Ideal Gas Law Stoichiometry

Assume you had the following, simple, chemical reaction: $A \rightarrow B$

Atoms, Molecules, or Particles of A

Divide by $22.4 \mathrm{~L} / \mathrm{mol}$
But You Can't Use
$22.4 \mathrm{~L} / \mathrm{mol}$ unless
$\mathrm{P}=1.00 \mathrm{~atm}$ and
$\mathrm{T}=298 \mathrm{~K}$

Volume of B (in liters)

Mass of B (in grams)
Multiply by the Mole Ratio

Multiply by Avogardro's Number

Atoms,
Molecules, or Particles of B

Ideal Gas Law Conversions

As moles of a gas are used in the ideal gas laws, these problems can also involve gram to mole, liter to mole, and molecule to mole conversions too (and vice versa!)

Ideal Gas Law Conversions

A 4.45 L container holds 15.4 g of oxygen gas $\left(\mathrm{O}_{2}\right)$ at ${ }_{295} \mathrm{~K}$. What is the pressure in atm of the gas in the container?

1. Convert Grams of Oxygen to
Moles

Ideal Gas Law Conversions

A 4.45 L container holds 15.4 g of oxygen gas $\left(\mathrm{O}_{2}\right)$ at 295 K . What is the pressure in atm of the gas in

Volume the container?

Moles of the Gas (Convert Grams to Moles)
2. Identify Givens

$$
\begin{array}{lcc}
\mathrm{P}=\text { unknown } & \mathrm{T}_{1}=295 \mathrm{~K} & \mathrm{~V}_{1}=4.45 \mathrm{~L} \\
\mathrm{n}=0.481 \mathrm{~mol} & \mathrm{R}=0.0821 & (\mathrm{Lxatm} / \mathrm{molxK})
\end{array}
$$

3. Substitute Into the Equation

$$
\mathrm{PV}=\mathrm{nRT}
$$

$$
(\mathrm{P})(4.45 \mathrm{~L})=(0.481 \mathrm{~mol})(0.0821 \mathrm{Lxatm} / \mathrm{molxK})(295 \mathrm{~K})
$$

4. Solve For The

Unknown Variable

$$
\begin{aligned}
& (P)(4.45)=(11.65) \\
& P=2.62 \mathrm{~atm}
\end{aligned}
$$

Ideal Gas Law Conversions

Temperature

How many grams of SC_{2} gas are contained in a 4.0 L container at 450 K and 5.0 kPa ?

Volume
Pressure

1. Identify Givens

$$
\begin{array}{ll}
\mathrm{P}=5.0 \mathrm{kPa} & \mathrm{~T}_{1}=450 \mathrm{~K} \quad \mathrm{~V}_{1}=4 . \mathrm{oL} \\
\mathrm{n}=\text { unknown } & \mathrm{R}=8.314(\mathrm{LxkPa} / \mathrm{molxK})
\end{array}
$$

2. Substitute Into the Equation

$$
\begin{aligned}
& \text { PV }=n R T \\
& (5.0 \mathrm{kPa})(4.0 \mathrm{~L})=(\mathrm{n})(8.314 \mathrm{LxkPa} / \mathrm{molxK})(45 \mathrm{oK})
\end{aligned}
$$

3. Solve For The

Unknown Variable

$$
\begin{aligned}
& (20)=(\mathrm{n})(3741.3) \\
& 0.0053 \mathrm{~mol}=\mathrm{n}
\end{aligned}
$$

Ideal Gas Law Conversions

How many grams of SO_{2} gas are contained in a 4.0 L container at 45 OK and 5.0 kPa ?
4. Multiply By

Molar Mass to
Convert Answer to Grams

Ideal Gas Law Conversions

You have a 3.48 L container of CO_{2} gas held at a

 pressure of 1.3 oatm. If the container holds 5.8 og of CO_{2} gas, what is the temperature of the gas in the container?\author{

1. Convert Grams of Carbon
 Dioxide to Moles
}

Ideal Gas Law Conversions ${ }^{\text {dem }}$?

You have a 3.48 L container of CO_{2} gas held at a

 pressure of 1.30 atm. If the container holds 5.8 og of CO_{2} gas, what is the temperature of the gas in the
Volume

 (V) container?2. Identify Givens

$$
\begin{array}{ll}
\mathrm{P}=1.30 a t m & \mathrm{~T}_{1}=\text { unknown } \\
\mathrm{n}=0.132 \mathrm{~mol}=3.48 \mathrm{~L} \\
\mathrm{R}=0.0821(\mathrm{Lxatm} / \mathrm{molxK})
\end{array}
$$

3. Substitute Into the

Equation

$$
\mathrm{PV}=\mathrm{nRT}
$$

$$
(1.30 a t m)(3.48 \mathrm{~L})=(0.132 \mathrm{~mol})(0.0821 \mathrm{Lxatm} / \mathrm{molxK})(\mathrm{T})
$$

4. Solve For The

Unknown Variable

$$
\begin{aligned}
& (4.52)=(0.0108)(T) \\
& 418.52 K=T
\end{aligned}
$$

Ideal Gas Law Stoichiometry

Assume you had the following, simple, chemical reaction: $A \rightarrow B$

Start With

Atoms, Molecules, or Particles of A

(in grams)
Mass of A
(in grams)

Divide by 22.4L/mol

But You Can't Use 22.4L/mol unless $\mathrm{P}=1.00 \mathrm{~atm}$ and $\mathrm{T}=298 \mathrm{~K}$

Molar Mass
 Divide by

(mol)
(in grams)
Multiply by the Mole Ratio

Mass of B

Moles of B (mol)

Multiply by Molar Mass

Atoms,
Molecules, or Particles of B

Ideal Gas Law Stoichiometry Chart

Ideal Gas Law Stoichiometry

How many liters of hydrogen gas will be produced at 280.0 K and 96.0 kPa if 1.74 mol of sodium reacts with excess water in the following equation?

$$
\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}
$$

Step \#1: Balance the equation

Step \#2: Identify What You Start With

Step \#3: Identify What You Want to Find

Step \#4: Determine the Mole Ratio

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}
$$

1.74 mol of Na

Liters of Hydrogen Gas
"Finish"
"Start"

1 mol H 2
2 mol Na

Ideal Gas Law Stoichiometry

How many liters of hydrogen gas will be produced at 280.0 K and 96.0 kPa
if 1.74 mol of sodium reacts with excess water in the following equation?

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}
$$

Step \#5: Identify the Steps Needed

Therefore, you need to multiply by the mole ratio, and then substitute moles of " B " as " n " in the ideal gas law equation!

Ideal Gas Law Stoichiometry

How many liters of hydrogen gas will be produced at 280.0 K and 96.0 kPa if 1.74 mol of sodium reacts with excess water in the following equation?

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}
$$

Step \#6: Complete the steps and solve for the problem

$$
\begin{array}{l|l}
1.74 \mathrm{~mol} \mathrm{Na} & 1 \mathrm{~mol} \mathrm{H}_{2} \\
\hline \hline 2 \mathrm{~mol} \mathrm{Na}
\end{array}=0.87 \mathrm{~mol} \mathrm{H}_{2} \mathrm{Na}
$$

Ideal Gas Law Stoichiometry

How many grams of water would be produced if 20.0 liters of oxygen were burned at a temperature of $-10.0^{\circ} \mathrm{C}$ and a pressure of 1.3 atm ?

$$
\mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Step \#1: Balance the equation

Step \#2: Identify What You Start With

Step \#3: Identify What You Want to Find

Step \#4: Determine the Mole Ratio

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

$$
20.0 \mathrm{~L} \text { of } \mathrm{O}_{2}
$$

Grams of Water

"Finish"
"Start"
$18 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$25 \mathrm{~mol} \mathrm{O}_{2}$

Ideal Gas Law Stoichiometry

How many grams of water would be produced if 20.0 liters of oxygen were burned at a temperature of $-10.0^{\circ} \mathrm{C}$ and a pressure of 1.3 atm ?

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

Step \#5: Identify the Steps Needed

Mass of Gas "A"	Multiply by Molar Mass	Moles of A (mol)	Multiply by the Mole Ratio	Moles of B (mol)	
					Substitute as " n " in Ideal Gas Law Equation and Solve For Unknown
		Here!	$V=1$		

Therefore, you need to solve for " n ", or moles of oxygen, and then convert the moles of oxygen into grams of water.

Ideal Gas Law Stoichiometry

How many grams of water would be produced if 20.0 liters of oxygen were burned at a temperature of $-10.0^{\circ} \mathrm{C}$ and a pressure of 1.3 atm ?

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

Step \#6: Complete the steps and solve for the problem

Ideal Gas Law Stoichiometry

Given the following chemical reaction.

$$
\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}
$$

What is the pressure, in atm, of H_{2} gas produced from 16.0 g of $\mathrm{H}_{2} \mathrm{O}$ at an environmental condition of 30.0 L and a temperature of 273 K

Step \#1: Balance the equation

Step \#2: Identify What You Start With

Step \#3: Identify What You Want to Find

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}
$$

$$
\text { 16.og of } \mathrm{H}_{2} \mathrm{O}
$$

Liters of Hydrogen Gas

Given the following chemical reaction.

$$
\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}
$$

What is the pressure, in atm, of H_{2} gas produced from 16.og of $\mathrm{H}_{2} \mathrm{O}$ at an environmental condition of 30.0 L and a temperature of 273 K

Step \#5: Identify the Steps Needed

Therefore, you need to multiply by the mole ratio, and then substitute moles of " B " as " n " in the ideal gas law equation!

Ideal Gas Law Stoichiometry

Given the following chemical reaction.

$$
\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}
$$

What is the pressure, in atm, of H_{2} gas produced from 16.0 of $\mathrm{H}_{2} \mathrm{O}$ at an environmental condition of 30.0 L and a temperature of 273 K

Step \#6: Complete the steps and solve for the problem

