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ABSTRACT: In this research, we process low spatial resolution satellite images (MODIS) for integrated multi-
temporal monitoring of ice in selected lakes in Switzerland. Lake ice is important for climate research and is con-
sidered one of the Global Climate Observing System’s (GCOS) Essential Climate Variables (ECVs). The aim of our
project is to detect whether a lake is frozen or not. Four of the target lakes are Sihl, Sils, Silvaplana and St. Moritz,
showing different characteristics regarding area, altitude, surrounding topography and freezing frequency, describing
cases of medium to high difficulty. From the satellite sensor MODIS with daily temporal resolution, several spectral
channels are used, both reflective and emissive. The low-resolution MODIS bands with 500m and 1000m Ground
Sampling Distance (GSD) are super-resolved to 250m resolution and co-registered prior to the analysis. Digitized
lake outlines after generalization using Douglas Peucker Algorithm are back-projected on to the image space. As
a pre-processing step, the absolute geolocation accuracy of the lake outlines is corrected by matching the projected
outlines to the images. Only the cloud-free pixels which lie completely inside the lake (clean pixels) are analyzed. We
formulate the lake ice detection as a two-class (frozen, non-frozen) semantic segmentation problem, but also analyze
the three-class distinction where bare ice is separated from snow-covered ice, due to their different spectral properties.
The most useful MODIS channels to solve the problem are identified with xgboost, while the classification is done
with (non-linear) Support Vector Machines (SVM). The proposed method is tested on MODIS data from the cold
winter 2011-12 and summer 2012 and we achieve >95% accuracy on all the four target lakes.

1. INTRODUCTION

(a) Lake Sihl (b) Lake Sils (c) Lake Silvaplana (d) Lake St. Moritz

Figure 1. Four target lakes in Switzerland (source: myswitzerland.com).

Inland water bodies, especially lakes, are of considerable importance in climate change research and global warming
studies. Lake ice can indirectly offer hints on alterations in physical and biological ecosystem. Monitoring the patterns
in freezing of lakes (including duration and extent of ice) can provide clues on climate change and global warming.
This is recognized in the status of the Global Climate Observing System (task T10). In 2007, MeteoSwiss published
the first national inventory of the most important climate observations in Switzerland, including observations of lake
ice as part of the essential climate variable lakes. There exist already observations and data from local authorities,
publications etc., however they are not systematic and come from different, uncoordinated and not secured sources.
Traditionally, on-shore observers collected the information on lake ice, recording the visible ice-edge. Over the past
two decades the number of field stations declined, due to lack of budget and/or human resources. Thus, MeteoSwiss
initiated the project integrated monitoring of ice in selected Swiss lakes (Figures 1, 2) for an integrated multi-temporal
monitoring of lake ice, using not only satellite images, but also exploring the possibilities of Webcams and in-situ
measurements. The project aims to monitor a number of target lakes and detect the extent of ice and duration of lake
ice, and in particular the freezing/thawing dates, with focus on the integration of various input data and processing
methods. As part of this research, in this work, low spatial resolution (250− 1000 m) but high temporal resolution
(1 day) satellite images from MODerate-resolution Imaging Spectroradiometer (MODIS) sensors are used. Several
spectral channels are utilized, both reflective and emissive (thermal). The target lakes include (in decreasing area
from about 11.3 to 0.78 km2): Sihl, Sils, Silvaplana, and St. Moritz. These lakes have variable area (very small to
middle-sized), altitude (low to high) and surrounding topography (flat/hilly to mountainous). They freeze often, and
cover medium to high difficulty cases for Alpine lakes (Table 1). The developed methods are expected to generalize
to other similar or easier lake conditions in the Alps and beyond.



(a) (b)
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Figure 2. (a) Terra MODIS acquisition on 28 March 2012, 09 : 55 with region in and around Switzerland outlined
in blue rectangle (b) MODIS band 2 (250m GSD) image covering region Switzerland and neighborhood with sub-
regions around Zürich and Graubünden marked using yellow and violet rectangles respectively (c) Zoomed view
of region around Zürich with green outlines around the target lakes Sihl (bottom), Greifen (top left) and Pfäffiker
(top right) (d) Zoomed view of region around Graubünden with green outlines around the lake Sils (left), Silvaplana
(middle) and St. Moritz (right).

Table 1. Characteristics of the four lakes being monitored.

Lake Sihl Lake Sils Lake Silvaplana Lake St. Moritz
Area (km2) 11.3 4.1 2.7 0.78

Altitude (m) 889 1797 1791 1768
Freezing Frequency medium high high high

Our contributions. Firstly, we solved the problem of ice detection in selected Swiss lakes using MODIS satellite
images with non-linear SVMs. Secondly, we have done a study to estimate the absolute geolocation accuracy of
the MODIS sensor during the period of winter 2011-12. Thirdly, we have explored the recent algorithm by Lanaras
et al. (2017) to super-resolve the low resolution channels to 250m, which effectively performs similar to bilinear
interpolation.

2. RELATED WORK

Lake remote sensing. The potential of different remote sensing sensors covering varying time periods and spatial
coverage to measure the occurrence of lake ice was demonstrated by several investigations (Maslanik and Barry,
1987, Palecki and Barry, 1986, Wynne and Lillesand, 1993). A comprehensive overview (Dörnhöfer and Oppelt,
2016) on the recent advances in lake remote sensing addresses lake ice phenology. The review and also focuses on
lake properties such as water transparency, biota, water temperature and bathymetry. The survey primarily discusses
challenges and potential advantages of lake ice monitoring using remote sensing data. The review suggests that even-
though remote sensing techniques are unable to capture all indicators used in lake ecology, or to match the granularity
of details as in-situ measurements, they certainly well support these sparsely distributed in-situ measurements with
spatially and temporally more frequent data. Some studies on lake ice exist for Germany (Bernhardt et al., 2012),
Austria and Hungary (Soja et al., 2014), as well as Spain (Sánchez-López et al., 2015).

MODIS-based approaches. For the region of southwest Alaska, inter-annual variation in the intensity and duration
of lake ice, snow cover and vegetation index have been studied using MODIS imagery for the period 2001-2007
(Spencer et al., 2008). The work focused on 6 lakes and had an interesting conclusion that for a given lake, the ice-on
dates varied in timing and duration, while the ice-off dates were more or less consistent. However, the percentage of



ice cover was interpreted manually, which clearly is a drawback when moving towards an operational system with
repeatable results. On the other hand, an automated monitoring system (Tschudi et al., 2008) incorporated spectral
unmixing of the MODIS surface reflectance product to derive the daily melt pond cover over sea ice in the Chukchi
Sea region near Alaska for the summer of 2004. For the Arctic region, spectral unmixing was used to retrieve multi-
annual data sets of melt pond fraction and sea ice concentration from MODIS data (Rösel et al., 2012). Three surface
types: open water, melt ponds and snow and ice were distinguished. Artificial neural networks were also adopted
to speed up the process. For the period 2000-2014, variations of annual Minimum Snow and Ice (MSI) extent over
Canada and neighboring landmass were derived from MODIS 250m images (Trishchenko et al., 2016). Cooley and
Pavelsky (2016) proposed an automated ice detection methodology from MODIS imagery which exposed spatial and
temporal patterns in Arctic river ice breakup. This work explored the breakup timing on the Mackenzie, Lena, Ob
and Yenisey rivers for the period 2000 till 2014. They also demonstrated that MODIS imagery could be used to
differentiate thermal and mechanical breakup events. The MSI extent thus estimated showed fairly good consistency
and was compared with the Randolph Glacier Inventory. In the recent past, a probabilistic approach was proposed
for mapping landfast ice in the Canadian Arctic region using MODIS (Trishchenko et al., 2017). The approach is
based on multi-temporal analysis of clear sky composites generated thrice a month from MODIS images. Pixel time
serie are analyzed from April till September to produce the snow/ice flag. A probability is generated from these flag
sequences, which is further utilized to analyze the landfast ice and its year-to-year variability.

Other satellite image-based approaches. Along with MODIS, Ice Mapping System (IMS) data was used to moni-
tor daily ice cover changes in the lakes in Quebec region, Canada using a one-dimensional thermodynamic ice model
(Brown and Duguay, 2012). The work concluded that MODIS outperforms IMS for estimation of ice-on due to finer
resolution. Weber et al. (2016) used Advanced Very High Resolution Radiometer (AVHRR) satellite data to study
ice phenology in the European lakes. An automated sensor-independent two-step extraction technique was proposed
which utilized both near-infrared reflectance and infrared thermal values. Recently, Sütterlin et al. (2017) put forward
a single-channel retrieval approach to detect lake phenology in Swiss lakes using the fine resolution I bands of the Vis-
ible Infrared Imaging Radiometer Suite (VIIRS) sensor on board Suomi National Polar-orbiting Partnership (NPP).
Trishchenko and Ungureanu (2017) performed an inter-comparison of MODIS and VIIRS for mapping snow and ice
extent over the Canadian landmass. The preliminary comparison performed for the period summer 2014 revealed
that the rescaled VIIRS I-bands performed fairly close to the downscaled MODIS 250-m imagery. The difference in
seasonal Minimum Snow/Ice (MSI) extent between VIIRS and MODIS was reported to be less than 0.4%.

3. DATA

Terra MODIS. MODIS is a passive imaging spectroradiometer with 490 detectors, arranged in 36 spectral bands
that are sampled across the visible and infrared spectrum. The multi-spectral data is available in three different spatial
resolutions 250m, 500m, and 1000m and temporal resolution of 1 day. In our analysis, we used the following three
MODIS products: MOD02: the level 1B data set with calibrated and geolocated aperture radiances, MOD03: the
geolocation product containing geodetic coordinates, ground elevation, solar and satellite zenith and azimuth angle,
MOD35: the 48-bit fractional cloud mask product.

Useful MODIS channels. Either because of the presence of stripes or saturation, many channels of MODIS are not
directly useful. Out of the 36 available channels, twelve were selected as possibly useful, through visual inspection.
This set includes eight reflective (R) and four emissive (E) channels with different spatial resolutions. Details of the
twelve selected channels are shown on Table 2.

Table 2. Spatial resolution (Res) and spectral bandwidth (BW) of the 12 potentially useful reflective (R) and emissive
(E) MODIS spectral channels selected after visual inspection.

Band b1 b2 b3 b4 b6 b17 b18 b19 b20 b22 b23 b25
Type R R R R R R R R E E E E

Res (m) 250 250 500 500 500 1000 1000 1000 1000 1000 1000 1000

BW (µm) 0.62−
0.67

0.84−
0.88

0.46−
0.48

0.55−
0.57

1.63−
1.65

0.89−
0.92

0.93−
0.94

0.92−
0.97

3.66−
3.84

3.93−
3.99

4.02−
4.08

4.48−
4.55

3.1 Super-Resolution

The different resolutions of the various MODIS bands pose the following challenge: a direct analysis of the data
will deliver results at the lowest available resolution. A possible way around this problem is to infer the lower
resolution bands in the highest available resolution. This procedure is usually termed multispectral super-resolution
and is a generalization of pan-sharpening. The aim of these methods is to exploit the underlying information of all
bands and obtain an image with high spatial and spectral resolution. This is possible by building on the assumption



that the discontinuities observed at the highest spatial resolution should be also present at lower resolutions. We
thus take three different methods to increase the resolution of the 500m and 1000m bands to 250m; simple bilinear
interpolation, ATPRK (Wang et al., 2015) and SupReME (Lanaras et al., 2017). ARTPK (area-to-point regression
kriging) is a method that uses regression modeling to incorporate fine spatial resolution in the lower resolution bands.
It does not have any important parameters to be set. However, it only accepts one high resolution input as either
a single band or an average of the available high-res bands. The high resolution bands of MODIS (b1 and b2) are
visually different and thus averaging them is not suitable. For ATPRK we only use b2 as high-res input, because it
lies in the NIR spectrum and it is especially useful for this lake application, as due to the properties of water the lake
outlines are well visible. SupReME is a method that inverts the linear spectral mixing model, with adaptive, edge-
preserving regularisation. It solves the inversion problem for all the bands simultaneously, and was applied with the
following empirical parameter settings. The subspace dimension is set to p = 7, the spatial regularization as λ = 0.2
and the subspace weights q = [1 1.5 8 15 15 20 20]. An example with the 1000m resolution band b17 comparing the
above methods is presented in Figure 3. As can be seen ATPRK and SupReME create sharper results than the bilinear
interpolation. However, SupReME results in a smoother image without visible noise. Since there is no ground truth
the results can only be judged qualitatively. For further processing, the bilinear interpolated and super-resolved with
SupReME are used. We find empirically that we obtain better qualitative results if we only process the reflective
bands (from the useful set). This is likely due to the fact that the emissive discontinuities do not fully coincide with
the reflective ones, not fulfilling the assumption mentioned above. Thus, we run SupReME for all the dates in two
configurations: including (SupReMERE ) and excluding (SupReMER) the emissive bands in the processing.

(a) Original band B17 1KM (b) Bilinear interpolation (c) ATPRK (d) SupReME

Figure 3. Super-resolution example of reflective band b17, showing a region with lakes in Switzerland. Left: the
original 1000m band, middle left: the bilinearly interpolated band to 250m, middle right: the result of ATPRK, right:
the result of SupReME.

4. METHODOLOGY

4.1 Pre-Processing

Cloud-mask generation. A further challenge of optical satellite image analysis is the lack of sufficient data. This
issue is primarily due to occlusion by clouds. A binary cloud mask is derived from the MODIS 48-bit fractional cloud
mask product. We follow a conservative approach and combine the cloudy and uncertain clear classes of the NASA
product into a cloud mask. We used the LDOPE software tool provided by the MODIS land quality assessment group
(Roy et al., 2002) to perform masking of bits and the MRTSWATH (MODIS Reprojection Tool Swath, n.d.) software
to re-project to the reference UTM32N co-ordinate system. An example image and the derived binary mask are shown
in Figure 4a and Figure 4b respectively. Each MODIS channel has 16-bit grey values of which the invalid pixels have
value above 32767. These invalid pixels are also masked out. Only the cloud-free and valid pixels are processed
further. The MODIS cloud masks are not perfect, still we rely on them for the moment and defer more accurate cloud
masking to future work. For the moment, obvious mistakes (for instance very bright pixels on a lake in summer not
marked as clouds) were removed manually before further analysis. Note also, the cloud mask is available only at a
spatial resolution of 1000m. In order to process tha data at higher resolution (250m), the mask was upscaled with
nearest neighbour interpolation.

Lake outline generation and absolute geolocation correction. The original outlines of the lakes were downloaded
from overpass-turbo.eu. These outlines were further generalized by Douglas Peucker Algorithm (Douglas and
Peucker, 1973). A comparison of the outlines pre- and post- generalization is shown in Figure 5. The generalized,
digitized lake outlines are projected on to the images to guide the search and estimation of lake ice. We followed the
approach by Aksakal (2013) to estimate and correct the absolute geolocation accuracy. Two dates per month were
analyzed from December 2011 till March 2012. For this, we used many lakes, covering the whole area of Figure
2b. Fifteen lakes with a minimum area of 500 pixels (in 250m spatial resolution) in and around Switzerland were

overpass-turbo.eu


(a) (b) (c) (d)

Figure 4. (a) MODIS band 19 with 1000m GSD, (b) binary (white-cloudy, black-not cloudy) cloud mask combin-
ing the cloudy and uncertain clear categories, (c) Back-projected outline of lake Sihl (02.08.2012) before absolute
geolocation correction, (d) after geolocation correction.

incorporated in the analysis. The analysis was performed only if the following two conditions were met : firstly,
minimum 40% of each lake area should be cloud-free and secondly, large (partially) cloud-free lakes should exist in
at least three out of four corners of the image. The results vary slightly among lakes as well as dates. For each date,
the mean translational offsets in both x and y directions were computed by averaging, weighted by the number of
cloud free pixels per lake. In the end, the average final shifts were computed. Final shifts were estimated as −0.75
pixel and −0.85 pixel in x and y directions respectively. Figure 4c and Figure 4d shows the back-projected outlines
of lake Sihl before and after applying the correction of +1 pixel (approximated to the nearest integer value) each in x
and y directions respectively.

(a) Lake Sils (b) Lake St. Moritz (c) Lake Silvaplana (d) Lake Sihl

Figure 5. Comparison of original lake outlines (blue) and the generalized outlines (yellow). All the images are at
250m resolution but at different zoom levels for better visualization. Best viewed on screen.

Clean pixels vs. mixed pixels. All the pixels which lie completely inside the lake are termed as clean, pixels which
only partially lie on the lake as mixed. The scope of this paper is limited to the analysis of clean pixels.

4.2 Grey Value Statistics

(a) NF, b2 (b) F+S, b2 (c) F+I, b2 (d) NF, b22 (e) F+I, b22 (f) F+S, b22

Figure 6. Lake Sils: comparison of lake pixel grey values for Non-Frozen (NF), Frozen and Ice (F+I), Frozen and
Snow covered ice (F+S) on reflective band 2 (b2, 250m GSD) and emissive band 22 (b22, 1000m GSD). Best viewed
on screen.

When a lake is frozen, the water can occur in two different states: firstly, the water freezes and appears as ice and
secondly, snow falls and persists on top of the ice. We consider them as two separate sub-classes since the reflective
and emissive properties of ice and snow are different. This difference is also reflected in the emissive and reflective
spectral responses in different bands of the multi-spectral satellite images. An example for lake Sils is shown in Figure
6. For demonstration, band 2 (reflective, 250m resolution) and band 22 (emissive, 1000m resolution) are analyzed
for 3 different cases: water, ice and snow on ice. Figure 6a shows that in band 2, the lake pixels appears to be darker
when non-frozen (28.08.2012). On the other hand, Figure 6b illustrates that the pixels are brighter in band 2 when
frozen and snow exists (06.02.2012). However, it can be observed from Figure 6c that the pixels are darker in band



2 when the lake is frozen, but not covered with snow (03.01.2012). This ice vs. water confusion can be overcome
with the help of the emissive bands. Figures 6d, 6e and 6f shows that in emissive bands, the non-frozen pixels appear
brighter as opposed to the frozen pixels (both snow and ice cases).

0 0.5 1 1.5 2

·104

0
100
200

grey value

fr
eq

ue
nc

y

0 0.5 1 1.5 2

·104

0
100
200

grey value

fr
eq

ue
nc

y

0 0.5 1 1.5 2

·104

0
100
200

grey value

fr
eq

ue
nc

y

Frozen
Non-Frozen

0 0.5 1 1.5 2

·104

0
100
200

grey value

fr
eq

ue
nc

y

0 0.5 1 1.5 2

·104

0
100
200

grey value

fr
eq

ue
nc

y
0 0.5 1 1.5 2

·104

0
100
200

grey value

fr
eq

ue
nc

y

0 0.5 1 1.5 2

·104

0
100
200

grey value

fr
eq

ue
nc

y

0 0.5 1 1.5 2

·104

0
100
200

grey value

fr
eq

ue
nc

y

0 0.5 1 1.5 2

·104

0
100
200

grey value

fr
eq

ue
nc

y
0 0.5 1 1.5 2

·104

0
100
200

grey value

fr
eq

ue
nc

y

0 0.5 1 1.5 2

·104

0
100
200

grey value

fr
eq

ue
nc

y

0 0.5 1 1.5 2

·104

0
100
200

grey value
fr

eq
ue

nc
y

Figure 7. Frozen (Jan, Feb 2012) vs Non-Frozen (Jul, Aug 2012) statistics of clean cloud-free pixels in 12 selected
MODIS channels for Lake Silvaplana. First row (b1, b2, b3), second row (b4, b6, b17), third row (b18, b19, b20), fourth
row (b22, b23, b25).
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Figure 8. Snow vs Ice statistics of clean cloud-free pixels in 12 selected MODIS channels for Lake Silvaplana. First
row (b1, b2, b3), second row (b4, b6, b17), third row (b18, b19, b20), fourth row (b22, b23, b25).



Table 3. Ground truth information on the cloud-free dates processed in 2012.

Lake Sihl Lake Sils Lake Silvaplana Lake St. Moritz
Period Days Period Days Period Days Period Days

Frozen 06 - 25 Feb 7 Jan, Feb 23 Jan, Feb 23 Jan, Feb 23

Non-Frozen Aug 13 Jul, Aug 26 Jul, Aug 21 Jul, Aug 22

Frozen vs. non-frozen pixels. The distributions of both frozen (January and February 2012) and non-frozen (July
and August 2012) pixels in all the 12 selected bands of MODIS for lake Silvaplana are shown in Figure 7. It can
be clearly seen that, the four emissive bands hold information to separate frozen and non-frozen pixels. Another
important cue which can be observed from Figure 7 is that the distribution of frozen pixels especially in the first six
reflective bands is bi-modal, probably one mode each from ice and snow pixels. To validate this bi-modal ice-snow
hypothesis, the frozen data was relabeled as snow or ice based on visual interpretation. The respective distributions
were computed for lake Silvaplana and are displayed in Figure 8. It is now evident that the cues to separate ice from
snow are present in the reflective bands.

4.3 Semantic Segmentation

Out of the 12 probably useful spectral bands, the most significant channels to be used in the final feature vector were
determined with the xgboost (Chen and Guestrin, 2016) technique. The result is shown in Figure 9. It can be observed
that not all 12 channels are needed to separate frozen and non-frozen pixels. This result substantiates our observations
from Figure 7.

Sihl Sils Silvaplana St. Moritz
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Figure 9. Bar graph showing the significance of each of the 12 channels for frozen vs non-frozen pixels separation
using the xgboost algorithm. The dates displayed on Table 3 were used to select the frozen and non-frozen pixels.

We model the lake ice detection as a 2-class classification problem and use a non-linear Support Vector Machine
(SVM) (Cortes and Vapnik, 1995) with Radial Basis Function (RBF) kernel. From Figure 9, we infer that the emissive
channels are highly correlated and any one of them should be able to separate frozen pixels from their non-frozen
counterparts, when fed into the SVM. The classifier is trained using only cloud-free clean pixels. Furthermore, we
use SVM regression with the same kernel to estimate the probability for each pixel to be frozen. The probability is
formed by feeding the regressor output through a sigmoid function.

5. RESULTS AND DISCUSSION

Ground truth. Human observations, media and police reports were used to determine the days on which the lakes
were frozen. Ice cover changes gradually, so on some days lake can be only partially frozen. To ensure reliable
reference data, we have in this work analyzed only the dates in which the lakes were completely frozen. The three
target lakes in Graubünden region were definitely frozen during the first two months in 2012. However, lake Sihl was
frozen for a lesser period. Details on the collected ground truth are listed on Table 3.

4-fold cross-validation. In k-fold cross-validation setup, the dataset will be randomly partitioned into k equal sized
subsets. One of the k subsets will be used as test set, the remaining k− 1 sets for training. This process is then
repeated k times so that each data will be used for testing once. All experiments were 4-fold cross-validated, where
the partitioning is done based on the date, to minimize temporal correlation between train and test folds.

5.1 Quantitative Results

Only the clean lake pixels were used to train the SVM model. Moreover, the classification results of only the clean
pixels are taken into account for quantitative analysis. The mixed pixels have been ignored. Table 4 demonstrates that
for all four target lakes, we obtain almost 100% classification accuracy with an SVM with RBF kernel. We have also



experimented with combinations of different MODIS bands as feature vectors and the results are presented on Table
4. In addition, we have done an experiment to study the efficacy of SupReME (Lanaras et al., 2017) super-resolution
approach. For this, we used all 6 low-resolution reflective bands (b3, b4, b6, b17, b18, b19) as feature vectors after
super-resolving them.

Table 4. Comparison of 4-fold cross-validated SVM results with different feature vectors and super-resolution strate-
gies. SupReMERE and SupReMER respectively indicates the configurations including and excluding the emissive
bands. The overall accuracy and kappa coefficients are both specified. The dates displayed on Table 3 were used in
this analysis.

Feature Super Resolution
Sihl Sils Silvaplana St. Moritz

accuracy kappa accuracy kappa accuracy kappa accuracy kappa
b2 Bilinear 98.04% 0.953 77.03% 0.517 73.79% 0.488 86.6% 0.731

all 12 bands Bilinear 94.21% 0.868 98.63% 0.973 99.23% 0.985 96.65% 0.932

b3,4,6,17,18,19 Bilinear 99.56% 0.991 99.32% 0.986 99.78% 0.996 97.77% 0.955

b3,4,6,17,18,19 SupReMERE 94.35% 0.875 99.80% 0.996 100.0% 1.0 98.88% 0.978

b3,4,6,17,18,19 SupReMER 100.0% 1.0 98.56% 0.971 99.56% 0.991 98.32% 0.966

b22 Bilinear 100.0% 1.0 100.0% 1.0 100.0% 1.0 100.0% 1.0
b2,22 Bilinear 100.0% 1.0 100.0% 1.0 100.0% 1.0 100.0% 1.0

In the analysis till now, we have collected non-frozen data from the months July and August 2012 (Table 3) which are
rather less challenging as opposed to non-frozen dates from March 2012 (Sihl) and November 2011 (Sils, Silvaplana,
St. Moritz). In order to double-check our results, we have also experimented with these challenging non-frozen dates,
while the frozen dates remains the same. The results are displayed on Table 5 where the bands 2 (reflective) and 22
(emissive) were used to form the feature vector after standardization. Bands 2 and 22 originally have 250m and 1000m
resolutions respectively. Band 22 was super-resolved to 250m resolution prior to analysis. Different super-resolution
methodologies are also compared.

Table 5. Comparison of 4-fold cross-validated SVM results on challenging dates with different super-resolution
strategies. SupReMERE indicates the configuration including the emissive bands.

Feature Super Resolution
Sihl Sils Silvaplana St. Moritz

accuracy kappa accuracy kappa accuracy kappa accuracy kappa
b22 Bilinear 98.64% 0.973 98.12% 0.961 95.96% 0.915 92.57% 0.844

b22 SupReMERE 95.74% 0.917 95.40% 0.904 90.76% 0.808 97.30% 0.944

b2,22 Bilinear 95.10% 0.894 97.85% 0.956 99.94% 0.998 100.0% 1.0
b2,22 SupReMERE 97.89% 0.956 96.68% 0.925 94.74% 0.891 95.95% 0.916

Effect of SupReME. It can be inferred from Table 4 and 5 that the results of SupReME are comparable with bilinear
interpolation. SupReMER performs slightly better than SupReMERE for lake ice detection because the reflective and
thermal edges are different.

5.2 Qualitative Results

Qualitative results are presented in Figure 10. The first column displays the area near the lake with the outlines
overlaid. The respective cloud masks are shown in the second column, with cloudy pixels indicated in green. The
third column displays the pixel-wise probability for being frozen, as derived from SVM regression. The more red
the pixel means the more probable to be frozen. The final column delineates the pixel-wise classification results with
red and black being frozen and non-frozen respectively. The first row shows the test case when lake Sihl was frozen
while the second row when non-frozen. The third and fourth rows displays the results when lake Sils was frozen and
non-frozen respectively.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have tackled lake ice detection as a pixel-wise, two-class semantic segmentation problem. We have
used only MODIS images and processed them with standard non-linear SVM classification. The most useful MODIS
channels to solve the problem, as determined with xgboost, turn out to be the reflective b2 channel and the emissive
b22 channel. We have analyzed four different lakes in Switzerland, and obtain near-perfect results in distinguishing



Si
hl

Fr
oz

en

(a) (b) (c) (d)

Si
hl

N
on

-F
ro

ze
n

(e) (f) (g) (h)

Si
ls

Fr
oz

en

(i) (j) (k) (l)

Si
ls

N
on

-F
ro

ze
n

(m) (n) (o) (p)

Figure 10. (a, e, i, m) Histogram equalized image of band b2 in and around the lake, (b, f, j, n) Cloud-mask indicating
cloudy pixels in green, (c, g, k, o) Confidence measure from SVM regression where the more red the pixel the more
probable to be frozen, (d, h, l, p) SVM classification result indicating pixels predicted as frozen in red and non-frozen
in black.

frozen pixels from their non-frozen counterparts. Our results can be directly applied to other lakes with similar con-
ditions, in Switzerland as well as other regions. In the paper, we have limited the analysis to clean pixels, which
lie completely inside the lake. In future work, we plan to extend our approach to incorporate the mixed pixels, and
include a larger range of more lakes and dates in the analysis.
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