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ABSTRACT

IDEAL CYCLE ANALYSIS OF A REGENERATIVE PULSE DETONATION

ENGINE FOR POWER PRODUCTION

RAFAELA BELLINI, Ph.D.

The University of Texas at Arlington, 2010

Supervising Professor: Frank K. Lu

Over the last few decades, considerable research has been focused on pulse detona-

tion engines (PDEs) as a promising replacement for existing propulsion systems with po-

tential applications in aircraft ranging from the subsonic to the lower hypersonic regimes.

On the other hand, very little attention has been given to applying detonation for elec-

tric power production. One method for assessing the performance of a PDE is through

thermodynamic cycle analysis. Earlier works have adopted a thermodynamic cycle for

the PDE that was based on the assumption that the detonation process could be approx-

imated by a constant volume process, called the Humphrey cycle. The Fickett-Jacob

cycle, which uses the one–dimensional Chapman–Jouguet (CJ) theory of detonation, has

also been used to model the PDE cycle. However, an ideal PDE cycle must include a

detonation based compression and heat release processes with a finite chemical reaction

rate that is accounted for in the Zeldovich – von Neumann – Döring model of detonation

where the shock is considered a discontinuous jump and is followed by a finite exothermic

reaction zone.
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This work presents a thermodynamic cycle analysis for an ideal PDE cycle for

power production. A code has been written that takes only one input value, namely the

heat of reaction of a fuel-oxidizer mixture, based on which the program computes all the

points on the ZND cycle (both p–v and T–s plots), including the von Neumann spike and

the CJ point along with all the non-dimensionalized state properties at each point. In

addition, the program computes the points on the Humphrey and Brayton cycles for the

same input value. Thus, the thermal efficiencies of the various cycles can be calculated

and compared. The heat release of combustion is presented in a generic form to make

the program usable with a wide variety of fuels and oxidizers and also allows for its use

in a system for the real time monitoring and control of a PDE in which the heat of

reaction can be obtained as a function of fuel-oxidizer ratio. The Humphrey and ZND

cycles are studied in comparison with the Brayton cycle for different fuel-air mixtures

such as methane, propane and hydrogen. The validity and limitations of the ZND and

Humphrey cycles related to the detonation process are discussed and the criteria for the

selection of the best model for the PDE cycle are explained. It is seen that the ZND

cycle is a more appropriate representation of the PDE cycle.

Next, the thermal and electrical power generation efficiencies for the PDE are

compared with those of the deflagration based Brayton cycle. While the Brayton cycle

shows an efficiency of 0 at a compressor pressure ratio of 1, the thermal efficiency for the

ZND cycle starts out at 42% for hydrogen–air and then climbs to a peak of 66% at a

compression ratio of 7 before falling slowly for higher compression ratios. The Brayton

cycle efficiency rises above the PDEs for compression ratios above 23. This finding

supports the theoretical advantage of PDEs over the gas turbines because PDEs only

require a fan or only a few compressor stages, thereby eliminating the need for heavy

compressor machinery, making the PDEs less complex and therefore more cost effective

than other engines.
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Lastly, a regeneration study is presented to analyze how the use of exhaust gases can

improve the performance of the system. The thermal efficiencies for the regenerative ZND

cycle are compared with the efficiencies for the non–regenerative cycle. For a hydrogen–

air mixture the thermal efficiency increases from 52%, for a cycle without regeneration, to

78%, for the regenerative cycle. The efficiency is compared with the Carnot efficiency of

84% which is the maximum possible theoretical efficiency of the cycle. When compared

to the Brayton cycle thermal efficiencies, the regenerative cycle shows efficiencies that

are always higher for the pressure ratio studied of 5 ≤ πc ≤ 25, where πc the compressor

pressure ratio of the cycle. This observation strengthens the idea of using regeneration

on PDEs.
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CHAPTER 1

INTRODUCTION

Deflagration is a subsonic combustion process where the flame propagates at a few

meters per second [2], producing small decreases in pressure. Deflagration is the means

of chemical energy addition for conventional internal combustion engines, gas turbine

engines and rockets. A paradigm shift in propulsion from deflagration can be achieved

by utilizing detonations to develop thrust. A detonation, unlike deflagration, produces

a supersonic combustion wave that propagates at a few thousands of meters per second

relative to an unburned reactant–air mixture [2, 3, 4]. A detonation wave compresses

the fluid, increasing its pressure and density, in addition to increasing its temperature,

thereby triggering chemical reactions. The energy from the chemical reactions support

the traveling shock wave in turn and a balance is attained to form a self-sustaining deto-

nation wave. The above description of a detonation wave, however, is grossly simplified.

Detonation waves are actually complex, oscillatory phenomena with three-dimensional

time-dependent cellular structures [3, 4].

1.1 Literature Review

1.1.1 Overview of Early Studies in Detonations

The phenomenon of detonation was first recognized simultaneously by Berthelot

and Vielle [5, 6] and by Mallard and Chatelier [7] in the early 1880s. Berthelot and

Vielle, when studying coal explosions, ascertained the existence of a detonation wave in

explosive gaseous mixtures. On the other hand, Mallard and Chatelier [7] made the same

discovery during studies of flame propagation. Mallard and Chatelier [8] demonstrated
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that deflagration can transition into a detonation wave in gaseous explosives. They

stated that a detonation propagates as an adiabatic compression wave and its propagation

velocity can be related to the speed of sound of the combustion products. They found

that the detonation wave velocity is independent of the ignition source (explosive or

non-explosive [9]) and tube diameter and is primarily a function of the explosive mixture

composition.

Not long later, Chapman [10] established the classical Chapman-Jouguet (CJ) the-

ory for the propagation of a steady plane detonation wave in a gaseous mixture, based on

the one-dimensional Rankine–Hugoniot theory [11, 12]. Chapman showed that the lowest

value of the velocity with respect to the burned gas is equal to the velocity of sound in

this gas and that the detonation wave, relative to the laboratory frame, is supersonic. In

1905, Jouguet [13] showed that if one assumes that if the velocity of the products behind

the wave front with respect to the detonation wave front is equal to the local speed of

sound, the main properties of a detonation wave propagating at constant velocity can be

quantified.

In the CJ model, the detonation wave is closely coupled to a thin flame front or

combustion region [2]. The conservation conditions require that the final state lie on both

the reactive Hugoniot curve and a Rayleigh line as shown in Fig. 1.1. The figure shows

five possible regimes along the reactive Hugoniot. Regions I and II are for a strong and a

weak detonation respectively, regions IV and V are for a weak and a strong deflagration

respectively, while region III, between points W1 and F , is not physically possible. For

detonation wave propagation velocities lower than the CJ velocity, the Rayleigh line and

the Hugoniot curve do not intersect, so there is no solution that satisfies the conservation

conditions. There are two particular values of flame velocity that makes the Rayleigh

line tangent to the Hugoniot curve. These tangent points are called the upper and

lower CJ points, U and L, respectively in Fig. 1.1. The upper CJ point represents
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1/�

p1

1/� �

U = Upper Chapman-Jouguet Point
L = Lower Chapman-Jouguet Point
A = Initial Conditions, Origin of Hugoniot Curve
S = Strong Detonation Point
W = Weak Detonation Point
>U = Strong Detonation Zone
W1-U = Weak Detonation Zone
W1-F = Forbidden Zone
F-L = Weak Deflagration Zone
<L = Strong Deflagration Zone

A

U

S

W

F

III (Forbidden Zone)

I (Strong 
Detonation)

II (Weak 
Detonation)

IV (Weak 
Deflagration)

V (Strong 
Deflagration)

Shock Hugoniot

q > 0

W1

L

1

Figure 1.1. Various combustion regimes accessible from an initial state (p = 1, ρ = 1):
inert Hugoniot shown as a black line, Hugoniot with heat addition shown as a red line.

the stable end state for a self-sustaining detonation wave, and the corresponding flame

velocity is the CJ detonation velocity Vd. The upper CJ point separates the strong and

weak detonation regimes. It can be shown from the tangency condition that, at the

CJ point, the detonation velocity relative to the reaction products is equal to the local

speed of sound in the reaction products [3, 4]. Similarly, the lower CJ point separates the

strong and weak deflagration regions and the corresponding velocity is the CJ deflagration

velocity.

The first observation that detonation waves are more complex than described by

the CJ theory came in 1927, with the discovery of the spin phenomenon in detonation

waves propagating in tubes [14]. Photographs of certain detonation mixtures showed

an undulating front with striations behind it. The undulations are most likely due to a
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region of higher than average temperature and luminosity which rotates around the axis

of the tube as the detonation advances. This discovery initiated numerous studies of the

detonation wave structure.

3
3P

2

S

1
1      1P  , T

S      SP  , T2      2P  , T

Shock wave

Detonation
wave

Expansion region

Heat
addiction

or Reaction
zone

Ignition
delay or

Induction
zone

von Neumann
Pressure spike

x

Figure 1.2. Detonation pressure profile for one-dimensional detonation.

In the early 1940s, Zeldovich [15, 16], von Neumann [17] and Döring [18] each in-

dependently formulated similar models for the one-dimensional structure of a detonation

wave by taking into account the finite-rate chemistry. The detonation wave in the ZND

model comprises of a lead shock followed by the reaction front. The shock wave com-

presses a gas from its initial state along the Rayleigh line to a high-pressure state on

the Hugoniot curve called the von Neumann spike as indicated in Fig. 1.2. The reaction

zone is divided into two regions, namely, an induction zone and a heat addition zone.

In the induction zone, the reaction is delayed due to the finite time required to initiate

chemical reactions. Once the reaction is initiated, energy is released into the flow so that

the temperature is further increased. Taylor rarefaction waves are generated behind this
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point. Thus, the pressure and temperature in this region are decreased to match the

left wall boundary conditions. The ZND model is physically well-based and is a helpful

idealization of a real detonation wave. However, it was clearly demonstrated later, both

experimentally and theoretically, that a detonation is essentially three-dimensional and

steady-state only on average.

1.1.2 Pulse Detonation Devices

A detonation cycle can be represented in Fig. 1.1 by the path AUFA, where A → U

is the detonation path, U → F is the expansion of the burned gas and F → A is

isobaric return to the initial state [19, 20]. For analytical simplicity, the detonation cycle

can be approximated for example as a constant volume process AW1FA, known as the

Humphrey cycle [21, 22, 23, 24, 25, 26] or, alternatively, as a Fickett–Jacobs cycle [27]

and ZND cycle. Regardless of whether the detonation cycle or its surrogate cycles are

considered, all of these cycles produce work without the need to pre-compress the working

fluid. This is unlike deflagration-based cycles such as the Otto, Diesel and Brayton cycles.

The detonation cycle forms the basis of pulsed detonation engines, similar to the

Otto gas cycle being the basis of internal combustion engines. A pulse detonation device

operates intermittently with each cycle comprising of several interdependent processes.

These processes are illustrated by the basic scheme shown in Fig. 1.3. A tube, initially at

quiescent conditions (1), is filled with propellants (2). The propellants could be either a

fuel–air or a fuel–oxygen mixture. The propellants are shown in (2) as being fed from an

end wall and propagating to the right at a relatively slow speed. At some instant during

this fill process (3), combustion is triggered. Usually, due to the low initiation energy

of the igniter, a run-up distance is required to transition to detonation. The detonation

wave propagates into the tube (4). Ideally, the propellants are consumed at the end of the

tube (5). The tube is purged in (6) by a reflected expansion that draws in the ambient gas
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Figure 1.3. Basic pulse detonation scheme.

and returns the tube to its initial state (1) thereafter. In some implementations, a purge

cycle is included to scavenge the tube off hot, burnt products prior to the injection of

propellants for the next cycle. Theoretical analyses have shown that pulsed detonation

devices have improved efficiency compared to existing deflagration-type systems, such

as those based on the Brayton cycle [21, 22, 23, 24, 25, 28, 29, 30]. This is because,

in principle, detonations are an extremely efficient means of combusting a fuel–oxidizer

mixture and releasing its chemical energy content for work. Other than the improved

thermodynamic efficiency of pulsed detonation systems versus deflagrative systems, the
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former also possesses other advantages, such as wide operating range, scalability, reduced

moving parts and operational simplicity, to name a few [20, 31, 32].

Research in pulse detonation has embraced the development of basic theory, design

concepts, and detonation initiation and enhancement involving experimental and numer-

ical simulations, amongst others. It is pertinent to point out that most of the emphasis to

date has been in utilizing pulse detonation for airbreathing or rocket propulsion systems.

Other than studying the core detonation process for propulsion, some work has also been

performed to integrate pulse detonation into a propulsion system, such as modifying ex-

isting turbomachinery-based systems [33, 34, 35, 36, 37] or proposals for revolutionary

systems in applications ranging from low-speed unmanned vehicles to missiles to space

access vehicles [38, 39, 40, 41, 42, 43, 44, 45, 46, 47].

Practically all of the efforts on developing pulse detonation devices to date have

been channeled toward propulsion [48] and the above-cited works, although some poten-

tial industrial applications have been reported [49, 50, 51]. It appears that pulse deto-

nation may be the basis of electric power production systems. Many of the advantages

pertinent to propulsion applications also are valid for power production applications, for

example, high efficiency, reduced moving parts and scalability. Interestingly, the first

reports of power applications were centered on exotic concepts coupling a magnetohy-

drodynamic generator to a pulse detonation engine for high-speed airbreathing flight or

deep space applications [52, 53]. Nonetheless, it appears feasible to apply a more con-

ventional approach whereby the available work from pulse detonation can be converted

to electricity via a turbine–generator combination. Frankey et al. [36] and Hoke et al.

[37] have performed preliminary studies on conventional power extraction. In particular,

Hoke et al. showed that a turbine can survive long-duration, high shock loading from

detonation waves.
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1.1.3 Cycle Analysis

Attempts have been made to model pulse detonation propulsion systems with em-

phasis on obtaining performance estimates, such as thrust and impulse [54, 55, ?, 56].

The modeling can be performed at different levels of detail [57], including interaction of

the filling process with the detonation. However, the complexities involved in modeling

the unsteady, pulsed detonation processes have thus far restricted most studies to using

simple models [58, 59].

Other than numerical modeling, thermodynamic cycle analysis has been applied to

assess the performance of pulse detonation devices [60, 61, 62, 63, 64, 65]. The techniques

used typically avoid numerical modeling, thereby yielding algebraic relationships through

simplifying assumptions. The above-cited works use first law, namely, energy concepts,

to analyze the efficiency of propulsion systems, to study the interaction of processes such

as filling with the detonation process [66] or to study the performance of the detonation

process itself.

Hutchins and Metghalchi [67] present an energy and exergy analysis of a pulse

detonation engine. They showed that detonation can be modeled as a Humphrey cycle.

For different fuels such as methane and JP-10, Hutchins and Metghalchi showed that for

the same pressure ratio, pulse detonation engines have better efficiency than gas turbines,

especially at low pressure ratios.

Similar to the Otto and Diesel cycles that are used to understand the performance

of intermittent combustion engines, the performance of PDEs can be estimated through

a thermodynamic cycle analysis despite their unsteady behavior. Such a performance

estimate based on ideal thermodynamic cycle analysis can be extended to “real” cycles,

as is the acceptable practice in analyzing various types of thermodynamic systems [68]. In

other words, using such a conceptual thermodynamic cycle provides a simple framework
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for handling detonations in a purely thermodynamic fashion, avoiding the complexity of

unsteady gas dynamics of realistic pulse detonation [69, 63].

1.2 Motivation and Scope of Present Research

The cycle analysis of PDEs is a great analytical tool to estimate the performance of

such engines without the necessity of heavy computational fluid dynamics or expensive

experimental equipment. Performing this analysis in such a way that the energy released

in the chemical reaction is in a generalized form, i.e. independent of the fuel-oxidizer

mixture, creates the possibility of applying the analysis for different purposes, such as

propulsion or power production. Moreover, a comparison of the performance of different

fuel-oxidizer mixtures can be made prior to engaging in experimental work. Finally,

the addition of regeneration intends to deal with the utilization of the high temperature

exhaust gases for useful work that, so far, has been ignored in previous analyses.

This work has as a goal the development of a generalized cycle analysis of an ideal

PDE and to study the utilization of regeneration to improve the overall cycle performance

and to harvest more useful work from the higher temperatures of the working fluid

mixture achieved by the detonation process.

The objectives can be specified as to:

1. develop generilized thermodynamic relations that can be applied to a cycle analysis,

that will be dependent on the initial condition, fuel-oxidizer mixture and heat

addition;

2. perform a study of different fuel-oxidizer mixtures and compare the results to de-

termine the most efficient and appropriate fuel-oxidizer mixture to be used. The

analysis includes p− v and T − s diagrams and thermal efficiency;

3. use fuel-oxidizer mixtures that can be of interest for power production such as

methane-air, propane-air and hydrogen-air;
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4. for those specific fuel-oxidizer mixtures, an analytical approach will used in order

to identify the CJ and ZND points in an ideal PDE cycle;

5. the approximations adopted for the detonation process are represented through the

use of the Humphrey and ZND cycles;

6. The cycle analysis results for detonation are compared with the Brayton cycle which

is the constant pressure cycle adopted to approximate the deflagration process;

7. introduce the concept of regeneration into the PDE cycle to utilize the high tem-

peratures achieved by the mixture after the detonation process to improve the cycle

efficiency;

Many theoretical concepts and models are considered for this work. An under-

standing and application of CJ and ZND model, especially the calculation of the CJ and

ZND points; Rankine–Hugoniot relations, Rayleigh line; the states of an ideal PDE cycle,

cycle efficiency and the concept of regeneration are necessary for the accomplishment of

the objectives previously mentioned.

Chapter 2 introduced the detonation theory, its models and approximations. It

explains how the PDE cycle can be represented thermodynamically. Chapter 3 discusses

the thermodynamic analysis. The difference between the cycle and its approximations

is presented It also shows how the thermodynamic states can be obtained. Chapter 4

discusses the use of regeneration and cogenerations in this study and how that can affect

the performance of a PDE for power production. The following chapter presents the

results for a cycle analysis and for the concerns about using regeneration in the system.

The last chapter concludes this study, making points from the results that needed to be

highlighted. It also introduces the possible improvements that can be made on this study

and some suggestions for new approaches.
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CHAPTER 2

DETONATION THEORY

2.1 Detonation vs. Deflagration

As previously mentioned, deflagration is a subsonic combustion process in which a

flame front passes through the reactant mixture with flame speeds from less than a few

meters per second to a few hundred meters per second, releasing the heat of reaction at

a slow pace. On the other hand, detonation produces a supersonic combustion wave that

propagates at a few thousands of meters per second relative to an unburned reactant–

air mixture. The detonation wave is a shock wave driven by the energy released in the

reaction zones right behind it. The reaction zone is known to be much thicker than the

shock wave. The reaction zone and the shock wave are tightly coupled in a detonation

wave and both propagate through the mixture at supersonic speeds.

When comparing the flow and thermodynamic properties for shock and reaction

processes, one can notice that detonation is able to produce higher pressures, tempera-

tures and densities at much higher speeds than deflagration. The benefit of this conse-

quence for many applications, including not only propulsion but also power production,

is evident.

In the previous chapter the beginning of detonation studies was discussed. Also

mentioned is that there are presently two well-known theories that are used to model

detonation waves, namely the Chapman–Jouguet (C-J) theory and the Zeldovich–von

Neumann–Döring (ZND) theory. In the following section, a description of these models

will be presented.
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2.2 CJ Theory

The simplest theory adopted to describe the detonation wave is the Chapman–

Jouguet theory [10, 13]. In this theory, the chemistry reaction rate is considered infinite,

meaning the reaction is completed instantaneously. Additionally, the reaction zone and

the shock are coupled and accounted for as a single jump discontinuity.

The detonation wave has a constant velocity, uD, from the moment of initia-

tion. The flow final state, right behind the reactive shock, satisfies the following one-

dimensional flow conservation relation where (1) and (2) indicate the upstream and

downstream states. In Eqs. (2.1–2.3) ρ, u, p and h are the density, velocity, pressure

and enthalpy respectively, of the flow. The velocities u are measure with respect to the

detonation wave. When Eqs. (2.1,2.3) are combined and u2 is eliminated, a line in the

p-v diagram can be defined. This is called the Rayleigh line and

ρ1u1 = ρ2u2 (2.1)

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (2.2)

h1 +
1

2
u2
1 = h2 +

1

2
u2
2 (2.3)

u2
1

v21
=

u2
D

v21
=

p2 − p1
v1 − v2

(2.4)

Combining the conservation relations and the Rayleigh line equation, in such a way

that the detonation speed uD is eliminated, results in the relation for the Hugoniot curve

in the p–v diagram.

h2 − h1 =
1

2
(p2 − p1) (v1 + v2) (2.5)
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The enthalpy can be expressed as

h1 = cp1T1 + ho
1 (2.6)

h2 = cp2T2 + ho
2 (2.7)

and where ho is the enthalpy of formation at standard state, 298.15 K and 1 atm and cp

is the specific heat capacity at constant pressure. For a polytropic gas (ideal gas with

constant heat capacity), the heat of combustion (heat release) is given by

q ≡ ho
1 − ho

2 (2.8)

Combining Eqs. (2.4) and (2.5) yields the Rankine–Hugoniot relation.

(
p

p0
+ µ2

)(
v

v0
− µ2

)
= 1− µ4 + 2µ2 q

p0v0
(2.9)

where,

µ2 =
(γ − 1)

(γ + 1)
(2.10)

It describes the detonation state, represented by (p, v), for a given detonation

velocity as the intersection of both the Rayleigh and the Hugoniot curves.

Equation (2.9 is the equation for a rectangular hyperbola in the p–v plane, centered

at the point v = µ2 and p = −µ2, where the distance between the center and the curve

is a linear function of the heat release q. For the above equation, γ is the ratio of specific

heats, and the gas is assumed to have constant specific heat.

From the equation described here, the final states of the flow are given as:
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p2
p1

=
1 + γM2

1

1 + γ
(2.11)

ρ2
ρ1

=
(1 + γ)M2

1

1 + γM2
1

(2.12)

T2

T1

=
(1 + γM2

1 )
2

M2
1 (1 + γ)2

(2.13)

where M , in the above equations, is the Mach number. From

M1 =

√
2 (γ + 1)

(
q

ṁcpT1

)
(2.14)

it is seen that pre-heating the reactants reduces the detonation Mach number (though not

the velocity), whereas, increasing the initial pressure increases the detonation velocity.

The Rankine–Hugoniot curve is the domain where all possible solutions for any

flow going through a shock or combustion wave can be found. Figure 1.1 represents the

Rankine–Hugoniot (R–H) curve and Rayleigh line on a p vs. 1/ρ = v space for a given

value of heat release q. The characterization and validity of the different conditions of

the flow were discussed in the Introduction.

The Rayleigh line equation can be used to plot constant velocity lines on the same

chart, originating on the shock R–H curve at a point A, denoting the initial pressure and

density, as seen in Fig. (1.1). The intersection of a Rayleigh line and the R–H curve of

the particular value of q is the steady state solution of the final state of a detonation or

deflagration wave. Based on the flow velocity, the R–H curve can thus be divided into

five regions, each yielding a different solution of the final state, as shown in Fig. (1.1).

At a certain minimum velocity, the Rayleigh line touches the R–H curve tangentially

at the point U, called the upper Chapman–Jouguet (C–J) point. This is the minimum

velocity solution for detonation of the particular mixture, at which the burnt products
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are traveling at Mach 1 with respect to the detonation wave. For higher velocities, the

Rayleigh line cuts the R–H curve at two locations, denoted by W and S; W is the weak

solution for detonation, at which point the velocity of the burnt products is supersonic

(M3 > 1) with respect to the detonation wave. As a result, a growing region of constant

state is created between the reaction zone of the detonation wave and the head of the

rarefaction wave. The region between U and W1 (Region II in Fig. (1.1)) yields the

weak detonation solution. The point S is called the strong point, representing a pressure

higher than C–J pressure. The velocity of the burnt products in this solution is subsonic

with respect to the detonation wave. As a result, the rarefaction wave may overtake

the detonation wave and weaken it to a C–J detonation. Therefore, the strong, or over-

driven, detonation is unstable. The portion of the R–H curve above U, called Region I

in Fig. (1.1), is called the strong detonation region, in which the final state of the flow is

always a strong detonation. In region III of the R–H curve, the slope of the Rayleigh line

is positive and the wave velocity uD is imaginary. Therefore, region III has no solutions

and offers no state that is physically possible.

2.3 ZND Theory

The basics and origins of this one-dimensional theory were described in Chapter 1.

Although, the ZND theory also predicts the same final state for the detonation process

as the C–J theory, the former is able to predict the von Neumann spike.

Figure (2.1) shows all the possible solution for a flow going from the initial state

A to the upper CJ point U . Solution a requires a large amount of energy deposition to

the flow to induce direct detonation initiation. Solution b requires a very fast chemical

kinetics, while solution c requires slow chemical kinetics. The most feasible solution is

then solution d, starting with an adiabatic compression along the shock Hugoniot curve,
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until it reaches the von Neumann spike, and finally the solution diverts sharply downward

along the Rayleigh line to complete the course at point U .

The von Neumann spike presents an increase in pressure that is about 30 to 100

times higher than the initial pressure, lasting for a very small fraction of time [2].

p1

p

1/ 

d

c
b

a

1/ 1

A
L

W

von Neumann Spike

Shock Hugoniot q= 0

Combustion Hugoniot q > 0

U

Figure 2.1. Rankine–Hugoniot curve showing the possible solutions that take the flow
from initial state to the C–J point.
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CHAPTER 3

CYCLE ANALYSIS

Thermodynamic analysis of PDEs usually makes use of one-dimensional models,

based on the Chapman- Jouguet (CJ) and the Zeldovich-von Neumann- Doring (ZND)

theories, although increasingly sophisticated techniques partly involving numerical mod-

eling have also been developed lately.

Traditional gas cycles, such as the Otto, Diesel, and Brayton cycles, are based on the

deflagrative mode of combustion for adding energy to the working fluid. A paradigm shift

from deflagration-based cycles can be achieved by using detonations to develop thrust or

power. A detonation wave travels at a few thousand meters per second compressing the

quiescent upstream reactive mixture to trigger chemical reactions.

In this chapter the theories and equations that can be applied to the thermodynamic

cycle analysis of a detonation and deflagration cycle are introduced and explained. The

cycles adopted for this analysis are the Humphrey, ZND and Brayton cycles.

It will be shown that the more complex ZND cycle is preferable for PDE cycle

analysis. The ZND cycle is practically different from the PDE cycle since the ZND cycle

does not take into account the frequency of the PDEs. The ZND cycle is a representation

of one detonation cycle.

To achieve these goals, the cycles, state properties and efficiencies have to be de-

fined. The assumptions made will be laid out clearly in this section. The regeneration

study will also be performed using the methodology and assumptions stated here.
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3.1 Cycle Modeling

Cycle analysis is an excellent tool to compute the performance and to analyze the

detonation process model. As stated above, the analysis will utilize two different models

for the detonation process and will compare them with a model for a deflagration mode

of combustion. Their performance will be presented and compared and the best model

for the detonation process, according to the analysis made, will be selected.

Since the gas turbine engine is most commonly used as the prime-mover in medium

to large scale power generators, the Brayton cycle is modeled here for comparison with

the PDE cycles. As described earlier, the combustion process in the Brayton cycle is

modeled as a constant pressure process as seen and described in detail in Figs. (3.8) and

(3.9).

To model the detonation process, the aforementioned two cycles are shown. The

first one is represented by the Humphrey cycle, show in Figs. (3.6) and (3.7). This cycle

is a simple model for the detonation process. The detonation is modeled as a constant

volume combustion process.

The fundamental advantage of the Humphrey cycle over the Brayton cycle is that

the heat release is accompanied by an increase in pressure due to volumetric confinement.

This allows Humphrey cycle engines to develop power more efficiently than a Brayton

cycle engine with the same inlet state at the combustor.

The ZND cycle, which describes the detonation process in more detail, follows the

ZND theory. According to that theory the detonation process can be described by two

different specific parts described later in the chapter.
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3.2 Mixture

For the present analysis, various fuel–air mixtures are examined as will be discussed

later. However, independent of the fuel, the mixture is assumed to be fully mixed, in

complete thermodynamic equilibrium, with no change in chemical composition and to

have a constant specific heat ratio throughout the cycle, this approach is called the

one-gamma model.

Table 3.1 shows the specific heat ratio for a methane–air mixture that goes through

a detonation process. The values for the specific heat ratio are shown for the unburned

and burned mixture and for different compressor pressure ratios, πc. The values are

obtained from the C.E.A. code [70]. The table also shows the value of γ that is used in

throughout the analysis.

Table 3.1. Specific heat ratio for reactants and products of a detonation process and used
specific heat ratio for various fuel–air mixtures.

mixture πc γreactants γproducts γ used
Hydrogen–air 1 1.4015 1.1638 1.4015

20 1.4015 1.1887
Methane–air 1 1.3883 1.1688 1.3883

20 1.3883 1.1915
Propane–air 1 1.3683 1.1661 1.3683

20 1.3683 1.1887

By comparing the values presented in Tab.3.1, it is seen that there is a great differ-

ence between the values presented, especially as the compressor pressure ratio increases.

The data shows that considering different values for the specific heat ratio can influence

the results. However, using the one–gamma model makes the analysis more simpler and

applicable for a wide variety of fuels, and helps the creation of an analysis tool that does
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not require the user to have detailed information about the chemical reaction as will be

shown later.

Another assumption made about the mixture is that it is a stoichiometric mixture.

A stoichiometric mixture is a mixture that has a fuel–air ratio f = 1. Using a stoichio-

metric mixture brings many advantages not only to detonation mode of combustion but

also to deflagration mode of combustion. The first advantage is that the adiabatic flame

temperature during the combustion is at its highest at stoichiometric condition. The adi-

abatic flame temperature is the maximum temperature that can be achieved for a given

set of reactants. In addition, the CJ velocity, the pressure ratio and the temperature

ratio are the highest at f = 1. Moreover, the detonation size cell is the smallest for a

stoichiometric mixture. This can be seen in Figs. (3.1) and (3.2). Figure (3.1) shows the

cell size vs. fuel–air ratio for different mixtures. Figure (3.2) shows the detonation cell

size vs. fuel–air ratio for a hydrogen–air mixture. With a small detonation cell size, the

deflagration-to-detonation transition (DDT) is improved and it increases the sensitivity

of the mixture to detonation, decreases ignition delay, activation energy and the mini-

mum and critical tube diameters. All of these factors improve the detonation process

also.
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Figure 3.1. Detonation cell size vs. equivalence ratio for various fuel–air mixtures [1].
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Figure 3.2. Detonation cell size vs. equivalence ratio for a hydrogen–air mixture [1].

3.3 Detonation vs. Diesel

The most common choice of an engine for a land based power production device

would be the diesel engine. Diesel engines are used in small scale power generators,

rated in the range of a few hundred Watts, medium scale power generators, rated in the

range of a few kilowatts, and all the way up to large scale power generators, rated in the
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megawatts. It is know that the energy efficiencies of diesel engines are between 35% and

40%. Compared to the less efficient gasoline based engines, diesel engines have lower fuel

costs and burn the fuel more completely. Diesel engines are also used in locomotives,

tanks and ships for direct shaft power for propulsion or to generate onboard electric

power by means of an electric generator which turns an electric motor that drives the

wheels or propeller. On the other hand, diesel engines are known to be very bulky and

heavy and to have significant heat loss. Another disadvantage of diesel engines is that

they require very complex components, such as very high pressure fuel injection systems

for example.

The PDE cycle, having a higher theoretical efficiency than the Otto or diesel cycles,

also promise other advantages for power production. PDEs have the potential of being

more compact and even portable and theoretically are very simple in design. Another

great advantage of PDEs is the possible use of a wide range of fuels, including hydrogen

and methane. In addition, PDEs can have higher power to weight ratio.

Using PDEs for power production seems like a very straightforward option when

taking into account all the advantages compared to the main stream options such as

diesel engines. In the next chapter, an analysis of the detonation based system will be

performed to establish how efficient PDEs can be and what conditions are necessary to

ensure high efficiencies.

3.4 Thermodynamic Properties

Given a generic power cycle, represented by Fig. (3.3) one can explain how the

thermodynamic states 0, 1, 2 and 3 can be determined, assuming complete thermody-

namic equilibrium. Each process present in those cycles can be described as follows.

From the initial state, an isentropic compression takes place (0 → 1), followed by a heat

addition process representing the detonation process (1 → 2) and an isentropic expansion
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(2 → 3) that takes the mixture to the initial pressure. The cycle ends with an isobaric

heat release (3 → 0) that takes the mixture back to its initial state.

The processes described above are common in all the cycles studied, with the

exception of the heat addition, also called, sensible heat or heat value which is the heat

of reaction during the combustion.

p

v

2

1

0 3

T

s

0

1

2

3

Figure 3.3. T–s and p–v diagrams of a generic power cycle.

State 0 is the initial state of the mixture. In the present analysis all the values

are considered with respect to the initial values, e.g. v/v0 and p/p0. In the case of

power production, a compressor can be utilized to accomplish an increase in pressure

and temperature of the mixture prior to the combustion process.

Figures (3.4) and (3.5) show the p–v and T–s diagram for the ZND cycle, where

the (0 → 1) process is assumed to follow the inert Rankine–Hugoniot curve according

to the Eq. (2.9), assuming that the final pressure p1 is that of the one achieved by
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Figure 3.4. p–v diagram of a ZND cycle.

the compressor. Process (1 → 2) describes the heat addition or combustion process.

For the ZND cycle this process can be divided in two specific parts. The first one is

process (1 → 2a), where the mixture is taken from state 1 to state 2a, called the von

Neumann spike, through the inert Hugonior–Rankine curve. That process is identified

as the leading shock wave, where no reaction takes place. The second process (2a → 2)

is where the mixture is taken from state 2a to the CJ condition, state 2, located in the

reactive Hugoniot curve and it is identified as the release of sensible heat in constant

area and where the reaction takes place. The ZND cycle assumes that a straight line

connects the two states. The CJ condition is that the Rayleigh line and the Hugoniot

curve be tangent, so their slopes are equal at the CJ point. So, knowing the slope for the

Hugoniot curve and knowing that the Rayleigh line connects the initial state to the CJ

state and to the von Neumann spike, states 2a and 2 can then be determined. The slope

is calculated by taking the derivative of the Hugoniot curve with respect to the specific

volume and applying it to the initial state, to the CJ state and the von Neumann spike.
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Figure 3.5. T–s diagram of a ZND cycle.

Process (2 → 3) is an isentropic Taylor expansion, where the final pressure p3 is equal to

the initial pressure p0. Using the isentropic relations

T

T0

=

(
p

p0

) γ−1
γ

(3.1)

T

T0

=

(
v

v0

)γ−1

(3.2)

p

p0
=

(
v

v0

)γ

(3.3)

and knowing that the entropy change for a calorically perfect gas is given by

∆s = cv ln
T

T0

+R ln
v

v0
(3.4)

∆s = cp ln
T

T0

−R ln
p

p0
(3.5)
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the thermodynamic properties of state 3 can be determined. Process (3 → 0) is an

isobaric heat release that takes the mixture to its initial state 0.

1 3

0

2

v�v0

p�p0

Figure 3.6. p–v diagram of a Humphrey cycle.

For the Humphrey cycle, process (0 → 1) is an isentropic compression. So assuming

an initial compressor pressure ratio and using the isentropic relations given by Eqs. (3.1)

to (3.3), state 1 can be determined. The main difference between the ZND and Humphrey

cycles lies in the combustion process, since for the latter this process is assumed as a

constant volume process. So, the heat addition process, (1 → 2), is assumed the same

as the the heat addition obtained in the ZND cycle according to the equations for heat

addition.
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Figure 3.7. T–s diagram of a Humphrey cycle.

q = ∆h (3.6)

∆h = cp∆T (3.7)

q = cp∆T (3.8)

Given that

α =
q

p0v0
(3.9)

and

cv
R

=
1

γ − 1
(3.10)

cp
R

=
γ

γ − 1

the conditions for state 2 can be determined.
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Processes (2 → 3) and (3 → 0) are exactly the same as the ones described for the

ZND cycle.

To describe a deflagration mode of combustion, the Brayton cycle is adopted, and

represented by Figs. 3.8 and 3.9. The main difference between the ZND, Humphrey

and Brayton cycles, is that the latter assumes that the combustion (1 → 2) is a constant

pressure process. All the other processes were previously described and the heat addition

was the same as the ones used in the previous cycles.

3

1

0

2

v�v0

p�p0

Figure 3.8. p–v diagram of a Brayton cycle.

For propulsion, the compressor in the detonation engines may be eliminated or

have fewer stages (fan). For power production a compressor is used. The compressor

is represented by process (0 → 1), which is driven by part of the useful work from the

isentropic expansion process (2 → c).

The end of the Rayleigh heat addition is followed by a Taylor rarefaction. This

rarefaction results in an isentropic expansion of the post-detonation products (2 → 2′).
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Figure 3.9. T–s diagram of a Brayton cycle.

This process is unable to produce shaft work output or increase the exhaust kinetic

energy. The useful work output starts then from state 2′, after the rarefaction process.

Kentfield [62] showed that the temperature relationship for the ZND and Brayton cycles

is T2′,ZND = T2,Brayton and the enthalpies relationship is h2′,ZND = h2,Brayton. The heat

addition is an adiabatic process without shaft work interaction.

3.5 Cycle Performance

In order to compute the thermal efficiency of the cycle, the energy input and output

have to be identified. The heat addition or the heat of reaction qadd is defined as the

heat removed to allow the combustion products to return to the initial temperature and

pressure of reactants [61]. This means that qadd is the enthalpy change between the
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Figure 3.10. Comparison of T–s diagrams for various cycles.

reactants and the products both at the reactants’ temperature and pressure (state 0), as

given in Eq. (3.11).

qadd = ṁfhPR

= ṁf (hR − hP ) (3.11)

The hR and hP are the enthalpies of formation of the reactants and the products, respec-

tively.

The heat rejected, qrej, is the heat rejected through the exhausted flow (state 3)

into the atmosphere (state 0) under a constant pressure process.

For power production, the performance of the cycle is based on the shaft work out-

put defined as the specific work output Wout in kW per kg/s of air mass flow (kW/kg/s).
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The work output is a portion of the heat addition, defined as qadd − qrej. Using the

previous definition, the thermal efficiency of the cycle is given by Eq. (3.12).

ηth =
work output

heat addition
= 1−

qrejected

qadded
= 1− (1 + f) (h3 − h0)

fhR

(3.12)

The heat of reaction of unit mass of fuel (kJ/kg) is defined by Eq. (3.13).

hPR =
1 + f

f
(hPR)mixture

=
1

f
(hPR)air (3.13)

3.6 PDE Frequency

A PDE is modeled as a straight tube with a constant cross section. One end of the

tube is closed and the other is open. For simplicity, gases are treated as polytropic. It

is also assumed that viscous effects and thermal conduction are negligible and that the

flow is one-dimensional.

Since PDEs operate cyclicly and due to the nonlinear nature of the detonation

process, many of the thermodynamic properties used for cycle and performance analyses

do not represent the real results with accuracy. One of the methods that the cyclic mode

of operation can be accounted for is to make use of cycle averaged properties.

The Endo-Fujiwara model [60] is adopted here to average the cycle properties. For

more detail on the model the original article can be accessed.

The model assumes an tube with one open end. The detonation wave is initiated

at the closed end and propagates to the open end. When the detonation wave breaks out

from the open end, a rarefaction wave starts to propagate from the open end toward the
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closed end called the thrust wall. An analytical study is performed Endo-Fujiwara [60]

to represent the decay pressure profile history at the thrust wall shown in Fig. (3.11).

The period 0 ≤ t ≤ tplateau is named the combustion phase. And, it is within that

Pr
es

su
re



timetplateau t Texhaust cycle

Figure 3.11. Detonation wave pressure profile.

phase that the whole detonation process takes place and the detonation wave exits the

tube. At time t = tplateau, another rarefaction wave is created and starts to propagate

from the open end to the closed one. Through this rarefaction wave, the burned gas is

exhausted from the open end of the tube. The exhaust of the burned gas lasts until time

t = texhaust, called the exhaust phase. After time t = texhaust, the tube is recharged with
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a fresh detonable mixture, and the recharging of the tube is completed at time t = Tcycle.

The time texhaust ≤ t ≤ Tcycle is named the filling phase.

The model start with the introduction of some PDE wave parameters, given by

Eqs. (3.14) to (3.18).

k1 =
γ + 1

2γ
(3.14)

k2 =
γ − 1

2γ
(3.15)

k3 =
k1
k2

(3.16)

k4 =
2
[
(γk1)

k3 − 1
]

γ
k2 (3.17)

k5 = 2k
−k3/2
1 (3.18)

The time for the wave to reach the CJ position can be given by

tCJ =
L

DCJ

(3.19)

and at the end of the combustion phase the time can be determined by Eq. (3.20), that

represents the time at which plateau in pressure history at thrust wall ends.

tplateau = k5tCJ (3.20)

Introducing a new set of parameters, given by Eqs. (3.21) to (3.24).
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K1 = k4

[
kk1
1 M2k2

CJ

(
0.5γ

γ

)k2

− 1

]
+ k5 (3.21)

K2 =

k4

[
1−

(
K1−k5

k4
+ 1

)−k3
]

k3
(3.22)

K3 =
K2

(
K1−k5

k4
+ 1

) 1
k2 −K1

(
K1−k5

k4
+ 1

) 1
k2 − 1

(3.23)

K4 =

K3

[(
K1−k5

k4
+ 1

) 1
k2 − 1

]

M2
CJγ

(3.24)

where DCJ is the ChapmanJouguet detonation speed.

The exhaust time, defined as the time when the pressure at the thrust wall is the

same as the initial pressure, can be then determined as

texhaust = tCJK1 (3.25)

and the frequency of the detonation cycle can be obtained according to Eq. (3.26). For a

given detonation process, this is the maximum frequency that a cycle can have in order

to have a full detonation cycle developed.

freqmax =
1

texhaust
(3.26)
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The filling pressure can be given by

pfill =
M2

CJγk
k3
1 p0

2γ
(3.27)

and the pressure profile during the exhaust time is determined by Eq. (3.28).

pplateau = pfill

[
k4tCJ

k4tCJ + (t− tplateau)

] 1
k2

(3.28)

And finally, the expression for total time of the detonation cycle Tcycle is given in

Eq. (3.29).

Tcycle =
[
1 + (γk1)

k3
]
2tCJ (3.29)

The variables k1 to k5 and K1 to K5 are parameters that will aid in determining

the flow properties, such as the pressures, and the times that constitute the various

periods of the cycle. The model analytically determined the pressure history at the

thrust wall, whose formulas were compared with numerical and experimental results.

For the parameter described here, the numerical and experimental results used by Endo-

Fujiwara [60] were well reproduced by the model for the decay pressure at the thrust

wall. For more details on the model presented above, and how the properties and times

are computed, please refer to the original article by Endo-Fujiwara [60].
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CHAPTER 4

REGENERATION AND POWER PRODUCTION

In any heat engine, the heat rejected in the cycle through the exhaust gases has

potentially useful energy that could be used for other purposes. The temperature of

the exhaust gases from the PDE or the hybrid PDE-turbine system will undoubtedly

be above the ambient temperature, and therefore, has valuable energy. This energy can

be safely captured and harvested for useful work before being wasted permanently into

the environment. In this chapter, two such methods are discussed. The results of a

quantitative analysis of the increase in efficiencies due to the addition of regeneration is

presented and discussed in the next chapter.

4.1 Regeneration

The heat from the exhaust gases can be fed back into the system by means of a

regenerator. A regenerator is a heat exchanger that uses the hot exhaust gases to preheat

the air coming out of the compressor before entering the combustor. In a gas turbine

engine, regeneration helps to reduce the fuel required to heat the core flow through

the combustor to the required maximum combustor temperature T2. In multi-stage gas

turbine compressors, there may be an intercooler in between the low pressure and high

pressure compressors. The regenerator would be applied at the end of the final compressor

stage or at the exit of the combustor. In a PDE, the compressor does not have to be as

large or require as many stages and may be replaced with a fan which can be driven by

a low pressure turbine. Thus, the extra energy in the flow can be captured with the high

pressure turbine to run an electric power generator.
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The use of a regenerator in a PDE-turbine system is illustrated in Fig. (4.1). Pre-

heating the air using a regenerator has some extra benefits in a PDE in addition to a

reduction in fuel usage. The energy required to ignite the fuel–air mixture will be lowered

considerably whereby the life of the ignition system can be extended. If the fuel used is

a liquid that has to be sprayed and mixed in with the air, preheating the air will aid in

quicker vaporization of the liquid fuel. The regenerator can also be applied to preheat

the liquid fuel to enhance the vaporization of the fuel. This will reduce the fuel–air mix-

ing times and enhance the mixing, which is critical for a PDE since a properly mixed

fuel–air mixture is required for a successful detonation. In addition, various detonation

properties depend on the initial pressure and temperature of the reactants. The deto-

nation cell size, ignition delays and DDT run up distance and time vary inversely with

pressure and temperature [71, 1]. It is widely known that the cell size of a mixture is

inversely related to the sensitivity of the mixture to detonation. Thus, a mixture with

smaller cell size will be more sensitive to undergo detonation and have lower activation

energy and ignition delays. Thus, higher the initial temperature and pressure of the mix-

ture, the faster DDT will occur. Reference [72, 71] has a good collection of experimental

data on hydrogen–air mixtures that show the inverse relationship of cell size with initial

temperature and pressure. Thus, regeneration can help in bringing about successful and

consistent detonations in a PDE.

Current state of the art of turbine technology places a ceiling on turbine inlet

temperatures at about 1850 K due to material limitations. Thus, in a PDE, which

produces much higher temperatures than deflagration based engines, it is important to

limit the exit temperature of the flow leaving the combustor to protect the turbine blades.

The turbine inlet temperature can be lowered by mixing cold air with the combustor core

flow or by introducing regeneration at the exit of the combustor and before the turbine,

shown as a dotted path in Fig. (4.1)[73]. Thus, unlike gas turbine engines in which
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regeneration is always introduced at the end of the turbine, in PDE-hybrid systems,

there are two possibilities for regeneration, before and after the turbine.

0

PDE combustor

Compressor

y

Turbine

x

1 2
3

Regenerator

Fuel

Fuel
injection

Heat
addition

Figure 4.1. Schematic of a hybrid PDE with regeneration.

4.2 Cogeneration

The thermodynamic efficiency of a fuel can be maximized in a PDE system by

using cogeneration. The waste heat from a PDE can be used for process heating or for

steam generation in a cogenerative system, as illustrated in Fig. (4.2). Cogeneration is

a method of using a heat engine to generate both power (thrust or shaft power) and

39



electricity. If the waste heat has temperatures is in excess of 100◦C, the heat can be used

to produce steam to run a steam turbine-generator system. Hot water can also be used

for district heating (space heating or water heating for homes and industry) or for process

heat for industrial applications. In addition, a third sub-system can be incorporated in

a concept called trigeneration. This is the application of waste heat with temperatures

in the range of 100 to 180◦C in absorption chillers for refrigeration and air conditioning.

Thus, a PDE’s waste heat can be used for electricity, heating and cooling simultaneously,

thereby extending the usefulness of a fuel.

Figure 4.2. Schematic of a hybrid PDE with regeneration and cogeneration.
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4.3 Power Production

When using PDEs for land based power production devices, a generator is added

to the system in order to produce electricity. Figure (4.3) shows, schematically, how a

generator is incorporated to a PDE to produce electric power. The first stage of the

turbine is used to drive the compressor.

The next stages drive the electric generator through a transmission system con-

sisting of a set of gears, shafts and other torque converting equipment. The addition

of these components also bring added losses to the system that have to be considered

when computing the efficiencies. The generator efficiency ηgen represents how much of

the shaft power provided by the turbine is transformed into electrical power. The value of

the generator efficiency is typically the same as the motor efficiency, since the generator

is theoretically the inverse of a motor [74]. The efficiency of the shaft power transmission

system is denoted by ηshaft. Thus, the total mechanical to electrical conversion efficiency

can then be written as shown in Eq. (4.1).

ηMEC = ηth ηshaft ηgen (4.1)
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Figure 4.3. Schematic of a PDE for power production with a generator.
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CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, the results for the thermodynamic cycle analysis is presented in

three different sections. In the first section, a comparison between the cycles adopted to

represent the detonation process, ZND and Humphrey cycles, and a deflagration-based

cycle, Brayton cycle, is presented. The best approximation for the detonation cycle is

selected and its thermal and mechanical to electrical conversion efficiencies are studied

and compared with the Brayton cycle. In the second section, The frequency of the PDE is

taken into account and a model to compute the cycle thermal efficiency that includes the

PDE frequency is explained. The third section of this chapter introduces the regeneration

concept in the cycle analysis of the the ZND cycle. The efficiencies are computed and

compared with the efficiencies of the cycle without regeneration.

5.1 Detonation Cycle

A generic model for the cycle analysis is developed using a Mathematica code [75]

where the user only needs to provide the heat of reaction to be able to obtain the p–v

and T–s diagrams for the Brayton, Humphrey and ZND cycles. The area enclosed by

the cycle on a p–v diagram represents the work done by the system, which is the integral

of the pressure with respect to the volume, while the area enclosed by the cycle on a T–s

diagram represents the heat transfer to the system during the cycle.

All the state properties for each different cycle are determined without the need

to change any of the parameters involved in the methodology. The state properties

are associated to states 0,1, 2, 2a and 3. This is a very versatile approach where the
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thermal and mechanical to electrical conversion efficiencies with respect to the compressor

pressure ratio are generated. This approach can be used in many practical ways, such as

a real time control of PDEs that can be performed by obtaining the equivalence ratio,

f , from sensors located in the engine. By knowing this information, many detonation

properties of the flow can be obtained with onboard computers such as determining the

CJ condition and properties, and locating the von Neumann spike for each ZND cycle.

For the cycle analysis and to determine the efficiencies, the cycles have to be de-

scribed and their state properties determined. In the PDE cycle described in Chapter 1,

the fuel–oxidizer mixture enters the combustion chamber at standard atmospheric condi-

tions. A pre-compression of the mixture can occur before the detonation is initiated and

consequently the pressure and temperature in the combustion chamber can differ from

the initial state. Then a triggering mechanism occurs and detonation is initiated. An

isentropic expansion returns the flow to its initial conditions.

For propulsion applications, the system may not have a compressor or may have a

fan, meaning that in the cycles analyzed here, the temperature at state 1 is the stagnation

temperature of the freestream state 0. For power production that is land based, the rise

in temperature and pressure (0 → 1) are accomplished by means of a compressor.

Figures (5.1) and (5.2) show the p–v and t–s diagrams, respectively, for the Bray-

ton, Humphrey and ZND cycles. The cycle heat addition can be modeled by different

processes. One of the approximations commonly used is a constant volume process.

When this is the case, the cycle is known as the Humphrey cycle [76, 3].

For the ZND cycle, the combustion process is modeled according to the ZND theory.

In this model, the heat addition process (1 → 2a) starts with an adiabatic compression

by the leading shock followed by a Rayleigh-type, constant area, frictionless heat addition

that ends at the CJ detonation state (2a → 2). To determined the von Neumann and

the CJ states is the most difficult and important task of determining the state properties
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of the cycles. As mentioned in Chapter 3, the ZND theory assumes that a straight line,

the Rayleigh line, connects the two states. The CJ condition is that the Rayleigh line

and the Hugoniot curve be tangent, so their slopes with, respect to the specific volume,

are equal at the CJ point. The CJ point can be determined by the tangent line to the

reactive Hugoniot curve that intersects the initial state. This same line, the Rayleigh

line, intersects the inert Hugoniot curve at the von Neumann spike.

For a power production device, part of the work produced during the isentropic

expansion process (2 → 3) is used to drive the compressor present in the process (0 → 1),

supplying a matching shaft work. For the part of the expansion that is left, a turbine

is connected to a separate shaft that converts the enthalpy into useful shaft work. It is

seen that the work cannot be extracted from the fluid right after state 2, since there is

an rarefaction wave after the CJ state, and hence the work can only be extracted after

the rarefaction process.

Since the models adopted to represent the PDE cycles were already discussed,

a comparative analysis is developed. Both the ZND and Humphrey cycles represent

detonation-based cycles. For a better understanding of the advantages and features of

the detonation process and the PDE’s for power production devices, a comparison with

a deflagration-based cycle is made. The Brayton cycle is the choice to be used in this

comparison. The processes in this cycle follow the ones described previously for the

Humphrey and ZND cycle with the only variation being the process that represent the

combustion (1 → 2), which in the case of the Brayton cycle is considered a constant

pressure process. Figures (3.8) and (3.9) show the Brayton cycle on a p–v and on a t–s

diagram, respectively.

In addition, Figures (5.1) and (5.2) show the Humphrey, ZND and Brayton cycles

in the same p–v and t–s diagrams. The fuel–oxidizer mixture adopted for this example

is hydrogen–air. According to the CEA code [70], for an hydrogen–air mixture, the
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properties are obtained as γ = 1.4015. The heat of reaction for hydrogen–air initially at

STP is qadd = 3.42 MJ/kg. The heat addition is considered the same for the different

cycles. The CEA code calculates chemical equilibrium product concentrations from any

set of reactants and determines thermodynamic and transport properties of the product.

The compression performed during the process (0 → 1) has a ratio of 2. The cycles

are constructed in such a way that the heat addition is the same for all three different

cycles. The cycle construction is absolutely dependent upon the value of qadd and γ for

the mixture.
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Figure 5.1. Comparison of various cycles on a p–v diagram.
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Figure 5.2. Comparison of various cycles on a T–s diagram.

By comparing the cycles provided in Figures (5.1) and (5.2), it is clear that the ZND

has an area significantly greater than the Brayton and Humphrey cycles, both on p–v

and on a t–s diagrams. This difference is especially large between the ZND and Brayton
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cycles. The Brayton cycle, in the p–v diagram, is hardly visible when compared to the

other cycles. From those observations it is possible to determine that, despite the fact

that the heat addition is the same for the different cycles, the area under the p–v curve is

much greater for the ZND cycle, implying that the ZND cycle has a much greater work

done by the system than the other cycles. The reason for that can be attributed to the

extremely high raise in pressure and temperature that the detonation process achieves

for the ZND model of detonation. Another factor is the heat rejected, since the work is

related to the difference between the heat addition and the heat rejection, the greater

the heat rejection is the smaller the work output of the cycle is going to be. The heat

rejection process is dependent on the cycle model.

It can also be seen that the Humphrey cycle is closer to the the Brayton cycle than

the ZND cycle. Since the Brayton cycle represents the deflagration mode of combustion,

then the ZND cycle is a closer representation of the real PDE cycle. This conclusion was

expected based on the fact that a more complex mechanism for the combustion process

is adopted by the ZND theory. For the analysis that follows, the Humphrey cycle will

not be considered.

5.1.1 Efficiency

The thermal efficiencies for each cycle, ZND and Brayton, are compared according

to Eq. (3.12). For every cycle, the thermal efficiency with respect to the compressor

pressure ratio in process (0 → 1) is presented for three different fuel–oxidizer mixtures

namely hydrogen–air, methane–air and propane–air.

The thermal efficiency is a measure of the usefulness of the heat of reaction, hR, for

each stoichiometric mixture. Table 5.1 shows the values of hR for three fuel–air mixtures

at stoichiometric condition used in this study.
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Table 5.1. Heat of reaction for different fuel–air mixtures.

Fuel heat of reaction unit mass

of mixture hR kJ/kg

Hydrogen (H2) 3420.0
Methane (CH4) 2757.7
Propane (C3H8) 2798.5

Figure (5.3) shows the thermal efficiency, ηth, with respect to the compressor pres-

sure ratio for different fuel–air mixtures and Fig. (5.4) shows the Brayton cycle thermal

efficiency, ηBrayton, with respect to the compressor pressure ratio for a hydrogen–air mix-

ture. Typical compressor pressure ratios for a gas turbine range from 5 to 20, so in this

analysis the efficiencies are computed for πc ranging from 1 to 25. A compressor pressure

ratio of 1 represents the case where there is no compressor added to the system and the

pressure entering the combustion chamber is the same as the initial total pressure p0.

From the plots shown in Fig. (5.5) through (5.7), it is seen that that the thermal effi-

ciency for the different fuel-air mixtures exhibit a very similar trends. It is expected that,

with the increase in compressor pressure ratio, the thermal efficiency increases, given that

increasing the pressure with which the mixture enters the combustor can improve the

deflagration-to-detonation transition as well as increase the post-detonation pressure.

The results also show that ηth,PDE is higher than ηth,Brayton for low values of the

compressor pressure ratio. This is also expected since in a PDE, the process of compress-

ing the flow prior to heat addition is performed by the detonation wave which produces

much higher increases in flow pressure and temperature with less entropy increase as

compared to the compression stage in a Brayton cycle. This gain is especially significant

at low compressor pressure ratios.
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Figure 5.3. Thermal efficiency of a ZND cycle with respect to the compressor pressure
ratio for various fuel–air mixtures.
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Figure 5.4. Brayton cycle thermal efficiency for hydrogen–air mixture.

For electrical power production, the efficiency of the process of converting the

mechanical energy into electrical energy, ηMEC , can be calculated using Eq. (4.1) as

follows. The electrical generator efficiency is taken as ηgen = 95% based on typical motor

efficiencies [74], and the shaft efficiency ηshaft = 95% is also a typical value [77]. Thus,

the total mechanical to electrical conversion efficiency is then found to be

ηMEC = 90.25% ηth (5.1)

Figures (5.5) to (5.7) show a comparison between the thermal efficiency and the me-

chanical to electric conversion efficiency for a ZND cycle, with respect to the compressor

pressure ratio for a hydrogen–air, methane–air and propane–air mixtures, respectively.

Again, the efficiency behavior does not vary significantly with the fuel–air mixture. One

can see that as the compressor pressure ratio increases so does ηMEC , with a more rapid

increase in lower compressor pressure ratios, until that is around πc = 7. After that,

increasing the pressure before the combustion process stops being advantageous. When
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compared with the thermal efficiency, it is seen that the losses added to the system

due to the addition of the generator and shaft power transmission system produce a de-

crease in efficiency, as expected. Figure (5.8) shows the thermal, mechanical to electrical

conversion and Brayton efficiencies for stoichiometric hydrogen–air mixture.
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Figure 5.5. Cycle efficiency of a ZND cycle for hydrogen–air mixture.
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Figure 5.6. Cycle efficiency of a ZND cycle for methane–air mixture.
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Figure 5.7. Cycle efficiency of a ZND cycle for propane–air mixture.

Figure (5.8) shows that the thermal and mechanical to electrical conversion effi-

ciencies start decreasing when the compressor pressure ratio is around πc = 7 and they

become smaller than ηBrayton for πc
∼= 22 for the thermal efficiency and πc

∼= 17 for

the mechanical to electrical efficiency. This behavior can be explained by the way the

efficiencies are calculated. Figures (5.9)and (5.10) show the temperatures T1, T2 and
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T3 and the pressures p1, p2 and p3 with respect to the compressor pressure ratio. It is

possible to observe the extremely high increase in temperature and pressure across the

detonation process and how it is a linear increase. The linear behavior is a consequence

of the modeling of the ZND cycle. State 2, called the CJ condition, is computed by

means of a reactive Rankine–Hugoniot curve and a Rayleigh line. When observing those

relations, it is possible to identify how the pressure and temperature are linearly related

to the initial total pressure and temperature.
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Figure 5.8. ZND thermal, mechanical to electrical conversion and Brayton efficiencies
with respect to the compressor pressure ratio for a hydrogen–air mixture.
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Figure 5.9. Temperatures of states 1, 2 and 3 with respect to the compressor pressure
ratio for a hydrogen–air mixture in a ZND cycle.
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Figure 5.10. Pressures of states 1, 2 and 3 with respect to the compressor pressure ratio
for a hydrogen–air mixture in a ZND cycle.

Figure (5.11) shows the thermal efficiency, entropy of state 3 and temperature T3

with respect to the compressor pressure ratio. The process (2 → 3) is, as described

before, an isentropic expansion that takes the flow from the combustor exit condition
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to the initial total pressure. This means that there is an extremely large difference in

pressures from state 2 to state 3, not taking into account the practical aspects of the

turbine involved in the process. The entropy at state 2 and 3 are related to the pressure

and temperature as can be seen in Fig. (5.11) . The temperature ratio follows the trend

of the entropy curve and starts increasing at approximately πc = 7. Since the thermal

efficiency is given by Eq. (3.12), which can be described as

ηth = 1− f(
T3

T0

) (5.2)

the efficiency behavior is the inverse behavior of the thermal efficiency and the entropy.

This means that the efficiency will start decreasing when πc = 7.
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Figure 5.11. Study of efficiency behavior for hydrogen–air.

This behavior in the efficiency shows that there is a limit for which it is still ad-

vantageous to compress the mixture before the flow enters the combustion chamber. At

πc = 7, any further increase in compressor pressure ratio will cause very little improve-
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ment in the final performance of the system and as the compressor pressure ratio is

increased, the Brayton cycle thermal efficiency eventually becomes higher than that of

the ZND cycle.

Tables 5.2 to 5.4 show the maximum, minimum and peak thermal efficiency values

for a ZND and Brayton cycles for different fuel–air mixtures. The minimum efficiency

is the value of the thermal efficiency when πc is minimum in this analysis, or equal 1.

The maximum efficiency is the value of the thermal efficiency when πc is maximum in

this analysis, or equal 25. And the peak efficiency is the maximum value of the thermal

efficiency obtain within the studied range of πc.

For the Brayton cycle, the thermal efficiency has its minimum at πc = 1 and in-

creases from there until πc is maximum, meaning that the peak and maximum thermal

efficiencies are the same. For the ZND cycle, it is observed that the peak thermal ef-

ficiencies occur at the same value of πc = 7 for all the fuel–air mixtures studied. It is

also observed that hydrogen–air presents the higher thermal efficiencies amongst all the

fuel–air mixtures studied.

Table 5.2. Maximum, peak and minimum efficiencies for stoichiometric hydrogen–air
mixture.

ηBrayton ηth ηMEC

Peak 0.6023 0.6568 0.5927
πc 25 7 7
Max 0.6023 0.5797 0.52326
πc 25 25 25
Min 0 0.4202 0.3792
πc 1 1 1
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Table 5.3. Maximum, peak and minimum efficiencies for stoichiometric methane–air
mixture.

ηBrayton ηth ηMEC

Peak 0.5935 0.6331 0.5714
πc 25 7 7
Max 0.5935 0.5431 0.4902
πc 25 25 25
Min 0 0.3822 0.3449
πc 1 1 1

Table 5.4. Maximum, peak and minimum efficiencies for stoichiometric propane–air
mixture.

ηBrayton ηth ηMEC

Peak 0.5795 0.6182 0.5580
πc 25 7 7
Max 0.5795 0.5170 0.4667
πc 25 25 25
Min 0 0.3729 0.3365
πc 1 1 1

5.2 PDE Frequency

One of the challenges of this study is to incorporate the PDE frequency into this

analysis. The thermal efficiency depends only on the work added to the system and the

work extracted from the system. When looking closely, it can be concluded that for every

cycle, the work added and extracted are always the same. Hence, the PDE efficiency for
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power production would not change with the PDE frequency. However PDEs are pulsed

engines and their frequencies need to be taken into account.

The PDE frequency is an important parameter when quantifying the efficiency of

PDEs for thrust in propulsion, since it is known that the increase in frequency increases

the thrust and power output [1] as well as the efficiency of PDEs for propulsion [78].

In order to be able to account for the frequency, an average process for the pressure,

temperature and specific volume profiles as described in Chapter 3. The main difficulty

of the Endo–Fujiwara model [60] is to average the pressure that changes during the decay

of pressure for every detonation period, according to Fig. (3.11).

Another detail to be considered in this discussion is that, for every fuel–air mixture,

there is a minimum period for the detonation wave to occur. Depending on the fuel-

oxidizer mixture, the detonation wave has a minimum time to be able to travel, so that

a minimum period is required for the detonation that is composed by a discontinuity to

bring the pressure to the CJ point, after that the pressure profile stabilized and finally

decreases to the initial state, followed by a purge and filling period. In this analysis, the

purging is considered to take the same amount of time as the recharging of the tube. To

determine the average pressure of the PDE cycle that includes the time for purging and

recharge of the tube Eq. (5.3) is developed.

pcycle = paverage fPDE texhaust + p0 (1− fPDE texhaust) (5.3)

Where pcycle is the pressure average for the cycle that includes the time for the purging

and recharging of the tube, paverage is the pressure average of the cycle that does not

include the time for the purging and recharging of the tube, texhaust is the cycle period

that does not include the time for the purging and recharging of the tube and fPDE is

the PDE frequency.
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The maximum attainable frequency of a PDE is the inverse of the minimum at-

tainable period of a PDE that can be calculated by adding the period that takes the

detonation to start, develop and decay to the time for purging and filling the tube. In

computing the minimum period, the time related to detonation delay is not considered.

Knowing the minimum period for the detonation to occur will directly imply that

there is a maximum frequency for which each fuel-air mixture can be analyzed with the

certainty that there is enough time to allow the detonation to go through all the processes

described earlier. Also the maximum frequency will guarantee that the detonation cell

size will be achieved.

Figure (5.12) shows the efficiency vs. the PDE frequency, using the average ther-

modynamic properties mentioned above. It is seen that the maximum frequency for each

mixture varies as mentioned above. So, even though the efficiencies increase with the

increasing of the detonation frequency, there is no reason to evaluate up to a frequency

that is bigger that the one that the mixture is able to accommodate. It is seen that

increasing the frequency of the PDE is a very beneficial approach to the performance of

the cycle. Furthermore, the efficiencies present here are much lower than the ones showed

in Fig. (5.3), which is expected due to the averaging method just described.
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Figure 5.12. ZND efficiency with respect to the PDE frequency.

Table 5.5 shows the parameters involved in the calculation of the pressure average

and the cycle frequencies and times. It can be seen that the plateau region is the longest

region of the cycle, followed by the exhaust time. The maximum frequencies can be

determined for each fuel–air mixtures as 351 Hz for hydrogen–air, 308 Hz for methane–

air and 300 Hz for propane–air.
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This practical operating frequency range of PDEs agrees with what has been seen

on the literature regarding experimental work using detonation for propulsion. Those

studies claim that in order for the PDE cycle to be competitive with conventional tur-

bojet/turboramjet systems, they will be required to operate in the 75-100 Hz range with

near stoichiometric fuel–air mixtures. It is expected that for power production the range

need not be the same but similar to that for propulsion [79, 80, 81].

Table 5.5. Frequency parameters.

Parameter H2 CH4 C3H8

tCJ 0.0003894s 0.0004422s 0.0004526s
tplateau 0.001236s 0.001405s 0.001441s
texhaust 0.002846s 0.003241s 0.003332s
fmax 351.33Hz 308.52Hz 300.10Hz

pfill/p0 7.518 7.532 7.553
Tcycle 0.003105s 0.003518s 0.003589s

paverage/p0 4.083 4.089 4.099
MCJ 4.353 4.362 4.374

5.3 Regeneration

A regenerator is nothing more than a heat exchanger. To design or predict the per-

formance of a heat exchanger, it is essential to determine the heat lost to the surroundings

for the analyzed configuration. We can define a parameter to quantify the percentage

of losses or gains. Such parameter may readily be obtained by applying overall energy

balances for hot and cold fluids. If Qe is the heat emitted from the hot fluid, meanwhile

Qa the heat absorbed by the cold fluid (neglecting potential and kinetic energy changes);
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Qe = ṁh (hh,i − hh,o) = ṁhcph (Th,i − Th,o)

Qa = ṁc (hc,i − hc,o) = ṁccpc (Tc,i − Tc,o) (5.4)

where, ṁh, ṁc mass flow rate of hot and cold fluid, respectively; hh,i, hh,o inlet and

outlet enthalpies of hot fluid, respectively; hc,i, hc,o inlet and outlet enthalpies of cold

fluid, respectively; Th,i, Th,o inlet and outlet temperatures of hot fluid, respectively; Tc,i,

Tc,o inlet and outlet temperatures of cold fluid, respectively; and cph , cpcspecific heats of

hot and cold fluid, respectively.

It is possible to determine the temperature at which the heat transfer between

exhaust and incoming gases occurs. If that temperature is named Tx, then the efficiency

for the cycle with regeneration is described by Eq. (5.5). The thermodynamic states in

this equation follow the ones presented in Fig. (3.4).

ηregen =
(T2 − T3)− (T1 − T0)

T2 − Tx

(5.5)

ηregenerator = 50% (5.6)

ηreg =
Tx − T1

T3 − T1

(5.7)

ηth =
(T2 − T3)− (T1 − T0)

T2 − Tx

(5.8)

Carnot cycle efficiency for T0 and T3

ηcarnot = 1− T0

T3

(5.9)

The concept of using the energy wasted through the exhaust gases is explored

here. The regeneration method is used, meaning that the heat coming from the high
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temperature exhaust gases are used to pre-heat the air–fuel mixture before it enters the

combustion chamber. Some of the advantages of regeneration are not only the energy

savings but especially the improvement in the combustion process due to the preheating

of the mixture before it enters the combustion chamber. For detonation, increasing the

temperatures with which the mixtures enters the combustor, can aid in the DDT process

which guarantees that detonation takes place. It is important to keep in mind that

over preheating the mixture can cause premature detonation if the temperature of the

mixture reaches the auto-ignition temperature and it necessary to ensure that the fuel

and oxidizer are not mixed in the heat exchanger In this section, some results of the

regeneration study are presented.

There are two modes of regeneration that are studied in the present work. In the

first mode, the exhaust gases exiting the turbine are redirected to the regenerator heat

exchanger, as shown in Fig. (4.1). In the second mode, the hot flow is extracted directly

from the combustion chamber, before entering the turbine, and then redirected to the

regenerator, as shown by the dotted line in Fig. (4.1). After the hot gas goes through

the primary circuit in the heat exchanger, it is then sent to the turbine from the location

marked as (y) in Fig. (4.1) and (4.2).

In Figs. (5.13) and (5.14) the regeneration process is shown in a T–s diagram

for a Brayton and for a ZND cycle, where the mixture after the turbine is used for

regeneration. In Fig. (5.13) the process of regeneration can be explained better. In that

cycle the process (y → 0) is the heat rejected, processes (3 → y) and (1 → x) is the heat

saved or regenerated and process (x → 2) is the heat addition.
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Figure 5.13. Regenerative Brayton cycle.
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Figure 5.14. ZND cycle with regeneration at the turbine exhaust.

The regenerator efficiency is considered at ηreg = 0.5, which means that only 50%

of the exhaust heat can be reused back in the system. The regeneration study is only

applied to the ZND cycle, since it was established as the model closest to a real detonation

cycle.

Table 5.7 shows the efficiency results for the first type of regenerative cycle com-

pared with the efficiencies before regeneration. The compressor pressure ratio is taken

as 2. The increase in efficiency is evident. The influence of the air–fuel mixture is very

small when the efficiencies are analyzed.

Figure (5.15) shows a comparison of the thermal, mechanical to electrical conver-

sion, Brayton and regenerative efficiency with respect to the compressor pressure ratio.
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Table 5.6. Carnot efficiency.

Fuel Carnot Efficiency

Hydrogen (H2) 84.05%
Methane (CH4) 81.53%
Propane (C3H8) 81.71%

Table 5.7. Efficiency for the ZND cycle with a regenerator.

Fuel Efficiency w/ regeneration Efficiency w/o regeneration

Hydrogen (H2) 77.73% 51.96%
Methane (CH4) 76.64% 50.12%
Propane (C3H8) 76.72% 50.24%

An increase in efficiency is clear, as expected, since more of the heat is being captured

before it can be wasted. It is seen that the regenerative efficiency does not drop for the

compressor pressure ratio range studied. This shows a great improvement in the behavior

shown by the other efficiencies, making the device much more efficient than one that uses

deflagration as mode of combustion.
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Figure 5.15. Efficiency of ZND cycle with regeneration compared with other efficiencies.
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For the second type of regeneration in Fig. (5.16), the temperature of the exhaust

taken is T2′ which is equal to T2,Brayton according to Fig. (3.10) in Chapter 3. It is

important to note that after the regeneration takes place, Tx cannot be higher than T2a

or premature detonation will occur.
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y

Ds�R

T�T0

Figure 5.16. ZND cycle with regeneration at the combustor exhaust.

For the second type of regeneration the detonation process will be improved since

mixture enters the combustor at a higher temperature. However, the overall efficiency

will be dropped since the temperature the enters the turbine decreases. Of course, the

turbine properties will be a determining factor as well, due to material constraints, as

discussed in Chapter 4. In that case, using the second type of regeneration is preferable,

since the flow would have to be cooled before entering the turbine and that energy would

be wasted.
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The benefit of using a regenerator is clear from the results shown. One disadvan-

tage of using the regenerator is the increase in complexity of the system, with added

equipment. One of the great advantages of using a PDE for power production is its sim-

plicity and portability and one has to take into account the benefits and disadvantages

of adding a regeneration system to the cycle.

All the calculation performed above were developed in Mathematica [75] and can

be seen in detail in Appendix A.
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CHAPTER 6

CONCLUSION

A thermodynamic cycle analysis was performed to study the application and feasi-

bility of using PDEs for power production. Two different cycles were used to approximate

the real PDE cycle: the ZND cycle and the Humphrey cycle. The Humphrey cycle as-

sumes that the detonation process is a constant volume combustion, while the ZND cycle

assumes that the combustion process follows the ZND theory where there is a leading

shock wave followed by a reaction zone. Both cycles were compared with a deflagration–

based cycle, namely Brayton cycle. A generic method was developed to, given the fuel–air

mixture, provide the state properties and the p–v and t–s diagrams, for each cycle, and

to provide information on the CJ condition and the von Neumann spike properties for

the ZND cycle.

To compare the cycles mentioned above a p–v diagram and a t–s diagram were

generated for each cycle and compared. The results showed that, as expected, the ZND

cycle is the best cycle to represent a real PDE cycle.

The thermal and mechanical to electrical conversion efficiencies of the two detona-

tion cycles were also studied and compared to each other and to those of the Brayton

cycle.

The mechanical to electrical conversion efficiencies were computed for the three

mixtures for the ZND and Brayton cycles. The mechanical to electrical conversion effi-

ciency curves follow those of the thermal efficiency, however it has lower values, due to

the losses associated with gearing, transmission and with the generator.
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The analysis demonstrates that it is more advantageous to use PDEs over the gas

turbine engines, for propulsion and power generation at low compressor pressure ratios.

The need for low compression ratios in PDEs eliminates the need for heavy com-

pressor machinery, allowing them to operate with just a fan or few compressor stages

making PDEs lighter, more compact, less complex and therefore more cost effective than

other engines. This also means that more shaft work can be derived from the exhaust

flow through the use of more turbine stages, which can be then used for power generation.

• The maximum attainable frequency for a mixture was determined for hydrogen,

methane and propane–air mixtures, based on the detonation period and the times

for purging and recharging of the tube.

• The maximum frequencies found were 351 Hz for hydrogen–air, 308 Hz for methane-

air and 300 Hz for propane–air by a 1 m long constant area combustor.

• When averaging the flow properties throughout the cycle, there is a small decrease

in efficiency as compared to efficiencies based on CJ properties alone.

• A regeneration study is presented to analyze how the use of exhaust gases can

improve the performance of the system.

• For a hydrogen–air mixture, the thermal efficiency increases from 52%, for a cycle

without regeneration, to 78% for the regenerative cycle.

• For a methane–air mixture, the thermal efficiency increases from 50%, for a cycle

without regeneration, to 77% for the regenerative cycle.

• For a propane–air mixture the thermal efficiency increases from 50%, for a cycle

without regeneration, to 77% for the regenerative cycle.

• The efficiency is considerably larger when regeneration is introduced. Regeneration

can be added to the flow after the turbine, similar to gas turbine engines, or right

after the combustor and prior to the turbine to protect the turbine blades from
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the extremely high detonation temperatures. Post detonation temperatures can

surpass the maximum limit of current turbines, which is about 1850 K.

• The regenerative thermal efficiencies for the PDE surpass those of the Brayton

cycle for the range of compressor pressure ratios studied.

• Regeneration will require the use of more equipment than the original PDE-turbine

hybrid system, which can compromise the simplicity and portability of the system.

• Regenerative heating of the air and fuel to the combustor can aid in promoting

DDT and to lower ignition energy and delay. The addition of regeneration into the

system was shown to be a great improvement on the system performance.

• The pulsed nature of PDE operation makes frequency an important parameter to

be studied. It is important to show the influence of frequency on the efficiencies of

the ZND cycle.

• The analysis shows that PDEs are a more advantageous choice of engines for power

production over the deflagrative based engines.

6.1 Recommendations and Future Work

The results show clearly that the use of detonation is advantageous for power

production. There are many improvements in the analysis that can make the results

more realistic and more practical.

The next step in expanding this analysis is to make use of a two–gamma model,

that some studies have shown to be worth considering for this type of analysis. The

second suggestion is to do a qualitative analysis of cogeneration, that will capture more

of the useful energy left in the exhaust. Many configurations of a cogeneration system

are possible,. The exhaust could directly be used for process heat or to create steam in a

boiler, which can then be used for various processes. The exhaust heat can also be used

for heating and cooling, the latter using a vapor-compression refrigeration system.
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Lastly, the effects of the high temperatures of the detonation products on the

turbine blades can be mitigated by vitiating the hot core flow with cold air. This can

be done by means of a bypass system or ejector augmentation. Bypass in a gas turbine

is known to increase power and efficiency. A cycle analysis on the effects of bypass and

ejector augmentation on a PDE-turbine hybrid system would be very advantageous.
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APPENDIX A

CODE
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Initial data and other variables

pic is the compression ratio

H2 = 3 420 000;

CH4 = 2 757 700;

C2 H4 = 3 004 200;

C3 H8 = 2 798 500;

q = 2 798 500;

pic = 2;

pp0 = 101 325; vv0 = 0.997668;

a1 = 0; vinitial = 1; pinitial = 1; Tinitial = 1; sinitial = 0; g = 1.318541;

hprm = q ê 1000; Rf = 0.2183; Rair = 0.2869; R =
Rf + Rair

2
; hpr@f_D :=

1 + f

f
hprm;

p0@pc_D := pinitial pc

q

2 798 500

a =
q

p0 v0

a2 = SolveB q

pp0 vv0
ã xxx, xxxF@@1DD@@1, 2DD

27.6836

Hugoniot

m =
g - 1

g + 1

0.37066

v0@pc_D := SolveB p0@pcD
pinitial

+ m2
v

vinitial
- m2 ã 1 - m4 + 2 m2 a1, vF@@1DD@@1, 2DD

v0@2D
0.596418
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plot0@pc_D := ListPlot@88v0@pcD, p0@pcD<<, PlotStyle -> 8Black, Thick<D
plot0b = ListPlot@88sinitial, Tinitial<<, PlotStyle -> 8Black, Thick<D
eq1@a_, pc_D := SolveB p

p0@pcD + m2
v

v0@pcD - m2 ã 1 - m4 + 2 m2 a, pF@@1DD@@1, 2DD
ZND pressure

pznd@pc_D := eq1@a1, pcD
pznd@1D
0.981124 - 0.137389 H-0.137389 + 1. vL

-0.137389 + 1. v

CJ point

m@pc_D := ∑v eq1@a2, pcD êê Simplify

vcj@pc_D := SolveB eq1@a2, pcD- p0@pcD
v - v0@pcD ã m@pcD, vF@@1DD@@1, 2DD

pcj@pc_D := eq1@a2, pcD ê. v -> vcj@pcD
pcj@1D
19.1882

m1@pc_D := m@pcD ê. v -> vcj@pcD
m1@2D
-145.833

plot2@pc_D := ListPlot@88vcj@pcD, pcj@pcD<<, PlotStyle -> 8Black, Thick<D
plot2@1D
ZND specific volume

m1

m1

vznd@pc_D := SolveB eq1@a1, pcD- pcj@pcD
v - vcj@pcD ã m1@pcD, vF@@1DD@@1, 2DD

vznd@2D
0.0975396
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pznd@pc_D := eq1@a1, pcD ê. v -> vznd@pcD
pznd@2D
74.7527

Plot line from ZND to CJ point

m1

m1

p0 - m1 vznd

p0 - m1 vznd

line@pc_D := Solve@8p0@pcD == a + b v0@pcD, pcj@pcD == a + b vcj@pcD<, 8a, b<D@@1DD;
pp@v_, pc_D := a + b v ê. line@pcD;
plot3@pc_D := ListPlot@88vznd@pcD, pznd@pcD<<, PlotStyle -> 8Black, Thick<D
plot3@2D

Inert Hugoniot curve

plot1@pc_D := Plot@eq1@a1, pcD ê. v -> aa,

8aa, vznd@pcD, vinitial<, PlotRange -> 880, 1<, 80, pznd@pcD<<, PlotStyle -> 8Black<D
plot1@2D
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Line from ZND to CJ point

vcj@1D
0.581771
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pp@v, 1D
44.4886 - 43.4886 v

plot6@pc_D := Plot@pp@v, pcD ê. v -> aa, 8aa, vznd@pcD, vcj@pcD<, PlotStyle -> 8Black<D
plot6@1D

0.3 0.4 0.5

25

30

35

Taylor expansion

ptaylor = pinitial

1

ptaylor

pcj@pcD ã
vcj@pcD

v

g

êê Simplify;

vtaylor@pc_D := SolveB ptaylor

pcj@pcD ã
vcj@pcD

v

g

, vF@@1DD@@1, 2DD
vtaylor@3D
5.66234

graph@v_, pc_D := SolveB p

pcj@pcD ã
vcj@pcD

v

g

, pF@@1DD@@1, 2DD
graph@vcj@1D, 1D
19.1882

vtaylor@pc_D := SolveB p0@pcD
pcj@pcD ã

vcj@pcD
v

g

, vF@@1DD@@1, 2DD
vtaylor@1D
5.46793
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plot7@pc_D := ListPlot@88vtaylor@pcD, ptaylor<<, PlotStyle -> 8Black<D
plot7@1D
graph@vcj@1D, 1D
19.1882

plot4@pc_D := Plot@graph@v, pcD ê. v -> aa, 8aa, vcj@pcD, vtaylor@pcD<,
PlotRange -> 880, vtaylor@pcD<, 80, pcj@pcD<<, AxesLabel -> 8v êv0, p êp0<, PlotStyle -> 8Black<D

plot4@3D
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Heat release

plot5@pc_D := Plot@ptaylor, 8aa, vinitial, vtaylor@pcD<, PlotStyle -> 8Black<D
plot5@1D
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Initial point

CJ point

ZND point

Taylor expansion

End of taylor expansion point

Ideal PDE cycle

pv1 = Show@plot0@picD, plot1@picD, plot2@picD, plot3@picD,
plot4@picD, plot5@picD, plot6@picD, plot7@picD, AxesLabel -> 8"vêv0", "pêp0"<,
Epilog -> 8PointSize@0.015D, Point@8vinitial, pinitial<D, Point@8v0@picD, p0@picD<D, Point@8vcj@picD, pcj@picD<D,

Point@8vznd@picD, pznd@picD<D, Point@8vtaylor@picD, ptaylor<D<, PlotLabel -> "p-v diagram"D
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pêp0

p-v diagram

T - s diagrams

trying to use table values

s0 = sinitial;

T0 = SolveB g

g - 1
LogB x

Tinitial
F - LogBp0@picD

pinitial
Fã 0, xF@@1DD@@1, 2DD

1.18229

Tt0@p_, v_, pc_D := Tinitial
p

pinitial

v

vinitial

T0@pc_D := Tt0@p0@pcD, v0@pcD, pcD
Tt@p_, v_, pc_D := T0

p

p0@pcD
v

v0@pcD
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eq2@a_, v_, pc_D := SolveB p

p0@pcD + m2
v

v0@pcD - m2 ã 1 - m4 + 2 m2 a, pF@@1DD@@1, 2DD
eq2@a1, v, 1D
0.981124 - 0.137389 H-0.137389 + 1. vL

-0.137389 + 1. v

pressure@pc_D := Table@eq2@a1, v, pcD ê. v -> aa, 8aa, v0@pcD, vznd@pcD, -0.02<D;
volume @pc_D := Table@aa, 8aa, v0@pcD, vznd@pcD, -0.02<D;
pvb@pc_D := Table@8volume@pcD@@iDD, pressure@pcD@@iDD<, 8i, 1, Length@pressure@pcDD<D;
plot1bb@pc_D := ListLinePlot@pvb@pcD, PlotStyle -> 8Black<D
plot1bb@1D

0.4 0.6 0.8 1.0
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change here

temperature@pc_D := TableBT0
pressure@pcD@@iDD volume@pcD@@iDD

p0@pcD v0@pcD , 8i, 1, Length@pressure@pcDD<F;
change here

entropy@pc_D := TableB g

g - 1
LogB temperature@pcD@@iDD

T0
F - LogBpressure@pcD@@iDD

p0@pcD F, 8i, 1, Length@temperature@pcDD<F;
ts@pc_D := Table@8entropy@pcD@@iDD, temperature@pcD@@iDD<, 8i, 1, Length@temperature@pcDD<D;
plotinitial = ListPlot@88sinitial, Tinitial<, 8s0, T0<<, PlotStyle -> 8Black, Thick<D
ZND point

eq3@a_, p_, pc_D := SolveB p

p0@pcD + m2
v

v0@pcD - m2 ã 1 - m4 + 2 m2 a, vF@@1DD@@1, 2DD
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eq3@a1, p, 1D
1. H0.981124 + 0.137389 H0.137389 + pLL

0.137389 + p

Ts@p_, pc_D := Tt@p, eq3@a1, p, pcD, pcD
Tznd@pc_D := Ts@pznd@pcD, pcD
Tznd@2D
7.22689

ps@T_, pc_D := Solve@Ts@p, pcD == T, pD@@2DD@@1, 2DD
ps@T, 2D
3.68727µ10-35 -1.97399µ1035 + 1.66963µ1035 T+ 1.66963µ1035 1.39781 - 2.27532 T+ 1. T2

change here

DsR@T_, pc_D :=
g

g - 1
LogB T

Tinitial
F - LogBps@T, pcD

pinitial
F êê Simplify

DsR@Tcj@1D, 1D
4.13931 Log@Tcj@1DD- LogB-3.63931 + 3.07819 Tcj@1D+ 3.07819 1.39781 - 2.27532 Tcj@1D + 1. Tcj@1D2 F
entropy@pc_D := Table@DsR@T, pcD, 8T, T0, Tznd@pcD, 0.1<D;
temp@pc_D := Table@aa, 8aa, T0, Tznd@pcD, 0.1<D;
Tsdiag@pc_D := Table@8entropy@pcD@@iDD, temp@pcD@@iDD<, 8i, 1, Length@temp@pcDD<D;
plot1b@pc_D := ListLinePlot@Tsdiag@pcD, PlotStyle -> 8Black<D
ListPlot@881, 1<<, PlotStyle -> 8Black, Thick<D
Show@plot1b@picD, ListPlot@880, 1<, 8s0, T0<<, PlotStyle -> 8Black, Thick<D, PlotRange -> 880, 8<, 80, 5<<D
DsRznd@pc_D := DsR@Tznd@pcD, pcD
DsRznd@1D
4.56573

plotznd@pc_D := ListPlot@88DsRznd@pcD, Tznd@pcD<<, PlotStyle -> 8Black, Thick<D
plotznd@1D
Show@plotznd@picD, plot1b@picD,

ListPlot@880, 1<, 8s0, T0<<, PlotStyle -> 8Black, Thick<D, PlotRange -> 880, 10<, 80, 10<<D
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Chapman - Jouguet point

Finding the pressure and entropy for CJ point

Ttz@p_, v_, pc_D := Tznd@pcD p

pznd@pD
v

vznd@pcD
Tcj@pc_D := Tt0@pcj@pcD, vcj@pcD, pcD
Tcj@1D
11.1631

Ts2@p_, pc_D := Tt@p, eq3@a2, p, pcD, pcD
Ts2@p, 2D
0.591146 H8.58795 + 0.137389 H0.137389 + 0.5 pLL p

0.137389 + 0.5 p

ps2@T_, pc_D := Solve@Ts2@p, pcD == T, pD@@2DD@@1, 2DD
change here

DsR2@T_, pc_D :=
g

g - 1
LogB T

Tinitial
F - LogBps2@T, pcD

pinitial
F êê Simplify

DsRcj@pc_D := DsR2@Tcj@pcD, pcD
plotcj@pc_D := ListPlot@88DsRcj@pcD, Tcj@pcD<<, PlotStyle -> 8Black, Thick<D
plotcj@1D
Equation for the line from ZND to CJ

vv@p_, pc_D :=
p - a

b
ê. line@pcD
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Ts3@p_, pc_D := Tt@p, vv@p, pcD, pcD
ps3@T_, i_, pc_D := Solve@Ts3@p, pcD == T, pD@@iDD@@1, 2DD
test@pc_D := Solve@Ts3@p, pcD == T, pD
test@1D
::p Ø 18.3916 K1.20948 - 0.329765 13.452 - 1. T O>, :p Ø 18.3916 K1.20948 + 0.329765 13.452 - 1. T O>>
equalT@pc_D := Solve@test@pcD@@1DD@@1, 2DD == test@pcD@@2DD@@1, 2DD, TD@@1DD@@1, 2DD
equalT@1D
13.452

ps3@Tcj@1D, 1, 1D
13.0687

pss3@T_, i_, pc_D := ps3@T, i, pcD
change here

Dsr3a@T_, pc_D :=
g

g - 1
LogB T

Tinitial
F - LogBpss3@T, 1, pcD

pinitial
F êê Simplify

Dsr3b@T_, pc_D :=
g

g - 1
LogB T

Tinitial
F - LogBpss3@T, 2, pcD

pinitial
F êê Simplify

DsR3@T_, pc_D :=
g

g - 1
LogB T

Tinitial
F - LogBpss3@T, 2, pcD

pinitial
F êê Simplify

DsR2@Tcj@1D, 1D
7.99035

DsR3@Tznd@1D, 1D
4.56573

equalT@1D
13.452

entropy3@pc_D := Table@DsR3@T, pcD, 8T, Tznd@pcD, Tcj@pcD + 0.0495, 0.1<D;
entropy3a@pc_D := Table@Dsr3a@T, pcD, 8T, equalT@pcD, Tcj@pcD, -0.01<D;
entropy3b@pc_D := Table@Dsr3b@T, pcD, 8T, equalT@pcD, Tcj@pcD, -0.01<D;
temp3@pc_D := Table@aa, 8aa, Tznd@pcD, Tcj@pcD + 0.0495, 0.1<D;
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temp3a@pc_D := Table@aa, 8aa, equalT@pcD, Tcj@pcD, -0.01<D;
temp3b@pc_D := Table@aa, 8aa, equalT@pcD, Tcj@pcD, -0.01<D;
Tsdiag3@pc_D := Table@8entropy3@pcD@@iDD, temp3@pcD@@iDD<, 8i, 1, Length@temp3@pcDD<D;
Tsdiag3a@pc_D := Table@8entropy3a@pcD@@iDD, temp3a@pcD@@iDD<, 8i, 1, Length@temp3a@pcDD<D;
Tsdiag3b@pc_D := Table@8entropy3b@pcD@@iDD, temp3b@pcD@@iDD<, 8i, 1, Length@temp3b@pcDD<D;
plot1b3@pc_D := ListLinePlot@Tsdiag3@pcD, PlotStyle -> 8Black<D
pp1 = plot1b3@picD
plot1b3a@pc_D := ListLinePlot@Tsdiag3a@pcD, PlotStyle -> 8Black<D
pp2 = plot1b3a@picD
plot1b3b@pc_D := ListLinePlot@Tsdiag3b@pcD, PlotStyle -> 8Black<D
pp3 = plot1b3b@picD
Show@pp1, pp2, pp3D
plot2show = Show@plot1b@picD, pp1, pp2, pp3, plotznd@picD, plotcj@picD, PlotRange -> 880, 10<, 80, 15<<D

2 4 6 8 10

0

4

6

8

10

12

14

End of Taylor expansion point

Ttt@p_, v_, pc_D := Tcj@pcD p

pcj@pD
v

vcj@pcD
vtaylor2 = SolveBTcj@picD ptaylor

pcj@picD
v

vcj@picD ã Ttaylor@picD, vF@@1DD@@1, 2DD
1. Ttaylor@2D
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vtaylor@picD
3.26117

DsRtaylor@pc_D := DsRcj@pcD
Ttaylor@pc_D := Ttt@ptaylor, vtaylor@pcD, pcD
Ttaylor@pc_D := SolveB g

g - 1
LogB x

Tinitial
F - LogB ptaylor

pinitial
FãDsRtaylor@pcD, xF@@1DD@@1, 2DD

Ttaylor@picD
5.46856

plottaylor@pc_D := ListPlot@88DsRtaylor@pcD, Ttaylor@pcD<<, PlotStyle -> 8Black, Thick<D
temp4@pc_D := Table@aa, 8aa, Ttaylor@pcD, Tcj@pcD, 0.01<D;
entropy4@pc_D := Table@DsRtaylor@pcD, 8T, Ttaylor@pcD, Tcj@pcD, 0.01<D;
plot4b@pc_D :=

ListLinePlot@Table@8entropy4@pcD@@iDD, temp4@pcD@@iDD<, 8i, 1, Length@temp4@pcDD<D, PlotStyle -> 8Black<D
plot2showb = Show@ListLinePlot@88DsRtaylor@picD, Ttaylor@picD<, 8DsRcj@picD, Tcj@picD<<, PlotStyle -> 8Black<D,

ListPlot@88DsRtaylor@picD, Ttaylor@picD<, 8DsRcj@picD, Tcj@picD<<DD
plot2showc = ListLinePlot@88s0, T0@picD<, 8sinitial, Tinitial<<D
Heat release HarrayL
Length@vtable@picDD
1

vtable@picD@@21DD
vtable@2D@@21DD
DsRtaylor@picD
7.03275

g

g - 1
LogBTtaylor@picD

Tinitial
F - LogB ptaylor

pinitial
F

7.03275

g

g - 1
LogBTcj@picD

Tinitial
F - LogBpcj@picD

pinitial
F

7.06903
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1

g - 1
LogBTtable@picD@@21DD

Tinitial
F + LogBvtable@picD@@21DD

vinitial
F

3.13931 Log@Ttable@2D@@21DDD + Log@vtable@2D@@21DDD
vtaylor@picD
3.26117

ptable@pc_D := Table@ptaylor, 8aa, vinitial, vtaylor2, 0.1<D;
vtable@pc_D := Table@aa, 8aa, vinitial, vtaylor2, 0.1<D;
Ttable@pc_D := Table@Tt@ptaylor, vtable@pcD@@iDD, pcD, 8i, 1, Length@ptable@pcDD<D;
Dstable@pc_D := TableB g

g - 1
LogBTtable@pcD@@iDD

Tinitial
F - LogB ptable@pcD@@iDD

pinitial
F, 8i, 1, Length@ptable@pcDD<F;

plot5b@pc_D :=

ListLinePlot@Table@8Dstable@pcD@@iDD + 0.00001, Ttable@pcD@@iDD<, 8i, 1, Length@Ttable@pcDD<D, PlotStyle -> 8Black<D
ListPlot@
88sinitial, Tinitial<, 8s0, T0@picD<, 8DsRcj@picD, Tcj@picD<, 8DsRznd@picD, Tznd@picD<, 8DsRtaylor@picD, Ttaylor@picD<<D

Show@plot2show, plot2showbD
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plot2showd = Show@plot5b@picD, PlotRange -> 880, 10<, 80, 15<<D
vtaylor@picD
3.26117

ts1 = Show@plot2show, plot2showb, plot2showc, plot2showd, ListPlot@88s0, T0@picD<, 8sinitial, Tinitial<<D,
Epilog -> 8PointSize@0.01D, Point@8sinitial, Tinitial<D, Point@8s0, T0<D, Point@8DsRcj@picD, Tcj@picD<D,

Point@8DsRznd@picD, Tznd@picD<D, Point@8DsRtaylor@picD, Ttaylor@picD<D<,
AxesLabel -> 8"DsêR", "TêT0"<, PlotLabel -> "T-s diagram"D
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TêT0

T-s diagram

hth@f_, pc_D := 1 -

JH1 + fL R
g

g-1
HTinitial 298L J Ttaylor@pcD

Tinitial
- 1NN

f hpr@fD
hth@1, picD
0.502469

leg3 = Graphics@Legend@88Graphics@8Line@880, 0<, 81, 0<<D<D, Style@"H2", FontFamilyØ "Times", FontSize Ø 14D<,
8Graphics@8Dashed, Line@880, 0<, 81, 0<<D<D, Style@"CH4", FontFamilyØ "Times", FontSizeØ 14D<,
8Graphics@8Dotted, Line@880, 0<, 81, 0<<D<D, Style@"C2H4", FontFamilyØ "Times", FontSize Ø 14D<,
8Graphics@8DotDashed, Line@880, 0<, 81, 0<<D<D, Style@"C3H8", FontFamilyØ "Times", FontSize Ø 14D<<,

LegendShadow Ø None, LegendBorder Ø NoneD, ImageSizeØ 180D
efficiency4 = Plot@hth@1, pcD, 8pc, 1, 5<, AxesLabel Ø 8"pc", "hth"<, PlotStyle Ø 8DotDashed, Black<D
eff = Show@efficiency1, efficiency2, efficiency3, efficiency4D
GraphicsRow@8Show@eff, ImageSize -> 400, AxesStyle -> 8"Times", 14<, LabelStyle -> 8"Times", 14<D, leg3<,

Spacings -> -80D
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pc

0.45

0.50

0.55

hth

C3H8

C2H4

CH4

H2

plot4@pc_D := Plot@graph@v, pcD ê. v -> aa, 8aa, vcj@pcD, vtaylor2<,
PlotRange -> 880, vtaylor2<, 80, pcj@pcD<<, AxesLabel -> 8v êv0, p êp0<, PlotStyle -> 8Black<D

plot4@picD
Heat release

plot5@pc_D := Plot@ptaylor, 8aa, vinitial, vtaylor2<, PlotStyle -> 8Black<D
plot5@picD
Plots

Initial point

CJ point

ZND point

Taylor expansion

End of taylor expansion point

Ideal PDE cycle

pv1 = Show@plot0@picD, plot1@picD, plot2@picD,
plot3@picD, plot4@picD, plot5@picD, plot6@picD, AxesLabel -> 8"vêv0", "pêp0"<,
Epilog -> 8PointSize@0.01D, Point@8vinitial, pinitial<D, Point@8v0@picD, p0@picD<D, Point@8vcj@picD, pcj@picD<D,

Point@8vznd@picD, pznd@picD<D, Point@8vtaylor2, ptaylor<D<, PlotLabel -> "p-v diagram"D
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pêp0

p-v diagram

Decay pressure distribution Hfrom Endo and Fujiwara paper, A simplified analysis on a pulse detonation Engine modelL
L = 1; V = 1000.; Dcj = 2 Ig2 - 1M q

2247.6

tfill = LêV

0.001

Mcj =
g - 1

2 g
+

g + 1

2 g

pcj@picD
p0@picD

4.12204

k1 =
g + 1

2 g
; k2 =

g - 1

2 g
; k3 =

k1

k2
; k4 =

2 I Hg k1Lk3 - 1M
g k2

; k5 = 2 k1
-k3

2 ;

tcj =
L

Dcj

0.00044492

tplateau = k5 tcj

0.00142161

K1 = k4 k1k1 Mcj2 k2
0.5 g

g

k2

- 1 + k5

6.98823
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texhaust = tcj K1

0.0031092

maxfreq = 1 ê texhaust

321.626

K2 =
k4 J1 - JK1-k5

k4
+ 1N-k3N

k3
+ k5

5.37051

K3 =
K2 JK1-k5

k4
+ 1N1êk2

- K1

JK1-k5

k4
+ 1N1êk2

- 1

4.67578

K4 =
K3 JJK1-k5

k4
+ 1N1êk2

- 1N
Mcj2 g

0.485982

pfill =
Mcj2 g k1k3 p0@picD

2 g

6.65708

pplat@t_D := pfill
k4 tcj

k4 tcj + Ht - tplateauL
1êk2

Tcycle = I1 + Hg k1Lk3M 2 tcj

0.00349893

decay = Table@8t, pplat@tD<, 8t, tplateau, texhaust, 0.000001<D;
decayline = ListLinePlot@decay, AxesLabel -> 8"t", "pêp0"<, PlotStyle -> 8Black<D
platline = Plot@pplat@tplateauD, 8t, 0, tplateau<, PlotStyle -> 8Black<D
fill = Plot@p0@picD, 8t, texhaust, Tcycle<, PlotStyle -> 8Black<D
profile = Show@platline, decayline, fill, PlotRange -> 880, Tcycle<, 80, 8<<, AxesLabel -> 8"t", "pêp0"<D
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pêp0

plateau = Table@8t, pplat@tplateauD<, 8t, 0, tplateau, 0.0001<D;
paverage =

1

texhaust - tplateau
‡

tplateau

texhaust

pplat@tD „ t

3.81784

pcycle@fr_D := paverage fr texhaust + p0@picD H1 - fr texhaustL
Plot@pcycle@fD, 8f, 0, 300<D
vave@fr_D := SolveB pcycle@frD

p0@picD + m2
v

v0@picD - m2 ã 1 - m4 + 2 m2 a2, vF@@1DD@@1, 2DD

Tave@fr_D := T0
pcycle@frD
p0@picD

vave@frD
v0@picD

Taverage@fr_D := SolveB g

g - 1
LogB x

T0
F - LogBpcycle@frD

p0@picD Fã 0, xF@@1DD@@1, 2DD
Plot@Tave@fD, 8f, 0, 10 000<D
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Tave@10D
9.12375

Ttaylor@picD
5.46856

eff@fr_, f_D :=

R
g H1 + fL
g - 1

HTinitial 298L 1

f hpr@fD HHTave@frDêTinitial - Ttaylor@picDêTinitialL - HT0 êTinitial - Tinitial êTinitialLL
Needs@"PlotLegends`"D
leg = Graphics@Legend@88Graphics@8DotDashed, Line@880, 0<, 81, 0<<D<D,

Style@"Hydrogen", FontFamily -> "Times", FontSize -> 14D<,
8Graphics@8Dashed, Line@880, 0<, 81, 0<<D<D, Style@"Methane", FontFamily -> "Times", FontSize -> 14D<,
8Graphics@8Line@880, 0<, 81, 0<<D<D, Style@"Ethane", FontFamily -> "Times", FontSize -> 14D<,
8Graphics@8Dotted, Line@880, 0<, 81, 0<<D<D, Style@"Propane", FontFamily -> "Times", FontSize -> 14D<<,

LegendShadow -> None, LegendBorder -> NoneD, ImageSize -> 100D
efftherm3 = Plot@eff@t, 1D, 8t, 0, maxfreq<, PlotStyleØ 8DotDashed, Black<,

AxesLabel Ø 8"frequency", "hth"<, AxesStyleØ 8"Times", 14<, LabelStyleØ 8"Times", 14<D
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GraphicsRow@8Show@efftherm, efftherm2, efftherm3, efftherm4, ImageSize -> 400,

AxesStyle -> 8"Times", 14<, LabelStyle -> 8"Times", 14<D, leg<, Spacings -> -150D
Show@efftherm, efftherm2, efftherm3, efftherm4D
Regeneration

hreg is the efficiency of the regenerator. This is an assumption.

Tbr = Tb2@picD
7.68797

hreg = 0.5;

Tcj@picD
13.3158

Ty2

10.9408

Tx = SolveBhreg ã
x- T0

Ttaylor@picD- T0
, xF@@1DD@@1, 2DD

3.32542

Tx2 = SolveBhreg ã
x - T0

Tbr - T0
, xF@@1DD@@1, 2DD

4.43513

px = p

p
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Show@ts1D
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DsêR
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TêT0

T-s diagram

p0

p0

p0@picD
2

pznd@picD
74.7527

px = Solve@Ts@x, picD == Tx, xD@@2DD@@1, 2DD
26.8075

px2 = Solve@Ts@x, picD == Tx2, xD@@2DD@@1, 2DD
40.4226

vx = Solve@Tt@px, x, picD == Tx, xD@@1DD@@1, 2DD
0.125155

vx2 = Solve@Tt@px2, x, picD == Tx2, xD@@1DD@@1, 2DD
0.110698

sx = DsR@Tx, picD
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1.6851

sx2 = DsR@Tx2, picD
2.46636

point = 88vx, px<<; point2 = 88sx, Tx<<;
point2 = 88vx2, px2<<; point2 = 88sx2, Tx2<<;
ff = ListPlot@pointD;
ff2 = ListPlot@point2D;
regp = Show@pv1, ffD
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pêp0

p-v diagram

Show@ts1, ff2D
Tx - T0

2.14313

Ty = Solve@Ty - Ttaylor@picD == Tx - T0, TyD@@1DD@@1, 2DD
7.61169

Ty2 = Solve@Ty2 - Tbr == Tx2 - T0, Ty2D@@1DD@@1, 2DD
10.9408

Ty = T0
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1.18229

vy= SolveBTy== Tinitial
y

vinitial
, yF@@1DD@@1, 2DD

1.18229

sy=
g

g - 1
LogB Ty

Tinitial
F - LogBpinitial

pinitial
F

0.693147

dd = ListPlot@88vy, pinitial<<D
dd2 = ListPlot@88sy, Ty<<D
regT = Show@ts1, dd2D
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TêT0

T-s diagram

Show@pv1, ddD
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pêp0

p-v diagram
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hth =
HTcj@picD- Ttaylor@picDL - HT0 - TinitialL

Tcj@picD- Tx

0.767233

hth =
HT0 - TinitialL
Tcj@picD- Tx

0.0182468

1 -
T0

Ttaylor@picD pic
g-1

g

0.744391

hth2 =
HTy2 - Ttaylor@picDL - HT0 - TinitialL

Tcj@picD- Tx2

0.477732

hth2 =
HT0 - TinitialL
Tcj@picD- Tx2

0.0205268

1 -
T0

Tbr
pic

g-1

g

0.818182

Carnot = 1 -
T0

Ttaylor@picD
0.783802

Carnot2 = 1 -
T0

Tbr

0.846215

Brayton Cycle

Clear@x, pb0, vb0, pb1, vb1, pb2, vb2, Tb0, Tb1, Tb2D
Rmixture = 0.396;

pic = 4;
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a1 = 0; vbinitial = vinitial; pbinitial = pinitial; Tbinitial = Tinitial; sbinitial = sinitial; g = 1.318541;
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Rf = 0.2183; Rair = 0.2869; R =
Rf + Rair

2
; hpr@f_D :=

1 + f

f
hprm;

Isentropic compression

sb0 = sbinitial

0

pb0@pcc_D := pbinitial pcc

eq1b@pcc_D :=
x

Tbinitial
==

pb0@pccD
pbinitial

g-1

g

Tb0@pcc_D := 3 Solve@eq1b@pccD, xD@@1DD@@1, 2DD
eq2b@pcc_D :=

pb0@pccD
pbinitial

ã
vbinitial

x

g

vb0@pcc_D := Solve@eq2b@pccD, xD@@1DD@@1, 2DD
pb1@pcc_D := pb0@pccD
vb1@pcc_D := vbinitial

Tb1@pcc_D :=
pb1 @pccD vb1@pccD

Rmixture

Tb1@pcc_D := Tb0 @pccD 1 + a2
Hg - 1L

g

sb1@pcc_D :=
g

g - 1
LogBTb1@pccD

Tb0@pccD F - LogB pb1@pccD
pb0@pccD F

pb2@pcc_D := pbinitial

vb2@pcc_D := SolveBpb2@pccD
pb1@pccD ã

vb1@pccD
x

g

, xF@@1DD@@1, 2DD

Tb2@pcc_D :=
pb2@pccD vb2@pccD

Rmixture

Tb2@pcc_D := SolveB g

g - 1
LogB TTb2

Tb1@pccD F - LogBpb2@pccD
pb1@pccD Fã 0, TTb2F@@1DD@@1, 2DD

Tb2@picD
7.22629

sb2@pcc_D := sb1@pccD

105



vb0@picD
0.349453

vppoints = ListPlot@88vbinitial, pbinitial<, 8vb0@picD, pb0@picD<, 8vb1@picD, pb1@picD<, 8vb2@picD, pb2@picD<<,
PlotStyle -> 8Black<, PlotMarkers -> 8"*", 15<D

stpoints = ListPlot@88sbinitial, Tbinitial<, 8sb0@picD, Tb0@picD<, 8sb1@picD, Tb1@picD<, 8sb2@picD, Tb2@picD<<,
PlotStyle -> 8Black<, PlotStyle -> 8Black<, PlotMarkers -> 8"*", 15<D

Isentropic relations

p

p0
=

v0

v

g

line1 = PlotBpbinitial
vbinitial

vv

g

, 8vv, vbinitial, vb0@picD<, PlotStyleØ 8Dotted, Black<F
line2 = Plot@pb0@picD, 8vv, vb0@picD, vb1@picD<, PlotStyle -> 8Dotted, Black<D
line3 = PlotBpb1@picD vb1@picD

vv

g

, 8vv, vb1@picD, vb2@picD<, PlotStyleØ 8Dotted, Black<F
line4 = Plot@pbinitial, 8vv, vb2@picD, vbinitial<, PlotStyle -> 8Dotted, Black<D
pvbrayton = Show@vppoints, line1, line2, line3, line4, AxesLabel -> 8"vêv0", "pêp0"<,

AxesStyle -> 8"Times", 12<, LabelStyle -> 8"Times", 12<, PlotRange -> 880, 3<, 80, 3<<D

* *
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st = Table@8sbinitial, tt<, 8tt, Tbinitial, Tb0@picD, 0.00001<D;
st2 = Table@8sb1@picD, tt<, 8tt, Tb1@picD, Tb2@picD, -0.00001<D;
line1b = ListLinePlot@st, PlotStyle -> 8Dotted, Black<D
line2b = ListLinePlot@st2, PlotStyle -> 8Dotted, Black<D
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Tplot@ss_, pcc_D := SolveB g

g - 1
LogB tt

Tb0@pccD F + sb0 ã ss, ttF@@1DD@@1, 2DD
stplot = Table@8ss, Tplot@ss, picD<, 8ss, sb0, sb1@picD, 0.001<D;
line3b = ListLinePlot@stplot, PlotStyle -> 8Dotted, Black<D
Tplot2@ss_D := SolveB g

g - 1
LogB tt

Tbinitial
F + sbinitial ã ss, ttF@@1DD@@1, 2DD

stplot2 = Table@8ss, Tplot2@ssD<, 8ss, sbinitial, sb1@picD, 0.001<D;
line4b = ListLinePlot@stplot2, PlotStyle -> 8Dotted, Black<D
tsbrayton =

Show@stpoints, line1b, line2b, line3b, line4b, AxesLabel -> 8"DsêR", "TêT0"<, AxesStyle -> 8"Times", 12<,
LabelStyle -> 8"Times", 12<, PlotRange -> 880, 8<, 80, 8<<, Axes -> 8True, True<D

plot

line1 = PlotBpbinitial
vbinitial

vv

g

, 8vv, vbinitial, vb0@picD<, PlotStyleØ 8Dotted, Black<F
line2 = Plot@pb0@picD, 8vv, vb0@picD, vb1@picD<, PlotStyle -> 8Dotted, Black<D
line3 = PlotBpb1@picD vb1@picD

vv

g

, 8vv, vb1@picD, vb2@picD<, PlotStyleØ 8Dotted, Black<F
line4 = Plot@pbinitial, 8vv, vb2@picD, vbinitial<, PlotStyle -> 8Dotted, Black<D
pvbrayton = Show@vppoints, line1, line2, line3, line4, AxesLabel -> 8"vêv0", "pêp0"<,

AxesStyle -> 8"Times", 12<, LabelStyle -> 8"Times", 12<, PlotRange -> 880, 3<, 80, 3<<D

* *
0.5 1.0 1.5 2.0 2.5 3.0

vêv0

0.0
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1.5

2.0

2.5

3.0

pêp0

st = Table@8sbinitial, tt<, 8tt, Tbinitial, Tb0@picD, 0.00001<D;
st2 = Table@8sb1@picD, tt<, 8tt, Tb1@picD, Tb2@picD, -0.00001<D;
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line1b = ListLinePlot@st, PlotStyle -> 8Black<D
line2b = ListLinePlot@st2, PlotStyle -> 8Black<D
Tplot@ss_, pcc_D := SolveB g

g - 1
LogB tt

Tb0@pccD F + sb0 ã ss, ttF@@1DD@@1, 2DD
stplot = Table@8ss, Tplot@ss, picD<, 8ss, sb0, sb1@picD, 0.001<D;
line3b = ListLinePlot@stplot, PlotStyle -> 8Black<D
Tplot2@ss_D := SolveB g

g - 1
LogB tt

Tbinitial
F + sbinitial ã ss, ttF@@1DD@@1, 2DD

stplot2 = Table@8ss, Tplot2@ssD<, 8ss, sbinitial, sb1@picD, 0.001<D;
line4b = ListLinePlot@stplot2, PlotStyle -> 8Black<D
tsbrayton = Show@line1b, line2b, line3b, line4b, AxesLabel -> 8"DsêR", "TêT0"<, AxesStyle -> 8"Times", 12<,

LabelStyle -> 8"Times", 12<, PlotRange -> 880, 10<, 80, 10<<, Axes -> 8True, True<D
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Rmixture = 0.396;

pic = 2;

a1 = 0; vhinitial = vinitial; phinitial = pinitial; Thinitial = Tinitial; shinitial = sinitial; g = 1.318541;
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Rf = 0.2183; Rair = 0.2869; R =
Rf + Rair

2
; hpr@f_D :=

1 + f

f
hprm;

Isentropic compression

sh0 = shinitial

0

ph0 = phinitial pic

2

eq1h =
x

Thinitial
==

ph0

phinitial

g-1

g

x == 1.18229

Th0 = Solve@eq1h, xD@@1DD@@1, 2DD
1.18229

eq2v =
ph0

phinitial
ã

vhinitial

x

g

2 ã
1

x

1.31854

vh0 = Solve@eq2v, xD@@1DD@@1, 2DD
0.591146

vh1 = vh0

0.591146

Th1 = Th0 1 + a2
Hg - 1L

g

9.08942

ph1 =
Th1

Th0

ph0 vh0

vh1

15.3759

sh1 =
g

g - 1
LogBTh1

Th0
F - LogBph1

ph0
F

6.40312

ph2 = phinitial
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1

vh2 = SolveBph2

ph1
ã

vh1

x

g

, xF@@1DD@@1, 2DD
4.69691

Th2 = SolveB g

g - 1
LogBTTh2

Th1
F - LogBph2

ph1
Fã 0, TTh2F@@1DD@@1, 2DD

4.69691

sh2 = sh1

6.40312

vppointsh = ListPlot@88vhinitial, phinitial<, 8vh0, ph0<, 8vh1, ph1<, 8vh2, ph2<<,
PlotStyle -> 8Black<, PlotMarkers -> 8"o", 12<D

stpointsh = ListPlot@88shinitial, Thinitial<, 8sh0, Th0<, 8sh1, Th1<, 8sh2, Th2<<,
PlotStyle -> 8Black<, PlotStyle -> 8Black<, PlotMarkers -> 8"o", 12<D

Isentropic relations

p

p0
=

v0

v

g

pline@vv_D := SolveB ppx

ph0
+ m2

vv

vh0
- m2 ã 1 - m4 + 2 m2 a1, ppxF@@1DD@@1, 2DD

line1 = Plot@pline@vvD, 8vv, vhinitial, vh0<, PlotStyle -> 8Dashed, Black<D
pvplot2h = Table@8vh0, p<, 8p, ph0, ph1, 0.001<D;
ph1

15.3759

line2 = ListLinePlot@pvplot2h, PlotStyle -> 8Dashed, Black<D
line3 = PlotBph1

vh1

x

g

, 8x, vh1, vh2<, PlotStyleØ 8Dashed, Black<, PlotRange Ø 880, 7<, 80, 16<<F
pvplot24h = Table@8vvh, phinitial<, 8vvh, vhinitial, vh2, 0.001<D;
line4 = ListLinePlot@pvplot24h, PlotStyle -> 8Dashed, Black<D
pvhumphrey = Show@vppointsh, line1, line2, line3, line4, AxesLabel -> 8"vêv0", "pêp0"<,

AxesStyle -> 8"Times", 12<, LabelStyle -> 8"Times", 12<, PlotRange -> 880, 6<, 80, 15<<D
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pêp0

st = Table@8shinitial, tt<, 8tt, Thinitial, Th0, 0.00001<D;
line1h = ListLinePlot@st, PlotStyle -> 8Dashed, Black<D
TTplot@ssh_D := SolveB 1

g - 1
LogBTTh2

Th0
F + LogB vh1

vh0
Fã ssh - sh0, TTh2F@@1DD@@1, 2DD

line2h = Plot@TTplot@sshD, 8ssh, sh0, sh1<, PlotStyle -> 8Dashed, Black<D
stploth = Table@8sh1, ttt<, 8ttt, Th1, Th2, -0.0001<D;
line3h = ListLinePlot@stploth, PlotStyle -> 8Dashed, Black<D
TTplot2@ssh_D := SolveB g

g - 1
LogB TTh2

Thinitial
F - LogB ph2

phinitial
Fã ssh - shinitial, TTh2F@@1DD@@1, 2DD

line4h = Plot@TTplot2@sshD, 8ssh, shinitial, sh2<, PlotStyle -> 8Dashed, Black<D
tshumphrey =

Show@stpointsh, line1h, line2h, line3h, line4h, AxesLabel -> 8"DsêR", "TêT0"<, AxesStyle -> 8"Times", 12<,
LabelStyle -> 8"Times", 12<, PlotRange -> 880, 10<, 80, 10<<, Axes -> 8True, True<D
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finalpv = Show@pv1, pvhumphrey, pvbrayton, PlotRange -> 880, 6<, 80, 75<<D
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finalts = Show@ts1, tshumphrey, tsbraytonD
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Needs@"PlotLegends`"D
leg2 = Graphics@

Legend@88Graphics@8Line@880, 0<, 81, 0<<D<D, Style@"ZND cycle", FontFamily -> "Times", FontSize -> 14D<,
8Graphics@8Dotted, Line@880, 0<, 81, 0<<D<D, Style@"Brayton cycle",

FontFamily -> "Times", FontSize -> 14D<, 8Graphics@8Dashed, Line@880, 0<, 81, 0<<D<D,
Style@"Humphrey cycle", FontFamily -> "Times", FontSize -> 14D<<,

LegendShadow -> None, LegendBorder -> NoneD, ImageSize -> 180D
GraphicsRow@
8Show@finalts, ImageSize -> 400, AxesStyle -> 8"Times", 14<, LabelStyle -> 8"Times", 14<D, leg2<,
Spacings -> -120D
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o
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GraphicsRow@
8Show@finalpv, ImageSize -> 400, AxesStyle -> 8"Times", 14<, LabelStyle -> 8"Times", 14<D, leg2<,
Spacings -> -120D
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