

ICAS (Enterprise Remote Monitoring)

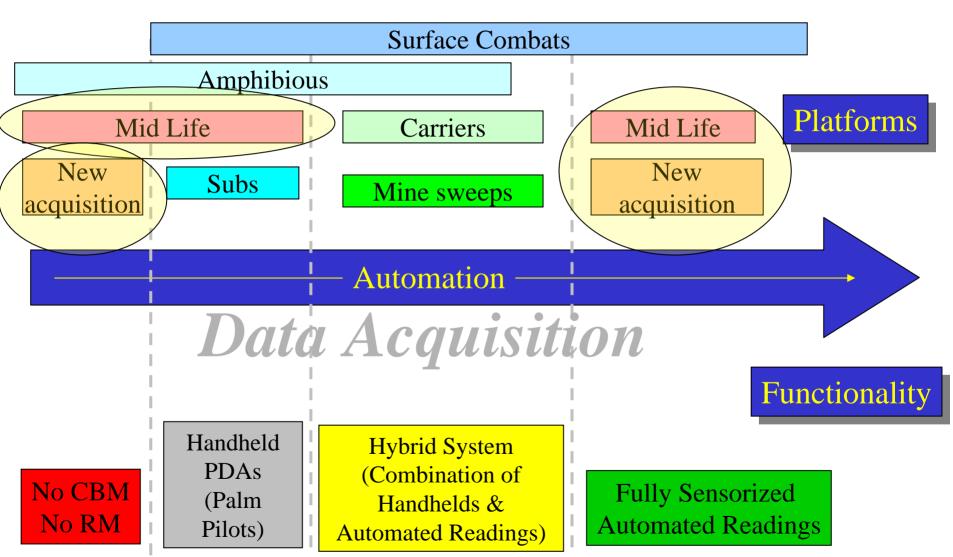
DoD Maintenance Symposium

13 Nov 2007

Statement A: Approved for Public Release; Distribution is unlimited.

Michael DiUlio NAVSEA 05Z3

michael.diulio@navy.mil

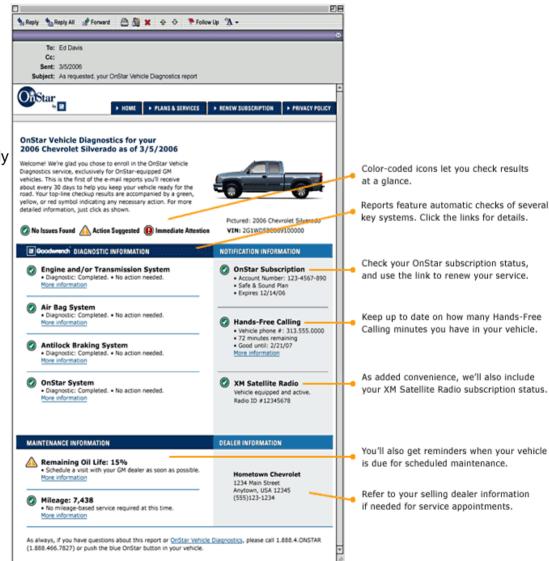

https://icas.navsses.navy.mil

https://mels.navsses.navy.mil

(202) 781-3566

Navy's CBM/RM Challenge

Commercial Industry using Remote Diagnostics

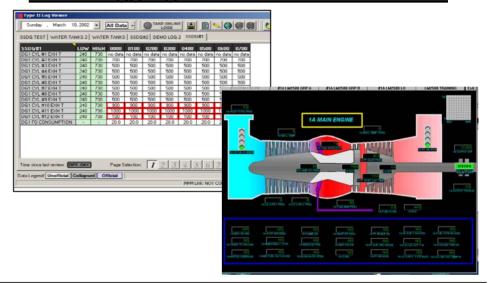

OnStar Vehicle Diagnostics

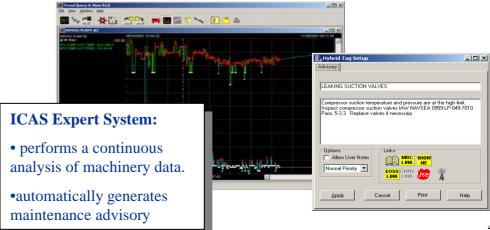
Subscribers receive monthly e-mail updates on the condition of the vehicle's key operating systems.

Condition and time-based maintenance recommendations are included.

Approximately every 30 days, the vehicle automatically transmits diagnostic data on the following systems:

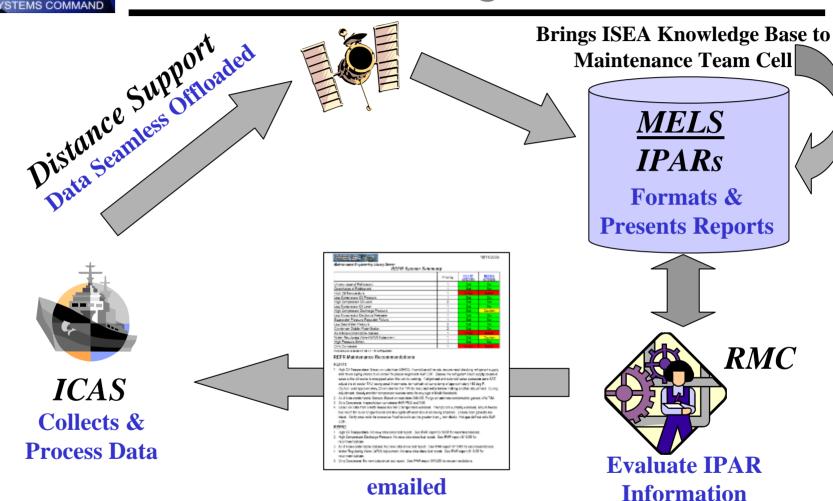
- Emissions Systems
- Air Induction System
- Fuel Management System
- Engine Cooling System
- Throttle Control System
- Variable Valve Timing System
- Ignition System including Misfire Detection
- Active Fuel ManagementTM/Displacement on Demand
- Engine Electrical System
- Transmission Control System
- Antilock Braking System
- Traction Control System and StabiliTrak® (where applicable)
- Supplemental Restraint System including Airbag Deployment Mechanisms and related sensors
- OnStar System




ICAS Capabilities - Afloat

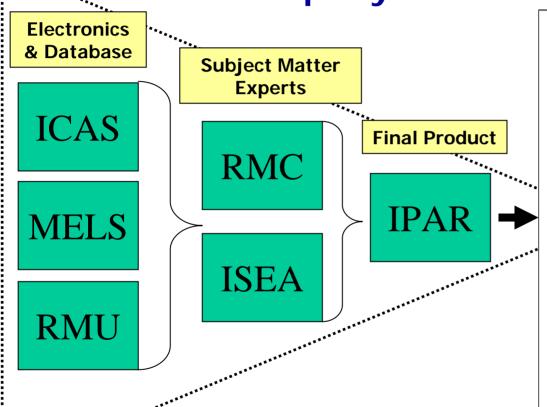
- CBM implementation tool
 - **Machinery Data Trending**
 - Rules based expert system
 - Vibration Analysis
- Troubleshooting Aid
 - Rules based expert system
 - Event capture
- **Operational Assessment**
 - Material Assessment
 - Plant Situational Awareness
 - Assessment Visit Support (Availability Planning)
- A tool to enable reduced manning
- ILS
 - Access and linkage to PMS, **EOSS** and **IETMs**
- Electronic Logsheets

Data Logging / Situational Awareness



Continuous Analysis

Remote Monitoring - Ashore


"ICAS has the information that Distance Support needs."

- VADM Sullivan, NAVSEA 00

Integrated Performance Analysis Report

"Ship/System Level"

9/13/2005

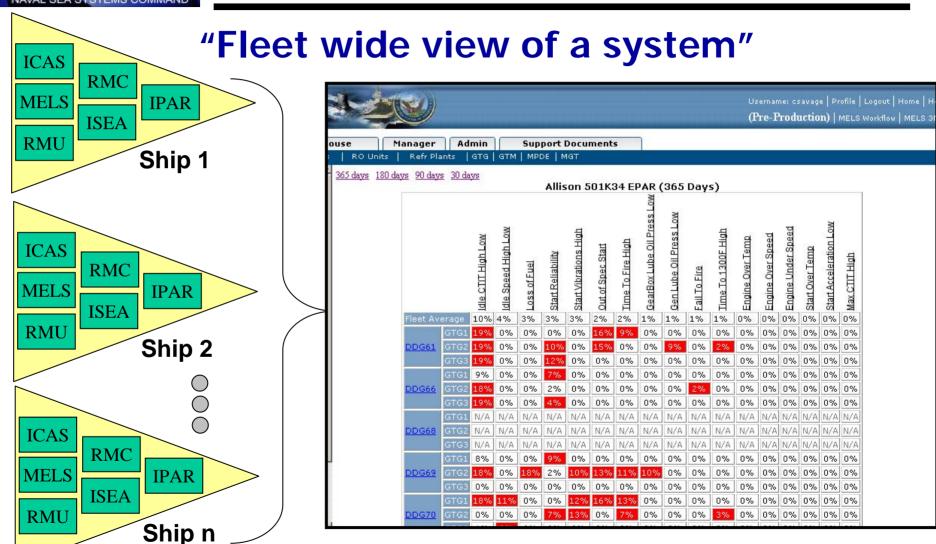
Maintenance Engineering Library Server

AC System Summary

	Priority	AC1 09/02/2005	AC2 08/26/2005	AC3 09/02/2005	AC4 09/02/2005
Refrigerant Superheat High	1	Unsat	Unsat	Unsat	Unsat
Refr. Low Suction Temp.	1	Sat	Sat	Sat	Sat
Refrigerant Charge	1	Caution	Caution	Caution	Caution
Air & Non-condensible gases	1	Sat	Sat	Caution	Sat
Leaking Condenser Divider Plate	2	Sat	Sat	Sat	Sat
Chill Water Outlet Temp.	1	Unsat	Sat	Sat	Unsat
SW Pump Operation Check	1	Sat	Sat	Sat	Sat
Dirty Condenser	1	Sat	Sat	Sat	Sat
Insufficient SW Flow	1	Unsat	Unsat	Sat	Sat
Excessive SW Flow	2	Sat	Sat	Sat	Sat
Chill Water Low Temperature	1	Sat	Sat	Sat	Sat
Oil Level	2	Unsat	Sat	Unsat	Unsat
Oil Temperature	2	Unsat	Unsat	Unsat	Unsat
Oil Thermostat	2	Unsat	Unsat	Unsat	Unsat
High/Low Oil Pressure	1	Sat	Sat	Sat	Sat
Oil Pressure D/P Switch	1	Sat	Sat	Sat	Sat
Bearing Oil Temperature	1	Caution	Sat	Unsat	Unsat
Compressor High Disch. Temp.	2	Sat	Sat	Sat	Sat

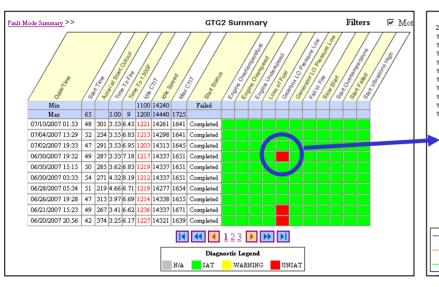
IPAR analysis is based on the York 200 Ton R114 configuration

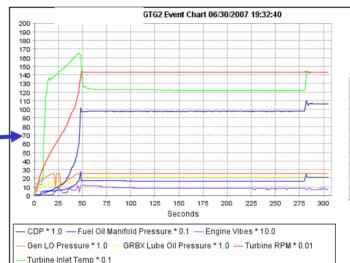
AC Maintenance Recommendations

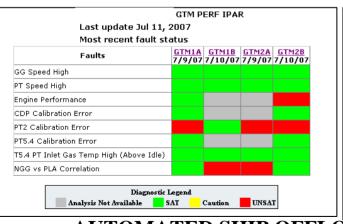

AC1:

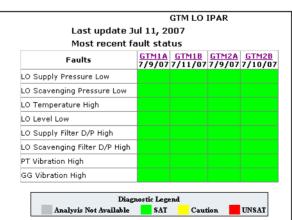
- 1. Refrigerant Superheat High: REFER TO COMMENT ON REFRIGERANT CHARGE
- Refrigerant Charge: VERIFY REFRIGERANT CHARGE BY STOPPING UNIT, COMPLETELY SECURE ALL
 CHILLED WATER AND SEAWATER FLOW TO THE PLANT, WAIT APPROX 15 MINS FOR REFRIGERANT
 SYSTEM TO EQUALIZE, THEN CHECK CHILLER'S MIDDLE SIGHTGLASS FOR REFRIGERANT LIQUID
 LEVEL. LEVEL SHOULD BE BTWN 1/2 3/4 OF THE SIGHTGLASS. ADD /TRIM REFRIGERANT CHARGE IAW
 T/M.

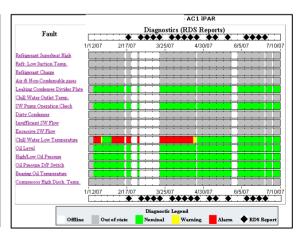
"The right maintenance, at the right time, at the right cost."




Enterprise Performance Analysis Report



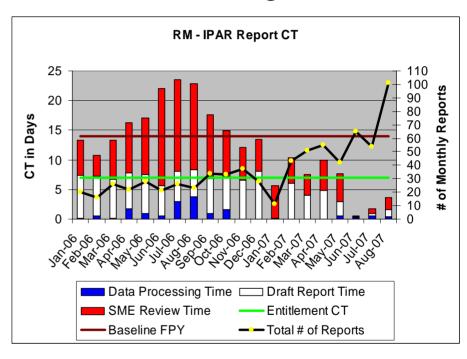

DDG 51 Class Destroyer



Parameter	Value	Low Limit	High Limit		
Start Time	49		65		
Accel at Start Cutout	287				
Time To Fire	3.33		5.00		
Time To 1300F	7.18		9		
Idle CTIT	1217	1100	1200		
Idle Speed	14337	14240	14440		
Max CTIT	1651		1725		
Start Status	Completed	Failed			

AUTOMATED SHIP OFFLOAD (DS + ICAS' RMU)

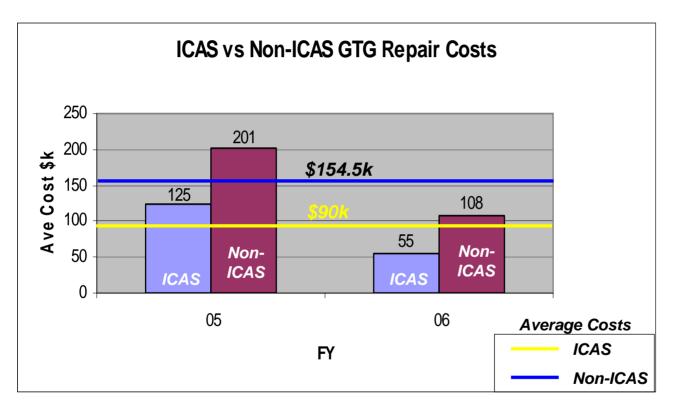
	TICIONITIE DE DIE		, I TOTAL TE	<u> </u>							
		,		15-Jul-	8- Jul-	1-Jul-	24- Jun-	17- Jun-	10- Jun-	3-Jun-	27- May-
	SHIPS Configured for DS	<u>HULL</u>	NIAPS Version	07	07	07	07	07	07	07	07
7	DDG 51 Class Destroyer	DDG51 Class	1x	3	6	4	7	1	4	3	4


SWE Remote Monitoring

• IPAR Summary

Sep 06 - Aug 07

- 12 System IPARs complete
 - MPDE, GTM, GTG, AC, HPAC, LPAC, EVAP, RO, Refer, etc
- 2871 Ship data submittals
 - High Month: Aug 07: 361
- 81 Separate Ships
 - 91% ICAS Surf Ships
 - High Month: Jun 07: 45
- 554 IPARs were released
 - High Month: Aug 07: 101
- Business Rules
 - Currently optimizing process via SWE
 - Process Metrics presented to SWE BOD


SWE Bridge Plot

Remote Monitoring is an Integral Part of the Surface Warfare Enterprise

CNSF GTG Metric Study

Two-Year 1B4B Cost Averages

- •ICAS Average Per-Ship Cost = \$90k per year
- Non-ICAS AveragePer-Ship Cost =\$154.5k per year

Maintenance Savings Can Be Realized Using The ICAS System

COMMONALITY

• The Integrated Condition Assessment System (ICAS) is the poster child for Fleet Commonality

- Surface Combatants (60/100)

- Amphib & Minesweeps (24/34)

- Carriers (6/11)

- The same ICAS software is utilized on all installations
 - Enterprise class based system training
 - Shared logistics costs
 - Shared system support costs
 - Shared implementation costs

A Cross Platform, Common Solution

Various Sources of Requirements

Legacy Fleet

- ✓ Log Sheets
- ✓ Trends
- ✓Events.

DDG Mod

- ✓ Client Sever
- ✓ Thin Client

SEA 08

- ✓ Relational Database
- ✓10,000 Sensors

DDG 1000

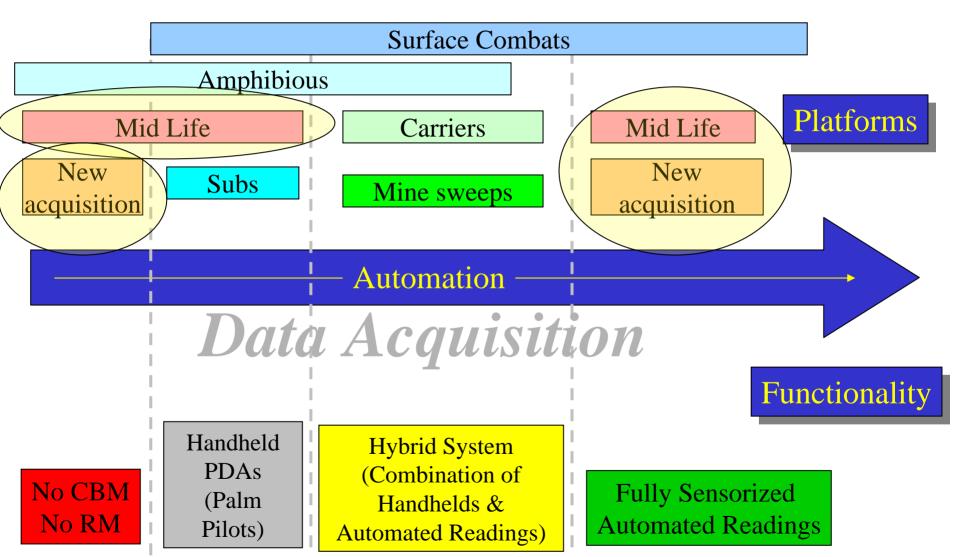
- **✓**TSCEI
- ✓ Diagnostics

LCS

- ✓ Data Qualification
- ✓ Remote Monitoring

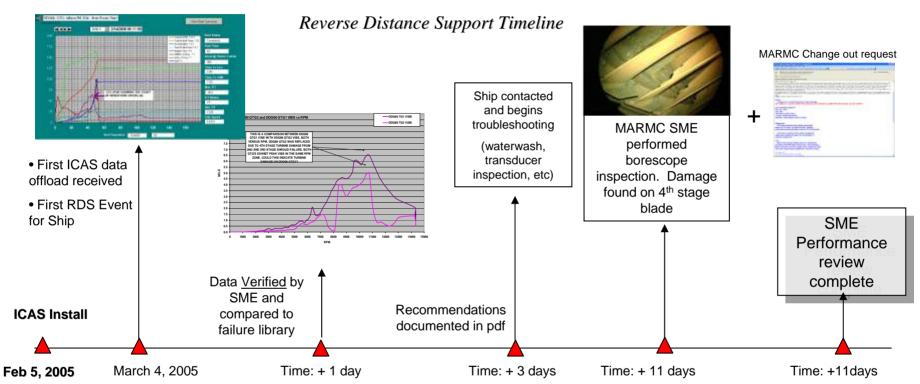
Enterprise Remote Monitoring (eRM)

- **✓**Commonality
- ✓ Reduced Life Cycle Costs
- ✓ Shared/Reduced Development Costs
- ✓ Reduced Installation Costs
- ✓ Reduced In Service Costs



Enterprise Remote Monitoring "The Path to the Vision"

Navy's CBM/RM Challenge



Backup Slides

DDG 66 GTG High Startup Vibrations

Problem Description

- High Startup Vibes on GTG#1
- Identified During RDS event 4 March 2005
- This is the first data offload and first RDS event for ship

Analysis performed

- High vibes compared to DDG80 GTG high vibe problem that resulted in engine replacement due to 4th Stage turbine blade damage
- Vibe signature matched and suspected 4th stage turbine damage on GTG#1

Action Taken

- Ship notified (in POM period) and begins troubleshooting
- MARMC visits ship after water wash and troubleshooting complete
- MARMC performs borescope inspection during connection of independent vibration gear

Results\Benefits

- Borescope revealed, (as suspected), 4th stage turbine blade damage
- MARMC recommended engine replacement based on damage and ship schedule