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IDENTIFICATION OF NONLINEAR MULTIVARIABLE
SYSTEMS BY ADAPTIVE FUZZY TAKAGI-SUGENO

MODEL

AMINE TRABELSI, FREDERIC LAFONT, MOHAMED KAMOUN, GILLES ENEA

Abstract. This paper investigates the use of a fuzzy method as a
tool for model identification of a non linear and multivariable system
when the measurement data is available. In fact, the use of fuzzy
clustering facilitates automatic generation of Takagi-Sugeno rules and
its antecedent parameters. After the determination of the consequent
parameters, these are adapted by a recursive least squares algorithm
with a forgetting factor in order to use the established model in an
adaptive control scheme.
Copyright c©2003 Yang’s Scientific Research Institute, LLC. All rights
reserved.

1. INTRODUCTION

For nonlinear dynamic systems, the conventional techniques of modeling
and identifications are difficult to implement and sometimes impracticable.
However, others techniques based on fuzzy logic are more and more used for
modeling this kind of process [4]. Among the different fuzzy methods, the
Takagi-Sugeno model (TS) has attracted most attention [18]. In fact, this
model consists of if-then rules with fuzzy antecedents and mathematical
functions in the consequent part. The task of system identification is to
determine both the non linear parameters of the antecedents and the linear
parameters of the rules consequent.

In general, there are two ways to obtain this information. Human experts
may be able to formulate their process knowledge in fuzzy rules. How-
ever, this method is often inefficient because human cannot sense all the
details. Therefore, numerous approaches have been proposed [16] which
compute non-linear dynamic fuzzy models from input/output measurement
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data, e.g., local linear model tree method (LOLIMOT), tree construction
algorithms [17], or neuro-fuzzy approaches [10].

This paper is organized as follows: Section 2 formulates the problem of
MIMO systems identification. In Section 3, we present a fuzzy identification
method based on fuzzy clustering who allows an automatic generation of
(TS) models with constant consequent parameters. In our paper, we use
the same fuzzy clustering technique but we obtain an adaptive fuzzy (TS)
model. Finally, Section 4 discusses the experimental results obtained with
a MIMO non linear system. Section 5 concludes the paper.

2. MODELING

Modeling and identification are important steps in the design of control
system [9]. Typical applications of these models are the simulation, the
prediction or the control system design.

Generally, modeling process consists to obtain a parametric model with
the same dynamic behavior of the real process. However, when the process
is complex, it is very difficult to define the different mathematical or physical
laws which describe its behavior [11].

In this section, we are interested to the problem of the MIMO process
identification [13].

We consider a MIMO system withniinputs and no outputs. This system
can be approximated by a set of discrete time fuzzy MISO models.

We consider also:
• two polynomials A and B defined by:

A = a0 + a1q + a2q
2 + · · · anAqnA

B = b0 + b1q + b2q
2 + · · · bnB

qnB(1)

q is a backward shift operator (qny(k) = y(k − n)).
• two integers m and n, m ≤ n which define a delayed sample of a

discrete time signal as:

(2) {y(k)}n
m = [y(k −m), y(k −m− 1), · · · , y(k − n)] .

The MISO models are a input-output NARX (Non linear Auto Regressive
with eXogenous input) defined by:

(3) yl(k + 1) = fl(xl(k)), l = 1, 2, . . . , no.

where the regression vector is given by:

xl(k) =
[{y1(k)}nyl1

0 , {y2(k)}nyl2
0 , . . . , {yn0(k)}nyln0

0 ,

{u1(k)}nul1
ndl1

, {u2(k)}nul2
ndl2

, . . . , {uni(k)}nulni
ndlni

]
.(4)



IDENTIFICATION OF NONLINEAR MULTIVARIABLE SYSTEMS 139

ny and nu define the number of delayed outputs and inputs respectively. nd

is the number of pure delays. ny is a no×no matrix and nu , nd are no×ni

matrices. fl are unknown non linear functions.
MISO models are estimated independly, so, to simplify the notation, the

output index l is omitted and we will be interested only in the multi-input,
mono-output case.

In this approach, the process’s output can be written as:

(5) y(k + 1) = Ay(k) + Bu(k) + α

α is an offset coefficient. For a non linear MIMO system, fuzzy Takagi-
Sugeno (TS) models represent an efficient tool to model this kind of system
[12].

3. FUZZY IDENTIFICATION

The TS model has attracted the attention of many searchers. In fact,
this model consists of if-then rules with fuzzy antecedents and mathematical
functions in the consequent part [18]. The antecedents fuzzy sets divide the
input space into a number of fuzzy regions, while the consequent functions
describe the system’s behavior in these regions [7].

The fuzzy rules are defined as:
Ri : If x(k) is Ωi , then

yi(k + 1) = Aiy(k) + Biu(k) + αi, i = 1, 2, . . . , K.(6)

Here Ωi is the antecedent fuzzy set of the ith rule. Ai = [Ai1, . . . , Aino ],
Bi = [Bi1, . . . , Bini ] are vectors of polynomials and K is the rule’s number.

The antecedent of (6) can be written:
Ri :if x1(k)is Ωi1 and . . . and xp(k) is Ωip , then

yi(k + 1) = Aiy(k) + Biu(k) + αi i = 1, 2, . . . ,K,(7)

where

p=

no∑

j=1

nyj +
ni∑

j=1

nuj +1,(8)

the output of TS model is computed:

(9) y(k + 1) =

K∑
i=1

µi(x(k))yi(k + 1)

K∑
i=1

µi(x(k))

or:
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(10) y(k + 1) =
K∑

i=1

yi(k + 1)Φi(x, ci, σi)

where Φi(x, ci, σi) is the validity function for the gaussian membership func-
tions with centers ci and standard deviations σi defined as:

(11) Φj(x,ci, σi) =
µj(x(k))

K∑
i=1

µi(x(k))

(12) µj(x(k)) = exp

(
−1

2
(x1 − cj1)2

σ2
j1

)
. . . exp

(
−1

2
(xp − cjp)2

σ2
jp

)

µj(x(k)) is the degree of fulfillment of the rule j.
The structure of the model, i.e., the matrices ny , nu and nd are de-

termined by the user on the basis of system’s prior knowledge and/or by
comparison of different structures based on an error criteria [17], [18]. Once
the structure is fixed, the no MISO parameters are estimated independently
by fuzzy clustering [2].

The model identification procedure based on the proposed method con-
sists of two distinct steps. In the first step, called off-line identification of
the fuzzy model, both non linear parameters of the gaussian membership
functions, namely the centers ci and standard deviationsσi , and the linear
parameters of the local models are determined by fuzzy clustering method.
In the second step, called on-line adaptation of the fuzzy model, the conse-
quence’s parameters of fuzzy rules are adapted by a recursive least squares
method [15].

3.1. Off-Line Identification of the Fuzzy Model. This procedure is
carried into four steps:

• construction of the regression data,
• determination of the clusters corresponding to a set of local linear

submodels,
• determination of the antecedent membership function from the clus-

ter parameters,
• estimation of rule’s consequent parameters.
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3.1.1. Regression Data. The available data samples are collected in matrix
Z formed by concatenating the regression matrix X and the output vector
Y :

(13) X =




. . .
x(k)
. . .
x(N − 1)


 , Y =




. . .
y(k + 1)
. . .
y(N)


 , ZT = [X Y ].

N is the number of data samples.

3.1.2. Construction of the Fuzzy Clusters. There is different algorithms to
construct the fuzzy clusters such as: the C-means algorithm [3], the Gath-
Geva algorithm [6] and the Gustafson-Kessel algorithm [8]which will be used
in our contribution.

Through clustering, the data set Z is partitioned into Nc clusters. In
this paper, Nc is determined by testing many values according to an error
criterion. The result is a fuzzy partition matrix U = [µik]Nc×N , whose
element µik ∈ [0,1] represents the degree of membership of the observation in
cluster i, a prototype matrix V = [v1, . . . , vNc] and a set of cluster covariance
matrices F = [F1, . . . , FNc]({Fi } are defined positive matrices).

Once the triplet (U, V, F ) is determined, the parameters of the rule’s
premises (ci and σi) and the consequent parameters (Ai ,Bi and αi) are
computed. For more details, see [1].

3.1.3. Determination of the Antecedent Membership Function from the Clus-
ter Parameters. In this paper, Gaussian membership functions are used to
represent the fuzzy sets Ωij :

(14) Ωij(xj(k)) = exp

(
−1

2
(xj − cij)2

σ2
ij

)

This choice leads to the following compact formula for (12):

(15) µj(x(k)) = Ωj(x(k)) = exp
(
−1

2
(x(k)− cx

i )T (F xx
j )−1(x(k)− cx

i )
)

with cx
i = [c1i, . . . , cpi] is the center vector and (F xx

j )−1 is the inverse of the
matrix containing the variances on its diagonal:



142AMINE TRABELSI, FREDERIC LAFONT, MOHAMED KAMOUN, GILLES ENEA

(16) F xx
j =




σ2
1j 0 · · · 0

0 σ2
2j · · · 0

...
...

. . .
...

0 0 · · · σ2
pj




3.1.4. Estimation of Consequent Parameters. The consequent parameters
in each rule are estimated separately by the weighted least squares method by
minimizing the following criterion [1]:

(17) min
θi

1
N

(Y −Xeθi)T Qi(Y −Xeθi)

whereXe = [X 1] is the regression matrix extended by a unitary column
and Qi is a matrix containing the values of the validity functions Φi of the
ith local model for each data sample:

Qi =




Φi(x(1), ci, σi) 0 · · ·
0 Φi(x(2), ci, σi) · · · 0
...

...
. . .

...
0 0 · · · Φi(x(N), ci, σi)




(18)

The weighted least-squares estimate of the consequent parameters (θi =
[Ai, Bi, αi]) is given by:

(19) θi = [XT
e QiXe]−1XT

e QiY

3.2. On-Line Adaptation of the Fuzzy Model. We are interesting in
this paper on a non-linear system with time-variant behavior. Therefore, an
on-line adaptation is necessary to obtain a “good” model able to describe
the process in a large operating points to be used in a schema of adaptive
control [5].

Generally, the fuzzy TS models obtained by clustering are constant con-
sequent parameters, i.e., a rule’s consequent is written as:

(20) yi(k + 1) = Aiy(k) + Biu(k) + αi

but in our case, these parameters are updated. It means that at every
moment k, one obtains a TS model:
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(21) yi(k + 1) = Ai(k)y(k) + Bi(k)u(k) + αi(k)

In this phase, the rule premises are kept fixed and only the rule con-
sequence are adapted for each local model by a recursive version of the
weighted least-squares algorithm with forgetting factor λ :

(22) θj(k) = θj(k − 1) + δj(k)(y(k)− x>(k)(θj(k − 1))

(23) δj(k) =
Pj(k − 1)x(k)

x>(k)Pj(k − 1)x(k) + λ/Φj(x(k), cj , σj)

(24) Pj(k) =
1
λ

[I − δj(k)x>(k)]Pj(k − 1).

In (22), the parameter vector θj is the same as for off-line identification in
(19). It is updated by adding a correction vector to the old estimate θj(k−1).
In (23) and (24), λ is a forgetting factor that implements forgetting of the
old measurements, Φj is the weighting of the actual data with the rule
activation and Pj is a matrix of the adaptation gain.

4. SIMULATION EXAMPLE

Consider a MIMO process [14] described by the equations:

(25) yp1(k + 1) =
yp1(k)

1 +
2

yp2(k)
+ u1(k)

yp2(k + 1) =
yp1(k)yp2(k)

1 +
2
y
p2

(k)
+ u2(k)

The inputs are u1 and u2 , and the outputs are yp1and yp2 . The identifica-
tion procedure is carried out with random inputs u1(k) and u2(k) uniformly
distributed in the interval [−1 1] and three clusters for each output.

The input signals are shown in Figure 1. From inputs data, we obtain the
two outputs yp1 and yp2 according to (25). Once the input-output data is
available, we compute the matrix U , V and F according to (15) and (16) by
Gustafson-Kessel algorithm, then we determine the consequent parameters
of each rule generated by fuzzy clustering according to (19).

The responses of the plant and the identification model are shown in
Figure 2.
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Figure 1. Input data for identification.

To valid the established model, we apply this input vector

[sin(2πk/25), cos(2πk/25)]>.

The responses of the plant and the identification model to these inputs are
shown in Figure 3.

These responses are obtained from local models computed by fuzzy clus-
tering without adaptation of the consequent parameters. It is noticed that
the estimated outputs can’t follow the process’s outputs and the error re-
sultant is rather big. To improve quality of the established fuzzy model,
the parameters of the consequences of the rules are adapted by a recursive
least squares algorithm with forgetting factor (λ = 0.99) according to (22).
Figure 4 shows the responses of the plant and the identification model for
a vector input [sin(2πk/25), cos(2πk/25)]> but with adaptation:
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Figure 2. Comparison of the process output (solid line)
with the fuzzy model output (dashed-dotted line) for iden-
tification.

We define a function VAF which computes the percentile Variance Ac-
counted For between two signals as follows:

V AF = 100%
[
1− var(y1 − y2)

var(y1)

]
.

y1 is the output of the process and y2 is the output of the model. The VAF
of two equal signals is 100%. If the signals differ, VAF is lower.

Table 1 gives the VAF performance indices for the responses of the plant
and the identification model in the identification phase, the validation phase
without adaptation and in the validation phase with adaptation.

From Table 1, we can see that the adapted fuzzy TS model is more
accurate than a non-adapted fuzzy TS model.

To verify the applicability of our method to real process, we must show
the evolution of parameters of polynomial Ai ,Bi and αi during the adap-
tation. In fact, the parameters of polynomial Bi correspond to the gain of
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Figure 3. Comparison of the process output (solid line)
with the fuzzy model output (dashed-dotted line) for vali-
dation.

Table 1. Comparison of the prediction accuracy of the TS
Fuzzy model in three phases.

Identification Validation
without
adaptation

Validation with
adaptation

VAF yp1 (%) 98.43 49.79 88.81
VAF yp2 (%) 98.38 38.61 69.62

command u1 and u2 which must not change their values in great propor-
tions.
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Figure 4. Comparison of the process output and the fuzzy
model output with parameters’s adaptation.

The rules are linear conclusions of system’s inputs, for example for the
rule i:

yp1i(k + 1) = ai1p1(k)yp1i(k) + ai2p1(k)yp2i(k) + bi1p1(k)u1(k) + αip1

yp2i(k + 1) = ai1p2(k)yp1i(k) + ai2p2(k)yp2i(k) + bi2p2(k)u2p2(k) + αip2

Figure 5 shows the evolution of parameters ai1p1, bi1p1 and αip1 of the
first output yp1 for the three clusters (rules):

Figure 6 shows the evolution of parameters ai1p2 ,bi1p2 and αip2 of the
second output yp2 for the three rules:

From Figure 5 and Figure 6, we can notice that the linear parameters
vary until the sample 30. After that, their variation is weak. They are
practically constant.
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Figure 5. Evolution of parameters ai1p1, bi1p1, and αip1.

5. CONCLUSIONS

This paper proposes a study on the extension of the application of fuzzy
clustering to the identification of Takagi-Sugeno (TS) fuzzy models. These
local models correspond to the different rules generated automatically which
have variable consequent linear parameters in contrast to the common ap-
proach using fixed consequent linear parameters.

The performance of the proposed modeling technique was demonstrated
on benchmarks from the literature.

The results obtained are satisfactory and we think that we are able to
more improve the fuzzy TS model by the automatic determination of the
number of clusters and the optimal value of the forgetting factor. This will
be the object of our forthcoming work.
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Fig. 6 (Continued).

References

[1] R. Babuska, HB Vebruggen, An overview of fuzzy modeling for control, Control
Engineering Practice, 4(11):1593-1606, 1996.

[2] R. Babuska, HB Vebruggen, Identification of composite linear models via fuzzy clus-
tering, In Proceegings European Control Conference 4 (1995), Rome, Italy, pp 1593-
1606.

[3] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms,
Plenum Press, New York, 1981.

[4] J.Q. Chen, .J. Chen, An on line identification algorithm for fuzzy systems, Fuzzy
Sets and Systems, 1994, pp. 63-72.

[5] A. Fink, M. Fischer, O. Nelles, Supervision of Nonlinear Adaptive Controllers Based
on Fuzzy Models, Control Engineering 8 (200), pp 1093-1105.

[6] I. Gath, A. B. Geva, Unsupervised optimal fuzzy clustering, IEEE Transactions on
Pattern Analysis and Machine Intelligence 7 (1989), pp 773-781.

[7] P.Y. Glorennec, Algorithmes d’apprentissage pour systèmes d’inférence floue, Her-
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[15] O. Nelles, A. Fink, R. Babuška, M. Setnes, Comparison of Two Construction Al-
gorithms for Takagi-Sugeno Fuzzy Models, International Journal of Applied Mathe-
matics and Computer Science, 10(4): 835-855, 2000.



IDENTIFICATION OF NONLINEAR MULTIVARIABLE SYSTEMS 151

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

a1
1p

2

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

a1
2p

2

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

b1
1p

2

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

al
ph

a1
p2

sample

Rule 1

Figure 6. Evolution of parameters ai1p2, bi1p2, and αip2.

[16] O. Nelles, A. Fink, R. Isermann, Local Linear Model Trees (LOLIMOT) Toolbox
for Nonlinear System Identification, 12th IFAC Symposium on System Identification
(SYSID), Santa Barbara, USA, 2000.

[17] M. Sugeno, G.T. Kang Structure identification of fuzzy model, Fuzzy Sets and Sys-
tems , 28: 15-33, 1987.

[18] T. Takagi, M. Sugeno, Fuzzy identification of systems and its application to modeling
and control, IEEE Transactions on Systems, Man and Cybernetics, 15(1):116-132,
1985.

[19] A. Trabelsi, M. Chaabane, F. Lafont, Commande neuronale par modèle inverse des
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Fig. 6 (Continued).
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