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Abstract 
 
The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent 
Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done 
by adding a sigmoid weight victor in the hidden layer neurons to adapt of the shape of the sigmoid function 
making their outputs not restricted to the sigmoid function output. Also, we introduce a dynamic back 
propagation learning algorithm to train the new proposed network parameters. The simulation results showed 
that the (SDRNN) is more efficient and accurate than the DRNN in both the identification and adaptive con-
trol of nonlinear dynamical systems. 
 
Keywords: Sigmoid Diagonal Recurrent Neural Networks, Dynamic Back Propagation, Dynamic Nonlinear 

Systems, Adaptive Control 

1. Introduction 

The remarkable learning capability of neural networks is 
leading to their wide application in identification and 
adaptive control of nonlinear dynamical systems [1,2-5,6] 
and the tracking accuracy depends on neural networks 
structure, which should be chosen properly [7-13]. 

Feedforward Neural Network (FNN) [4] is a static 
mapping and can not reflect the dynamics of the nonlin-
ear systems without using Tapped Delay Lines (TDL) 
[7,9]. Fully connected Recurrent Neural Network (RNN) 
[9,14,15] contains interlink between neurons to reflect 
this dynamics but it suffers both structure complexity 
and the poor performance accuracy [9,15]. Based on Lo-
cally Recurrent Globally Feedforward network architec-
tures (LRGF) many researchers focused in (DRNN) 
which doesn't contain interlink between hidden layer 
neurons leading to the network structure complexity re-
duction [15,8-10]. 

However, in all these architectures, the hidden layer 
neurons output restricted to the sigmoid function output 
which represents a major disadvantage in the network 
behavior and significantly reduces its performance accu-

racy. Therefore, a new architecture called Sigmoid Di-
agonal Recurrent Neural Network (SDRNN) based on 
the hidden layer sigmoid weight and its associated dy-
namic back propagation learning algorithm is proposed. 
Simulation results show that SDRNN is more suited than 
the (DRNN) for identification and adaptive control of 
nonlinear dynamical systems [9]. 

This paper is organized as follows: Section II presents 
some background concerning application of neural net-
works in adaptive control, Section III introduce the new 
architecture and its associated dynamical learning algo-
rithm for adaptation of the sigmoid weight. Simulation 
results are shown in Section IV, and finally, conclusion 
and future work is shown in Section V. 

2. Neural Network in Nonlinear System 
Identification and Control 

In the identification stage of the adaptive control of 
nonlinear dynamical system, a neural network identifier 
model for the system to be controlled is developed. Then, 
this identifier is used to represent the system while train-
ing the neural network controller weights in the control 
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stage [6,8,10,12].  

2.1. Identification 

If a set of data (measurements) can be carried out on a 
nonlinear dynamic system, an identifier could be derived 
whose dynamic behavior should be as close as possible 
to this system. The identifier model is selected based on 
whether all the system states or only its output are meas-
ured [1,3,4,9]. 

The state space representation of a nonlinear system is 
given by the following equation: 

            1 ,  and , x k x k u k y k x k u k      (1) 

where:  the input to the system,   mu k R   nx k R  
the states of the system,   py k R

: nR 

 is the outputs of the 
system, the nonlinear mappings functions  

 and  are dynamic and 
smooth [4,9]. 

: n m nR R R p

 ,

R

Usually, all the system states are not measured for 
process representation, so the Input/Output representa-
tion which is also called Nonlinear Autoregressive Mov-
ing Average (NARMA) representation given by the fol-
lowing equation is used instead [4,6,9] 
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where d is the relative degree (or equivalent delay) of the 
system and it is assumed that both the order of the sys-
tem n and relative degree are specified while the nonlin-
ear function  is unknown. ( ) 

In general, any discrete time dynamical nonlinear sys-
tem can be represented using NARMA—Output Error 
Model representation shown in Figure 1 and has the fol-
lowing forms: 
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It is crucial to note that, the present identifier output 
 my k  represented by the nonlinear mapping function  

( )

  is a dynamic mapping function because it depends  

on its past outputs. Thus, the feed forward neural net-
work can not be used to represent this mapping function 
and the recurrent neural network which is a dynamic non 
linear mapping is used instead. [9]. 

2.2. Control 

According to both inverse function theorem and implicit  

( )
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u(k) Z-1 Z-1 Z-1 

Z-1 Z-1 Z-1

 
Figure 1. NARMA—output error model. 

 
function theorem [4,5,9], if the state vector  x k of the 
nonlinear system given by equation (1) is accessible, 
then the system output  y k can make exact tracking of 
a general output  ky  using a control low given by 
the following equation 

      ,u k x k y k d             (4) 

If the nonlinear dynamical system given by equations 
(1-2) is observable, then the control law  can also 
be represented in terms of its past values: 

 u k

   1 , 1 ,u k u k m    as well as previous dynamic 
system outputs   , , 1y k n  y k   and  y k d  . 
If  r k

k
 represents the information that is needed at 

the instant  to implement the control law (i.e., 
   r k y k d    ) so the above equation can be re-

written as follows [1,3-5,9]: 
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As this control law is represented by the nonlinear 
dynamical mapping function    , so a neural network 
controller model represented by the nonlinear dynamical 
mapping function     can be used to achieve the con-
trol law and can be written as: 
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and  W k  is the set of parameters of the neural network 
controller. 

As the neural network controller output  u k depends 
on its past outputs, thus, the recurrent neural network 
controller is used to evaluate the controller parameters [9]. 

The structure of the closed loop nonlinear predictive 
controller consisting of the nonlinear system, the nonlin-
ear identifier and the nonlinear controller is shown in 
Figure 2. 

3. The Sigmoid Diagonal Recurrent Neural 
Network(SDRNN) 

In this section, our proposed architecture and its associ- 
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Figure 2. The structure of the closed loop nonlinear predic-
tive controller. 
 
ated modified dynamic back propagation learning algo-
rithm to learn the new added sigmoid weight vector are 
presented  

Define the following to obtain the mathematical model 
of the proposed neural network architecture: 

i , h , o  are the number of neurons in input, hidden, 
and output layers respectively. 

n n n

IW  is the input weight matrix connecting between 
input layer and the hidden layer, , SW DW

th

are the sig-
moid weight vector and the diagonal weight vector of the 
hidden layer, and is the output weight matrix con-
necting between hidden layer and the output layer 

OW

Assume, at sample k, the input to the  input neu-
ron in the input layer is 

i
 I k , so the output of the neu-

ral network can be calculated as follows: 
The net input to the  sigmoid neuron in the hidden 

layer can be calculated as follows 

thj

     
1

1
ni

D I
j j j ij i

i

Hin k W H k W I k


         (7) 

And it’s output can be calculated as  
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j j

j s
j
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             (8) 

The output of the  neuron in the output layer can 
be written as follows 

thm

   
1

hn
o

m jm
j

Y k W H k


  j          (9) 

For the standard Diagonal Recurrent Neural Network, 
the sigmoid weight vector  is set to be one and 

for the normal Feed Forward Neural Networks the di-
agonal vector 

 SW k

 DW k  is set to be zero. 

Learning Algorithm 
Given the structure of the network described by Equa-
tions (7)-(9) and applying the gradient descent method [9, 
16] to update the network weights the partial derivatives 
of the neural network predictor output  with re-
spect to network weights are given by 
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From Equation (9), the partial derivatives of the neural 
network predictor output  represented by the 
nonlinear mapping function  with respect 
to output weight matrix 

 mY k
I k

O
  ,W

jmW  is: 

   jO
jm
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which lead to (10a). 
Also, the partial derivative with respect to sigmoid 

weight vector jW  is 

   jm O
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And from Equations (7) and (8), 
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which lead to (10b). 
From Equation (9), the partial derivatives with respect 

to diagonal weight vector D
jW  is 
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and from Equation (7) 
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which leads to (10c), (11a). 
Also, the partial derivative with respect to input 

weight matrix I
ijW  is 
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and from Equation (7) 
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which leads to (10d), (11b). 
The full proof of this lemma is given in details in ref-

erence number [9]. 

4. Results and Discussion 

In this section, extensive experimentation is carried out 

in an attempt to demonstrate the performance of the 
SDRNN architecture and compare it to the DRNN archi-
tecture in nonlinear system identification and in adaptive 
control of nonlinear dynamical systems. As a measure to 
test the performance, we use the Mean Square Error 
(MSE) criteria between the actual nonlinear system out-
put and the neural network output [8-10]. It is worth 
mentioning that in our proposed network, there is no 
need to use momentum term or learning rate adaptation 
[8, 10] because the training is done using the adaptation 
of the sigmoid function shape leading to reduction of the 
learning algorithm complexity [9].  

Example 1: (Nonlinear system identification) 
A benchmark problem is employed, the identification 

of a dynamical system. The example is taken from [7,9], 
where the nonlinear system to be identified is governed 
by the following difference equation 
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As it can be seen, the current output of the plant 
 1Y k   depends on three previous outputs  
     , 1 ,Y k 2Y k Y k    and two previous inputs  
   1k,u k u  . A NARMA-Output Error Model given 

by Equation (3) is considered for identification of this 
nonlinear dynamical system. The neural network identi-
fier output  1mY k   is the approximation of the 
nonlinear system output  1Y k  . Thus the input to the 
neural network identifier are the three previous identifier 
outputs i.e. (     ,Y k  2, 1Y k m mY k m ) and the two 
previous inputs    , 1u ku k   and the size of the neu-
ral network identifier is 5-8-1’ (5 input units, 8 hid-
den units, and one output unit). 

In order to comply with previous results reported in 
the literature, a new training data containing 200 batches 
of 900 patterns is generated. For each data batch, the 
input  u k  is an independent and identically distrib-
uted uniform in the range between   while the 
testing data set is composed of 1000 samples with a sig-
nal described by 

1, 1
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As a measure to test the identification performance, 
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the MSE using the standard DRNN is 0.0017 while using 
our proposed SDRNN, it is reduced to be 1.1049e-004. 
The nonlinear system output, the SDRNN identifier out-
put and the DRNN identifier output are shown in Figure 
3. 

The solution of the problem without using the sigmoid 
weight vector as similar to the neural network identifier 
schemes in [2, 8-10], the system performance is very 
poor because the restriction to the output hidden layer 
neurons. While using our proposed architecture, this re-
striction is avoided due to the adaptation of the sigmoid 
function shape.  

Example 2: (Rigid non-minimum phase model) 
[7,12,13] 

The nonlinear system is given by the following dif-
ference equation 

   
    2

1
1 5 2

1 1

Y k
Y k u k u k

Y k


    

 
    (14) 

And the reference model is giving by the following 
dynamical difference equation [7,10,12]: 

     

     

sin 2 π 25 sin 2 π 10

and

0.6 1r r

r k k k

Y k Y k r k

     

   

   (15) 

It can be seen that the current system output  1Y k   
depends on its previous output  and two previous  Y k
 

 
Figure 3. The nonlinear system output, the SDRNN identi-
fier output and the DRNN identifier output. 

inputs  u k  and  1u k  . Thus, the NARMA-Output 
Error Model given by Equation (3) is considered for sys-
tem identification and the neural network identifier in-
puts are the previous identifier output  and the 
two previous inputs and the size of the neural network 
identifier is 3-6-1’ (3 input units, 6 hidden units, and one 
output unit).  

 mY k

Consequently, in the nonlinear adaptive control phase, 
the current neural network controller output  u k  de-
pends on it's previous output , reference model 
input 

 1u k  
 r k  and reference output  beside the 

previous neural network identifier output 
 Y kr

 mY k . A 
NARMA-Output Error Model given by equation (3) is 
considered for the neural network controller and the size 
of this controller is 4-7-1’ (4 input units, 7 hidden units, 
and one output unit). 

After 10000 iterations for training identifier weights 
with uniformly distributed random signal, both identifier 
and controller start closed-loop control. The MSE for 
100 samples using DRNN is 0.3127 while using our 
proposed SDRNN it enhances to be 0.0141. 

The final diagonal and sigmoid weights in both the 
standard network controller and the proposed controller 
are shown in Table 1. 

The reference model output, the SDRNN controller 
output and the DRNN controller output are shown in 
Figure 4. 

From Table 1 and Figure 4, it is obvious that the val-
ues of the diagonal weights in the DRNN controller is 
located within a wide range between 16.4877 (neuron 
number 4) and -45.6087 (neuron number 7) while in the 
SDRNN it is located is located in a narrow range be-
tween 0.2047 (neuron number 5) and -2.7992 (neuron 
number 6). This great difference is due to the existence 
of the sigmoid weight vector adapting the shape of the 
sigmoid function enabling the neural network controller 
output to get the appropriate values that can efficiently 
reduce the MSE between the actual reference t model 
and the nonlinear system output. 
 
Table 1. Diagonal and sigmoid weights of neural network 
controllers. 

Diagonal Weight 
Sigmoid 
Weight 

Hidden 
Layer 

Neuron 
Number Standard Network Proposed Network 

Proposed 
Network

1 
2 
3 
4 
5 
6 
7 

–6.0076 
–10.7195 
–20.0180 
16.4877 
–19.3239 
–15.1893 

0.1645 

–45.6087 

-1.9830 
-0.9809 
-0.3553 
0.2047 
-2.7992 

-0.0002 
0.6095 
0.0007 
0.0005 
0.1742 
1.2101 

-0.1767 0.7825 

Copyright © 2011 SciRes.                                                                                  ICA 



T. ABOUELDAHAB  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  ICA 

181

[4] K. S. Narendra and K. Parthasarathy, “Identification and 
Control of Dynamical Systems Using Neural Networks,” 
IEEE Transactions on Neural Networks, Vol. 1, No. 1, 
1990, pp. 4-27. doi:10.1109/72.80202 

[5] L. Chen and K. S. Narendra, “Nonlinear Adaptive Con-
trol Using Neural Networks and Multiple Models,” Pro-
ceedings of the 2000 American Control Conference, Chi-
cago, 2002, pp. 4199-4203. 

[6] R. Zhan and J. Wan “Neural Network-Aided Adaptive 
Unscented Kalman Filter for Nonlinear State Estimation,” 
IEEE Signal Processing Letters, Vol. 13, No. 7, 2006, pp. 
445-448. doi:10.1109/LSP.2006.871854 

[7] A. S. Poznyak, W. Yu, E. N. Sanchez and J. P. Perez, 
“Nonlinear Adaptive Trajectory Tracking Using Dynamic 
Neural Networks,” IEEE Transactions on Neural Net-
works, Vol. 10, No. 6, 1999, pp. 1402-1411. 
doi:10.1109/72.809085 

[8] P. A. Mastorocostas, “A Constrained Optimization Algo-
rithm for Training Locally Recurrent Globally Feedfor-
ward Neural Networks,” Proceedings of International 
Joint Conference on Neural Networks, Montreal, 31 July 
4 August 2005, pp.717-722. 

 
Figure 4. Model output, nonlinear dynamical system output 
using standard neural network architecture and using pro-
posed architecture. 

[9] A. Tarek, “Improved Design of Nonlinear Controllers 
Using Recurrent Neural Networks,” Master Dissertation, 
Cairo University, 1997.  

5. Conclusions and Future Work [10] Xiang Li, Z. Q. Chen and Z. Z. Yuan, “Simple Recurrent 
Neural Network-Based Adaptive Predictive Control for 
Nonilnear Systems,” Asian Journal of Control, Vol. 4, 
No. 2, June 2002, pp. 231-239.  

We have presented a new neural network architecture 
called based on the adaptation of the shape of the sig-
moid weight of the hidden layer neurons and have intro-
duced its corresponding dynamic back propagation 
learning algorithm. This architecture is applied in both 
identification and adaptive control of nonlinear dynami-
cal systems and gives better results than the standard 
DRNN For the future work, it is suggested that this ar-
chitecture will be extended to be used in multivariable 
nonlinear system identification and adaptive control as 
well as other practical neural networks applications such 
as pattern recognition and time series prediction 

[11] N. Kumar , V. Panwar, N. Sukavanam, S. P. Sharma and 
J. H. Borm, “Neural Network-Based Nonlinear Tracking 
Control of Kinematically Redundant Robot Manipula-
tors,” Mathematical and Computer Modelling, Vol. 53, 
No. 9-10, 2011, pp. 1889-1901. 
doi:10.1016/j.mcm.2011.01.014 

[12] J. Pedro and O. Dahunsi, “Neural Network Based Feed-
back Linearization Control of a Servo-Hydraulic Vehicle 
Suspension System,” International Journal of Applied 
Mathematics and Computer Science, Vol. 21, No. 1, 2011, 
pp. 137-147. doi:10.2478/v10006-011-0010-5 

[13] A. Thammano and P. Ruxpakawong, “Nonlinear Dy-
namic System Identification Using Recurrent Neural 
Network with Multi-Segment Piecewise-Linear Connec-
tion Weight,” Memetic Computing, Vol. 2, No. 4, 2010, 
pp. 273-282. doi:10.1007/s12293-010-0042-7 

6. References 

[1] A. U. Levin, and K. S. Narendra, “Control of Nonlinear 
Dynamical Systems Using Neural Networks—Part II: 
Observability, Identification and Control,” IEEE Trans-
actions on Neural Networks, Vol. 7, No. 1, 1996, pp. 
30-42. doi:10.1109/72.478390 

[14] A. C Tsoi and A. D. Back, “Locally Recurrent Globally 
Feedforward Networks: A Critical Review of Architec-
tures,” IEEE Transaction Neural Networks, Vol. 5, No. 2, 
1994, pp. 229-239. doi:10.1109/72.279187 

[2] C. C. Ku and K. Y. Lee, “Diagonal Recurrent Neural 
Networks for Dynamic System Control,” IEEE Transac-
tions on Neural Networks, Vol. 6, No. 1, 1995, pp. 
144-156. doi:10.1109/72.363441 

[15] T. Rashid, B. Q. Huang and T. Kechadi, “Auto-Regressive 
Recurrent Neural Network Approach for Electricity Load 
Forecasting,” International Journal of Computational In-
telligence, Vol. 3, No. 1, 2007, pp.66-71. 

[3] G. L. Plett, “Adaptive Inverse Control of Linear and 
Nonlinear Systems Using Dynamic Neural Networks,” 
IEEE Transactions on Neural Networks, Vol. 14, No.2, 
2003, pp. 360-376. doi:10.1109/TNN.2003.809412 

[16] B. A. Pearlmutter, “Gradient Calculations for Dynamic 
Recurrent Neural Networks: A Survey,” IEEE Transac-
tions on Neural Networks, Vol. 6, No. 5, 1995, pp. 
1212-1228. doi:10.1109/72.410363 

 

http://dx.doi.org/10.1109/72.478390
http://dx.doi.org/10.1109/72.363441
http://dx.doi.org/10.1109/TNN.2003.809412
http://dx.doi.org/10.1109/72.80202
http://dx.doi.org/10.1109/LSP.2006.871854
http://dx.doi.org/10.1109/72.809085
http://dx.doi.org/10.1016/j.mcm.2011.01.014
http://dx.doi.org/10.2478/v10006-011-0010-5
http://dx.doi.org/10.1007/s12293-010-0042-7
http://dx.doi.org/10.1109/72.279187
http://dx.doi.org/10.1109/72.410363

