
ICS 143 - Principles of  
Operating Systems
Operating Systems - Review 

Prof. Nalini Venkatasubramanian
nalini@ics.uci.edu



What is an Operating System?

• OS is the software that acts an intermediary between 
the user applications and computer hardware.
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• Execution sequence:
• Fetch Instruction at PC  
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From Berkeley OS course
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Interrupts
•Interrupt transfers control to the interrupt service routine

• Interrupt Service Routine: Segments of code that determine action to be 
taken for interrupt.

•Interrupt Vector Table
•different interrupt handlers will be executed for different 
interrupts

•Interrupt Handling
•OS preserves the state of the CPU

●stores registers and the program counter (address of interrupted 
instruction).

● Incoming interrupts are disabled while another interrupt is 
being processed to prevent a lost interrupt. 4



I/O processing 
•Synchronous I/O

• After I/O is requested, wait until I/O is done. Program will be 
idle.

•Asynchronous I/O
•After I/O is requested, control returns to user program 
without waiting for I/O completion.D
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DMA 
● Used for high speed I/O devices able 

to transmit information at close to 
memory speeds.

•Device controller transfers blocks of data 
from buffer storage directly to main 
memory without CPU intervention.

•Only one interrupt is generated per 
block, rather than one per byte (or word)

Memory

CPU
I/O devicesI/O instructions



Dual-mode operation

• Provide hardware support to differentiate between at 
least two modes of operation:

1.  User mode  -- execution done on behalf of a user.
2.  Kernel mode (monitor/supervisor/system mode) -- 

execution done on behalf of operating system.

• “Privileged” instructions are only executable in the 
kernel mode

• Executing privileged instructions in the user mode 
“traps” into the kernel mode

●Trap is a software generated interrupt caused either by an 
error or a user request
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System Calls
• User code can issue a syscall, which causes a trap
• Kernel handles the syscall
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Process
Control
Block

Enabling Concurrency and 
Protection: Multiplex processes

■ Only one process (PCB) active at a time 
❑ Current state of process held in PCB:

■ “snapshot” of the execution and protection environment
❑ Process needs CPU, resources

■ Give out CPU time to different processes 
(Scheduling):
❑ Only one process “running” at a time
❑ Give more time to important processes

■ Give pieces of resources to different processes 
(Protection):
❑ Controlled access to non-CPU resources

■ E.g. Memory Mapping: Give each process their own 
address space
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Threads

■ Processes do not share resources well 
❑ high context switching overhead

■ Idea: Separate concurrency from protection
■ Multithreading: a single program made up of a number 

of different concurrent activities 
■ A thread (or lightweight process) 

❑ basic unit of CPU utilization; it consists of:
▪ program counter, register set and stack space

■ A thread shares the following with peer threads:
▪ code section, data section and OS resources (open files, signals)
▪ No protection between threads

■ Collectively called a task.

■ Heavyweight process is a task with one thread.
10



Single and Multithreaded 
Processes

■ Threads encapsulate concurrency: “Active” component
■ Address spaces encapsulate protection: “Passive” part

❑ Keeps buggy program from trashing the system 11



Thread State

■ State shared by all threads in process/addr 
space

❑ Contents of memory (global variables, heap)
❑ I/O state (file system, network connections, etc)

■ State “private” to each thread 
❑ Kept in TCB ≡ Thread Control Block
❑ CPU registers (including program counter)
❑ Execution stack

■ Parameters, Temporary variables
■ return PCs are kept while called procedures are 

executing
12



Threads (cont.)

■ Thread context switch still requires a register 
set switch, but no memory management 
related work!

■ Thread states - 
■ ready, blocked, running, terminated

■ Threads share CPU and only one thread can 
run at a time.

■ No protection among threads.
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Types of Threads

■ Kernel-supported threads
■ User-level threads
■ Hybrid approach implements both user-level 

and kernel-supported threads (Solaris 2).
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Kernel Threads

■ Supported by the Kernel
❑ Native threads supported directly by the kernel
❑ Every thread can run or block independently
❑ One process may have several threads waiting on different 

things

■ Downside of kernel threads: a bit expensive
❑ Need to make a crossing into kernel mode to schedule

■ Examples
❑ Windows XP/2000,  Solaris, Linux,Tru64 UNIX, 

Mac OS X, Mach, OS/2 15



User Threads
■ Supported above the kernel, via a set of library calls 

at the user level. 
■ Thread management done by user-level threads library

❑ User program provides scheduler and thread package
■ May have several user threads per kernel thread
■ User threads may be scheduled non-preemptively relative to 

each other (only switch on yield())
❑ Advantages

■ Cheap, Fast  
❑ Threads do not need to call OS and cause interrupts to kernel 

❑ Disadv: If kernel is single threaded, system call from any 
thread can block the entire task.

■ Example thread libraries:
❑  POSIX Pthreads, Win32 threads,  Java threads
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Multithreading Models
■ Many-to-One

■ One-to-One

■ Many-to-Many
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Many-to-One
■ Many user-level threads mapped to single 

kernel thread
■ Examples:

❑ Solaris Green Threads
❑ GNU Portable Threads

18



One-to-One

■ Each user-level thread maps to kernel thread

Examples
❑ Windows NT/XP/2000; Linux;  Solaris 9 and later
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Many-to-Many Model
■ Allows many user level 

threads to be mapped to 
many kernel threads

■ Allows the operating 
system to create a 
sufficient number of 
kernel threads

■ Solaris prior to version 9
■ Windows NT/2000 with 

the ThreadFiber package
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Interprocess Communication

● Processes within a system may be independent or cooperating
● Cooperating process can affect or be affected by other processes, 

including sharing data
● Reasons for cooperating processes:

● Information sharing
● Computation speedup
● Modularity
● Convenience

● Cooperating processes need interprocess communication (IPC)
● Two models of IPC

● Shared memory
● Message passing

21



Interprocess Communication –  Shared 
Memory

● An area of memory shared among the processes that wish 
to communicate

● The communication is under the control of the processes 
not the operating system.

● Major issues is to provide mechanism that will allow the 
user processes to synchronize their actions when they 
access shared memory. 

● Synchronization is discussed in great details in Chapter 5.
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Interprocess Communication – 
Message Passing

● Mechanism for processes to communicate and to synchronize 
their actions

● Message system – processes communicate with each other 
without resorting to shared variables

● IPC facility provides two operations:
● send(message)
● receive(message)

● The message size is either fixed or variable
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Schedulers

■ Long-term scheduler (or job scheduler) - 
❑ selects which processes should be brought into the ready 

queue. 
❑ invoked very infrequently (seconds, minutes); may be 

slow.
❑ controls the degree of multiprogramming

■ Short term scheduler (or CPU scheduler) -
❑ selects which process should execute next and allocates 

CPU.
❑ invoked very frequently (milliseconds) - must be very fast

■ Medium Term Scheduler
❑ swaps out process temporarily
❑ balances load for better throughput
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Basic Concepts
● Maximum CPU utilization 

obtained with 
multiprogramming.

● CPU-I/O Burst Cycle
● Process execution consists of a cycle 

of CPU execution and I/O wait.
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CPU Scheduler
● Selects from among the processes in memory that 

are ready to execute, and allocates the CPU to 
one of them.
● Non-preemptive Scheduling

● Once CPU has been allocated to a process, the process keeps 
the CPU until

• Process exits  OR
• Process switches to waiting state

● Preemptive Scheduling
● Process can be interrupted and must release the CPU.

• Need to coordinate access to shared data
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Scheduling Criteria
● CPU Utilization 

● Keep the CPU and other resources as busy as possible

● Throughput 
● # of processes that complete their execution per time unit.

● Turnaround time 
● amount of time to execute a particular process from its entry 

time.

● Waiting time  
 amount of time a process has been waiting in the 

ready queue.

● Response Time (in a time-sharing environment)
 amount of time it takes from when a request was submitted 

until the first response is produced, NOT output.
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Optimization Criteria
● Max CPU Utilization
● Max Throughput
● Min Turnaround time
● Min Waiting time
● Min response time



CPU Scheduling Algorithms

● First Come First Serve or FIFO 
○ Convoy Effect 

● Shortest Job First   (Optimal) 
○ Non - Preemptive 
○ Shortest Remaining Time First - SRTF  (Preemptive)

● Priority 
● Round Robin 
● Multilevel Queue 
● Multilevel Feedback Queue

29
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Priority Scheduling - Non-preemptive
         ProcessA     Burst Time Priority

             P1                     10             3

             P2                                    1             1

             P3                      2             4

             P4                      1             5

             P5                                     5             2

● Priority scheduling Gantt Chart

● Average waiting time = 8.2 msec
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Priority Scheduling - Preemptive
         ProcessA     Burst Time Priority    Arrival Time

             P1                     6             3                      12

             P2                                    8             2                       0

             P3                      7             4                       4

             P4                      3             1                       2

             P5                                     5             5                       30

● Gantt Chart

● Average waiting time = [0+3+(7+6)+0+0)]/5 = 16/5 = 3.2 msec

● Average turnaround time = (6 + 11 + 20 + 3 + 5)/5 = 45/5 = 9 msec

● Average response time (assuming immediate response by a process when 
executed) = (0 + 0 + 7 + 0 + 0) / 5 = 1.4 msec 

● CPU utilization = 29 / 35 = 0.83 = 83%

● Throughput = 5 / 35 = 0.14  #process/msec

0
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Critical Section Problem

● Consider system of n processes {p0, p1, … pn-1} competing to 
access shared data

● Each process has critical section segment of code
● Process may be changing common variables, updating 

table, writing file, etc
● When one process in critical section, no other may be in its 

critical section
● Critical section problem is to design protocol to solve this
● Each process must ask permission to enter critical section in 

entry section, may follow critical section with exit section, 
then remainder section

32



Critical Section

● General structure of process Pi  

33
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Solution: Critical Section Problem - 
Requirements

● Mutual Exclusion
• If process Pi is executing in its critical section, then no other 

processes can be executing in their critical sections.

● Progress
• If no process is executing in its critical section and there exists 

some processes that wish to enter their critical section, then 
the selection of the processes that will enter the critical section 
next cannot be postponed indefinitely.

● Bounded Waiting
• A bound must exist on the number of times that other 

processes are allowed to enter their critical sections after a 
process has made a request to enter its critical section and 
before that request is granted.
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Solution: Critical Section Problem - 
Requirements

● Assume that each process executes at a 
nonzero speed.

● No assumption concerning relative speed of the 
n processes.

35
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Algorithm 1 (Similarly Algos 2,3)

● Shared Variables:
● int turn = 0;
● (turn == i) means that Pi can enter its critical section

● Process Pi
do { 

while (turn == j); 

critical section 

turn = j; 

remainder section 

 } while (true); 

Satisfies mutual exclusion, but not progress.

36

● Shared Variables:
● var turn: (0..1);
   initially turn = 0;
● turn = i  Pi can enter its critical section

● Process Pi
repeat
           while turn <> i do no-op;

critical section
              turn := j;
            remainder section

until false
Satisfies mutual exclusion, but not progress.
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Algorithm 4

● Combined Shared Variables of algorithms 1 and 2
● Process Pi

do { 
flag[i] = true; 

turn = j; 

while (flag[j] && turn == j); 

critical section 

flag[i] = false; 

remainder section 

 } while (true);

YES!!! Meets all three requirements, solves the critical section 
problem for 2 processes.

This is called the “Peterson’s solution”.
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● Combined Shared Variables of algorithms 1 and 2
● Process Pi

repeat
           flag[i] := true; 
           turn := j;
           while (flag[j] and turn=j) do no-op;

critical section
              flag[i]:= false;
            remainder section

until false
YES!!! Meets all three requirements, solves the critical section 

problem for 2 processes.
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Bakery Algorithm

● Critical section for n processes
● Before entering its critical section, process receives a 

number.  Holder of the smallest number enters critical 
section.

● If processes Pi and Pj receive the same number, 
• if i <= j, then Pi is served first; else Pj is served first.

● The numbering scheme always generates numbers in 
increasing order of enumeration; i.e. 1,2,3,3,3,3,4,4,5,5
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Bakery Algorithm (cont.)

● Notation -
● Lexicographic order(ticket#, process id#)

● (a,b) < (c,d) if (a<c) or if ((a=c) and (b < d))
● max(a0,….an-1) is a number, k, such that k >=ai                             

for i = 0,…,n-1

● Shared Data
var choosing: array[0..n-1] of boolean;(initialized to false)
      number: array[0..n-1] of integer; (initialized to 0)
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Bakery Algorithm (cont.)

repeat
     choosing[i] := true;
     number[i] := max(number[0], number[1],…,number[n-1]) +1;
     choosing[i] := false;
     for j := 0 to n-1
        do begin

 while choosing[j] do no-op;          
                while number[j] <> 0  
                      and (number[j] ,j) < (number[i],i) do no-op;
        end;
         critical section
      number[i]:= 0;
         remainder section
until false;



Supporting Synchronization

● We are going to implement various synchronization primitives using 
atomic operations
● Everything is pretty painful if only atomic primitives are load and store
● Need to provide inherent support for synchronization at the hardware level
● Need to provide primitives useful at software/user level

Load/Store    Disable Ints   Test&Set   Comp&Swap

Locks   Semaphores   Monitors   Send/Receive   CCregions

Shared Programs

Hardware

Higher-leve
l 
API

Programs



Solution to Critical-section Problem Using Locks

do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 
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Semaphore
● Semaphore S - integer variable (non-negative)

• used to represent number of abstract resources

● Can only be accessed via two indivisible (atomic) operations
wait (S):       while (S <= 0); 
                        S--;
signal (S):    S++;

• P or wait used to acquire a resource, waits for semaphore to 
become positive, then decrements it by 1

• V or signal releases a resource and increments the semaphore 
by 1, waking up a waiting P, if any

• If P is performed on a count <= 0, process must wait for V or 
the release of a resource.

P():“proberen” (to test) ; V() “verhogen” (to increment) in Dutch
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Example: Critical Section for n 
Processes

● Shared variables
semaphore mutex;
initially mutex = 1

● Process Pi
do { 

wait(mutex); 

critical section

signal(mutex); 

remainder section 

 } while (true);
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● Shared variables
semaphore mutex;
initially mutex = 1

● Process Pi
repeat
          wait(mutex);

critical section
             signal (mutex);
            remainder section

until false
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Semaphore as a General 
Synchronization Tool

● Execute B in Pj  only after A execute in Pi 
● As in Homework problem 

● Use semaphore flag initialized to 0
● Code:

               Pi                              Pj
                .                                .                .                                .                .                                .
               A                             wait(flag)
            signal(flag)                   B

45
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Problem...

● Locks prevent conflicting actions on shared data
● Lock before entering critical section and before accessing shared data
● Unlock when leaving, after accessing shared data
● Wait if locked

● All Synchronization involves waiting 
● Busy Waiting, uses CPU that others could use. This type of 

semaphore is called a spinlock.  
●For longer runtimes, need to modify P and V so that 
processes can block and resume.
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Synchronization Hardware

● Test and modify the content of a word 
atomically - Test-and-set instruction

function Test-and-Set (var target: boolean): boolean;
  begin
     Test-and-Set := target;
      target := true;
  end;

● Similarly “SWAP” instruction
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Mutual Exclusion with 
Test-and-Set

● Shared data: var lock: boolean (initially false)
● Process Pi

repeat
    while Test-and-Set (lock) do no-op;

critical section
              lock := false;
            remainder section

until false;
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Classical Problems of 
Synchronization

● Bounded Buffer Problem
● Readers and Writers Problem
● Dining-Philosophers Problem
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Bounded Buffer Problem 
● Producer process - 

creates filled buffers
repeat

…
   produce an item in nextp
      …
  wait (empty); 
  wait (mutex);
   …
   add nextp to buffer
   …
   signal (mutex); 
   signal (full); 
until false;

Consumer process - 
Empties filled buffers

repeat
 wait (full ); 

       wait (mutex);
          …
       remove an item 

from buffer  to  
nextc

          ...
       signal (mutex); 
       signal (empty); 
          …
          consume the 

next item in nextc
          …
until false;
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Bounded Buffer Problem

● Consumer process - Empties filled buffers
repeat

 wait (full ); 
       wait (mutex);
          …
       remove an item from buffer  to  nextc
          ...
       signal (mutex); 
       signal (empty); 
          …
          consume the next item in nextc
          …
until false;



Discussion

● ASymmetry?
● Producer does: P(empty), V(full)
● Consumer does: P(full), V(empty)

● Is order of P’s important?
● Yes!  Can cause deadlock

● Is order of V’s important?
● No, except that it might affect scheduling efficiency

Principles of Operating Systems - 
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Readers-Writers Problem

● Shared Data
var mutex, wrt: semaphore (=1);
        readcount: integer (= 0);

● Writer Process
wait(wrt);
    …
   writing is performed
   ... 
signal(wrt);
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Readers-Writers Problem 

● Reader process
wait(mutex);
    readcount := readcount +1;
    if readcount = 1 then wait(wrt);
 signal(mutex); 
            ...
              reading is performed
            ... 
wait(mutex);
    readcount := readcount - 1;
    if readcount = 0 then signal(wrt);
 signal(mutex); 
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Dining-Philosophers Problem

Shared Data
var chopstick: array [0..4] of semaphore (=1 initially);
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Deadlocks

● System Model 
● Resource allocation graph, claim graph (for avoidance)

● Deadlock Characterization
● Conditions for deadlock - mutual exclusion, hold and 

wait, no preemption, circular wait.
● Methods for handling deadlocks

● Deadlock Prevention
● Deadlock Avoidance
● Deadlock Detection
● Recovery from Deadlock

● Combined Approach to Deadlock Handling
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Deadlock Prevention

● If any one of the conditions for deadlock (with 
reusable resources) is denied, deadlock is 
impossible.

● Restrain ways in which requests can be made
● Mutual Exclusion  - cannot deny (important)
● Hold and Wait - guarantee that when a process requests a 

resource, it does not hold other resources.
● No Preemption 

• If a process that is holding some resources requests another 
resource that cannot be immediately allocated to it, the process 
releases the resources currently being held.

● Circular Wait
• Impose a total ordering of all resource types. 
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Deadlock Avoidance

● Requires that the system has some additional a priori 
information available.

• Simplest and most useful model requires that each process 
declare the maximum number of resources of each type that it 
may need.  

● Computation of Safe State
• When a process requests an available resource, system must 

decide if immediate allocation leaves the system in a safe 
state.  Sequence <P1, P2, …Pn> is safe, if for each Pi, the 
resources that Pi can still request can be satisfied by currently 
available resources + resources held by Pj with j<i.

• Safe state - no deadlocks, unsafe state - possibility of 
deadlocks

• Avoidance  - system will never reach unsafe state.
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Algorithms for Deadlock Avoidance

● Resource allocation graph algorithm
● only one instance of  each resource type

● Banker’s algorithm
● Used for multiple instances of each resource type.
● Data structures required

• Available, Max, Allocation, Need
● Safety algorithm
● resource request algorithm for a process.
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Memory Management

● Main Memory is an array of addressable words 
or bytes that is quickly accessible.

● Main Memory is volatile.
● OS is responsible for:

• Allocate and deallocate memory to processes.
• Managing multiple processes within memory - keep track of 

which parts of memory are used by which processes.  Manage 
the sharing of memory between processes.

• Determining which processes to load when memory becomes 
available.
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Binding of instructions and data to 
memory

● Address binding of instructions and data to memory 
addresses can happen at three different stages.

• Compile time, Load time, Execution time
● MMU - Memory Management Unit

• Hardware device that maps virtual to physical address.
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Contiguous Allocation

● Divides Main memory usually into two partitions
• Resident Operating System, usually held in low memory with 

interrupt vector and User processes held in high memory.

● Single partition allocation
• Relocation register scheme used to protect user processes 

from each other, and from changing OS code and data

● Multiple partition allocation
• holes of various sizes are scattered throughout memory. When 

a process arrives, it is allocated memory from a hole large 
enough to accommodate it.

• Variation: Fixed partition allocation
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Dynamic Storage Allocation Problem

● How to satisfy a request of size n from a list of free 
holes.

• First-fit
• Best-fit
• Worst-fit

● Fragmentation 
● External fragmentation

• total memory space exists to satisfy a request, but it is not 
contiguous.

● Internal fragmentation
• allocated memory may be slightly larger than requested 

memory; this size difference is memory internal to a partition, 
but not being used.

● Reduce external fragmentation by compaction
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Paging

● Logical address space of a process can be 
non-contiguous; 

• process is allocated physical memory wherever the latter is 
available.

● Divide physical memory into fixed size blocks called frames
• size is power of 2, 512 bytes - 8K

● Divide logical memory into same size blocks called pages.
• Keep track of all free frames.
• To run a program of size n pages, find n free frames and load 

program.
● Set up a page table to translate logical to physical 

addresses.
● Note:: Internal Fragmentation possible!!
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Page Table Implementation

● Page table is kept in main memory
● Page-table base register (PTBR) points to the page table.
● Page-table length register (PTLR) indicates the size of page 

table.
● Every data/instruction access requires 2 memory 

accesses.
● One for page table, one for data/instruction
● Two-memory access problem solved by use of special 

fast-lookup hardware cache  (i.e. cache page table in 
registers)

• associative registers or translation look-aside buffers (TLBs)
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Paging Methods

● Multilevel Paging
• Each level is a separate table in memory
• converting a logical address to a physical one may take 4 or 

more memory accesses.
• Caching can help performance remain reasonable.

● Inverted Page Tables
• One entry for each real page of memory.  Entry consists of 

virtual address of page in real memory with information about 
process that owns page.

● Shared Pages
• Code and data can be shared among processes.  Reentrant 

(non self-modifying) code can be shared. Map them into pages 
with common page frame mappings
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Segmentation

● Memory Management Scheme that supports 
user view of memory.

● A program is a collection of segments. 
● A segment is a logical unit such as

• main program, procedure, function
• local variables, global variables,common block
• stack, symbol table, arrays

● Protect each entity independently
● Allow each segment to grow independently
● Share each segment independently
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Segmented Paged Memory

● Segment-table entry contains not the base address of 
the segment, but the base address of a page table for 
this segment.

● Overcomes external fragmentation problem of segmented 
memory.

● Paging also makes allocation simpler; time to search for a 
suitable segment (using best-fit etc.) reduced.

● Introduces some internal fragmentation and table space 
overhead.

● Multics  - single level page table
● IBM OS/2 - OS on top of Intel 386 

● uses a two level paging scheme
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Virtual Memory

● Virtual Memory 
●  Separation of user logical memory from physical memory.
● Only PART of the program needs to be in memory for 

execution.
● Logical address space can therefore be much larger than 

physical address space.
● Need to allow pages to be swapped in and out.

● Virtual Memory can be implemented via
● Paging
● Segmentation
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Demand Paging

● Bring a page into memory only when it is 
needed.

• Less I/O needed
• Less Memory needed
• Faster response
• More users

● The first reference to a page will trap to OS with 
a page fault.

● OS looks at another table to decide
• Invalid reference - abort
• Just not in memory.
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Page Replacement

● Prevent over-allocation of memory by modifying 
page fault service routine to include page 
replacement.

● Use modify(dirty) bit to reduce overhead of page 
transfers - only modified pages are written to 
disk.

● Page replacement
● large virtual memory can be provided on a smaller physical 

memory.
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Page Replacement Strategies

● The Principle of Optimality
• Replace the page that will not be used again the farthest time 

into the future.
● Random Page Replacement

• Choose a page randomly
● FIFO - First in First Out

• Replace the page that has been in memory the longest.
● LRU - Least Recently Used

• Replace the page that has not been used for the longest time.
• LRU Approximation Algorithms - reference bit, second-chance 

etc.
● LFU/MFU - Least/Most Frequently Used

• Replace the page that is used least/most often.
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Allocation of Frames

● Single user case is simple 
• User is allocated any free frame

● Problem: Demand paging + multiprogramming
● Each process needs minimum number of pages based on 

instruction set architecture.
● Two major allocation schemes:

• Fixed allocation - (1) equal allocation (2) Proportional 
allocation.

• Priority allocation - May want to give high priority process more 
memory than low priority process.
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Thrashing

● If a process does not have enough pages, the 
page-fault rate is very high.  This leads to:

● low CPU utilization.
● OS thinks that it needs to increase the degree of 

multiprogramming
● Another process is added to the system.
● System throughput plunges...

● Thrashing  
● A process is busy swapping pages in and out.
● In other words, a process is spending more time paging than 

executing.
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Working Set Model

● Δ ≡ working-set window
● a fixed number of page references, e.g. 10,000 instructions

● WSSj (working set size of process Pj) - total number 
of pages referenced in the most recent Δ (varies in 
time) 

● If Δ too small, will not encompass entire locality.
● If Δ too large, will encompass several localities.
● If Δ = ∞,  will encompass entire program.

● D = ∑ WSSj  ≡ total demand frames
● If D > m (number of available frames)  ⇒thrashing

● Policy: If D > m, then suspend one of the processes.


