication information and channel authentication should be set according to the security
standards set by the organization. Contrary to the values used for this course, the channel MCAUSER
value should be set to a low privilege user.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-4 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 • For class purposes, the operating system (IDPWOS) authentication information object
was set so that client credential checks (CHCKCLNT) are omitted:

BEFORE:
dis authinfo(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) chcklocl chckclnt
3: dis authinfo(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) chcklocl chckclnt
AMQ8566: Display authentication information details.
 AUTHINFO(SYSTEM.DEFAULT.AUTHINFO.IDPWOS)
 AUTHTYPE(IDPWOS) CHCKCLNT(REQDADM)
 CHCKLOCL(OPTIONAL)
AFTER:
4: ALTER authinfo(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) authtype(IDPWOS)
chckclnt(NONE) chcklocl(NONE)
AMQ8567: WebSphere MQ authentication information changed.

 • Disable channel authentication in the queue manager:
alter qmgr chlauth(disabled)
5: ALTER qmgr chlauth(disabled)
AMQ8005: WebSphere MQ queue manager changed.

 • Refresh queue manager security
5: refresh security(*)
AMQ8560: WebSphere MQ security cache refreshed.

 • A channel of type AMQP is defined with port 5675.

Warning

You must use a valid MCAUSER when you define an AMQP channel. Failure to specify a valid
user might result in FFDC dumps for V8.0.0.4.

Linux

.

def chl(MQ15.AMQP) chltype(AMQP) port(5675) mcauser('mqadmin8')
6: def chl(MQ15.AMQP) chltype(AMQP) port(5675) mcauser('mqadmin8')
AMQ8014: WebSphere MQ channel created.

Windows

.

def chl(MQ15.AMQP) chltype(AMQP) port(5675) mcauser('MUSR_MQADMIN')
6: def chl(MQ15.AMQP) chltype(AMQP) port(5675) mcauser('MUSR_MQADMIN')
AMQ8014: WebSphere MQ channel created.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-5

Student Exercises
Note

This note marks the place where you start your work in this exercise.

Section 1: Start queue manager MQ15

__ 1. Open a terminal command window. If you are working with Linux, remember to change to
the mqadmin8 user.

__ 2. Type dspmq and press the Enter key to display the queue manager status.

__ 3. If queue managers MQ01 and MQ03 are running, stop them by typing the command for each
queue manager:

endmqm MQ01

endmqm MQ03

__ 4. Type the command to start queue manager MQ15, followed by the Enter key, and wait a few
seconds until it starts:

strmqm MQ15

Section 2: Confirm that the AMQP capability is enabled in the queue
manager

Information

Unless otherwise noted, it is assumed that you press the Enter key after you complete to type each
command in this exercise.

The steps that are not enclosed in Linux or Windows boxes apply to both Linux and Windows
environments.

When you encounter steps that are enclosed in a Linux or Windows box, for this course select the
instructions in the Linux box.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-6 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Linux

This box has instructions to open a terminal window for Linux. The instructions are not repeated.
When you work with the Linux image, further instructions to open a terminal window assume
that you change over to the mqadmin8 user, or your IBM MQ command path is not set in the
new window.

 • Open a terminal command window by selecting the terminal icon from your Linux
desktop. When you first open the terminal command window, you are the root user.

 • Change to user mqadmin8 by typing: su - mqadmin8
 • The expected results are:

[root@rhel6base ~]# su - mqadmin8
PATH set at
/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/s
bin:/sbin:/home/mqadmin8/bin:/opt/mqm/samp/bin

You are in your home directory at /home/mqadmin8

Windows

Open a command terminal window by selecting the command prompt icon from the taskbar at the
bottom of your VMware screen.

__ 5. If you skipped reading section Details of preconfiguration for queue manager MQ15
located directly above these steps, review that section now. Your work picks up with those
items that are completed.

__ 6. Open an MQSC command window for queue manager MQ15 by typing:

runmqsc MQ15

The expected response is:
5724-H72 (C) Copyright IBM Corp. 1994, 2015.
Starting MQSC for queue manager MQ15.

__ 7. Keep the runmqsc session open until you come to the step that explicitly instructs to
end it.

__ 8. Type the command:

dis qmgr amqpcap

Expected output is QMNAME(MQ15) AMQPCAP(YES)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-7

Student Exercises
__ 9. Ensure that the AMQP service is present by typing:

dis service(SYSTEM.AMQ*)

The expected result is:
 2 : dis service(SYSTEM.AMQ*)
AMQ8629: Display service information details.
 SERVICE(SYSTEM.AMQP.SERVICE)

__ 10. Check that the AMQP channels are defined in the queue manager by typing the command
that is shown. This command should display the default AMQP channel, the MQ15.AMQP
channel that is defined for this class, and the port assigned to each channel:

dis chl(*) chltype(AMQP) port

The expected results are:
 3 : dis chl(*) where(CHLTYPE EQ AMQP) port
AMQ8414: Display Channel details.
 CHANNEL(MQ15.AMQP) CHLTYPE(AMQP)
 PORT(5675)
AMQ8414: Display Channel details.
 CHANNEL(SYSTEM.DEF.AMQP) CHLTYPE(AMQP)
 PORT(5672)

Notice how the default AMQP channel is defined for port 5672, although it can be
changed.

__ 11. Keep the runmqsc session open.

Note

It is worthwhile to go through the tasks to confirm that all AMQP components are present as
expected in the queue manager. However, the ability to define a channel of type AMQP is one
indication that AMQP capabilities are at least partially available.

Section 3: Start and check the AMQP service and channel MQ15.AMQP

__ 12. Start the AMQP service by typing:

start service(SYSTEM.AMQP.SERVICE)

The expected response is:
4 : start service(SYSTEM.AMQP.SERVICE)
AMQ8733: Request to start Service accepted.

__ 13. Display the SYSTEM.AMQP.SERVICE status by typing:

dis svstatus(SYSTEM.AMQP.SERVICE)

The expected response should denote that the status is running. Part of the
information that is displayed contains platform-specific details such as the location of the
AMQP command and log files:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-8 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Linux

The result in Linux is:

6 : dis svstatus(SYSTEM.AMQP.SERVICE)
AMQ8632: Display service status details.
 SERVICE(SYSTEM.AMQP.SERVICE) STATUS(RUNNING)
 PID(309579) SERVTYPE(SERVER)
 STARTDA(2016-01-14) STARTTI(17.43.28)
 CONTROL(MANUAL) STARTCMD(/opt/mqm//bin/amqp.sh)
 STARTARG(start -m MQ15 -d "/var/mqm/qmgrs/MQ15//." -g "/var/mqm//.")
 STOPCMD(/opt/mqm//bin/amqp.sh)
 STOPARG(stop -m MQ15 -d "/var/mqm/qmgrs/MQ15//." -g "/var/mqm//.")
 DESCR(Manages clients that use the AMQP protocol)
 STDOUT(/var/mqm/qmgrs/MQ15//amqp.stdout)
 STDERR(/var/mqm/qmgrs/MQ15//amqp.stderr)

Windows

The result in Windows is:

5 : dis svstatus(SYSTEM.AMQP.SERVICE)
AMQ8632: Display service status details.
 SERVICE(SYSTEM.AMQP.SERVICE) STATUS(RUNNING)
 PID(2204) SERVTYPE(SERVER)
 STARTDA(2016-01-21) STARTTI(13.51.17)
 CONTROL(MANUAL)
 STARTCMD(C:\Program Files\IBM\WebSphere MQ\\bin\amqp.bat)
 STARTARG(start -m MQ15 -d "C:\ProgramData\IBM\MQ\qmgrs\MQ15\\." -g
"C:\ProgramData\IBM\MQ\\.")
 STOPCMD(C:\Program Files\IBM\WebSphere MQ\\bin\amqp.bat)
 STOPARG(stop -m MQ15 -d "C:\ProgramData\IBM\MQ\qmgrs\MQ15\\." -g
"C:\ProgramData\IBM\MQ\\.")
 DESCR(Manages clients that use the AMQP protocol)
 STDOUT(C:\ProgramData\IBM\MQ\qmgrs\MQ15\\amqp.stdout)
 STDERR(C:\ProgramData\IBM\MQ\qmgrs\MQ15\\amqp.stderr)

__ 14. Start channel MQ15.AMQP by typing:

start chl(MQ15.AMQP)

Expected results are:
2 : start chl(MQ15.AMQP)
AMQ8018: Start WebSphere MQ channel accepted.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-9

Student Exercises
Troubleshooting

If you received the response that is shown in this box:

2 : start chl(MQ15.AMQP)
AMQ8494: AMQP commands are not available.

The SYSTEM.AMQP.SERVICE is not available. Perhaps you restarted the queue manager, and
overlooked restarting the AMQP service.

To be able to start the AMQP channel, start the service as shown earlier in this exercise, by typing
start service(SYSTEM.AMQP.SERVICE). After the service starts, you should be able to start the
channel.

Display the channel status by typing: dis chs(MQ15.AMQP)
Do not be concerned with the response in this step. You should see:
dis chs(MQ15.AMQP)
 1 : dis chs(MQ15.AMQP)
AMQ8420: Channel Status not found

Note

If you omit the chltype attribute when you display the status of an AMQP channel, the information
is not found. You must include chltype(AMQP) to get the status of an AMQP channel.

__ 15. Display the channel status by typing: dis chs(MQ15.AMQP) chltype(AMQP)

The response should now display the channel in running status, as shown:
dis chs(MQ15.AMQP) chltype(AMQP)
 2 : dis chs(MQ15.AMQP) chltype(AMQP)
AMQ8417: Display Channel Status details.
 CHANNEL(MQ15.AMQP) CHLTYPE(AMQP)
 CONNECTIONS(0) STATUS(RUNNING)

Important

Exit runmqsc, but leave your terminal session open.

__ 16. Exit runmqsc by typing end and pressing the Enter key. You can run some other
commands to check your environment.

__ 17. Another way to check that the service is running is to check Java processes that are active
in the system. The next two steps vary; select the box for the operating system that you are
working with:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-10 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Linux

From the terminal window command line, type:

ps -ef | grep java

Expected results (partial):
mqm 50466 50442 0 Jan18 ? 00:00:42
//opt/mqm/amqpbin/../../java/jre64/jre/bin/java
-Dcom.ibm.mq.mqxr.service.type=amqp
-Dcom.ibm.msg.client.config.location=file:////var/mqm/qmgrs/MQ15//./amqp/
amqp_trace.config
-Xoptionsfile=/opt/mqm/amqp/bin/../config/amqp_java.properties
-Dcom.ibm.msg.client.commonservices.wmq.logdir=/var/mqm/qmgrs/MQ15//./err
ors
...

Leave your terminal session open.

Windows

 • Right-click the taskbar and select Start Task Manager. After the Windows Task
Manager pane surfaces, select the Processes tab. Find the Java process that runs
under the IBM MQ user for Windows (you see USER_MQADMIN under the User Name
column).

 • Right-click the Java process, and you see that this process is running from the IBM MQ
libraries.

 • Close the Windows Task Manager.

Note

The work that is done in the first set of sections uses IBM MQ as the messaging provider for
the IBM MQ Light clients.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-11

Student Exercises
Section 4: Set up your windows session to work with the IBM MQ Light
clients

Linux

You use several Linux terminal command windows in the rest of this exercise. To prevent confusion,
name each session.

__ a. If you just opened the new window, remember to change over to the mqadmin8 user,
that is: su - mqadmin8

__ b. On your terminal window, access the Terminal menu.

__ c. Select Set Title and press the Enter key.

__ d. Type an appropriate title such as amqp subscriber and press the Enter key. Your
terminal session should display the name that you typed across the top.

 • Change to the directory that holds the IBM MQ Light node.js samples by typing:

cd /opt/mqlight/node_modules/mqlight/samples

 • Confirm that you are in the correct directory by typing:

pwd

Expected result is display of directory name:
/opt/mqlight/node_modules/mqlight/samples

Windows

The instructions that are provided in this text box are not repeated in later steps. If you need
a reminder, refer to this section.

 • You use several Windows terminal command screens in the rest of this exercise. To
open extra command prompt windows:

 - Place the cursor over the command prompt icon in the bottom taskbar.
 - Right-click and select Command Prompt.

 • To mitigate confusion, change the screen background color, and change the text to
match so that you can clearly see your work. You can leave your first command prompt
window with a black screen background and white screen text.

 • You might, for example, have your two IBM MQ Light windows with a dark background
color and white text. Then, have the two IBM MQ windows with a light background color
and dark text.

 • For the other command prompt screens:

 - Right-click across the top of the command prompt, and select Properties.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-12 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 - Select the Colors tab, the Screen Background button. Select a different color for
each screen.

 - Check the contrast between the screen text and screen background. If you have
background colors that blend with text, change the screen text color so it is clearly
visible.

 • For the terminal screens that are used for the IBM MQ Light sample clients:

 - Change to the directory that holds the IBM MQ Light node.js samples by typing:

cd C:\mqlightclt\node_modules\mqlight\samples

 - Check the new path name in your windows command screen to ensure that the
directory change proceeded correctly. Your command prompt should look as shown:

C:\mqlightclt\node_modules\mqlight\samples

 • If you have a Developer Command Prompt for VS2015 window open, close it. You do
not use the compiler in this exercise.

These instructions to set the IBM MQ Light client directory are not repeated. If you need a
reminder, return to this section.

Section 5: Use the recv.js IBM MQ Light sample to subscribe to the
default topic

__ 18. Start your recv.js subscriber. Ensure that you specify the port that the amqp channel is
listening for. Type the command as shown.

Warning

After you type the command that follows, the terminal window for the amqp subscriber session
has a running process. Do not type enter or try to exit the process; it is supposed to remain
active. You use a new terminal window for the other steps.
:

node recv.js -s amqp://localhost:5675

Expected result is:
Connected to amqp://localhost:5675 using client-id recv_98276eb
Subscribed to pattern: public

__ 19. Review these two points in the previous output:

__ a. Notice that you have a client ID. Your resulting client ID is expected to be different.
For the example shown in this step, the client ID is recv_98276eb.

__ b. Write the client ID from your subscription here: ____________________________

__ c. The topic that you are subscribed to is public, which is an initial default value in the
sample recv.js client.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-13

Student Exercises
Troubleshooting

If you received the error that is shown in this box, check for an error in the value that is provided in
the amqp property, and the subscriber does not start. Do not use this example, it contains the
error!

node recv.js -s amqp://localhost:5673
*** error ***
message: NetworkError: CONNECTION ERROR (localhost:5673): Connect failure:
The remote computer refused the network connection.
Exiting.

The result that is shown is an error that was made when testing this lab. The port number is
incorrect. It should be 5675 for the definition in this exercise. No accompanying messages show in
the amqp logs for this error. If you get this error, carefully check what you typed following the -s
flag.

Section 6: Open a second terminal window and check the subscription

__ 20. Open a new terminal window by using the same process that is described in the previous
step. If you are using Linux, you can name this terminal: amqp publisher

If you are using Windows, set the window background to a different color as described
previously. You use this terminal later to send messages.

Linux

Remember to change over to the mqadmin8 user by typing: su - mqadmin8

__ 21. Start a runmqsc session by typing:

runmqsc MQ15

__ 22. After you are in the runmqsc session, display the existing subscriptions in your queue
manager by typing the command that is shown:

dis sub(*) topicstr sub

__ 23. More than one subscription might be displayed, depending on the work done previously.
You need to find the subscription for the “public” topic:

AMQ8096: WebSphere MQ subscription inquired.
 SUBID(414D51204D5131352020202020202020F16CA15620002804)
 SUB(:private:recv_98276eb:public) TOPICSTR(public) <===
AMQ8096: WebSphere MQ subscription inquired.
 SUBID(414D51204D51313520202020202020205B4BA15620002204)
 SUB(SOCCER.INFO) TOPICSTR(Sports/soccer)T
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-14 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 24. Compare the SUB client that is shown in the display with the client ID in your amqp
subscriber window. The subscription identifier that is displayed in the DIS SUB command
should match the client ID in your subscriber terminal window. In the example that is used in
this lab, the client ID is recv_98276eb.

__ 25. Exit the runmqsc session by typing end and pressing the Enter key.

Section 7: Use the second terminal window to publish the send.js IBM
MQ Light client sample default message

Linux

 • Change to the directory that holds the IBM MQ Light node.js samples by typing:

cd /opt/mqlight/node_modules/mqlight/samples

Windows

 • Change to the directory that holds the IBM MQ Light node.js samples by typing:

cd C:\mqlightclt\node_modules\mqlight\samples

__ 26. Publish a message by using the send.js sample. Type the command as shown.

node send.js -s amqp://localhost:5675

The expected result is:
Connected to amqp://localhost:5675 using client-id send_879eb11
Sending to: public
Hello World!
stopping client

“Stopping client” refers to the send.js client. This client uses a different client ID.

__ 27. Return to the subscriber screen named amqp subscriber. It should now show that it
received the “Hello World” message.

__ 28. End the process in your amqp subscriber terminal window by holding the CTRL key down,
then pressing the C (CTRL-C). Keep the amqp subscriber terminal window open.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-15

Student Exercises
Note

The lecture that preceded this exercise showed a few different IBM MQ Light - AMQP scenarios:

 • IBM MQ used as the messaging provider for IBM MQ Light and AMQP applications
 • IBM MQ applications and IBM MQ Light exchanging messages
 • IBM MQ Light exchanging information with IBM MQ queue-based applications

In the previous step, you tested the first scenario by using IBM MQ as the messaging provider for
IBM MQ Light applications that exchange messages (recv.js and send.js).

You continue with the second scenario and use IBM MQ and IBM MQ Light sample programs.

The IBM MQ sample program that is used to subscribe, amqssub, runs for 30 seconds. You need to
have your terminal windows ready and publish or send within the 30 seconds. You use four
terminals: the two you have now and two new terminal windows to run IBM MQ samples.

When you test with the amqssub sample program, type the commands in all publisher/sender
terminal windows as needed, but do not press the Enter key until right after you start the amqssub
subscriber. Waiting to press the Enter key mitigates the possibility that amqssub might end before
your publications are sent.

Hint

In the next set of instructions, when you type the topic string, take care to type the exact same
string, including the double quotation marks, or the subscriptions might not match the publications.

Section 8: Set up to exchange messages between IBM MQ applications
and IBM MQ Light applications

__ 29. Follow either the Linux or Windows processes previously outlined to set up two terminal
windows: the IBM MQ publisher window, and the IBM MQ subscriber window.

__ a. Ensure that your path is set up to type IBM MQ requests. You can try typing amqssub by
itself and pressing the Enter key. If the response is a usage type error that states
that you need to supply a topic string, the path is set correctly.

__ b. You do not need to change over to the IBM MQ Light libraries.

__ c. Differentiate each terminal window by either providing a different name for Linux
terminals, or a different color for Windows terminals. For example, you might want to
select one color for the terminals with the path to the IBM MQ Light node.js samples,
and leave the terminals used for IBM MQ with the original color.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-16 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Information

The IBM MQ Light node.js applications take several parameters and use initial default values for the
remaining properties. You already used the -s identifier to pass the host and port number to the
application. In the next set of testing, you use the -t identifier to provide a topic string.

To see the usage information for the recv.js or send.js samples, use your amqp publisher window
and start either sample followed by -h. No spaces are between the “-” and the “h”. The usage for
both samples is similar. For example, to see the usage information for the send.js sample, type the
command as shown:

node send.js -h

Note

The work that is done in this second set of sections exchanges messages between IBM MQ
applications and IBM MQ Light applications.

Warning

Be careful when you type to ensure that you use the correct syntax, and double check what you
typed before you press the Enter key. By taking due time in your commands, you save time that is
wasted to resolve problems.

Section 9: Create an IBM MQ Light subscription to topic
“Sports/soccer”

__ 30. Proceed to the terminal window used for your amqp subscriber.

__ 31. If the subscriber process used earlier is still running, hold down the Ctrl key and type a C
(Ctrl-C) to end the first recv.js process.

__ 32. Use the recv.js sample to register your interest for topic string "Sports/soccer". Type
the command exactly as shown, and ensure that you leave the application in running
status. Keep all typing in a single line, even if it wraps:

node recv.js -s amqp://localhost:5675 -t "Sports/soccer"

Expected results are:
Connected to amqp://localhost:5675 using client-id recv_17dc80b
Subscribed to pattern: Sports/soccer

__ 33. Write down the client ID of your IBM MQ Light client: ___________________________
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-17

Student Exercises
Troubleshooting

If you get any errors, carefully review how the request is typed. Any minor deviation, such as an
extra space between the dash and the option parameter, causes an error and might cause the
sample application to display either Usage information or another error, depending on the problem.

Information

When you start the IBM MQ Light recv.js sample, a subscription is created in IBM MQ. This
subscription is in addition to the explicitly defined objects that you use later in this exercise.

Section 10:Use IBM MQ to publish to the IBM MQ Light “Sports/soccer”
subscription

__ 34. Proceed to your terminal window for the IBM MQ publisher.

__ 35. When you started the recv.js client, a subscription was created in IBM MQ. Before you
publish any messages, look at the subscription that was created:

__ a. Open a runmqsc session by typing runmqsc MQ15 and pressing the Enter key.

__ b. Type dis sub(*) and press the Enter key. Your results should resemble the results in
the display.

__ c. Compare the client ID of the subscription that is displayed with the client ID that you
wrote in the step where you started the recv.js subscription. The client ID values should
be the same. In the example that is shown in this exercise, the client ID is
recv_17dc80b.

AMQ8096: WebSphere MQ subscription inquired.
 SUBID(414D51204D51313520202020202020200257A65620002749)
 SUB(:private:recv_17dc80b:Sports/soccer)

__ d. Type end and press the Enter key to exit runmqsc.

__ 36. Use the amqspub sample to publish to topic “Sports/soccer”. Type the command as shown.
Ensure that you include both the topic string and queue manager name as input
parameters.

amqspub "Sports/soccer" MQ15

Expected results: amqspub starts, confirms the topic that it is publishing to, and waits for
input. If you see the results as shown, proceed to the next step to provide input.

Sample AMQSPUBA start
target topic is Sports/soccer
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-18 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 37. The subscriber for this application expects the score for the matches played. The IBM MQ
publisher is going to provide scores for teams from the United States MLS league.

__ a. Type Orlando 4, Miami 0 and press the Enter key one time.

__ b. Press the Enter key one more time to end amqspub.

__ 38. Return to the amqp subscriber to check whether it received any messages. The expected
result is the score that you published with the amqssub program: Orlando 4, Miami 0.
Leave the subscriber application in running status.

Section 11:Publish messages to both IBM MQ applications and IBM MQ
Light subscribers at the same time

Important

For this section, you type the IBM MQ and IBM MQ Light publications, but do not press the Enter
key until after the amqssub command starts subscribing to the scores.

IBM MQ is going to publish scores from teams in the MLS. IBM MQ Light is going to publish scores
for teams in the Premier League.

The person who types the commands can change the scores, but they should be kept as shown to
make it easier to compare the combined results. If each subscriber has scores from both leagues,
you know that publications from both IBM MQ and IBM MQ Light reached the subscribers.

You have a total of four windows open:

 • The amqp subscriber, which is running.
 • A window for the amqp publisher.
 • A window for the IBM MQ publisher, which uses amqspub.
 • A window for the IBM MQ subscriber. This subscriber runs for 30 seconds after started.

__ 39. Remember, your amqp subscriber is already running.

__ a. Proceed to the amqp publisher terminal window. Type the command that is shown in a
continuous line.

__ b. To send in one message, use the quotation marks "" around the actual data as shown.
Otherwise, the send.js client publishes four messages.

__ c. Use double quotation marks to state the topic name.

__ d. Do not press the Enter key until instructed:

node send.js -s amqp://localhost:5675 -t "Sports/soccer" "Aston Villa 1,
Leicester 1"
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-19

Student Exercises
__ 40. Proceed to the IBM MQ publisher terminal window. Start the publisher by typing the
command that is shown and pressing the Enter key one time. The publisher should be
running, waiting for input. You return to type the score when instructed; leave the publisher
started for now:

amqspub "Sports/soccer" MQ15

Results:
Sample AMQSPUBA start
target topic is Sports/soccer

Important

You must complete the next three steps expeditiously to ensure all the publications reach the IBM
MQ subscriber before it ends in 30 seconds.

__ 41. Proceed to your IBM MQ subscriber window. Start the IBM MQ subscriber, which runs for
30 seconds by typing the command that is shown, and leave the subscriber program in
running status:

amqssub "Sports/soccer" MQ15

Expected results:
Sample AMQSSUBA start
Calling MQGET : 30 seconds wait time

__ 42. Return to the amqp publisher window and press the Enter key. If you used the suggested
text, you sent the scores from the Premier league.

__ 43. Return to the IBM MQ publisher window, and proceed as follows:

__ a. Type: New York City FC 3, Orlando City SC 5

__ b. Press the Enter key two times to send the messages, and end amqspub. If you used the
scores as shown, this step sent the messages from the MLS league.

Note

You subscribed, and published to topic “Sports/soccer” by using both IBM MQ Light and IBM MQ.
You should see scores from the MLS and scores from the Premier League in each subscriber.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-20 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 44. Return to the amqp subscriber terminal window. You should see the Premier League
scores published by IBM MQ Light, and the MLS scores published by IBM MQ. If you used
the same scores, your results should look as shown. Leave the IBM MQ Light subscriber
process active after you review the results; do not end the subscriber.

Aston Vila 1, Leicester 1
New York City FC 3, Orlando City SC 5

__ 45. Return to the IBM MQ subscriber terminal window. You should see the Premier League
scores published by IBM MQ Light, and the MLS scores published by IBM MQ. If you used
the same scores, your results should look as shown:

Calling MQGET : 30 seconds wait time
message <Aston Vila 1, Leicester 1>
Calling MQGET : 30 seconds wait time
message <New York City FC 3, Orlando City SC 5>
Calling MQGET : 30 seconds wait time
no more messages
Sample AMQSSUBA end

Note

The work in this next set of sections also involves an exchange of messages between IBM
MQ Light applications and IBM MQ applications, but for IBM MQ applications that are
queue-based. In this sense, queue-based means applications that either put or get
messages to and from queues, but do not use publish/subscribe topics. The applications
use MQPUT and MQGET.

The queue-based scenario depends on the configuration of certain IBM MQ objects. You use
sample amqsput and amqsget programs, and the IBM MQ Light AMQP clients. You do not use
the IBM MQ publish/subscribe sample programs.

Section 12:Use the IBM MQ Light sample client recv.js to receive
messages that a queue-based application puts

Information

Messages are put to a queue. The underlying IBM MQ definitions enable the movement from queue
to the “Sports/soccer” topic string.

The components that are needed in this scenario are:

 • The amqp subscriber, recv.js
 • An IBM MQ alias queue definition that sends messages to an IBM MQ defined topic
 • An IBM MQ TOPIC definition
 • amqsput sample program to put messages to a queue
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-21

Student Exercises
__ 46. Check that the recv.js subscriber is active in terminal window. If you need to restart the
subscriber:

__ a. Ensure that you are at a window at the IBM MQ Light samples directory as done earlier
in this exercise

__ b. Type node recv.js -s amqp://localhost:5675 -t "Sports/soccer" and press the
Enter key.

__ 47. The IBM MQ objects in the next steps are already predefined. Proceed to display the
objects as indicated. Display the QALIAS object.

__ a. From a separate terminal window, other than the amqp subscriber window, start a
runmqsc session by typing:

runmqsc MQ15

__ b. Display the definition of alias queue TO.SOCCER.TOPIC by typing the MQSC command:

dis q(TO.SOCCER.TOPIC) targtype target

Expected results are:
AMQ8409: Display Queue details.
 QUEUE(TO.SOCCER.TOPIC) TYPE(QALIAS)
 TARGET(SOCCER) TARGTYPE(TOPIC)

__ c. In this definition, the type of target is a topic object, TARGTYPE(TOPIC). The name of the
topic object is SOCCER, TARGET(SOCCER).

__ 48. To complete the association of the alias queue to the subscribed client, you need to review
the topic object.

__ a. Display the topic by typing:

dis topic(SOCCER) topicstr

Expected results are:

AMQ8633: Display topic details.
 TOPIC(SOCCER) TYPE(LOCAL)
 TOPICSTR(Sports/soccer)

__ 49. Type end and press the Enter key to exit the runmqsc session. Remain on the same
terminal window for the next step.

__ 50. Put messages to alias queue TO.SOCCER.TOPIC by using sample put program, amqsput.

__ a. Type the command as shown:

amqsput TO.SOCCER.TOPIC MQ15

The program starts and waits for further input as shown:
Sample AMQSPUT0 start
target queue is TO.SOCCER.TOPIC
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-22 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ b. Type some soccer scores, for example, the scores shown in this step. You can optionally
send other text, such as “from amqsput0”.

Real Salt Lake 3, Sporting KC 0

__ c. Press the Enter key two times to end the amqsput program. The expected result is:

Sample AMQSPUT0 end

__ 51. Return to the amqp subscriber terminal window. You should see that the IBM MQ client
received the published scores. If you used the suggested scores, the received score should
be:

Real Salt Lake 3, Sporting KC 0

Section 13:Use a queue-based IBM MQ application to receive messages
that the IBM MQ Light send.js client publishes

Information

Messages are published to a topic by IBM MQ Light. The IBM MQ queue-based subscriber gets
messages from a queue. The underlying IBM MQ definitions enable the movement from the topic
string “Sports/soccer” to the queue.

The components that are needed in this scenario are:

 • The amqp publisher send.js
 • An IBM MQ local queue definition to receive the messages published
 • An IBM MQ SUB (subscription) object definition to bridge the topic string to a queue
 • amqssub sample program to get messages from a queue

__ 52. The IBM MQ objects in the next steps are already predefined. Proceed to display the
objects as indicated. Display the local queue (QLOCAL) object.

__ a. From a separate non-subscriber terminal window, start a runmqsc session by typing:

runmqsc MQ15

__ b. Display queue SOCCER.SCORES by typing:

dis q(SOCCER.SCORES)

Expected results are partially shown; all initial default values were used:
AMQ8409: Display Queue details.
 QUEUE(SOCCER.SCORES) TYPE(QLOCAL)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-23

Student Exercises
__ 53. Display the defined subscription object SOCCER.INFO by typing:

dis sub(SOCCER.INFO) topicstr dest

Expected results are:
 16 : dis sub(SOCCER.INFO) topicstr dest
AMQ8096: WebSphere MQ subscription inquired.
 SUBID(414D51204D5131352020202020202020372E9D5605342020)
 SUB(SOCCER.INFO) TOPICSTR(Sports/soccer)
 DEST(SOCCER.SCORES)
You can see that the topic SOCCER.INFO associates the topic “Sports/soccer” with the
destination (DEST) local queue named SOCCER.SCORES.

Information

This explicitly defined subscription object is present in addition to the subscription created when you
started the node.js client. If you display both subscriptions, you can see the difference. You can
display all subscriptions by typing dis sub (*) topicstr dest from a runmqsc session.

AMQ8096: WebSphere MQ subscription inquired.
 SUBID(414D51204D5131352020202020202020372E9D5665CB0D20)
 SUB(:private:recv_17dc80b:Sports/soccer)
 TOPICSTR(Sports/soccer)
 DEST(SYSTEM.MANAGED.DURABLE.569D2E37200DCB64)
AMQ8096: WebSphere MQ subscription inquired.
 SUBID(414D51204D5131352020202020202020372E9D5605342020)
 SUB(SOCCER.INFO) TOPICSTR(Sports/soccer)
 DEST(SOCCER.SCORES)

 • The first subscription displayed was created when the recv.js client started. Notice how
the destination (DEST) attribute is a managed dynamic queue.

 • The second subscription is an explicitly defined SUB object. The destination is the name
of the explicitly defined local queue object, SOCCER.SCORES.

__ 54. Exit runmqsc by typing end and pressing the Enter key.

__ 55. From the amqp publisher terminal window, use the send.js client to publish scores to the
topic “Scores/soccer” exactly as shown, including the double quotation marks, and press the
Enter key to publish:

node send.js -s amqp://localhost:5675 -t "Sports/soccer" "Liverpool 0, Man U 1"
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-24 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty
 __ 56. Get the messages from the SOCCER.SCORES local queue by using the IBM MQ sample
amqsget program. Type the command as shown. It is expected that you get more scores
than in the display:

amqsget SOCCER.SCORES MQ15

Expected results are:
Sample AMQSGET0 start
message <Liverpool 0, Man U 1>
message <Real Salt Lake 3, Sporting KC 0>
...
no more messages
Sample AMQSGET0 end

__ 57. Review the outcome. You see that you have more than one score in queue
SOCCER.SCORES because the IBM MQ objects were defined before IBM MQ put
messages to the alias queue in the previous section.

The message to the alias queue was Real Salt Lake 3, Sporting KC 0. The last
message that was published to topic “Sports/soccer” contained the score for Liverpool 0,
Man U 1. The queue for subscription SOCCER.INFO also received the messages.

Warning

If you see more messages than shown in the “Expected results” when you type the amqsget, do
not be concerned. The “Expected results” shown in the amqsget step shows two scores.
However, since the objects were defined earlier, you see other messages from previous
publications to the same topic.

You completed Exercise 11.

End of exercise
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-25

Student Exercises
Exercise review and wrap-up

In this exercise, you exchanged messages between IBM MQ applications and IBM MQ Light
applications for three different cases:

 • IBM MQ is used as the messaging provider for IBM MQ Light applications and AMQP
applications.

 • IBM MQ applications and IBM MQ Light applications exchange messages.

 • IBM MQ Light applications exchange messages with IBM MQ queue-based
applications.

To accomplish the message exchanges, you:

 • Examined the IBM MQ Light components configured in the queue manager

 • Started and checked the status of the AMQP service

 • Started and checked the status of an AMQP channel

 • Used IBM MQ V8.0.0.4 IBM MQ Light server and the sample node.js IBM MQ Light
client application recv.js to subscribe to a topic of interest

 • Used IBM MQ V8.0.0.4 IBM MQ Light server and the sample node.js IBM MQ Light
client application send.js to send information to interested subscribers

 • Used the sample IBM MQ publish/subscribe application amqspub to publish messages
of interest to subscribed IBM MQ applications and IBM MQ Light application clients

 • Used the sample IBM MQ publish/subscribe application amqssub to subscribe to
messages of interest that might proceed from either IBM MQ applications or IBM MQ
Light application publications

 • Examined the IBM MQ QLOCAL and SUB objects necessary for a queue-based
application to receive messages of interest from an IBM MQ Light application message
producer

 • Used sample IBM MQ program amqsget to get messages, which an IBM MQ Light
producer publishes, from a queue

 • Examine the IBM MQ QALIAS and TOPIC objects necessary for a queue-based
application to put messages on a queue that can be sent to an interested IBM MQ Light
client

 • Use a sample IBM MQ application amqsput to put messages to a queue destined to
interested IBM MQ Light subscriber applications

Warning

Before any attempt to edit the node.js samples in the “If you want to learn more” steps that follow,
ensure that you make a copy of the recv.js and send.js files. If you edit and corrupt the node.js
samples without a backup, you might jeopardize the ability to complete this exercise.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-26 IBM MQ V8 Development © Copyright IBM Corp. 2016

Student Exercises
V10.1

EXempty

Information

If you want to learn more about the node.js program code that is used in this lab exercise, you can
edit the recv.js and send.js samples, and review the code.

If you are interested in using one of other languages other than node.js, you can see the IBM MQ
Light developerWorks site at: https://developer.ibm.com/messaging/mq-light/

 • To view the node.js examples in the Linux platform, you can use:

 - The vi editor from a terminal window.

 - The gedit utility from the desktop. The icon can be found to the far right of the
Terminal icon. The gedit icon shows as a notepad with a pencil

 • To view the node.js examples in the Windows platform:

 - Use the notepad++ icon to the left of your desktop.

 - Close any notices to update the notepad++ utility.

 - If you attempt to right-click and use the Open option, sometimes the code attempts
to run and shows garbled text. For this reason, the option to use notepad++ is
suggested.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2016 Exercise 9. Connecting IBM MQ Light applications to IBM MQ 9-27

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-28 IBM MQ V8 Development © Copyright IBM Corp. 2016

V10.1

backpg

Back page

	Front cover
	Contents
	Trademarks
	Exercises description
	Exercise 1. Working with IBM MQ to find your message
	Section 1: Determine the status of queue managers in your server
	Section 2: Ensure that both queue managers have a stated dead-letter queue, and channel authentication is set to disabled
	Section 3: Review the queue and channel definitions for MQ01
	Section 4: Define queues and channel objects in queue manager MQ01
	Section 5: Examine the objects that you defined in queue manager MQ01
	Section 6: Put and get messages from the queues
	Section 7: Get the message put to the alias queue
	Section 8: Define queues and channel objects for queue manager MQ03
	Section 9: Anticipate the places where your message might be found
	Section 10: Put messages to remote queue TO.MQ03 in queue manager MQ01
	Section 11: Start channel MQ01.MQ03 on queue manager MQ01
	Section 12: Put messages to remote queue TO.MISSING.Q
	Section 13: Check whether local queue NOT.THERE exists in MQ03
	Section 14: Check the IBM MQ error logs
	Section 15: Alter alias queue FREQ.CHANGED.Q to point to queue TO.MQ03

	Exercise 2. Getting started with IBM MQ development
	Section 1: Compile and run a C program
	Section 2: Define and review queues EX2PERS, EX2NONPERS, and alias queue TO.PERS
	Section 3: Examine the putmsg.c and cmqc.h header code
	Section 4: Put a message to non-persistent alias queue TO.PERS in queue manager MQ01
	Section 5: Change program twoqput.c to open and put the same message to a second queue.
	Section 6: Add the MQOPEN for the second queue to the program
	Section 7: Add the MQPUT for the second queue
	Section 8: Add the MQCLOSE for the second queue
	Section 9: Test the updated twoqput application with the MQMD Persistence attribute set to MQPER_PERSISTENCE_AS_Q_DEF
	Section 10: Test the updated twoqput application with the MQMD Persistence attribute set to MQPER_PERSISTENT
	Section 11: Does the MQMD Persistence attribute set to MQPER_PERSISTENT supersede the alias queue persistence?
	Section 12: Resume the test with the MQMD Persistence attribute set to MQPER_PERSISTENT
	Section 13: Test the updated twoqput application with the MQMD Persistence attribute set to MQPER_NOT_PERSISTENT
	Section 14: Review the connection authentication initial value in the cmqc.h header
	Section 15: Display the queue manager connection authentication settings
	Section 16: Test the authentication code with the MQSAMP_USER_ID variable
	Section 17: Repeat the test but do not provide a valid password
	Section 18: If the MQCNO version number is set to 1, what happens?

	Exercise 3. Working with MQOPEN and queue name resolution, MQPUT, and MQMD fields
	Section 1: Review the MQCONNX and MQOPEN queue manager name use in qnmres.c
	Section 2: Check or start queue managers MQ01 and MQ03, and channel MQ01.MQ03
	Section 3: Test the qnmres program with the MQOPEN MQOD queue name set to EX3.SAME.QNAME and the MQOPEN MQOD queue manager name set to blanks
	Section 4: Alter program qnmres to set the MQOD queue manager name to MQ03
	Section 5: Test the qnmres program with the MQOPEN MQOD queue name set to EX3.SAME.QNAME, and the MQOPEN MQOD queue manager name set to MQ03
	Section 6: Review the crtdynq.c program source
	Section 7: Run the first test of the program by using the option to allow the queue manager to generate the full dynamic queue name
	Section 8: Change and test program crtdynq to create a dynamic queue name with a specified prefix
	Section 9: Alter crtdynq and test to use a user-generated queue name
	Section 10: Update program exprep.c (copied from putmsg.c) to set expiry and request a COA and an expiry report.
	Section 11: Review, set up, and test
	Section 12: Put messages in queue EX3.CAPX.REQ and observe the expiration behavior when the lowest expiry value is set on the queue definition
	Section 13: Put messages in queue EX3.REQUEST and observe the expiration behavior when an expiry value is not set on the queue definition
	Section 14: Review the report messages by using the amqsbcg formatted browse sample
	Section 15: Review the report messages by using IBM MQ Explorer

	Exercise 4. Correlating requests to replies
	Section 1: Back up application ex4req.c
	Section 2: Review application ex4req.c
	Section 3: Type the code necessary to create a report message and preserve the original message MsgId and CorrelId in the report message
	Section 4: Compile and test the ex4req application
	Section 5: Confirm that the MsgId of the request and report messages match
	Section 6: Backup application ex4repl.c
	Section 7: Put a few messages to queue EX4REPL
	Section 8: Review the base ex4repl.c source
	Section 9: Make necessary additions to ex4repl.c
	Section 10: Baseline what messages you have now
	Section 11: Compile and test the ex4repl application
	Section 12: Check the MsgId and CorrelId values
	Section 13: Review the ex4match.c code sections already implemented
	Section 14: Set up the queue object descriptor names, and queue manager names
	Section 15: Set up the MQGET for queue EX4REPL to get messages by the correlation identifier
	Section 16: Compile and test the ex4match application

	Exercise 5. Commit and backout review
	Section 1: Locate the sample commit and backout application
	Section 2: Observe the manual tracking of resources outside IBM MQ
	Section 3: Review the MQCMIT and MQBACK function calls

	Exercise 6. Asynchronous messaging review
	Section 1: Check the callback function
	Section 2: Check the asynchronous messaging-related declarations
	Section 3: Review the standard MQCONNX and MQOPEN calls
	Section 4: Find and review the callback code
	Section 5: Find and review the MQCTL invocation to start consumption of messages
	Section 6: Review how to end message consumption
	Section 7: Check for the standard IBM MQ ending function calls
	Section 8: Start the asynchronous callback sample amqscbf

	Exercise 7. Working with an IBM MQ client
	Section 1: Compile program putmsg.c to run as an IBM MQ client application
	Section 2: Check your client channel definition table (CCDT) CLNTCONN type channel
	Section 3: Start the test of the putmsgc application by using the CCDT definition
	Section 4: Check the channel status from queue manager MQ01
	Section 5: Resume the putmsgc test
	Section 6: Use a sample application to remove the message from the MQ01 EX7.LOCALQ queue
	Section 7: Set up your client to connect to queue manager MQ03 by using the MQSERVER environment variable
	Section 8: Test the putmsgc application by using the MQSERVER environment variable
	Section 9: Modify an existing IBM MQ application to use the MQCONNX call to set up connectivity to queue manager MQ01
	Section 10: Code change 1: Add extra header file that is required for MQCD structure
	Section 11: Code change 2: Declare the MQCD structure
	Section 12: Code change 3: Define hardcoded variables
	Section 13: Code change 4: Set the MQCD fields, point the MQCNO to the MQCD structure, and set the queue manager name for the MQCONNX call
	Section 14: Save changes, and compile your code
	Section 15: Test the codeconn application
	Section 16: Confirm that the message put with the codeconn application was put to queue manager MQ01
	Section 17: Use putmsgc to put another message to queue EX7.LOCALQ

	Exercise 8. Working with publish/subscribe basics
	Section 1: Back up the source code for both applications in this exercise
	Section 2: Review and change the ex8sub.c application
	Section 3: Compile and do a preliminary test of ex8sub.c
	Section 4: Review and make necessary changes to the ex8pub.c copy of putmsg.c
	Section 5: Compile and test the publisher
	Section 6: Use the runmqsc utility to check information about the managed storage that the subscription MQSUB creates
	Section 7: Use IBM MQ Explorer to check your subscription.

	Exercise 9. Connecting IBM MQ Light applications to IBM MQ applications
	Section 1: Start queue manager MQ15
	Section 2: Confirm that the AMQP capability is enabled in the queue manager
	Section 3: Start and check the AMQP service and channel MQ15.AMQP
	Section 4: Set up your windows session to work with the IBM MQ Light clients
	Section 5: Use the recv.js IBM MQ Light sample to subscribe to the default topic
	Section 6: Open a second terminal window and check the subscription
	Section 7: Use the second terminal window to publish the send.js IBM MQ Light client sample default message
	Section 8: Set up to exchange messages between IBM MQ applications and IBM MQ Light applications
	Section 9: Create an IBM MQ Light subscription to topic “Sports/soccer”
	Section 10: Use IBM MQ to publish to the IBM MQ Light “Sports/soccer” subscription
	Section 11: Publish messages to both IBM MQ applications and IBM MQ Light subscribers at the same time
	Section 12: Use the IBM MQ Light sample client recv.js to receive messages that a queue-based application puts
	Section 13: Use a queue-based IBM MQ application to receive messages that the IBM MQ Light send.js client publishes

