
ICS 143 - Principles of
Operating Systems
Operating Systems - Review

Prof. Nalini Venkatasubramanian
nalini@ics.uci.edu

What is an Operating System?

• OS is the software that acts an intermediary between
the user applications and computer hardware.

2
Computer System Organization

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

CPU execution

• Execution sequence:
• Fetch Instruction at PC
• Decode
• Execute (possibly using registers)
• Write results to registers/mem
• PC = Next Instruction(PC)
• Repeat

PC
PC
PC
PC

From Berkeley OS course
3

Interrupts
•Interrupt transfers control to the interrupt service routine

• Interrupt Service Routine: Segments of code that determine action to be
taken for interrupt.

•Interrupt Vector Table
•different interrupt handlers will be executed for different
interrupts

•Interrupt Handling
•OS preserves the state of the CPU

●stores registers and the program counter (address of interrupted
instruction).

● Incoming interrupts are disabled while another interrupt is
being processed to prevent a lost interrupt. 4

I/O processing
•Synchronous I/O

• After I/O is requested, wait until I/O is done. Program will be
idle.

•Asynchronous I/O
•After I/O is requested, control returns to user program
without waiting for I/O completion.D

5

DMA
● Used for high speed I/O devices able

to transmit information at close to
memory speeds.

•Device controller transfers blocks of data
from buffer storage directly to main
memory without CPU intervention.

•Only one interrupt is generated per
block, rather than one per byte (or word)

Memory

CPU
I/O devicesI/O instructions

Dual-mode operation

• Provide hardware support to differentiate between at
least two modes of operation:

1. User mode -- execution done on behalf of a user.
2. Kernel mode (monitor/supervisor/system mode) --

execution done on behalf of operating system.

• “Privileged” instructions are only executable in the
kernel mode

• Executing privileged instructions in the user mode
“traps” into the kernel mode

●Trap is a software generated interrupt caused either by an
error or a user request

6

System Calls
• User code can issue a syscall, which causes a trap
• Kernel handles the syscall

7

•

–

•

–
•
•

8

Process
Control
Block

Enabling Concurrency and
Protection: Multiplex processes

■ Only one process (PCB) active at a time
❑ Current state of process held in PCB:

■ “snapshot” of the execution and protection environment
❑ Process needs CPU, resources

■ Give out CPU time to different processes
(Scheduling):
❑ Only one process “running” at a time
❑ Give more time to important processes

■ Give pieces of resources to different processes
(Protection):
❑ Controlled access to non-CPU resources

■ E.g. Memory Mapping: Give each process their own
address space

9

Threads

■ Processes do not share resources well
❑ high context switching overhead

■ Idea: Separate concurrency from protection
■ Multithreading: a single program made up of a number

of different concurrent activities
■ A thread (or lightweight process)

❑ basic unit of CPU utilization; it consists of:
▪ program counter, register set and stack space

■ A thread shares the following with peer threads:
▪ code section, data section and OS resources (open files, signals)
▪ No protection between threads

■ Collectively called a task.

■ Heavyweight process is a task with one thread.
10

Single and Multithreaded
Processes

■ Threads encapsulate concurrency: “Active” component
■ Address spaces encapsulate protection: “Passive” part

❑ Keeps buggy program from trashing the system 11

Thread State

■ State shared by all threads in process/addr
space

❑ Contents of memory (global variables, heap)
❑ I/O state (file system, network connections, etc)

■ State “private” to each thread
❑ Kept in TCB ≡ Thread Control Block
❑ CPU registers (including program counter)
❑ Execution stack

■ Parameters, Temporary variables
■ return PCs are kept while called procedures are

executing
12

Threads (cont.)

■ Thread context switch still requires a register
set switch, but no memory management
related work!

■ Thread states -
■ ready, blocked, running, terminated

■ Threads share CPU and only one thread can
run at a time.

■ No protection among threads.

13

Types of Threads

■ Kernel-supported threads
■ User-level threads
■ Hybrid approach implements both user-level

and kernel-supported threads (Solaris 2).

14

Kernel Threads

■ Supported by the Kernel
❑ Native threads supported directly by the kernel
❑ Every thread can run or block independently
❑ One process may have several threads waiting on different

things

■ Downside of kernel threads: a bit expensive
❑ Need to make a crossing into kernel mode to schedule

■ Examples
❑ Windows XP/2000, Solaris, Linux,Tru64 UNIX,

Mac OS X, Mach, OS/2 15

User Threads
■ Supported above the kernel, via a set of library calls

at the user level.
■ Thread management done by user-level threads library

❑ User program provides scheduler and thread package
■ May have several user threads per kernel thread
■ User threads may be scheduled non-preemptively relative to

each other (only switch on yield())
❑ Advantages

■ Cheap, Fast
❑ Threads do not need to call OS and cause interrupts to kernel

❑ Disadv: If kernel is single threaded, system call from any
thread can block the entire task.

■ Example thread libraries:
❑ POSIX Pthreads, Win32 threads, Java threads

16

Multithreading Models
■ Many-to-One

■ One-to-One

■ Many-to-Many

17

Many-to-One
■ Many user-level threads mapped to single

kernel thread
■ Examples:

❑ Solaris Green Threads
❑ GNU Portable Threads

18

One-to-One

■ Each user-level thread maps to kernel thread

Examples
❑ Windows NT/XP/2000; Linux; Solaris 9 and later

19

Many-to-Many Model
■ Allows many user level

threads to be mapped to
many kernel threads

■ Allows the operating
system to create a
sufficient number of
kernel threads

■ Solaris prior to version 9
■ Windows NT/2000 with

the ThreadFiber package

20

Interprocess Communication

● Processes within a system may be independent or cooperating
● Cooperating process can affect or be affected by other processes,

including sharing data
● Reasons for cooperating processes:

● Information sharing
● Computation speedup
● Modularity
● Convenience

● Cooperating processes need interprocess communication (IPC)
● Two models of IPC

● Shared memory
● Message passing

21

Interprocess Communication – Shared
Memory

● An area of memory shared among the processes that wish
to communicate

● The communication is under the control of the processes
not the operating system.

● Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

● Synchronization is discussed in great details in Chapter 5.

22

Interprocess Communication –
Message Passing

● Mechanism for processes to communicate and to synchronize
their actions

● Message system – processes communicate with each other
without resorting to shared variables

● IPC facility provides two operations:
● send(message)
● receive(message)

● The message size is either fixed or variable

23

Schedulers

■ Long-term scheduler (or job scheduler) -
❑ selects which processes should be brought into the ready

queue.
❑ invoked very infrequently (seconds, minutes); may be

slow.
❑ controls the degree of multiprogramming

■ Short term scheduler (or CPU scheduler) -
❑ selects which process should execute next and allocates

CPU.
❑ invoked very frequently (milliseconds) - must be very fast

■ Medium Term Scheduler
❑ swaps out process temporarily
❑ balances load for better throughput

24

25

Basic Concepts
● Maximum CPU utilization

obtained with
multiprogramming.

● CPU-I/O Burst Cycle
● Process execution consists of a cycle

of CPU execution and I/O wait.

26

CPU Scheduler
● Selects from among the processes in memory that

are ready to execute, and allocates the CPU to
one of them.
● Non-preemptive Scheduling

● Once CPU has been allocated to a process, the process keeps
the CPU until

• Process exits OR
• Process switches to waiting state

● Preemptive Scheduling
● Process can be interrupted and must release the CPU.

• Need to coordinate access to shared data

27

Scheduling Criteria
● CPU Utilization

● Keep the CPU and other resources as busy as possible

● Throughput
● # of processes that complete their execution per time unit.

● Turnaround time
● amount of time to execute a particular process from its entry

time.

● Waiting time
 amount of time a process has been waiting in the

ready queue.

● Response Time (in a time-sharing environment)
 amount of time it takes from when a request was submitted

until the first response is produced, NOT output.

28

Optimization Criteria
● Max CPU Utilization
● Max Throughput
● Min Turnaround time
● Min Waiting time
● Min response time

CPU Scheduling Algorithms

● First Come First Serve or FIFO
○ Convoy Effect

● Shortest Job First (Optimal)
○ Non - Preemptive
○ Shortest Remaining Time First - SRTF (Preemptive)

● Priority
● Round Robin
● Multilevel Queue
● Multilevel Feedback Queue

29

30

Priority Scheduling - Non-preemptive
 ProcessA Burst Time Priority

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

 P5 5 2

● Priority scheduling Gantt Chart

● Average waiting time = 8.2 msec

31

Priority Scheduling - Preemptive
 ProcessA Burst Time Priority Arrival Time

 P1 6 3 12

 P2 8 2 0

 P3 7 4 4

 P4 3 1 2

 P5 5 5 30

● Gantt Chart

● Average waiting time = [0+3+(7+6)+0+0)]/5 = 16/5 = 3.2 msec

● Average turnaround time = (6 + 11 + 20 + 3 + 5)/5 = 45/5 = 9 msec

● Average response time (assuming immediate response by a process when
executed) = (0 + 0 + 7 + 0 + 0) / 5 = 1.4 msec

● CPU utilization = 29 / 35 = 0.83 = 83%

● Throughput = 5 / 35 = 0.14 #process/msec

0

P2

2 5 11 12 18 24 30 35

P4 P2 P3 P1 P3 P5

Critical Section Problem

● Consider system of n processes {p0, p1, … pn-1} competing to
access shared data

● Each process has critical section segment of code
● Process may be changing common variables, updating

table, writing file, etc
● When one process in critical section, no other may be in its

critical section
● Critical section problem is to design protocol to solve this
● Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section,
then remainder section

32

Critical Section

● General structure of process Pi

33

34

Solution: Critical Section Problem -
Requirements

● Mutual Exclusion
• If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections.

● Progress
• If no process is executing in its critical section and there exists

some processes that wish to enter their critical section, then
the selection of the processes that will enter the critical section
next cannot be postponed indefinitely.

● Bounded Waiting
• A bound must exist on the number of times that other

processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and
before that request is granted.

34

35

Solution: Critical Section Problem -
Requirements

● Assume that each process executes at a
nonzero speed.

● No assumption concerning relative speed of the
n processes.

35

36

Algorithm 1 (Similarly Algos 2,3)

● Shared Variables:
● int turn = 0;
● (turn == i) means that Pi can enter its critical section

● Process Pi
do {

while (turn == j);

critical section

turn = j;

remainder section

 } while (true);

Satisfies mutual exclusion, but not progress.

36

● Shared Variables:
● var turn: (0..1);
 initially turn = 0;
● turn = i  Pi can enter its critical section

● Process Pi
repeat
 while turn <> i do no-op;

critical section
 turn := j;
 remainder section

until false
Satisfies mutual exclusion, but not progress.

37

Algorithm 4

● Combined Shared Variables of algorithms 1 and 2
● Process Pi

do {
flag[i] = true;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = false;

remainder section

 } while (true);

YES!!! Meets all three requirements, solves the critical section
problem for 2 processes.

This is called the “Peterson’s solution”.

37

● Combined Shared Variables of algorithms 1 and 2
● Process Pi

repeat
 flag[i] := true;
 turn := j;
 while (flag[j] and turn=j) do no-op;

critical section
 flag[i]:= false;
 remainder section

until false
YES!!! Meets all three requirements, solves the critical section

problem for 2 processes.

Principles of Operating Systems -
Process Synchronization 38

Bakery Algorithm

● Critical section for n processes
● Before entering its critical section, process receives a

number. Holder of the smallest number enters critical
section.

● If processes Pi and Pj receive the same number,
• if i <= j, then Pi is served first; else Pj is served first.

● The numbering scheme always generates numbers in
increasing order of enumeration; i.e. 1,2,3,3,3,3,4,4,5,5

Principles of Operating Systems -
Process Synchronization 39

Bakery Algorithm (cont.)

● Notation -
● Lexicographic order(ticket#, process id#)

● (a,b) < (c,d) if (a<c) or if ((a=c) and (b < d))
● max(a0,….an-1) is a number, k, such that k >=ai

for i = 0,…,n-1

● Shared Data
var choosing: array[0..n-1] of boolean;(initialized to false)
 number: array[0..n-1] of integer; (initialized to 0)

Principles of Operating Systems -
Process Synchronization 40

Bakery Algorithm (cont.)

repeat
 choosing[i] := true;
 number[i] := max(number[0], number[1],…,number[n-1]) +1;
 choosing[i] := false;
 for j := 0 to n-1
 do begin

 while choosing[j] do no-op;
 while number[j] <> 0
 and (number[j] ,j) < (number[i],i) do no-op;
 end;
 critical section
 number[i]:= 0;
 remainder section
until false;

Supporting Synchronization

● We are going to implement various synchronization primitives using
atomic operations
● Everything is pretty painful if only atomic primitives are load and store
● Need to provide inherent support for synchronization at the hardware level
● Need to provide primitives useful at software/user level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive CCregions

Shared Programs

Hardware

Higher-leve
l
API

Programs

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

42

43

Semaphore
● Semaphore S - integer variable (non-negative)

• used to represent number of abstract resources

● Can only be accessed via two indivisible (atomic) operations
wait (S): while (S <= 0);
 S--;
signal (S): S++;

• P or wait used to acquire a resource, waits for semaphore to
become positive, then decrements it by 1

• V or signal releases a resource and increments the semaphore
by 1, waking up a waiting P, if any

• If P is performed on a count <= 0, process must wait for V or
the release of a resource.

P():“proberen” (to test) ; V() “verhogen” (to increment) in Dutch

43

44

Example: Critical Section for n
Processes

● Shared variables
semaphore mutex;
initially mutex = 1

● Process Pi
do {

wait(mutex);

critical section

signal(mutex);

remainder section

 } while (true);

44

● Shared variables
semaphore mutex;
initially mutex = 1

● Process Pi
repeat
 wait(mutex);

critical section
 signal (mutex);
 remainder section

until false

45

Semaphore as a General
Synchronization Tool

● Execute B in Pj only after A execute in Pi
● As in Homework problem

● Use semaphore flag initialized to 0
● Code:

 Pi Pj

 A wait(flag)
 signal(flag) B

45

Principles of Operating Systems -
Process Synchronization 46

Problem...

● Locks prevent conflicting actions on shared data
● Lock before entering critical section and before accessing shared data
● Unlock when leaving, after accessing shared data
● Wait if locked

● All Synchronization involves waiting
● Busy Waiting, uses CPU that others could use. This type of

semaphore is called a spinlock.
●For longer runtimes, need to modify P and V so that
processes can block and resume.

Principles of Operating Systems -
Process Synchronization 47

Synchronization Hardware

● Test and modify the content of a word
atomically - Test-and-set instruction

function Test-and-Set (var target: boolean): boolean;
 begin
 Test-and-Set := target;
 target := true;
 end;

● Similarly “SWAP” instruction

Principles of Operating Systems -
Process Synchronization 48

Mutual Exclusion with
Test-and-Set

● Shared data: var lock: boolean (initially false)
● Process Pi

repeat
 while Test-and-Set (lock) do no-op;

critical section
 lock := false;
 remainder section

until false;

Principles of Operating Systems -
Process Synchronization 49

Classical Problems of
Synchronization

● Bounded Buffer Problem
● Readers and Writers Problem
● Dining-Philosophers Problem

Principles of Operating Systems -
Process Synchronization 50

Bounded Buffer Problem
● Producer process -

creates filled buffers
repeat

…
 produce an item in nextp
 …
 wait (empty);
 wait (mutex);
 …
 add nextp to buffer
 …
 signal (mutex);
 signal (full);
until false;

Consumer process -
Empties filled buffers

repeat
 wait (full);

 wait (mutex);
 …
 remove an item

from buffer to
nextc

 ...
 signal (mutex);
 signal (empty);
 …
 consume the

next item in nextc
 …
until false;

Principles of Operating Systems -
Process Synchronization 51

Bounded Buffer Problem

● Consumer process - Empties filled buffers
repeat

 wait (full);
 wait (mutex);
 …
 remove an item from buffer to nextc
 ...
 signal (mutex);
 signal (empty);
 …
 consume the next item in nextc
 …
until false;

Discussion

● ASymmetry?
● Producer does: P(empty), V(full)
● Consumer does: P(full), V(empty)

● Is order of P’s important?
● Yes! Can cause deadlock

● Is order of V’s important?
● No, except that it might affect scheduling efficiency

Principles of Operating Systems -
Process Synchronization 52

Principles of Operating Systems -
Process Synchronization 53

Readers-Writers Problem

● Shared Data
var mutex, wrt: semaphore (=1);
 readcount: integer (= 0);

● Writer Process
wait(wrt);
 …
 writing is performed
 ...
signal(wrt);

Principles of Operating Systems -
Process Synchronization 54

Readers-Writers Problem

● Reader process
wait(mutex);
 readcount := readcount +1;
 if readcount = 1 then wait(wrt);
 signal(mutex);
 ...
 reading is performed
 ...
wait(mutex);
 readcount := readcount - 1;
 if readcount = 0 then signal(wrt);
 signal(mutex);

Principles of Operating Systems -
Process Synchronization 55

Dining-Philosophers Problem

Shared Data
var chopstick: array [0..4] of semaphore (=1 initially);

56

Deadlocks

● System Model
● Resource allocation graph, claim graph (for avoidance)

● Deadlock Characterization
● Conditions for deadlock - mutual exclusion, hold and

wait, no preemption, circular wait.
● Methods for handling deadlocks

● Deadlock Prevention
● Deadlock Avoidance
● Deadlock Detection
● Recovery from Deadlock

● Combined Approach to Deadlock Handling

57

Deadlock Prevention

● If any one of the conditions for deadlock (with
reusable resources) is denied, deadlock is
impossible.

● Restrain ways in which requests can be made
● Mutual Exclusion - cannot deny (important)
● Hold and Wait - guarantee that when a process requests a

resource, it does not hold other resources.
● No Preemption

• If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, the process
releases the resources currently being held.

● Circular Wait
• Impose a total ordering of all resource types.

58

Deadlock Avoidance

● Requires that the system has some additional a priori
information available.

• Simplest and most useful model requires that each process
declare the maximum number of resources of each type that it
may need.

● Computation of Safe State
• When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe
state. Sequence <P1, P2, …Pn> is safe, if for each Pi, the
resources that Pi can still request can be satisfied by currently
available resources + resources held by Pj with j<i.

• Safe state - no deadlocks, unsafe state - possibility of
deadlocks

• Avoidance - system will never reach unsafe state.

59

Algorithms for Deadlock Avoidance

● Resource allocation graph algorithm
● only one instance of each resource type

● Banker’s algorithm
● Used for multiple instances of each resource type.
● Data structures required

• Available, Max, Allocation, Need
● Safety algorithm
● resource request algorithm for a process.

60

Memory Management

● Main Memory is an array of addressable words
or bytes that is quickly accessible.

● Main Memory is volatile.
● OS is responsible for:

• Allocate and deallocate memory to processes.
• Managing multiple processes within memory - keep track of

which parts of memory are used by which processes. Manage
the sharing of memory between processes.

• Determining which processes to load when memory becomes
available.

61

Binding of instructions and data to
memory

● Address binding of instructions and data to memory
addresses can happen at three different stages.

• Compile time, Load time, Execution time
● MMU - Memory Management Unit

• Hardware device that maps virtual to physical address.

62

Contiguous Allocation

● Divides Main memory usually into two partitions
• Resident Operating System, usually held in low memory with

interrupt vector and User processes held in high memory.

● Single partition allocation
• Relocation register scheme used to protect user processes

from each other, and from changing OS code and data

● Multiple partition allocation
• holes of various sizes are scattered throughout memory. When

a process arrives, it is allocated memory from a hole large
enough to accommodate it.

• Variation: Fixed partition allocation

63

Dynamic Storage Allocation Problem

● How to satisfy a request of size n from a list of free
holes.

• First-fit
• Best-fit
• Worst-fit

● Fragmentation
● External fragmentation

• total memory space exists to satisfy a request, but it is not
contiguous.

● Internal fragmentation
• allocated memory may be slightly larger than requested

memory; this size difference is memory internal to a partition,
but not being used.

● Reduce external fragmentation by compaction

64

Paging

● Logical address space of a process can be
non-contiguous;

• process is allocated physical memory wherever the latter is
available.

● Divide physical memory into fixed size blocks called frames
• size is power of 2, 512 bytes - 8K

● Divide logical memory into same size blocks called pages.
• Keep track of all free frames.
• To run a program of size n pages, find n free frames and load

program.
● Set up a page table to translate logical to physical

addresses.
● Note:: Internal Fragmentation possible!!

65

Page Table Implementation

● Page table is kept in main memory
● Page-table base register (PTBR) points to the page table.
● Page-table length register (PTLR) indicates the size of page

table.
● Every data/instruction access requires 2 memory

accesses.
● One for page table, one for data/instruction
● Two-memory access problem solved by use of special

fast-lookup hardware cache (i.e. cache page table in
registers)

• associative registers or translation look-aside buffers (TLBs)

66

Paging Methods

● Multilevel Paging
• Each level is a separate table in memory
• converting a logical address to a physical one may take 4 or

more memory accesses.
• Caching can help performance remain reasonable.

● Inverted Page Tables
• One entry for each real page of memory. Entry consists of

virtual address of page in real memory with information about
process that owns page.

● Shared Pages
• Code and data can be shared among processes. Reentrant

(non self-modifying) code can be shared. Map them into pages
with common page frame mappings

67

Segmentation

● Memory Management Scheme that supports
user view of memory.

● A program is a collection of segments.
● A segment is a logical unit such as

• main program, procedure, function
• local variables, global variables,common block
• stack, symbol table, arrays

● Protect each entity independently
● Allow each segment to grow independently
● Share each segment independently

68

Segmented Paged Memory

● Segment-table entry contains not the base address of
the segment, but the base address of a page table for
this segment.

● Overcomes external fragmentation problem of segmented
memory.

● Paging also makes allocation simpler; time to search for a
suitable segment (using best-fit etc.) reduced.

● Introduces some internal fragmentation and table space
overhead.

● Multics - single level page table
● IBM OS/2 - OS on top of Intel 386

● uses a two level paging scheme

69

Virtual Memory

● Virtual Memory
● Separation of user logical memory from physical memory.
● Only PART of the program needs to be in memory for

execution.
● Logical address space can therefore be much larger than

physical address space.
● Need to allow pages to be swapped in and out.

● Virtual Memory can be implemented via
● Paging
● Segmentation

70

Demand Paging

● Bring a page into memory only when it is
needed.

• Less I/O needed
• Less Memory needed
• Faster response
• More users

● The first reference to a page will trap to OS with
a page fault.

● OS looks at another table to decide
• Invalid reference - abort
• Just not in memory.

71

Page Replacement

● Prevent over-allocation of memory by modifying
page fault service routine to include page
replacement.

● Use modify(dirty) bit to reduce overhead of page
transfers - only modified pages are written to
disk.

● Page replacement
● large virtual memory can be provided on a smaller physical

memory.

72

Page Replacement Strategies

● The Principle of Optimality
• Replace the page that will not be used again the farthest time

into the future.
● Random Page Replacement

• Choose a page randomly
● FIFO - First in First Out

• Replace the page that has been in memory the longest.
● LRU - Least Recently Used

• Replace the page that has not been used for the longest time.
• LRU Approximation Algorithms - reference bit, second-chance

etc.
● LFU/MFU - Least/Most Frequently Used

• Replace the page that is used least/most often.

73

Allocation of Frames

● Single user case is simple
• User is allocated any free frame

● Problem: Demand paging + multiprogramming
● Each process needs minimum number of pages based on

instruction set architecture.
● Two major allocation schemes:

• Fixed allocation - (1) equal allocation (2) Proportional
allocation.

• Priority allocation - May want to give high priority process more
memory than low priority process.

74

Thrashing

● If a process does not have enough pages, the
page-fault rate is very high. This leads to:

● low CPU utilization.
● OS thinks that it needs to increase the degree of

multiprogramming
● Another process is added to the system.
● System throughput plunges...

● Thrashing
● A process is busy swapping pages in and out.
● In other words, a process is spending more time paging than

executing.

75

Working Set Model

● Δ ≡ working-set window
● a fixed number of page references, e.g. 10,000 instructions

● WSSj (working set size of process Pj) - total number
of pages referenced in the most recent Δ (varies in
time)

● If Δ too small, will not encompass entire locality.
● If Δ too large, will encompass several localities.
● If Δ = ∞, will encompass entire program.

● D = ∑ WSSj ≡ total demand frames
● If D > m (number of available frames) ⇒thrashing

● Policy: If D > m, then suspend one of the processes.

