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Abstract

The classical serendipity finite element spaces suffer from poor approximation on nondegenerate,
convex quadrilaterals. In this paper, we develop the direct serendipity spacesDSr, a new family of
finite elements for r ≥ 2 that has the same number of degrees of freedom as the classical space but
maintains optimal approximation properties. The set of local shape functions forDSr contains the
full set of polynomials of degree r defined directly on each element. Because there are not enough
degrees of freedom, exactly two supplemental rational functions are added to each element.
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1. Introduction

The serendipity finite elements on rectangles, especially the 8-node biquadratic and the 12-
node bicubic ones, have been well studied for many years. They appear in almost any introductory
reference on finite elements, e.g., [1, 2, 3], and they are provided by software packages both in
academia [4] and industry [5]. The two dimensional serendipity elements appear in the periodic
table of the finite elements of Arnold and Logg [6], where they are denoted as SrΛ

0 (they form
the precursor to the Brezzi-Douglas-Marini spaces (SrΛ

1) [7]). Compared with the full tensor
product Lagrange finite elements, serendipity finite elements use fewer degrees of freedom, and
they are usually more efficient. It was not until recently, however, that a general definition of the
serendipity finite element spaces of arbitrary order on rectangles in any space dimension was given
by Arnold and Awanou [8, 9].

The serendipity finite element spaces, denoted Sr of index r ≥ 1, work very well on com-
putational meshes of rectangular element domains, but it is well known that their performance is
degraded by bilinear distortion when the space is third order accurate and above, i.e., r ≥ 2. This
is not the case for tensor product Lagrange finite elements [10, 11, 12]. To be more precise, let
the element domain E be a nondegenerate, convex quadrilateral. We can view it as the image
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of the unit square Ê under the bilinear map FE : Ê → E. Mapped serendipity elements do not
approximate to optimal order r + 1 on E, but the image of the full space of tensor product poly-
nomials maintains accuracy on E. Rand, Gillette, and Bajaj [13] recently introduced a new family
of Serendipity finite elements based on generalized barycentric coordinates of index r = 2 that is
accurate to order 3 on any convex, planar polygon.

In this paper, we introduce a new family of finite element spaces, each of which has the same
number of degrees of freedom as the corresponding classical serendipity finite element space but
also works well on general non-degenerate convex quadrilaterals. We call these new elements
direct serendipity finite elements, and denote them by DSr, r ≥ 2. They are direct in the sense
that the shape functions contain a full set of polynomials (not tensor product polynomials) defined
directly on the element. Because there are not enough degrees of freedom, two supplemental
rational functions need to be added to each element, much like as is done for the mixed finite
element spaces af Arbogast and Correa [14].

We construct the new family of direct serendipity finite elements of any order r ≥ 2 in the
next section. In Section 3, we discuss the H1-conforming implementation of the new elements.
We make some remarks on approximation and stability of the new spaces in Section 4. We close
with some numerical results comparing the performance of the mapped serendipity, the new direct
serendipity, and the mapped tensor product Lagrange spaces in the last section.

2. Construction of the Direct Serendipity Elements

Let Pr(Ω) denote the space of polynomials of degree up to r on Ω ⊂ R or R2, and let Pr,r denote
the tensor product space of polynomials on R2 of degree up to r in each coordinate variable.

Let the reference element Ê be [0, 1]2 and E be a closed, convex quadrilateral which does not
degenerate to a triangle or a line. Define the bilinear and bijective map FE : Ê → E as

FE(x̂) = FE(x̂, ŷ) = x1
c(1 − x̂)(1 − ŷ) + x2

c x̂(1 − ŷ) + x3
c x̂ŷ + x4

c(1 − x̂)ŷ ∈ P1,1, (1)

where xi
c, i = 1, 2, 3, 4, are the four corner vertices of the quadrilateral (see Figure 1). The reference

element Ê and the physical element E are labeled counterclockwise, and for i = 1, 2, 3, 4, they have
edges êi and ei with outer unit normals ν̂i and νi, respectively, where ei connects xi−1

c to xi
c (interpret

x0
c = x4

c).

2.1. Auxiliary functions
We define the linear polynomials giving the distance of any point x to each edge ei, i = 1, 2, 3, 4,

in the normal direction as

λi(x) = −(x − xi
c) · νi, i = 1, 2, 3, 4. (2)

If x is in the interior E̊ of E, the barycentric coordinates are strictly positive, and each vanishes on
the edge which defines it.

Next we define the directional polynomials

λV(x) = λ1(x) − λ3(x), (3)
λH(x) = λ2(x) − λ4(x), (4)
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Figure 1: A reference element Ê = [0, 1]2 and counterclockwise oriented convex
quadrilateral E, with edges êi and ei and outer unit normals ν̂i and νi, respec-
tively. Corners for the physical element E are labeled as xi

c, for i = 1, 2, 3, 4.
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Figure 2: Illustration of lines λH =

0, λV =0, point x∗, and unit normal
vectors νV and νH .

which are linear functions vanishing on a “vertical” or “horizontal” line, respectively, as shown
in Figure 2. It is worth remarking that they do not necessary vanish at the mid-lines connecting
mid-points of the opposite edges. Obviously, λV(x) is negative on e1 and positive on e3, while
λH(x) is negative on e2 and positive on e4. Therefore, there exists a point x∗ ∈ E such that
λV(x∗) = λH(x∗) = 0. Combined with the convexity of the quadrilateral E, the polynomials can be
rewritten as

λV(x) = −‖ν1 − ν3‖(x − x∗) · νV , (5)
λH(x) = −‖ν2 − ν4‖(x − x∗) · νH, (6)

where νV =
ν1 − ν3

‖ν1 − ν3‖
and νH =

ν2 − ν4

‖ν2 − ν4‖
are unit vectors.

The directional rational functions are defined as

RV(x) =
λ1(x) − λ3(x)

ξVλ1(x) + ηVλ3(x)
=

λV(x)
ξVλ1(x) + ηVλ3(x)

, (7)

RH(x) =
λ2(x) − λ4(x)

ξHλ2(x) + ηHλ4(x)
=

λH(x)
ξHλ2(x) + ηHλ4(x)

, (8)

where

ξ−1
V =

√
1 − (νH · ν1)2 and η−1

V =
√

1 − (νH · ν3)2, (9)

ξ−1
H =

√
1 − (νV · ν2)2 and η−1

H =
√

1 − (νV · ν4)2. (10)

Since E is convex and does not degenerate, the coefficients ξV , ηV , ξH, and ηH are constants greater
than 1. Since λ1(x)λ3(x) , 0 and λ2(x)λ4(x) , 0 for any point x ∈ E̊, the functions RV(x) and
RH(x) are well defined on E and have linear denominators. Notice that

RV(x)|e1 = −η−1
V and RV(x)|e3 = ξ−1

V , (11)

RH(x)|e2 = −η−1
H and RH(x)|e4 = ξ−1

H . (12)

All these auxiliary functions can be calculated easily once the bilinear mapping FE is provided.
3



2.2. Construction of shape functions
It is shown in [12] that the convergence of the linear serendipity finite element space (r = 1)

does not degenerate on non-rectangular geometries. In fact, the parametric serendipity element
S1(E) and the tensor product space P1,1 on Ê mapped to E are identical. Therefore, we only
develop our new direct serendipity finite elements for indices r ≥ 2.

Recall Ciarlet’s definition [2] of a finite element.

Definition 2.1 (Ciarlet 1978). Let

1. K ⊂ Rd be a bounded closed set with nonempty interior and a Lipschitz continuous bound-
ary,

2. P be a finite-dimensional space of functions on K, and
3. N = {N1,N2, . . . ,Nk} be a basis for P′.

Then (K,P,N) is called a finite element.

A convex quadrilateral E satisfies the requirements of Property 1 for d = 2. Following [8],
we define the shape functions (a basis for P in Definition 2.1) of the direct serendipity element
based on the geometric decomposition of quadrilaterals (see Table 1). For a quadrilateral in two
dimensional space R2, the geometric objects are vertices, edges, and the interior domain, with

dimension d = 0, 1, 2, respectively. There are 22−d

(
2
d

)
objects for each dimension d. Each object

has
(
r − d

d

)
degrees of freedom (DOFs) associated to it when r − 2d ≥ 0, and otherwise there are

no DOFs associated with the object. We remark that there are no interior DOFs for r = 2, 3.

Table 1: A summary of the geometric decomposition and the degrees of freedom (DOFs) associated to each geometric
object of a quadrilateral for the serendipity element of index r ≥ 2.

dimension object object total DOFs per
name count DOFs object

0 vertex 4 4 1
1 edge 4 4(r − 1) r − 1
2 interior 1 max

(
0, 1

2 (r − 2)(r − 3)
)

max
(
0, 1

2 (r − 2)(r − 3)
)

Shape functions associated with the vertices are

φ1(x) = λ3(x)λ4(x), φ2(x) = λ1(x)λ4(x),
φ3(x) = λ1(x)λ2(x), φ4(x) = λ2(x)λ3(x).

(13)

The vertex shape functions are second order polynomials.
Next we define shape functions associated with edges e1 and e3. There are 2(r − 1) of them,

and they are

φ4+k(x) = λ2(x)λ4(x)λk−1
H (x), k = 1, 2, . . . , r − 1, (14)

φ4+(r−1)+k(x) = λ2(x)λ4(x)λV(x)λk−1
H (x), k = 1, 2, . . . , r − 2, (15)

φ4+2(r−1)(x) = λ2(x)λ4(x)λr−2
H (x)RV(x). (16)
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In a similar way we define shape functions associated with edge e2 and e4.

φ4+2(r−1)+k(x) = λ1(x)λ3(x)λk−1
V (x), k = 1, 2, . . . , r − 1, (17)

φ4+3(r−1)+k(x) = λ1(x)λ3(x)λH(x)λk−1
V (x), k = 1, 2, . . . , r − 2, (18)

φ4+4(r−1)(x) = λ1(x)λ3(x)λr−2
V (x)RH(x). (19)

The edge shape functions are regular polynomials of degree r except the last two functions in each
direction, which are rational functions (which we call supplemental functions).

Finally, there are dimPr−4 =

(
r − 2

2

)
DOFs associated with the interior of the quadrilateral,

which only appear when r ≥ 4. Let

φ4+4(r−1)+k(x) = λ1(x)λ3(x)λ2(x)λ4(x)λm
V (x)λn

H(x), (20)

m ≥ 0, n ≥ 0, m + n ≤ r − 4, and k =
1
2

(m + n)(m + n + 1) + n + 1.

The interior shape functions are polynomials of degree r.
The space of shape functions is

DSr(E) = span{φ1, φ2, . . . , φDr}, Dr =
1
2

(r + 2)(r + 1) + 2. (21)

We claim that the dimension is

dimDSr(E) =

min(2,br/2c)∑
d=0

22−d

(
2
d

)(
r − d

d

)
= 4r +

1
2

(r − 2)(r − 3) (22)

=
1
2

(r + 2)(r + 1) + 2 = dimPr(E) + 2 = Dr,

that is, for any order r ≥ 2, the dimension of the direct serendipity finite element shape function
space is Dr, two plus the dimension of the polynomials of degree r in R2. This claim will be
proven by the independence of the degrees of freedom, i.e., Theorem 2.5. The two supplemental
functions that do not belong to Pr(E) are φ4+2(r−1) and φ4+4(r−1).

2.3. Degrees of freedom
We define the DOFs (N in Definition 2.1) as a set of nodal functionals Ni defined at a nodal

point xi, i.e.,
N = {Ni : Ni(φ) = φ(xi) for all φ(x), i = 1, 2, . . . ,Dr}. (23)

For vertex DOFs, the nodal points xi = xi
c, i = 1, 2, 3, 4, are exactly the corner points of quadri-

lateral E. For edge DOFs, the nodal points are equally distributed on each edge. We choose
to number them consecutively from “bottom” to “top” or “left” to “right”, and numbered for e1,
e3, e2, and then e4. Examples for r = 2, 3, 4, 5 can be found in Figure 3. To be specific, points
x4+i, i = 1, . . . , r − 1, are distributed on edge e1 equidistantly in the direction from x1

c to x4
c , and

x4+(r−1)+i, i = 1, . . . , r − 1, are distributed on edge e3 in a similar way from x2
c to x3

c . Nodal points
5
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Figure 3: The degrees of freedom of the direct serendipity finite element space for r = 2 (top left), r = 3 (top right),
r = 4 (botton left) and r = 5 (bottom right).

x4+2(r−1)+i, i = 1, . . . , r − 1, are evenly set on edge e2 from x1
c to x2

c and x4+3(r−1)+i, i = 1, . . . , r − 1,
on edge e4 from x4

c to x3
c . For interior DOFs, find a triangle T strictly inside E and set the nodal

points the same as the nodes of the Lagrange element of order r − 4 for the triangle T . We can
label the interior nodal points as x4+4(r−1)+i, i = 1, . . . ,Dr = 1

2 (r − 3)(r − 2).
In order to prove the unisolvence of the degrees of freedom (i.e., that N is a basis for P′), we

require several lemmas. The proof of the following lemma can be found in [3, (3.1.10)].

Lemma 2.2. Let p be a polynomial of degree r ≥ 1 that vanishes on a hyperplane defined as the
zero set of a linear polynomial L. Then p = Lq, where q is a polynomial of degree r − 1.

Lemma 2.3. There exist αV , αH > 0 and βV , βH ∈ R such that, for all x ∈ E,

ξVλ1(x) + ηVλ3(x) = αV + βVλH(x), (24)
ξHλ2(x) + ηHλ4(x) = αH + βHλV(x). (25)
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Figure 4: The triangle formed by vertices A, B, and C. The quadrilateral edge e1 is on the line L1 and e3 is on L3,
and these are not parallel. The line LH is the zero set of λH . The acute angle θ1 is between L1 and LH at A. A right
triangle is formed with vertices A, B, and D, where D is on L1.

Proof. By symmetry, we need only show (24). We first suppose that e1 is not parallel to e3. As
shown in Figure 4, we can then consider the triangle bounded by the lines L1 = {x : λ1(x) = 0},
L3 = {x : λ3(x) = 0}, and LH = {x : λH(x) = 0}. It has the vertices A = L1 ∩ LH, B = L3 ∩ LH,
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and C = L1 ∩L3. Since λ1(x), λ3(x), and λH(x)/‖ν2 − ν4‖ are the distances from x to the lines L1,
L3, andLH, respectively, the barycentric coordinates on this triangle are λ1(x)/λ1(B), λ3(x)/λ3(A),
and λH(x)/

(
λH(C) ‖ν2 − ν4‖

)
. These sum to one, so after rearranging,

|AB|
λ1(B)

λ1(x) +
|AB|
λ3(A)

λ3(x) = |AB| −
|AB|

λH(C) ‖ν2 − ν4‖
λH(x), (26)

where |AB| is the length of the line segment AB. If e1 and e3 are parallel, then we have more simply
that λ1(x)/λ1(B) and λ3(x)/λ3(A) sum to one, so

|AB|
λ1(B)

λ1(x) +
|AB|
λ3(A)

λ3(x) = |AB|. (27)

Let 0 < θ1, θ3 ≤ π/2 be the acute angles defined by the lines L1 and L3 with the line LH,
respectively (see Figure 4). It can be easily verified that

sin θ1 =
λ1(B)
|AB|

and sin θ3 =
λ3(A)
|AB|

. (28)

Moreover, if τ j are unit vectors along the lines L j, for j = 1, 3,H, then

cos θ1 = |τH · τ1| = |νH · ν1| and cos θ3 = |τH · τ3| = |νH · ν3|,

and so

sin θ1 =
√

1 − cos2 θ1 =
√

1 − (νH · ν1)2 = ξ−1
V and sin θ3 = η−1

V . (29)

The result follows from this and (28) combined with either (26) or (27).

Lemma 2.4. For any k ≥ 1, the following function spaces are identical:

P1 = span {1, λH, . . . , λ
k
H, λV , λHλV , . . . , λ

k−1
H λV , λ

k
HRV},

P2 = span
{
{1, λH, . . . , λ

k
H} ⊗ {1,RV}

}
.

Moreover, the following two function spaces are also identical:

P3 = span {1, λV , . . . , λ
k
V , λH, λVλH, . . . , λ

k−1
V λH, λ

k
VRH},

P4 = span
{
{1, λV , . . . , λ

k
V} ⊗ {1,RH}

}
.

Proof. The dimension of P1 is 2(k + 1) and it is equal to the dimension of P2. From Lemma 2.3
and the definition of RV (7), we know that

λV = (αV + βVλH)RV = αVRV + βVλH RV , (30)

where αV is a strictly positive constant depending on the geometry of the element E.
We order the base of the function space P2 as

{1, λH, . . . , λ
k
H,RV , λH RV , . . . , λ

k
H RV}. (31)
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In order to prove the equivalence of the two spaces, we only need to show that the transformation
matrix M of the bases is invertible. The transformation matrix M fromP2 toP1 is a 2(k+1)×2(k+1)
matrix, and we can write it as a 2×2 block matrix, with each block being a (k + 1)× (k + 1) matrix.
It can be easily verified that M11 is an identity matrix and M12 and M21 are zero. By (30),

M =

(
I 0
0 M22

)
, M22 =


αV βV

αV βV
. . .

. . .

αV βV

1


.

The matrix M22 is upper triangular with strictly positive diagonal entries, so the transformation
matrix M is invertible and the two function spaces are the same.

In a similar way, P3 and P4 are identical as well.

We now show the unisolvence of the degrees of freedom, which completes the requirements of
Ciarlet’s Definition 2.1 for DSr(E) to be a well defined finite element, and shows dimDSr(E) =

Dr = dimPr + 2.

Theorem 2.5. Let (E,DSr(E),N) be the r-th order direct serendipity finite element defined by
(21) (i.e., (13)–(20)) and (23). If ψ ∈ DSr(E) and Nk(ψ) = 0, for all k = 1, 2, . . . ,Dr, then ψ = 0.

Proof. Since ψ ∈ DSr(E),

ψ(x) =

Dr∑
k=0

akφk(x) (32)

for some coefficients ak. The corner DOFs vanish for all φk when k > 4, and when j, k ≤ 4, j , k,
N j(φk) = 0 and Nk(φk) > 0. We conclude that ak = 0 for all k ≤ 4.

Next we consider the DOFs for nodal values on edges e1 and e3. Let the span of the shape
functions associated with these edges, i.e., those in (14)–(16), be

span {φ5, . . . , φ4+2(r−1)} = (λ2λ4)P1 = (λ2λ4)P2,

where P1 and P2 are defined in Lemma 2.4. These functions vanish on e2 and e4, and they are
polynomials of degree r on e1 and e3 by (11). To proceed, we simplify the basis of P2 for the
purposes of this proof. Construct the functions

ζ1(x) = η−1
V + RV(x) and ζ3(x) = −ξ−1

V + RV(x), (33)

and note that

ζ1 =

0 on e1,

ξ−1
V + η−1

V on e3,
and ζ3 =

−ξ−1
V − η

−1
V on e1,

0 on e3.

Therefore the functions ζ1 and ζ3 are non-zero constants on the interior of e3 and e1, respectively.
It is clear from the definition (33) that

span {1,RV} = span{ζ1, ζ3},

8



so
span {φ5, . . . , φ4+2(r−1)} = (λ2λ4)P2 = (λ2λ4) span

{
{1, λH, . . . , λ

r−2
H } ⊗ {ζ1, ζ3}

}
.

Write the new basis as

{φ′5, . . . , φ
′
4+(r−1)} = λ2λ4ζ3 · {1, λH, . . . , λ

r−2
H }, (34)

{φ′4+(r−1)+1, . . . , φ
′
4+2(r−1)} = λ2λ4ζ1 · {1, λH, . . . , λ

r−2
H }, (35)

and expand ψ as

ψ(x) =

4+(r−1)∑
k=5

bkφ
′
k +

4+2(r−1)∑
k=4+(r−1)+1

bkφ
′
k +

Dr∑
k=4+2(r−1)+1

akφk. (36)

Now for j = 5, . . . , 4 + (r − 1),

0 = N j(ψ) =

4+(r−1)∑
k=5

bk N j(φ′k), (37)

and so ψ|e1 ∈ Pr(e1) vanishes at r − 1 interior and two vertex points (see Figure 3). Thus bk = 0
when k ≤ 4 + (r − 1). Similarly, bk = 0 for 4 + (r − 1) + 1 ≤ k ≤ 4 + 2(r − 1), and so ak = 0 when
k ≤ 4 + 2(r− 1). By symmetry for edges e2 and e4, we conclude that ak = 0 for all k ≤ 4 + 4(r− 1).

If r < 4, there are no interior degrees of freedom, so we conclude that ψ ≡ 0 and we are
done. Otherwise, we know that ψ ∈ Pr(E) and ψ|e j = 0, j = 1, 2, 3, 4. Lemma 2.2 shows that ψ =

λ1λ2λ3λ4q, where q ∈ Pr−4(R2). The choice of interior nodal points Ni, i = 4 + 4(r − 1) + 1, . . . ,Dr

leads us to conclude that q ≡ 0 and then ψ ≡ 0.

The following Corollary can be easily derived from Theorem 2.5 and the dimension count (22).

Corollary 2.6. The polynomial space Pr(E) ⊂ DSr(E). Moreover, Pr(E) is the span of all φi

defined in (13)–(20) for which 1 ≤ i ≤ dimDSr(E) and i , 4 + 2(r − 1), i , 4 + 4(r − 1).

3. Implementation as an H1-Conforming Space

Following [15, pp. 104–105], we require that the quadrilateral E be shape-regular, which im-
plies that E does not degenerate to a triangle or a line. Denote by Ti, i = 1, 2, 3, 4, the subtriangle
of E with vertices xi

c, xi+1
c and xi+2

c (where x5
c = x1

c and x6
c = x2

c). We define parameters to describe
the geometry of the element E, which are

hE = diameter of E, (38)
ρE = 2 min

1≤i≤4
{diameter of circle inscribed in Ti}, (39)

dE =
√
|E|. (40)

Shape regularity requires the existence of σ∗ such that the ratio
ρE

hE
≥ σ∗ > 0. (We remark that

σ∗ exists for any single non-degenerate convex quadrilateral, but we will need these shape-regular
parameters here and in Section 4 for a mesh of elements.) It should be clear that ρE, dE, and hE

remain comparable as |E| → 0.
9



3.1. A local, nearly nodal basis for the finite element
Let ](φ j) be the number of “λ” factors in φ j, i.e., ](φ j) is equal to the polynomial degree if φ j

does not include a rational factor (RV or RH), and ](φ4+2(r−1)) = ](φ4+4(r−1)) = r. To reduce rounding
errors in the following computations, we scale the shape functions as

φ̃ j =
φ j

d](φ j)
E

, j = 1, 2, . . . , dimDSr(E). (41)

To implement H1-conforming direct serendipity elements, we need to find a proper basis for
the finite element space, i.e., one that is continuous. We observe that the interior shape functions
can be extended by zero. There are 4+4(r−1) = 4r vertex and edge degrees of freedom. Therefore,
we construct a 4r × 4r matrix A, where Ai j = Ni(φ̃ j) ∀i, j ≤ 4r. This matrix has a block structure
based on the DOFs on the vertices, edges e1 and e3, and edges e2 and e4, i.e.,

A =

A11 0 0
A21 A22 0
A23 0 A33

 , (42)

where A11 is of size 4 × 4 and A22 and A33 are of size 2(r − 1) × 2(r − 1). From the proof of
Theorem 2.5, we know that A is invertible.

We want to construct {ϕ1, . . . , ϕdimDSr(E)} as a basis for DSr(E) such that the vertex and edge
part is nodal, i.e., Nk(ϕ j) = δk j for k, j ≤ 4r. (If we can do this, the shape functions can be joined
continuously.) Assume ϕ j, j ≤ 4r, is a linear combination of only the vertex and edge shape

functions, i.e., ϕ j =

4r∑
i=1

b jiφ̃i. Since, for k, j ≤ 4r,

Nk(ϕ j) =

4r∑
i=1

b jiNk(φ̃i) =

4r∑
i=1

b jiAki = δk j, (43)

we obtain that b ji = B ji, where B = A−T . For 4r < j ≤ dimDSr(E), let ϕ j = φ̃ j.

3.2. An example
In this section, we provide an example of how to compute the direct serendipity finite ele-

ment basis functions for r = 2 on a specific element E with vertices (0, 0), (1, 0), (0.25, 0.5) and
(0.75, 0.75) (see Figures 5). The degrees of freedom for r = 2 are shown in Figure 3, i.e., there are
no interior degrees of freedom and the dimDS2(E) = 8 degrees of freedom are distributed at the
four vertices and the middle points of the four edges.

First, we calculate the auxiliary functions λ1 to λ4, λV , λH, RV and RH defined in Section 2.1.
That is,

1(x, y) =
1
√

5
(2x − y), λ2(x, y) = x,

λ3(x, y) =
1
√

10
(3 − 3x − y), λ4(x, y) =

1

4
√

5
(3 + 4x − 8y).

(44)
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Figure 5: Example element E.

We can obtain λV and λH from (3)–(4), and also define νV =

(
−0.9975
0.0709

)
and νH =

(
0.2298
−0.9732

)
from (5)–(6). From (9)–(10), we know that ξV = 1.3025, ηV = 1.0041, ξH = 1.0025 and ηH =

1.1621. Therefore, the directional rational functions RV and RH can be calculated from (7)–(8).
The functions λ1, . . . , λ4, λV , λH, RV and RH are plotted in Figure 6.

λ1 λ2 λ3 λ4

λV λH RV RH

Figure 6: Auxiliary functions for element E in Figure 5.

The shape functions φ1, . . . , φ8 are defined in (13)–(20). Easily, |E| = 0.46875 and therefore the
scaling factor dE = 0.68465. Combining the definitions in Section 2.2 and (41) (where ](φ j) = 2
∀ j), we have the scaled shape functions φ̃1, . . . , φ̃8, which are shown in Figure 7.

Finally, we set the entries of matrix A, Ai j = Ni(φ̃ j), which are

A =



0.68 0 0 0 0 0 0 0
0 1.50 0 0 0 0 0 0
0 0 0.54 0 0 0 0 0
0 0 0 0.6 0 0 0 0

0.27 0 0 0.4 0.09 −0.09 0 0
0 0.51 0.49 0 0.31 0.24 0 0

0.57 0.53 0 0 0 0 0.45 −0.39
0 0 0.22 0.37 0 0 0.1 0.1


. (45)
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φ̃1 φ̃2 φ̃3 φ̃4

φ̃5 φ̃6 φ̃7 φ̃8

Figure 7: Scaled shape functions for element E in Figure 5 when r = 2.

Therefore, matrix B = A−T can be computed, and the basis functions are

ϕ1 = 1.47φ̃1 − 1.92φ̃5 + 2.51φ̃6 − 0.99φ̃7 + 0.99φ̃8, ϕ5 = 4.87φ̃5 − 6.34φ̃6,

ϕ2 = 0.67φ̃2 − 0.62φ̃5 − 0.62φ̃6 − 0.42φ̃7 + 0.42φ̃8, ϕ6 = 1.80φ̃5 + 1.81φ̃6,

ϕ3 = 1.86φ̃3 − 1.65φ̃5 − 1.66φ̃6 − 1.95φ̃7 − 2.27φ̃8, ϕ7 = 1.19φ̃7 − 1.19φ̃8,

ϕ4 = 1.69φ̃4 − 3.30φ̃5 + 4.30φ̃6 − 2.92φ̃7 − 3.40φ̃8, ϕ8 = 4.68φ̃7 + 5.44φ̃8.

(46)

These are shown in Figure 8.

ϕ̃1 ϕ̃2 ϕ̃3 ϕ̃4

ϕ̃5 ϕ̃6 ϕ̃7 ϕ̃8

Figure 8: Basis shape functions for element E in Figure 5 when r = 2.

3.3. The global direct serendipity spaces
Let Ω ⊂ R2 be a closed polygonal domain and impose a conforming finite element partition Th

of nondegenerate, convex quadrilaterals over Ω. The global direct serendipity finite element space
of index r ≥ 2 over Th is

DSr = {vh ∈ C
0(Ω) : vh|E ∈ DSr(E) ∀E ∈ Th} ⊂ H1(Ω). (47)

12



For the partition Th, let nv, ne, and ni denote the total number of vertices, edges and quadrilaterals,
respectively. The total number of nodal points is then

dimDSr = nv + (r − 1)ne +
(r − 2)(r − 3)

2
ni.

These global nodal points can be ordered and expressed as xh
j , with Nh

j being the corresponding
nodal linear functional for xh

j . A global basis forDSr is given by

Bh = {ψh
j , 1 ≤ j ≤ dimDSr}, (48)

where each ψh
j combines local basis functions associated with the same node.

4. Error Estimation and Stability

In Section 3, we defined a practical basis for DSr which is nodal only at vertex and edge
degrees of freedom, but simply extends the internal shape functions by zero (in order to reduce the
computational cost). However, by Theorem 2.5, we know there exists a fully nodal basis of DSr

(i.e., one for which every basis function vanishes on all but one nodal function). Abusing notation,
we denote it simply as {ψ1, . . . , ψdimDSr} in this section.

Definition 4.1. Given the r-th order direct serendipity element (E,DSr(E),N) and the nodal basis
ofDSr(E), {ψE

1 , . . . , ψ
E
dimDSr(E)}, let the operator IE : L2(E)∩C0(E) −→ DSr(E) be interpolation.

That is, for a given function v ∈ L2(E) ∩ C0(E), IE v ∈ DSr(E) and

IE v =

dimDSr(E)∑
j=1

N j(v)ψE
j =

dimDSr(E)∑
j=1

v(x j)ψE
j .

By Corollary 2.6, the interpolation operator preserves polynomials, so we have an important
property [2, pp. 121–123] expressed in the following lemma.

Lemma 4.2. The interpolation operator IE is polynomial preserving, i.e., ∀ψ ∈ Pr(E), IE ψ = ψ.
Moreover, ‖IE‖ is bounded in the L2-norm.

With Lemma 4.2, the shape regularity defined in Section 3, and the inclusion Corollary 2.6,
we have the analogue of the Bramble-Hilbert [16] or Dupont-Scott [17] lemma for local error
estimation.

Lemma 4.3. There exists a constant C > 0 such that for all functions v ∈ H s+1(E) (H1(E)∩C0(E)
if s = 0),

|v − IE v|m,E ≤ C hs+1−m
E |v|s+1,E, m = 0, 1 and s = 0, 1, . . . , r, (49)

where | · |m,E is the Hm(E) seminorm.
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Definition 4.4. Given the finite element spaceDSr with its basis nodal Bh, let the operator Ih be
global interpolation. That is, for a given function v ∈ L2(Ω) ∩ C0(Ω), Ih v ∈ DSr and

Ih v =

dimDSr∑
j=1

Nh
j (v)ψh

j =

dimDSr∑
j=1

v(xh
j)ψ

h
j .

From the definition and the way we construct ψh
j , we obtain that

(Ih v)|E = (IE v)|E ∀v ∈ L2(Ω) ∩ C0(Ω), E ∈ Th. (50)

Combining Lemma 4.3 and |v−Ihv|2m,Ω =
∑
E∈Th

|v−IEv|2m,E, we have the following global projection

error estimate, provided we have shape regularity of the mesh. For the quadrilateral finite element
partition Th of Ω, let the maximal diameter h = max

E∈Th
hE. Each element E ∈ Th is uniformly shape

regular, i.e., referring to (38)–(39), if there exists a constant σ∗ such that
ρE

hE
≥ σ∗ > 0 ∀E ∈ Th,

where σ∗ is independent of Th.

Lemma 4.5. Let Th be uniformly shape regular. There exists a constant C, independent of h, such
that for all functions v ∈ H s+1(Ω) (v ∈ H1(Ω) ∩ C0(Ω) if s = 0),

|v − Ih v|m,Ω ≤ C hs+1−m|v|s+1,Ω, m = 0, 1 and s = 0, 1 . . . , r. (51)

Consider a heterogeneous elliptic problem with a homogeneous Dirichlet boundary condition

−∇ · (a∇u) = f in Ω,

p = 0 on ∂Ω, (52)

where the second order tensor a is uniformly positive definite and bounded, and f ∈ L2(Ω). The
boundary value problem can be written in the weak form: Find u ∈ H1

0(Ω) such that

a(u, v) = f (v), ∀v ∈ H1
0(Ω), (53)

where a(u, v) = (a∇u,∇v) and f (v) = ( f , v), (·, ·) being the L2(Ω)-innerproduct.
Define the global finite element space over Th

X0,h = {vh ∈ DSr : vh = 0 on ∂Ω} ⊂ H1
0(Ω).

We then obtain the Galerkin approximation: Find uh ∈ X0,h such that

a(uh, vh) = f (vh), ∀vh ∈ X0,h. (54)

Combining Céa’s lemma [2, 3] and the global projection estimate Lemma 4.5, we obtain an
H1-error estimate for the problem. Since Ω is a polygonal domain, ∂Ω is a Lipschitz boundary. If
we assume that Ω is also convex, we have elliptic regularity of the solution [18, Theorem 4.3.1.4],
and the Aubin-Nitsche duality principle [2, 3] gives an L2-error estimate.

Theorem 4.6. Let Ω be a convex polygonal domain and let Th be uniformly shape regular. There
exists a constant C, independent of the subspace X0,h, such that

‖u − uh‖1,Ω ≤ C hs|u|s+1,Ω, (55)

‖u − uh‖0,Ω ≤ C hs+1|u|s+1,Ω, s = 0, 1, . . . , r. (56)
14



5. Numerical Results

In this section we present convergence studies for the direct serendipity spacesDSr, the regular
serendipity spaces Sr, and the space given by mapping the local tensor product spaces Pr,r defined
on the reference Ê to the elements (hereafter simply called the Pr,r space). The test problem (52)
is defined on the unit square Ω = [0, 1]2 with the coefficient a being the 2 × 2 identity matrix.
The exact solution is u(x, y) = sin(πx) sin(πy) and the source term f (x, y) = 2π2 sin(πx) sin(πy).
Solutions are computed on three different sequences of meshes. The first sequence, T 1

h , is a
uniform mesh of n2 square elements (two sets of parallel edges per element). The second sequence,
T 2

h , is a mesh of n2 trapezoids of base h and one pair of parallel edges of size 0.75h and 1.25h,
as proposed in [12]. The third sequence, T 3

h , is chosen so as to have no pair of edges parallel.
The first 4 × 4 meshes for each sequence are shown in Figure 9. Finer meshes are constructed by
repeating the same pattern over the domain.

T 1
h T 2

h T 3
h

Figure 9: Mesh of 4 × 4 squares for the three base meshes. Finer meshes are constructed by repeating this base mesh
pattern over the domain. Note that the meshes have 2, 1, and 0 parallel edges per element, respectively.

For an n × n mesh, we know that nv = (n + 1)2, ne = 2n(n + 1), and ni = n2. Therefore, the
total number of degrees of freedom for Pr,r is (nr + 1)2 = O(r2n2) and the total number of degrees
of freedom for Sr andDSr, is

dim(Sr) = dim(DSr) = nv + ne(r − 1) + ni
(r − 2)(r − 3)

2

= (n + 1)2 + 2n(n + 1)(r − 1) + n2 (r − 2)(r − 3)
2

=
r2 − r + 4

2
n2 + 2rn + 1 = O

(
r2n2

2

)
.

Therefore, the total number of degrees of freedom for a serendipity space is asymptotically about
half the size of that for a tensor product space of the same order r, as shown in Table 2.

We report the L2-errors and the orders of the convergence of the spaces Pr,r, Sr and DSr for
r = 2, 3, 4, 5 on mesh sequence T 1

h in Table 3. The errors and convergence rates of the same
tests in the H1-seminorm are presented in Table 4. Since T 1

h is a sequence of square meshes, the
direct serendipity spaceDSr and the regular serendipity space Sr coincide on T 1

h , despite the fact
that they are implemented in different ways. All three families of spaces show an (r + 1)-st order
convergence in the L2-norm and an r-th order convergence in the H1-seminorm, as we should
expect. The errors for Pr,r are smaller than that forDSr = Sr, but Pr,r uses many more degrees of
freedom (see Table 2).
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Table 2: A comparison of the global number of degrees of freedom of Pr,r, Sr, andDSr on an n × n mesh.

dim(Pr,r) dim(Sr) = dim(DSr)
r = 2 4n2 + 4n + 1 3n2 + 4n + 1
r = 3 9n2 + 6n + 1 5n2 + 6n + 1
r = 4 16n2 + 8n + 1 8n2 + 8n + 1
r = 5 25n2 + 10n + 1 12n2 + 10n + 1

Table 3: L2-errors and convergence rates for Pr,r,DSr, and Sr spaces on square meshes.

r = 2 r = 3 r = 4 r = 5
n error rate error rate error rate error rate

Pr,r on T 1
h meshes

8 2.451e-04 2.99 5.564e-06 3.99 1.054e-07 4.99 1.688e-09 6.00
12 7.282e-05 2.99 1.101e-06 4.00 1.389e-08 5.00 1.483e-10 6.00
16 3.075e-05 3.00 3.486e-07 4.00 3.298e-09 5.00 2.640e-11 6.00
24 9.116e-06 3.00 6.890e-08 4.00 4.344e-10 5.00 2.420e-12 5.89

Sr = DSr on T 1
h meshes

8 2.457e-04 2.99 1.805e-05 4.09 1.422e-06 5.01 6.440e-08 5.93
12 7.289e-05 3.00 3.497e-06 4.05 1.870e-07 5.00 5.739e-09 5.96
16 3.076e-05 3.00 1.099e-06 4.02 4.437e-08 5.00 1.027e-09 5.98
24 9.118e-06 3.00 2.161e-07 4.01 5.841e-09 5.00 9.049e-11 5.99

Tables 5–6 show the errors (in the L2 and H1-seminorms, respectively) and the orders of con-
vergence for the trapezoidal mesh sequence T 2

h . The tensor product space Pr,r achieves the ex-
pected convergence rates on trapezoidal meshes. The direct serendipity space DSr retains an
(r + 1)-st order of convergence in the L2 norm and an r-th order convergence in the H1-seminorm,
as Theorem 4.6 predicts. Meanwhile, the regular serendipity spaces Sr, r = 2, 3, 4, 5, have worse
than optimal convergence rates in both norms as Arnold, Boffi and Falk observed in [12]. The
errors and convergence rates for Pr,r, DSr, and Sr on mesh sequence T 3

h are similar to those on
T 2

h , so we omit showing them here.
In Section 3, we showed that assembling a global linear system requires the inversion of a

4r × 4r matrix on each element. Compared with Pr,r, for which the degrees of freedom are pre-
calculated and stored in a reference element and then mapped to each element, we may expect a
longer assembly time for DSr. On the other hand, since DSr results in smaller linear systems,
time spent on solving linear systems could be saved.

In Figure 10, we measure wall clock times of assembling the linear systems and solving them
with a sparse direct solver (UMFPACK [19]) or with a Jacobi preconditioned conjugate gradient
solver. We consider Pr,r and DSr for r = 2, 5 on n × n T 2

h meshes. The tests are conducted on a
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Table 4: H1-seminorm errors and convergence rates for Pr,r,DSr, and Sr spaces on square meshes.

r = 2 r = 3 r = 4 r = 5
n error rate error rate error rate error rate

Pr,r on T 1
h meshes

8 1.276e-02 2.00 4.233e-04 3.00 1.047e-05 4.00 2.066e-07 5.00
12 5.673e-03 2.00 1.255e-04 3.00 2.070e-06 4.00 2.723e-08 5.00
16 3.191e-03 2.00 5.295e-05 3.00 6.549e-07 4.00 6.462e-09 5.00
24 1.418e-03 2.00 1.569e-05 3.00 1.294e-07 4.00 8.511e-10 5.00

Sr = DSr on T 1
h meshes

8 1.285e-02 2.02 1.537e-03 3.05 1.141e-04 3.99 5.201e-06 4.99
12 5.690e-03 2.01 4.507e-04 3.03 2.261e-05 3.99 6.856e-07 5.00
16 3.197e-03 2.00 1.894e-04 3.01 7.164e-06 4.00 1.628e-07 5.00
24 1.420e-03 2.00 5.597e-05 3.01 1.416e-06 4.00 2.144e-08 5.00

Table 5: L2-errors and convergence rates for Pr,r,DSr, and Sr spaces on trapezoidal meshes.

r = 2 r = 3 r = 4 r = 5
n error rate error rate error rate error rate

Pr,r on T 2
h meshes

8 3.329e-04 2.99 9.740e-06 3.99 2.382e-07 4.99 5.076e-09 5.99
12 9.888e-05 2.99 1.928e-06 3.99 3.142e-08 5.00 4.462e-10 6.00
16 4.176e-05 3.00 6.107e-07 4.00 7.459e-09 5.00 7.946e-11 6.00
24 1.238e-05 3.00 1.207e-07 4.00 9.827e-10 5.00 6.979e-12 6.00

Sr on T 2
h meshes

8 5.714e-04 2.92 4.844e-04 2.89 2.612e-05 3.72 2.005e-06 4.13
12 1.731e-04 2.94 1.482e-04 2.92 6.084e-06 3.59 3.884e-07 4.05
16 7.409e-05 2.95 6.383e-05 2.93 2.265e-06 3.43 1.234e-07 3.99
24 2.254e-05 2.94 1.963e-05 2.91 5.984e-07 3.28 2.516e-08 3.92
32 9.799e-06 2.90 8.635e-06 2.85 2.408e-07 3.16 8.342e-09 3.84
48 3.127e-06 2.82 2.825e-06 2.76 6.875e-08 3.09 1.850e-09 3.71
64 1.440e-06 2.70 1.332e-06 2.61 2.862e-08 3.05 6.644e-10 3.56

DSr on T 2
h meshes

8 3.492e-04 3.00 3.897e-05 4.07 2.187e-06 5.00 8.896e-08 5.96
12 1.036e-04 3.00 7.457e-06 4.08 2.889e-07 4.99 7.870e-09 5.98
16 4.373e-05 3.00 2.313e-06 4.07 6.868e-08 4.99 1.404e-09 5.99
24 1.296e-05 3.00 4.469e-07 4.05 9.058e-09 5.00 1.235e-10 6.00
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Table 6: H1-seminorm errors and convergence rates for Pr,r,DSr, and Sr spaces on trapezoidal meshes.

r = 2 r = 3 r = 4 r = 5
n error rate error rate error rate error rate

Pr,r on T 2
h meshes

8 1.734e-02 2.00 7.206e-04 2.99 2.310e-05 3.99 6.083e-07 4.99
12 7.710e-03 2.00 2.139e-04 3.00 4.570e-06 4.00 8.021e-08 5.00
16 4.337e-03 2.00 9.027e-05 3.00 1.447e-06 4.00 1.904e-08 5.00
24 1.928e-03 2.00 2.676e-05 3.00 2.859e-07 4.00 2.509e-09 5.00

Sr on T 2
h meshes

8 2.413e-02 1.94 1.834e-02 1.90 1.818e-03 2.65 1.537e-04 3.18
12 1.105e-02 1.93 8.572e-03 1.88 6.582e-04 2.51 4.483e-05 3.04
16 6.432e-03 1.88 5.091e-03 1.81 3.345e-04 2.35 1.945e-05 2.90
24 3.104e-03 1.80 2.560e-03 1.70 1.360e-04 2.22 6.370e-06 2.75
32 1.920e-03 1.67 1.643e-03 1.54 7.378e-05 2.12 3.029e-06 2.58
48 1.043e-03 1.50 9.409e-04 1.37 3.190e-05 2.07 1.140e-06 2.41
64 7.097e-04 1.34 6.602e-04 1.23 1.776e-05 2.03 5.953e-07 2.26

DSr on T 2
h meshes

8 1.836e-02 2.01 2.517e-03 3.02 1.625e-04 3.99 7.384e-06 4.99
12 8.143e-03 2.00 7.400e-04 3.02 3.216e-05 4.00 9.757e-07 4.99
16 4.577e-03 2.00 3.109e-04 3.01 1.018e-05 4.00 2.318e-07 5.00
24 2.033e-03 2.00 9.170e-05 3.01 2.012e-06 4.00 3.056e-08 5.00

single computer with four Intel(R) Core(TM) i5-4570 CPUs at 3.20GHz and 8GB total memory
(RAM). The code uses the deal.II library [20].

Solid lines in Figure 10 show the time cost of the assembly routines and dashed lines repre-
sent the linear solvers costs. Obviously, the slope versus log(n) for the linear solvers are steeper
than the slope for the assembly routines. The assembly times depend linearly on the size of the
problem in log scale. When r = 2, DS2 (purple line) takes a longer time to assemble the linear
system compared with the pre-calculated P2,2 (blue line), as we expected. However, when r = 5,
assemblingDS5 (blue line) is actually quicker than assembling P5,5 (purple line). We attribute this
to the fact that there are fewer degrees of freedom on each element.

The time costs of the conjugate gradient solver for the two finite elements (yellow and cyan
lines) are very close when r = 2, and both of them are better than their sparse direct counterparts
(orange and green lines). The sparse direct solver is quicker for the DS2 stiffness matrix than for
the P2,2 stiffness matrix. But when r = 5, solving a DS5 system is always cheaper than solving a
P5,5 system. The sparse direct solvers (orange and green lines) perform better than their conjugate
gradient counterparts (yellow and cyan lines) when r = 5 and n is small, but the gap decreases as
n increases.

The time costs of the other routines in the test program are either negligible (e.g., system setup)
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r = 2 r = 5

Figure 10: Wall clock times for assembling the linear systems and for solving them with a sparse direct solver or with
a Jacobi preconditioned conjugate gradient solver. Results are for Pr,r andDSr, r = 2 (left) and r = 5 (right) on n × n
T 2

h meshes. The time and n are shown in log scale.

Table 7: Total wall clock times (in milliseconds) forDSr and Pr,r with different solvers when r = 2, 5.

DS2 P2,2

n Sparse Direct CG-Jacobi Sparse Direct CG-Jacobi
32 273.114 254.942 193.127 145.379
48 701.488 595.363 503.456 351.505
64 1297.63 1106.55 1056.56 707.311
96 3400.92 2918.73 3223.02 1847.66

128 6945.08 5779.14 7459.29 3748.74
DS5 P5,5

n Sparse Direct CG-Jacobi Sparse Direct CG-Jacobi
32 2468.98 3578.92 4213.28 5982.87
48 7428.24 10392.1 13308.0 17283.1
64 15908.5 21548.8 32774.2 38440.1
96 49768.3 63886.7 106822. 119959.

128 116427. 139270. 299793. 273998.
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or follow a similar pattern as the assembly routine (e.g., post processing and output). Table 7 gives
the total wall clock times forDSr and Pr,r with different solvers when r = 2, 5. When r = 2,DS2

takes more time than P2,2 if we use the conjugate gradient solver. On the other hand, if we choose
the sparse direct solver, P2,2 is quicker thanDS2 when n is small, butDS2 will take less time if we
keep refining the problem. As we might expect,DS5 always takes less time than P5,5 when r = 5.
If we take a closer look, when n = 128,DS5 take about half of the time for P5,5. This observation
is consistent with the number of degrees of freedom in Table 2.

We close by remarking that the time cost for the assembly routine can be scaled nearly perfectly
in parallel since it basically involves only local computations. Therefore, reducing the global
number of degrees of freedom, even perhaps at the expense of a slightly more expensive assembly,
is worthwhile.
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