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Statement of Task

• Goal: Assess science priorities and affordable 

mission concepts & options in preparation for the 

next Decadal Survey

• Objectives:

– Identify mission concepts that can address science 

priorities based on what has been learned since the 2013-

2022 Decadal

– Identify potential concepts across a spectrum of price 

points

– Identify enabling/enhancing technologies

– Assess capabilities afforded by SLS

– Identify opportunities for international collaboration
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Study Plan

Next Steps

• Schedule additional 

Team-X session.

• Aerospace Corporation 

executes ICE.

• Continue community 

meetings (DPS, AGU).

• Coordinate with 

OPAG’s Roadmap to 

Ocean Worlds (ROW) 

effort. 



Mission Study Team

NASA Interface: Curt Niebur ESA Interface: Luigi Colangeli

Study Lead: John Elliott JPL Program Office: Kim Reh

Mission Design
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Science Definition Team
Co-Chairs: M. Hofstadter/A. Simon

Members: See next slide

Other Organizations
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Science Traceability Matrix

• All elements of the Ice Giant systems (interior, atmosphere, 

rings, satellites, magnetosphere) have important science 

objectives.

• Determining the interior structure and bulk composition of the ice 

giants is identified as the highest-payoff science. 
- Has the greatest impact on our understanding of ice giants and exoplanets. 

- Scientific and technological advances, and improved trajectories, give these 

measurements higher priority than they had in the Decadal Survey. 

• Identified 12 key science investigations that potentially drive 

mission architectures (next slide).

• Identified >50 lower-priority science investigations.

• All science objectives consistent with and traceable to the 

decadal survey.

Status: Science (1/2)



STM Top	12	Science	Investigations

• Interior structure of the planet.

• Bulk composition of the planet (including isotopes and noble gases).

Remaining 10 in alphabetical order:

• Atmospheric heat balance.

• Internal structure of satellites.

• Inventory of small moons, including those in rings.

• Planetary dynamo.

• Planet’s tropospheric 3-D flow.

• Ring and satellite surface composition.

• Structures and temporal variability in rings.

• Shape and surface geology of satellites.

• Solar wind-magnetosphere-ionosphere interactions and plasma 

transport.

• Triton’s atmosphere: origin, evolution, and dynamics.



Identified 18 relevant instruments (counting an atmospheric 

probe as an instrument) to address top science objectives.

• Listed in back-up slides.

• Model orbiter payloads on next slide.

Status: Model Instruments (1/2)

Model payload for the 

probe:

• Mass spectrometer,

• ASI (pressure and 

temperature profile),

• Hydrogen ortho-

para instrument,

• Nephelometer.
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Minimum orbiter payload to achieve significant science is 50 kg.

Status: Model Instruments (2/2)

• NAC,

• Doppler Imager,

• Magnetometer.

If Doppler measurement deemed too risky, replace with Vis/NIR imaging spec. 

A 90 kg orbiter payload addresses all priority science.  Add

• Vis/NIR imaging 

spectrometer,

• Radio and Plasma 

suite,

• Thermal IR,

• Mid-IR (Uranus) or UV 

(Neptune) 

spectrometer.

A 150 kg orbiter payload addresses all science goals.  Add

• WAC,

• USO,

• Energetic Neutral 

Atoms,

• Dust detector,

• Langmuir probe,

• Microwave 

sounder/Mass spec.

Pre-Decisional	Information	-- For	Planning	and	Discussion	Purposes	Only
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A-Team Study and Science Meeting held 29-31 March 2016 

• A-Team studies are more than a back-of-the-envelope calculation, but 

not a detailed point design.

• Dozens of mission architectures considered (see backup slides).  

Preliminary estimates were made of the science potential of each, and 

preliminary cost estimates made for 18 of them. 

Follow-on SDT work refined the “science value” estimates for 32 

mission candidates of interest (see next slide).

Nine mission architectures chosen for further consideration. 

• Uranus flyby with probe.

• Uranus orbiter (with and w/o probe).

• Neptune orbiter (with and w/o probe).

• Triton orbiter.

• Uranus and Neptune flybys (two s/c) with at least 1 probe.

• Uranus orbiter and Neptune flyby (two s/c).

• Uranus and Neptune orbiters (two s/c) with at least 1 probe.

Status: Architectures (1/4)



Status: Architecture and Sci. Value



Status: Architecture and Sci. Value



Three Team-X (higher fidelity) studies chosen.

• Can use them to refine A-Team results for other missions. 

• Uranus orbiter concept with 50 kg science payload plus probe  
- Solar Electric Propulsion.

- Launch in 2030, 11-year cruise to Uranus.

- 4 years of operation at Uranus.

- Probe release 60 days prior to orbit insertion.

- Probe relay down to 10 bars.

- Long orbital tour allows s/c to enter ring-plane with 10 satellite flybys.

• Neptune orbiter concept with 50 kg science payload plus probe  

- Solar Electric Propulsion.

- Launch in 2030, 13-year cruise to Neptune.

- 2 years of operation at Neptune.

- Probe release 60 days prior to orbit insertion.

- Probe relay down to 10 bars.

- One flyby of Nereid, >5 of Triton.

• Uranus orbiter concept with 150 kg science payload (no probe)
- Same trajectory as 50 kg case.

Status: Architectures (3/4)



All three studies appear to be towards the top of our target 

cost range.  Will perform at least one more Team-X study 

this summer.

• Uranus orbiter with probe, but using chemical propulsion may be 

done. 
- Modest savings and easier conditions for probe relay.

- Increase cruise time to Uranus ~1 year, with a reduction in time in orbit.

• Uranus flyby with probe will be done.

Status: Architectures (4/4)

• Dual-planet mission of interest 

because of its high science 

value, but not considered for 

next study due to expected 

high cost. 

Pre-Decisional	Information	-- For	Planning	and	Discussion	Purposes	Only
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Launches possible every year

• Studied chemical and SEP missions.

• Optimal launches in 2027-2033 time frame.

Status: Trajectories

• Uranus flight times 10-11 

years, possible with Atlas V 

or larger.

• Neptune flight times 12-13 

years, prefer Delta-IVH or 

larger.

• SLS reduces flight times by 

~2 years (highly variable), 

and allows much larger s/c. 



• eMMRTG’s would be enabling.

• Aerocapture is at least an enhancing technology.  

Work being done at Purdue to assess performance.

Status: Technology

• Atmospheric entry 

systems being 

assessed by Ames.

• Small satellites and 

CubeSats are 

potentially useful, but 

are not enabling.

Pre-Decisional	Information	-- For	Planning	and	Discussion	Purposes	Only



Study is proceeding well.  We have a science traceability matrix, 

have identified model payloads, and a wide range of mission 

architectures to consider.  Three point designs are completed.

Costing exercise is not yet complete.  Preliminary indications are:
• It is challenging to have a mission near $1 billion (FY15 dollars).

• A range of options are near the $2 billion point.

• Significantly higher science return for missions costing more than $2 billion.

It is part of our charter to identify opportunities for international 

collaboration.  That work has not been done yet.

Summary

Public website (hosted by LPI) to share information with the 

broader community: 

http://www.lpi.usra.edu/icegiants/mission_study/

Full report to NASA and ESA expected in the Fall.  Community 

updates at DPS and AGU.



Backup Slides



• Science objectives based on 2013-2022 Decadal Survey, 

revised for developments in science and technology. 

• Study to address both Uranus and Neptune systems.

• Identify missions at a range of costs up to $2B (FY15$).

• Perform an independent cost assessment and 
reconciliation.

• Identify model payload for each candidate mission.  Also 

identify instruments not in the payload that address 

science objectives.

Ground-Rules Highlights (1/2)



• Identify clean-interface roles for international 

partnerships.

• Launch dates from 2024 to 2037.

• Evaluate use of realistic emerging enabling technologies.

• Identify benefits/cost savings if SLS were available. 

Ground-Rules Highlights (2/2)



Architectures	in	A-Team	Study	(1/2)
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Architectures	in	A-Team	Study	(2/2)

Neptune	Flyby
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Note:	Flyby	S/C	can	
be	instrumented	SEP	
stage

Neptune	Architectures



Instruments

The Science Traceability Matrix for the top-12 science objectives 

identified 18 instruments. 

• Mass spectrometer on orbiter,

• Vis/NIR imaging spectroscopy,

• Thermal-IR bolometer/Vis photometer 

(can replace bolometer with imager) ,

• Narrow angle camera,

• Radio and Plasma waves,

• Plasma low-energy particles,

• Plasma high-energy particles,

• Magnetometer (with boom) ,

• Doppler imager,

• UV imaging spectrometer,

• Energetic neutral atoms detector,

• Dust detector,

• Ground penetrating radar,

• Langmuir probe,

• USO (for radio science),

• Microwave sounder,

• IR imaging spectrometer,

• Probe.

Top 4 instruments for maximizing # of science objectives addressed:  NAC, 

Magnetometer, Vis/NIR imaging spectrometer, UV spectrometer.

Top 4 instruments for addressing highest priority science:  Doppler imager, magnetometer, 

USO, probe.



STM Top	12	Science	Investigations

• Constrain the structure and characteristics of the planet's interior, including layering, locations of 

convective and stable regions, internal dynamics.

• Determine the planet's bulk composition, including abundances and isotopes of heavy elements, 

He and heavier noble gases.

Remaining 10 in pseudo-alphabetical order:

• Determine the planet's atmospheric heat balance.

• Determine the density, mass distribution, internal structure of major satellites and, where possible, 

small inner satellites and irregular satellites.

• Obtain a complete inventory of small moons, including embedded source bodies in dusty rings and 

moons that could sculpt and shepherd dense rings.

• Improve knowledge of the planetary dynamo.

• Measure planet's tropospheric 3-D flow (zonal, meridional, vertical) including winds, waves, storms 

and their lifecycles, and deep convective activity.

• Determine surface composition of rings and moons, including organics; search for variations 

among moons, past and current modification, and evidence of long-term mass exchange / volatile 

transport.

• Characterize the structures and temporal changes in the rings.

• Map the shape and surface geology of major and minor satellites.

• Investigate solar wind-magnetosphere-ionosphere interactions and constrain plasma transport in 

the magnetosphere.

• Determine the composition, density, structure, source, spatial and temporal variability, and 

dynamics of Triton's atmosphere.


