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Abstract 

Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As 

yet, there are no established drugs or vaccines available. Speeding up drug discovery is urgently 

required. We applied a workflow of combined in silico methods (virtual drug screening, molecular 

docking and supervised machine learning algorithms) to identify novel drug candidates against 

COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug 

repositioning and of natural compound datasets from literature mining and the ZINC database to 

select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid 

protein, and 2’-o-ribose methyltransferase). Supported by the supercomputer MOGON II, 

candidate compounds were predicted as presumable SARS-CoV-2 inhibitors. Interestingly, several 

approved drugs against hepatitis C virus (HCV), another enveloped (-) ssRNA virus (paritaprevir, 

simeprevir, grazoprevir, and velpatasvir) as well as drugs against transmissible diseases, against 

cancer, or other diseases were identified as candidates against SARS-CoV-2. This result is 

supported by reports that anti-HCV compounds are also active against Middle East Respiratory 

Virus Syndrome (MERS) coronavirus. The candidate compounds identified by us may help to 

speed up the drug development against SARS-CoV-2.  
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Introduction 

In the Chinese city of Wuhan, Hubei province, several cases of novel, SARS-like, severe 

pneumonia occurred for the first time in December 2019, as firstly reported by the physician Li 

Wenliang and officially confirmed by the Chinese Center for Disease Control and Prevention and 

the China Office of the World Health Organization on December 31, 2019. Sequencing of the 

complete genome on January 13th, 2020 showed that it was a novel coronavirus (GenBank No. 

MN908947). The official name is SARS-CoV-2. The previous, preliminary names were 2019-

nCoV or Wuhan virus. The disease caused by SARS-CoV-2 has been termed Coronavirus disease 

2019 (COVID-19) (1), which has been declared by the World Health Organization (WHO) as a 

global pandemic. 

SARS-CoV-2 is an enveloped positive-sense single-stranded RNA virus (ssRNA) consisting of 

29,903 nucleotides and two untranslated sequences of 254 and 229 nucleotides at the 5’- and 3’-

ends, respectively (GenBank No. MN908947) (2). The putative genes code for a surface spike 

glycoprotein, an envelope membrane glycoprotein, a nucleocapsid phosphoprotein, a replicase 

complex and five other proteins, which compare to SARS-CoV and other coronaviruses. 

Comparable to SARS-CoV, the novel SARS-CoV-2 enters human cells via binding of the viral 

spike protein to the human angiotensin converting enzyme 2 (ACE2) (3, 4). Some coronaviruses 

also express hemagglutinin esterase on the surface, which is a shorter spike-like protein.  

Primary infective hosts were supposed to be traded as foods at the Huanan Fish and Seafood market 

in Wuhan, since several of the very first patients worked on this market.  High sequence similarities 

of SARS-CoV-2 to coronaviruses in the Malayan pangolin (Sunda pangolins) (5) and bats 

(Rhinolophi sinicus) (3, 6) suggest that the virus might be transmitted from these animals to human 

hosts.   

Some coronaviruses (e.g. HCoV-229E, -NL63, -OC43, and -HKU1) usually cause respiratory 

infections and circulate worldwide in human populations (7). Other coronaviruses (e.g. SARS-

CoV, MERS-CoV, SARS-CoV-2) are rare and reveal higher mortality rates. In SARS-CoV-2 and 

MERS-CoV, more males than females are affected. Typical symptoms of SARS-CoV, SARS-

CoV-2 and MERS-CoV include fever, dry cough, dyspnea, muscle pain and other symptoms (8). 

As of March 20, 2020, 260,000 people were infected and more than 10,000 deaths occurred. On 

the other hand, 90,000 patients recovered from COVID-19 

(https://www.worldometers.info/coronavirus/). 

https://www.worldometers.info/coronavirus/
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As of yet, there are no drugs or vaccines available to treat or prevent SARS-CoV-2. Some 

preliminary experiences with individual healing trials or animal experiments using anti-retroviral 

drugs (e.g. remdesivir, lopinavir, ritonavir, oseltamivir) and also alternative approaches from 

traditional Chinese medicine have been reported (9-12). Randomized, placebo-controlled, double-

blind studies are still missing. The current clinical treatment is largely based on symptom-based 

therapies (11, 13). Therefore, strategies for the rapid identification of drug candidates are urgently 

required.  

The concept of drug repurposing (or repositioning) came into the spotlight for several reasons (14). 

As it became apparent that drugs approved for one disease, may also exert activity for other 

indications, FDA-approved drugs became attractive as source for new drug development. A 

considerable advantage of old drugs in terms of time and costs for drug development is that their 

toxicity profile and pharmacokinetics are well-known in human beings. As the number of FDA-

approved drugs is continuously decreasing during the past three decades, drug repurposing may 

speed up the marketing of new drugs. The dimension of drug development is, however, much 

broader in a sense that natural products (antibiotics, marine compounds, phytochemicals) represent 

a large chemical basis for drug development. Natural products serve as chemical scaffolds for 

derivatization to come up with novel compounds with improved pharmacological features. As a 

matter of fact, surveys of the National Cancer Institute, USA, repeatedly demonstrated that three 

quarters of drugs for all diseases worldwide during the past half century were in the one way or 

another based on natural resources (15, 16). Hence, chemical scaffolds from natural sources are 

indispensable for drug development.  

Another dimension has been recently added by combining virtual drug screening methods with 

machine learning approaches for the development of new drugs (17, 18), overcoming multidrug 

resistance (19), and applications in precision medicine to select drugs for individualized therapies 

(20, 21).  

The aim of the present study was to identify candidate drugs using a combined approach of virtual 

drug screening, molecular docking and supervised machine learning techniques. For this purpose, 

we used a library of FDA-approved drugs to investigate their potential for repurposing as anti-

SARS-CoV-2 drugs as well as two chemical libraries with natural products.  

 

Materials and methods 
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Workflow 

A flowchart of our in silico strategy to identify drug candidates against SARS-CoV-2 is shown in 

Figure 1. The workflow consisted of 6 steps: 

(1) Homology modeling of target proteins: The amino acid sequence of the target proteins from 

SARS-COV virus were translated into the sequences of the corresponding SARS-CoV-2 proteins. 

The available crystal structures of spike protein, nucleocapsid protein, and 2’-o-ribose 

methyltransferase were taken as templates to generate 3D homology models of the three SARS-

CoV-2 proteins.  

(2) Construction of compound databases: (A) 1,577 FDA-approved drugs (taken from ZINC 

database), (B) 39,442 natural products (taken from ZINC database) and (C) 115 natural products 

(taken from literature) were included in the study. Clinically established anti-viral drugs were 

chosen as presumable positive controls and clinically established drugs without antiviral activity 

were taken as presumable negative controls. All compounds were prepared in three-dimensional 

sdf format.  

(3) Virtual drug screening: All compounds were subjected to PyRx AutoDock VINA (blind 

docking mode) to generate ranking lists with compounds binding with high affinity to the three 

target proteins of SARS-CoV-2.  

(4) Molecular docking: The top 100 compounds from chemical libraries (A), (B) and (C) were 

analyzed for their ability to bind to the relevant pharmacophores of the three targets (ACE2 

interaction site of spike protein, RNA-binding site of nucleocapsid protein and catalytic site of 2’o-

ribose methyl transferase). Compounds with the best binding energies were then subjected to 

AutoDock VINA and AutoDock 4.2.6. (both in defined docking mode) to identify the amino acid 

residues involved in drug-binding. 3D illustrations of drug-protein interactions were prepared using 

VMD.  

(5) Study of drug-likeliness by supervised machine learning: The clinically established positive 

and negative control drugs (see step 2) were used to generate prediction models for drug-likeliness 

of test compounds based on 12 chemical descriptors. These predictions were applied to the top 100 

compounds of libraries (A), (B), and (C). 

(6) Identification of candidate compounds: Compounds with lowest binding energies of <-7 

kcal/mol (from step 4) and probability values of R > 0.995 (from step 5) were proposed as candidate 

compounds with activity against SARS-CoV-2.  
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Homology modeling 

Three proteins from SARS-CoV-2 were selected as templates for homology modelling, i.e. spike 

protein (YP_009724390.1), nucleocapsid protein (YP_009724397.2), and 2'-o-ribose 

methyltransferase (YP_009725311.1). The genome sequence of SARS-CoV-2 (GenBank ID: 

NC_045512.2) was used to deduce the protein sequences and to generate homology models derived 

from YP_009725311.1, YP_009724397.2 and YP_009724390.1. The Phyre2 software (22) 

(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) was used to build homology protein 

structures with the highest available homology and coverage percentages. The reported 

pharmacophores were the receptor binding domain of spike glycoprotein, the RNA binding domain 

of nucleocapsid protein, and the catalytic site of 2’-o-ribose methyltransferase) (23-25). 

 

Virtual screening with AutoDock VINA 

Three sets of compounds were considered for the virtual screening on three proteins (spike protein, 

nucleocapsid protein, and 2’-o-ribose methyltransferase). The protein sequences were deduced 

from the NCBI website. FDA-approved drugs (1,577 compounds), natural compounds from the 

ZINC database (39,442 compounds), and natural compounds mined from the literature with 

antiviral activity (115 compounds) (26-30). Furthermore, antiviral drugs were selected as 

presumable positive control drugs (27 compounds) and non-cytotoxic antidiabetic, antidepressants, 

cardiovascular agents, non-steroidal anti-inflammatory drugs (NSAIDs) and proton pump 

inhibitors were selected as presumable negative control drugs (30 compounds) the from DrugBank 

database (https://www.drugbank.ca/). The positive control drugs revealed binding energies of ≤-7 

kcal/mol, while negative control drugs bound with affinities of >-7 kcal/mol to the three targets 

(Table 1). The test compounds have been subjected to an automated and comprising molecular 

docking campaign by using the AutoDock VINA algorithm PyRx algorithm (blind docking mode) 

and the high-performance supercomputer MOGON II (Johannes Gutenberg University, Mainz).  

 

Molecular docking 

After the selection of compounds with strong interaction with target proteins, further validation 

was performed with molecular docking. For this purpose, the Lamarckian algorithm of AutoDock 

VINA was chosen (defined docking mode), and the AutoDock 4.2.6. Lamarckian algorithm was 

used to analyze the docking poses and binding energies with as described before (19, 31). The 

ligand moved around the rigid protein was rigid with 250 runs and 25,000,000 energy evaluations 
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for each cycle. The amino acids of the target proteins binding to the ligands were also determined 

by AutoDock 4.2.6. Compound-protein interactions were visualized by using the Visual Molecular 

Dynamics (VMD) software. (Theoretical and Computational Biophysics group at the Beckman 

Institute, University of Illinois at Urbana-Champaign, IL, USA) 

(https://www.ks.uiuc.edu/Research/vmd/). 

 

Supervised machine learning 

In order to build separate predictive models for each protein to identify potential drugs against 

SARS-CoV-2 and considering recent clinical reports that some COVID-19 patients were treated 

with antiviral drugs (32-35), we used the above mentioned presumable positive control and 

negative control drugs. After random selection was applied, 16 positive control, 20 negative control 

drugs were used for the spike protein learning set. For the external validation step, 8 positive control 

and 10 negative control drugs were used (Table 1). For the nucleocapsid protein learning set, 16 

positive control, 20 negative control drugs were used. For the external validation step, 8 positive 

control and 10 negative control drugs were used. For the 2’-o-ribose methyltransferase learning 

set, 18 positive control, 20 negative control drugs were used. For the external validation step, 9 

positive control and 10 negative control drugs were used.  

The positive control drug class was labeled as “1” and the negative control drug class was labeled 

as “0”. After the descriptors were calculated by Data Warrior software, the descriptors were 

selected in a similar manner, as previously reported by us using the SPSS software and considering 

the correlations of each descriptor with the class (0/1) (19). The selected descriptors meeting the 

criteria were as follows: H-acceptors, H-donors, total surface area, relative PSA, molecular 

complexity, rotatable bonds, ring closures, aromatic atoms, sp3 atoms, symmetric atoms, amides, 

and aromatic nitrogens. Leave one out random sampling was used to build the models. To select 

the most suited algorithm, we applied the Orange software (Ljubljana, Slovenia) 

(https://orange.biolab.si/). We tested all 11 different algorithms and found that neural network 

performed better than the other algorithms for nucleocapsid protein and spike protein models, 

whereas naïve bayes was the best algorithm for 2’-o-ribose methyltransferase model. The 

performance parameters for each model are summarized in Table 2. The top 100 compounds based 

on lowest binding energy (LBE) from each virtual screening output on three proteins were selected 

to evaluate their classes with our prediction model. The receiver operating characteristic (ROC) 

curves of 3 out of 11 algorithms are depicted in Figure 2. 

https://www.ks.uiuc.edu/Research/vmd/
https://orange.biolab.si/
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Results 

After establishing the prediction models for spike protein, nucleocapsid protein, and 2’-o-ribose-

methyltransferase using the positive and negative control drugs (Table 1). After virtual drug 

screening using AutoDock VINA, the top 100 compounds binding to each of the three protein 

models were selected for further analysis (top 100 from ZINC, top 100 from FDA and top 100 from 

literature compounds). We first evaluated their therapeutic probability against SARS-CoV-2 by 

using our established prediction models with positive and negative control drugs. The compounds 

were ranked according to their binding energy (yielded from the AutoDock VINA-based virtual 

screening in blind docking mode). We selected the top 10 compounds from each dataset for each 

protein model and considered a probability threshold of R > 0.995.  

Then, these 10 compounds from each dataset were subjected to two further molecular docking 

programs for verification. PyRX implemented in AutoDock VINA allowed rapid screening in the 

blind docking mode, i.e. the best docking pose on the entire target protein surface was investigated. 

As a next step, we applied two defined docking modes (AutoDock VINA and AutoDock 4.2.6) 

based on the Lamarckian algorithm. Here, we defined the docking position at the sites, which are 

relevant for protein function, i.e. the ACE3-interaction site of the spike protein, the RNA-binding 

site of the nucleocapsid protein, and the catalytic site of 2’-o-ribose methyltransferase. In addition, 

we also identified the amino acid residues involved in compound binding within the defined 

binding domains. The results for the 10 best compounds of each dataset (FDA-approved drugs, 

natural compounds selected from literature and ZINC database) are shown in Tables 3-5.  

Those compounds which consistently passed binding energy thresholds of < -7 kcal/mol with all 

three programs (2 ×AutoDock VINA and AutoDock 4.2.6) ma be considered more suitable for 

further investigations than the other compounds (Tables 3-5).  

In parallel, these sets of each 10 compounds were subjected to supervised machine learning to gain 

insight into the drug-likeliness of the compounds (ROC probability of being class “1” yielded from 

the prediction models). Eleven different algorithms available in the Orange software were tested 

for building the prediction models. The neural network algorithm was the best for the spike and 

nucleocapsid proteins, while naïve bayes was superior for 2’-o- ribose methyltransferase. Figure 

2 displays 3 out of 11 tested algorithms for illustration. With these prediction models, the test 

compounds were calculated, and excellent ROC probabilities were obtained (Tables 3-5), 



9 
 

indicating that the test compounds fulfilled the criteria of drug-likeliness defined by the 12 

chemical parameters setting up the predictive models. 

Interestingly, among the drugs binding with high affinity to the spike protein were several approved 

drugs against another enveloped (+) ssRNA virus, the hepatitis C virus (HCV), i.e. paritaprevir, 

simeprevir, grazoprevir, and velpatasvir), indicating that these drugs may also be suitable to treat 

COVID-19. 

Interestingly, some of the compounds shown in Tables 3-5 bound with high affinity not only to one 

target protein but also to another one. Among the FDA-approved drugs, paritaprevir and teniposide 

bound to spike protein and 2’-o-ribose methyltransferase and dihydroergotamine and venetoclax 

to nucleocapsid protein and 2’-o-ribose methyltransferase. Among the natural products, amyrin, 

ZINC000027215482 and ZINC000252515584 bound to spike protein and 2’-o-ribose 

methyltransferase, while procyanidin bound to spike protein and 2’-o-ribose methyltransferase. 

These “two-in-one” compounds may be attractive for further drug development 

Finally, as a conclusion from virtual screening, molecular docking and supervised machine learning 

the top compounds were identified. The target interactions (1) with the spike protein were highest 

for simepravir, loniflavone and ZINC000027215482, (2) with the nucleocapsid protein for 

conivaptan, amyrin, and ZINC000027215482, and with 2’-o-ribose methyltransferase for 

ZINC000008635475. The protein-drug interactions are illustrated in Figures 3-5. 

 

Discussion 

COVID-19 rapidly increased to an epidemic in China. Although still mostly restricted to the Hubei 

province, there is a reasonable threat that the disease may spread all over the world. With a 

transmission rate of 2-3.5 and 183 countries and territories affected (status March 20, 2020), it will 

be difficult to manage the outbreak without drugs and vaccines available. Therefore, there is an 

urgent requirement for drugs that inhibit SARS-CoV-2. We have selected three important viral 

proteins as targets for our combined virtual screening/machine learning approach, i.e. spike protein, 

nucleocapsid protein, and 2’-o-ribose-methyltransferase. The spike protein is involved in binding 

of the virus to cellular receptors of the host. As this protein governs the entry of the virus into the 

host cell (36), it represents a premier target for the development of drugs and vaccines against 

coronaviruses (37, 38). The nucleocapsid protein forms complexes with genomic RNA of the virus 

and plays a crucial role in coronavirus transcription and assembly (39). It has recently been 

discussed as valuable target for the development of drugs against coronaviruses (40). 2’-O-ribose 
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methyltransferase is involved in the capping of coronaviral mRNAs and is essential for efficient 

coronavirus RNA synthesis and processing (41). We also performed virtual screening with another 

conserved structural coronaviral protein, i.e. the envelope protein, but found only weak binding 

energies (higher than -7 kcal/mol) of the FDA-approved drugs and natural compounds to the 

selected three target proteins (data not shown). Therefore, we did not further consider the envelope 

protein as relevant target for anti-SARS-CoV-2 drugs.  

These coronaviral proteins were used as targets for virtual screening (blind docking mode), 

molecular docking (defined docking mode), and supervised machine learning algorithms (naïve 

bayes, neural network) using FDA-approved drugs and natural compounds. The drug repurposing 

approach in the present investigation also brought up interesting results. Several FDA-approved 

drugs against hepatitis C, bacterial and fungal infections, cancer and other diseases appeared in the 

top ranks of our virtual screenings. Especially, the anti-hepatitis C drugs (paritaprevir, semeprevir, 

grazoprevir, and velpatasvir) deserve attention, since the hepatitis C virus is also an enveloped 

ssRNA virus. Hence, it is reasonable to speculate that these drugs may also exert activity against 

SARS-CoV-2. Interestingly, all of the identified anti-hepatitis C drugs bound to the spike protein 

in our in silico approach.  

The validity of our results is supported by a recent study the the anti-HCV drug IDX-184 was also 

active against Middle East Respiratory Syndrome (MERS) coronavirus (42). Hence, anti-HCV 

drugs might reveal a general potency against human coronaviruses. The finding that anti-HCV 

drugs may be active against SARS-CoV-2 is novel and may enlarge the armory of investigational 

drugs to fight COVID-19. Other anti-retroviral drugs are also under investigation against SARS-

CoV-2. These drugs act against enveloped (-) ssRNA viruses (remdesivir against Ebola virus and 

Marburg virus, oseltamivir against influenza A and B viruses) or enveloped linear, dimeric ssRNA 

viruses (lopinavir and ritonavir against HIV1 and HIV-2). This is in line with the fact that HCV is 

also an enveloped (-) ssRNA virus. Hence, it is reasonable to assume that anti-HCV drugs are also 

valuable to combat SARS-CoV-2.  

Many drugs among the FDA-approved drugs and also among the natural product datasets bind with 

high affinity not only to one target protein but also to another one (paritaprevir, teniposide, 

dihydroergotamine, venetoclax, amyrin, ZINC000027215482, ZINC000252515584, and 

procyanidin). These compounds deserve special attention. Binding of small molecule inhibitors to 

two targets at the same time may increase the therapeutic efficacy and decrease the probability of 

development of resistance to one of the targets. Especially, natural products are known to bind to 
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multiple targets (43). This has been frequently misinterpreted as non-specificity. During evolution 

of life on earth, chemical weapons of organisms against microbial attack from viruses, bacteria, 

protozoans or other threats from predators were more successful, if they were multi-specific. 

Inhibiting several targets at the same time better prevents the development of resistance against 

single-target drugs. From an evolutionary point of view, this strategy provided better chances for 

the survival of the fittest. It deserves further exploration, whether the bispecifically binding 

compounds exert superior activity against SARS-CoV-2.  

Furthermore, our results from the drug repurposing approach by using 1,577 FDA-approved drugs 

generally fit together with other well-known drugs from the literature, e.g. the anti-malarial 

artemisinin and its derivatives are also active against viruses, other infectious diseases and cancer 

(44-47). Another example is the antimalarial chloroquine, which also inhibits cancer (48, 49). 

Recently, chloroquine has also been used to treat COVID-19 (50). Broad-spectrum activities have 

also been reported for other classes of pharmacological drugs (51), indicating that drug repurposing 

represents a fertile reservoir to develop drugs to fight COVID-19.  

During the past few years, molecular docking has been used for the identification of synthetic and 

natural drug candidates against targets of MERS-CoV and SARS-CoV such as chymotrypsin-like 

protease (52-55), mRNA polymerases (56), and helicase (57). To the best of our knowledge, we 

are the first describing drug candidates against viral proteins of SARS-CoV-2 by a combined virtual 

screening/molecular docking/supervised machine learning in silico approach. The compounds 

identified by us deserve further investigation in vitro and in vivo. 
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Table 1: Positive and negative control drugs to generate training and test sets for the supervised 

machine learning algorithms. 

 

Training set 
 

  Test set 
 

  

Molecule Name Class LBE Molecule Name Class LBE 

Spike protein 
 

  Spike protein 
 

  

Atazanavir 1 -7.50 Indinavir 1 -8.20 

Bevirimat 1 -7.20 Grazoprevir 1 -8.30 

Calanolide A 1 -8.60 Elbasvir 1 -8.70 

Capravirine 1 -7.00 Dolutegravir 1 -8.00 

Cobicistat 1 -7.70 Delavirdine 1 -7.00 

Lopinavir 1 -8.30 Darunavir 1 -7.90 

Maraviroc 1 -8.20 Dapivirine 1 -8.20 

Nelfinavir 1 -8.10 Daclatasvir 1 -8.70 

Nevirapine 1 -7.10 Acetylcholine 0 -4.40 

Ombitasvir 1 -8.80 Mechlorethamine 0 -3.40 

Raltegravir 1 -7.50 Succinylcholine 0 -4.40 

Rilpivirine 1 -7.30 Disulfiram 0 -3.80 

Ritonavir 1 -8.10 Methimazole 0 -3.80 

Saquinavir 1 -8.20 Dimercaprol 0 -3.50 

Tipranavir 1 -7.70 Dalfampridine 0 -4.40 

Velpatasvir 1 -9.80 Tolbutamide 0 -5.50 

Acepromazine 0 -7.00 Naproxen 0 -6.90 

Acetaminophen 0 -5.60 Mephentermine 0 -5.20 

Acetylsalicylic acid 0 -6.00 
  

  

Amiodarone 0 -6.40 
  

  

Amphetamine 0 -5.50 
  

  

Bretylium 0 -5.50 
  

  

Captodiame 0 -6.10 
  

  

Carbachol 0 -4.10 
  

  

Cetylpyridinium 0 -5.30 
  

  

Choline 0 -3.90 
  

  

Colestipol 0 -4.60 
  

  

Dinoprostone 0 -4.10 
  

  

Dopamine 0 -5.60 
  

  

Etilefrine 0 -5.70 
  

  

Fluvoxamine 0 -5.80 
  

  

Ibuprofen 0 -6.40 
  

  

Loxoprofen 0 -6.70 
  

  

Methacholine 0 -4.40 
  

  

Methenamine 0 -4.80 
  

  

Orlistat 0 -4.30       

Nucleocapsid protein 
 

  Nucleocapsid protein 
 

  

Training set 
 

  Test set 
 

  

Molecule Name class LBE Molecule Name class LBE 

Abacavir 1 -7.00 CalanolideA 1 -8.40 

Bevirimat 1 -8.40 Cobicistat 1 -7.20 

Capravirine 1 -8.50 Daclatasvir 1 -8.50 
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Darunavir 1 -7.70 Dapivirine 1 -7.90 

Delavirdine 1 -8.00 Indinavir 1 -8.40 

Dolutegravir 1 -7.70 Maraviroc 1 -8.20 

Elbasvir 1 -8.60 Nelfinavir 1 -7.80 

Grazoprevir 1 -7.70 Nevirapine 1 -7.60 

Ombitasvir 1 -7.50 Acetylcholine 0 -3.80 

Raltegravir 1 -7.60 Carbachol 0 -3.90 

Remdesivir 1 -7.10 Cetylpyridinium 0 -4.60 

Rilpivirine 1 -7.80 Choline 0 -3.30 

Saquinavir 1 -9.40 Colestipol 0 -4.30 

Suramin 1 -8.40 Dinoprostone 0 -6.60 

Tipranavir 1 -7.80 Mechlorethamine 0 -3.60 

Velpatasvir 1 -8.80 Methacholine 0 -4.00 

Acepromazine 0 -6.50 Naproxen 0 -6.50 

Acetaminophen 0 -4.90 Orlistat 0 -4.80 

Acetylsalicylic acid 0 -5.10 
  

  

Amiodarone 0 -7.00 
  

  

Amphetamine 0 -5.40 
  

  

Bretylium 0 -4.90 
  

  

Captodiame 0 -5.90 
  

  

Dalfampridine 0 -4.10 
  

  

Dimercaprol 0 -2.80 
  

  

Disulfiram 0 -4.20 
  

  

Dopamine 0 -5.20 
  

  

Etilefrine 0 -5.30 
  

  

Fluvoxamine 0 -4.70 
  

  

Ibuprofen 0 -6.10 
  

  

Loxoprofen 0 -6.40 
  

  

Mephentermine 0 -5.20 
  

  

Methenamine 0 -3.90 
  

  

Methimazole 0 -3.70 
  

  

Succinylcholine 0 -4.20 
  

  

Tolbutamide 0 -6.60       

2'-o-ribose methyl transferase   2'-o-ribose methyl transferase   

Training set 
 

  Test set 
 

  

Molecule Name class LBE Molecule Name class LBE 

Abacavir 1 -7.20 Elbasvir 1 -8.70 

Atazanavir 1 -7.20 Dolutegravir 1 -9.00 

Bevirimat 1 -9.80 Delavirdine 1 -8.90 

Calanolide A 1 -8.50 Darunavir 1 -8.00 

Capravirine 1 -7.10 Ritonavir 1 -8.10 

Cobicistat 1 -8.20 Rilpivirine 1 -7.90 

Daclatasvir 1 -9.70 Remdesivir 1 -7.60 

Dapivirine 1 -8.30 Raltegravir 1 -10.30 

Grazoprevir 1 -7.80 Ombitasvir 1 -10.00 

Indinavir 1 -8.60 Acetylcholine 0 -4.00 

Lopinavir 1 -7.40 Mechlorethamine 0 -3.30 

Maraviroc 1 -8.40 Succinylcholine 0 -5.00 

Nelfinavir 1 -7.60 Disulfiram 0 -4.00 

Saquinavir 1 -9.30 Methimazole 0 -3.50 
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Suramin 1 -9.60 Dimercaprol 0 -3.00 

Tipranavir 1 -8.90 Dalfampridine 0 -3.90 

Velpatasvir 1 -9.20 Tolbutamide 0 -6.60 

Zanamivir 1 -7.00 Naproxen 0 -6.90 

Acepromazine 0 -6.20 Captodiame 0 -5.50 

Acetaminophen 0 -5.50 
  

  

Acetylsalicylic acid 0 -6.00 
  

  

Amiodarone 0 -6.50 
  

  

Amphetamine 0 -4.60 
  

  

Bretylium 0 -4.90 
  

  

Carbachol 0 -4.20 
  

  

Cetylpyridinium 0 -4.10 
  

  

Choline 0 -3.30 
  

  

Colestipol 0 -4.60 
  

  

Dinoprostone 0 -5.50 
  

  

Dopamine 0 -5.80 
  

  

Etilefrine 0 -6.10 
  

  

Fluvoxamine 0 -6.20 
  

  

Ibuprofen 0 -6.20 
  

  

Loxoprofen 0 -6.90 
  

  

Mephentermine 0 -5.40 
  

  

Methacholine 0 -4.30 
  

  

Methenamine 0 -4.00 
  

  

Orlistat 0 -5.40       

1, positive control drug; 0, negative control drug 

LBE, lowest binding energy (kcal/mol) 
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Table 2: Performance parameters of the established prediction models for spike protein, 

nucleocapsid protein, and 2’-o-ribose-methyltransferase. 

 

  TP TN FP FN Sensitivity Specificity Overall 
predictive 
accuracy 

Precision AUC 

Learning 
         

Spike protein (neural network) 16 19 1 0 1.000 0.950 0.972 0.941 0.994 

Nucleocapsid protein (neural network) 15 19 1 1 0.938 0.950 0.944 0.938 0.997 

2-o-ribose-methyltransferase (naïve bayes) 16 18 2 2 0.889 0.900 0.895 0.889 0.978 

External validation 
         

Spike protein 8 10 0 0 1.000 1.000 1.000 1.000 
 

Nucleocapsid protein 8 10 0 0 1.000 1.000 1.000 1.000 
 

2-o-ribose-methyltransferase 9 10 0 0 1.000 1.000 1.000 1.000   

 

TP, true positive; TN, true negative; FP, false positive; FN, false negative; AUC, area under the 

curve 
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Table 3: Virtual screening (obtained by AutoDock VINA), molecular docking (obtained by 

AutoDock 4.2.6) results and ROC probability of compounds binding to spike protein. Top 10 

compounds are shown, each from FDA-approved drugs, natural compounds taken from literature 

and ZINC database. Binding affinities are expressed as lowest binding energies (LBE) in kcal/mol 

obtained. The ROC probabilities are based on the model obtained from positive and negative 

control drugs. Those compounds are labeled in bold, where all three docking programs revealed 

binding energies < -7 kcal/mol Amino acid residues forming hydrogen bonds are labeled in bold. 

Dataset ROC 
probability 

VINA 
blind  

VINA 
defined  

Autodock 
defined  

Interacting amino acid residues 

(LBE)  (LBE) (LBE) 

FDA-approved drugs: 
     

Simeprevir 0.993 -8.73±0.85 -8.00±0.46 -9.81±0.31 Arg346, Tyr351, Ser494, Leu492, Phe490, Asn450, 
Phe347, Ala348 

Paritaprevir 0.997 -9.47±1.16 -8.43±0.64 -8.52±0.16 Arg346, Ser349, Tyr351, Asn450, Ser494, Tyr449, 
Ile468, Ala348 

Grazoprevir 0.995 -8.97±0.38 -7.80±0.78 -8.36±0.34 Ser494, Gly496, Gln498, Leu492, Tyr505, Asn501, 
Gly496, Tyr449, Tyr495 

Teniposide 0.997 -9.13±0.25 -7.17±0.12 -7.93±0.24 Val357, Asn437, Trp436, Phe374, Cys336, Asn343, 
Ser373  

Velpatasvir 0.999 -9.47±0.15 -8.90±1.13 -7.77±0.18 Ser494, Phe490, Leu492, Tyr449, Tyr452, Tyr451, 
Ala348, Arg346 

Rifabutin 0.992 -8.83±0.61 -6.40±0.10 -7.50±0.58 Asn450, Asn448, Tyr449, Ser494, Leu492, Phe490, 
Leu452 

Ledipasvir 0.999 -9.07±0.25 -8.63±0.76 -6.72±0.54 Leu441, Asn440, Asn437, Trp436, Ser375, Ala372, 
Ser373, Phe374, Tyr369 

Ivermectin 0.999 -9.00±1.18 -8.13±1.02 -6.48±0.39 Asn440, Ser438, Asn437, Asn439, Ala372, Ser373, 
Trp436, Leu368, Phe342 

Everolimus 0.996 -9.57±0.06 -8.77±1.36 -6.16±0.61 Arg346, Asn343, Thr345, Trp436, Ser373, Leu368, 
Gly339, Phe342 

Nystatin 0.994 -8.33±1.18 -6.93±0.59 -6.00±0.40 Glu340, Asn343, Phe342, Gly339, Phe338, Ser373 

Natural compounds from literature: 
     

Loniflavone 0.996 -9.97±0.15 -9.63±0.57 -8.18±0.06 Arg509, Ala348, Tyr451, Ser349, Ala352, Asn354, 
Thr345  

Amyrin 0.996 -9.00±0.69 -8.70±1.05 -7.42±0.00 Ser375, Ala372, Phe374, Asn370, Tyr369, Phe377, 
Lys378 

Procyanidin 0.999 -8.60±0.00 -8.13±0.45 -7.29±0.15 Asn440, Ser373, Ala372, Phe374, Asn343, Phe342, 
Thr345 

Phillyrin 0.999 -8.00±0.10 -7.97±0.75 -6.72±0.26 Arg346, Lys444, Ile468, Asn450, Phe347, Ala352, 
Arg509, Asp442, Asn448 

Proanthocyanidin 0.999 -7.84±0.63 -6.73±0.32 -6.05±0.77 Arg346, Asn354, Lys356, Ser399, Ala397, Asn343, 
Phe347, Thr345 

Sericoside 0.999 -8.43±0.61 -7.93±1.15 -5.13±0.09 Asn343, Ser373, Asn437, Phe342, Leu368, Trp436 

Punicalagin 1.000 -9.70±0.70 -9.10±0.82 -4.74±0.04 Arg346, Lys356, Asn450, Thr345, Phe347, Ala344, 
Lys356, Glu340 

Strictinin 0.998 -9.03±0.29 -8.13±0.92 -4.63±0.35 Asn440, Ser373, Ser375, Asn437, Leu441, Trp436, 
Phe374, Asn343 

Rutin 0.999 -8.17±0.45 -7.10±0.72 -4.61±0.78 Asn343, Ser373, Asn437, Phe374, Ala372, Ser371, 
Val367 

Tirucallina 1.000 -
10.07±0.49 

-7.90±1.65 -3.05±0.70 Ala372, Thr345, Ser371, Asn440, Asn437, Leu441, 
Trp436, Arg509, Asn343, Phe342 

Natural compounds from ZINC database: 
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ZINC000027215482; (1R,4S,7S)-4-benzyl-9-[(1R,4S,7R)-4-
benzyl-3,6-dioxo-2,5,16-
triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-10,12,14-trien-9-
yl]-2,5,16-triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-
10(15),11,13-triene-3,6-dione 

0.997 -
10.37±0.23 

-9.97±0.61 -8.89±0.04 Val357, Ser373, Leu441, Leu368, Phe342, Phe338, 
Asn343 

ZINC000252515584; (1R,3S,6S,7E,13S,16R,17R,21S,22S)-
28-Hydroxy-17-[(2R,4R,5S,6R)-4-hydroxy-5-[(2S,4R,5R,6R)-
5-hydroxy-4-(2-methoxy-6-methylbenzoyl)oxy-6-
methyloxan-2-yl]oxy-6-methyloxan-2-yl]oxy-3,22-dimethyl-
23,26-dioxo-24,27-
dioxapentacyclo[23.2.1.01,6.013,22.016,21]octacosa-
4,7,14,25(28)-tetraene-4-carboxylic acid 

0.999 -
10.47±0.83 

-9.83±0.35 -8.32±0.35 Thr470, Ser494, Ser349, Arg346, Phe490, Leu492, 
Ala352, Leu452 

ZINC000027215486; (1R,4S,7S)-4-benzyl-9-[(1R,4S,7S)-4-
benzyl-3,6-dioxo-2,5,16-
triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-10,12,14-trien-9-
yl]-2,5,16-triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-
10(15),11,13-triene-3,6-dione 

0.997 -
10.90±0.10 

-9.77±1.07 -7.91±0.13 Trp436, Phe374, Ser373, Ala372, Asn343, Gly339 

ZINC000253532663; 3-(10-[(4-methoxyphenyl)methyl]-
4,9,13,15,29-pentamethyl-2,5,8,11,14,30-hexaoxo-24-([3,4,5-
trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy)-22-oxa-
3,6,9,12,15,29-
hexaazatetracyclo[14.12.2.2¹⁸,²¹.1²³,²⁷]tritriaconta-
18,20,23(31),24,26,32-hexaen-7-yl)propanoic acid 

0.999 -9.70±1.11 -8.67±0.85 -7.50±0.41 Tyr351, Asn450, Tyr451, Leu452, Asp442, Arg346, 
Asn354, Trp353, Ala352, Ser349 

ZINC000257466563; Saikosaponin E 0.999 -9.67±1.50 -8.67±0.98 -7.38±0.05 Asn440, Ser371, Leu368, Ser373, Trp436, Asn343, 
Phe342, Val367 

ZINC000253389151; (2S,3R,4S,5R,6R)-6-
([(3S,6aR,6bS,8aS,12aS,14bR)-4,4,6a,6b,11,11,14b-
heptamethyl-8a-(([(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxy)carbonyl)-
1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-
icosahydropicen-3-yl]oxy)-3,4,5-trihydroxyoxane-2-carboxylic 
acid 

0.998 -
10.33±0.35 

-8.83±1.27 -6.93±0.47 Lys444, Asn450, Tyr451, Leu441, Arg509, Thr345, 
Phe342, Asn343 

ZINC000514287935; 6-[1-(9a,11a-dimethyl-9-oxo-7-)[3,4,5-
trihydroxy-6-()[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-
yl]oxy)methyl)oxan-2-yl]oxy)-
1H,2H,3H,3aH,3bH,4H,6H,7H,8H,9H,9aH,9bH,10H,11H,11aH-
cyclopenta[a]phenanthren-1-yl)-1-hydroxyethyl]-3,4-dimethyl-
5,6-dihydro-2H-pyran-2-one 

0.999 -
10.57±0.06 

-9.47±0.99 -5.97±0.32 Arg346, Thr345, Ala352, Ala348, Asn450, Asn354, 
Asn448, Asp442, Leu441 

ZINC000253389415; (2S,3S,4S,5R,6R)-6-
([(3S,6aR,6bS,8aS,12aS,14bR)-8a-(([(2S,3R,4R,5S,6R)-3,4-
dihydroxy-6-(hydroxymethyl)-5-([(2S,3R,4R,5R,6S)-3,4,5-
trihydroxy-6-methyloxan-2-yl]oxy)oxan-2-yl]oxy)carbonyl)-
4,4,6a,6b,11,11,14b-heptamethyl-
1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-
icosahydropicen-3-yl]oxy)-3,4,5-trihydroxyoxane-2-carboxylic 
acid 

0.999 -
10.87±0.15 

-9.63±2.02 -5.36±0.26 Arg335, Arg346, Ile468, Ala348, Trp353, Asn354, 
Ser349, Leu452 

ZINC000253387436; (2S,3S,4S,5R,6R)-6-
)[(3S,4R,6aR,6bS,8aS,14bR)-4-(hydroxymethyl)-
4,6a,6b,11,11,14b-hexamethyl-8a-()[(2S,3R,4S,5S,6R)-3,4,5-
trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy)carbonyl)-
1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-
icosahydropicen-3-yl]oxy)-3,4,5-trihydroxyoxane-2-carboxylic 
acid 

0.999 -9.70±1.14 -8.33±1.62 -5.31±0.66 Asn437, Asn439, Leu441, Arg509, Trp436, Ser373, 
Asn343, Phe342 

ZINC000252504401; (2S,3R,4S,5S,6R)-6-
()[(2R,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-
)[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-
yl]oxy)oxan-2-yl]oxy)methyl)-3,4,5-trihydroxyoxan-2-yl 
(4aR,6aR,6bR,9R,10R,11R,12aR)-10,11-dihydroxy-9-
(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-
1,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-
icosahydropicene-4a-carboxylate 

0.999 -9.90±0.56 -8.30±0.87 -4.41±0.40 Arg466, Ile468, Thr470, Ser469, Phe464, Asp467, 
Tyr351 
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Table 4: Virtual screening (obtained by AutoDock VINA), molecular docking (obtained by 

AutoDock 4.2.6) results and ROC probability of compounds binding to nucleocapsid protein. 

Details see Table 3. 

 

Dataset ROC 
probability 

VINA 
blind 
(LBE)  

VINA 
defined 
(LBE) 

Autodock 
defined 
(LBE) 

Interacting amino acid residues 

FDA-approved drugs: 
     

Conivaptan 0.995 -9.13±0.58 -8.77±0.06 -9.93±0.38 Thr57, Arg107, Tyr109, Ala156, Ile157, 
Val158, Glu174, Gly175, Arg177 

Ergotamine 0.993 -9.43±0.40 -9.20±0.00 -9.49±0.91 Gly69, Gln70, Ile74, Asn75, Thr76, Gln83, 
Thr135, Glu136, Gln160 

Venetoclax 0.995 -9.37±0.35 -9.00±0.20 -8.89±0.73 Ile74, Asn154, Ala155, Ala156, Ile157, 
Val158, Leu159, Gln160, Leu161, Pro162, 
Thr166, Leu167, Glu174, Ser176 

Eribulin 0.999 -8.90±0.50 -8.37±0.55 -7.46±0.08 Leu161, Pro162, Gly164, Thr166, Leu167, 
Tyr172, Ser176 

Rifapentine 0.999 -9.17±0.21 -9.07±0.06 -6.88±0.03 Val158, Gln160, Leu161, Pro162, Thr166, 
Leu167, Tyr172, Ala173, Glu174, Ser176, 
Arg177 

Dihydroergotamine 0.999 -8.67±0.72 -8.30±0.00 -9.27±0.41 Trp52, Thr54, Arg107, Tyr109, Asn154, 
Ala155, Ala156, Ile157, Val158, Arg177 

Rifabutin 0.999 -9.20±0.50 -8.43±0.40 -7.74±0.01 Arg149, Ala155, Ala156, Ile157, Val158, 
Gln160, Ser176, Arg177 

Natamycin 0.999 -9.00±0.52 -8.70±0.00 -5.77±0.09 Gln70, Ile74, Pro80, Asp81, Gln83, Thr135, 
Glu136 

Nystatin 0.999 -8.53±1.18 -8.13±0.49 -5.16±0.14 Arg107, Ala155, Ala156, Ile157, Val158, 
Tyr172, Ser176, Arg177, Gly178, Gly179, 
Ser180 

Valrubicin 0.999 -8.83±0.51 -8.87±0.21 -4.37±0.26 Val158, Leu159, Gln160, Leu161, Pro162, 
Ala173, Gly174, Ser176 

Natural compounds from literature: 
     

Amyrin 0.998 -8.90±0.17 -8.80±0.00 -8.80±0.01 Thr49, Ala50, Ser51, Arg88, Ala90, Arg92, 
Tyr109, Phe110, Tyr111, Gly147 

Euphol 1.000 -8.40±0.56 -8.30±0.44 -8.73±0.68 Ser51, Trp52, Phe53, Arg88, Ala90, Arg92, 
Tyr109, Tyr111 

Strictinin 0.999 -8.87±0.72 -8.47±0.06 -5.31±0.40 Ala50, Ser51, Phe53, Arg92, Tyr109, 
Phe110, Tyr111, Tyr112, Glu118 

Procyanidin 0.999 -9.10±0.00 -9.07±0.06 -5.16±0.28 Gln70, Val72, Ile74, Thr76, Gln83, Thr135, 
Glu136, Pro162 

Sericoside 0.999 -8.03±0.06 -8.00±0.00 -4.76±0.24 Glu160, Leu161, Pro162, Thr166, Leu167, 
Tyr172, Ala173, Glu174, Ser176 

Punicalagin 1.000 -9.33±0.23 -8.93±0.46 -4.67±0.04 Leu161, Pro162, Tyr172, Ala173, Glu174, 
Ser176, Arg177, Ser180 

Ilexsaponinb2 1.000 -8.23±0.23 -8.27±0.15 -4.52±0.59 Ile157, Val158, Gln160, Leu161, Pro162, 
Thr166, Leu167, Ala173, Ser176, Ser180 

Ilexsaponinb3 1.000 -8.57±0.31 -8.37±0.12 -3.37±0.44 Ala156, Ile157, Val158, Gln160, Leu161, 
Tyr172, Glu174, Ser176, Ser180 

Forsythiaside 0.999 -8.10±0.53 -7.53±0.06 -2.47±0.17 Ala50, Thr54, Arg92, Tyr109, Arg149, 
Ala155, Ala156, Val158, Tyr172, Gly175, 
Ser176 

Tirucallina 1.000 -9.13±0.55 -9.33±0.21 -1.65±0.48 Ile157, Val158, Gln160, Leu161, Pro162, 
Ser176, Arg177, Gly178 

Natural compounds from ZINC database: 
     

ZINC000027215482; (1R,4S,7S)-4-benzyl-9-[(1R,4S,7S)-4-benzyl-
3,6-dioxo-2,5,16-triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-
10,12,14-trien-9-yl]-2,5,16-

0.999 -
10.13±0.23 

-
10.00±0.00 

-8.18±0.05 Ile74, Thr76, Pro80, Asp81, Gln83, Thr135, 
Glu136, Gly137 
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triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-10(15),11,13-triene-3,6-
dione 

ZINC000253504770; 4-(7-)[5-()5-[(4,5-dihydroxy-6-methyloxan-2-
yl)oxy]-4-hydroxy-6-methyloxan-2-yl)oxy)-4-hydroxy-6-
methyloxan-2-yl]oxy)-3a,11-dihydroxy-9a,11a-dimethyl-
hexadecahydro-1H-cyclopenta[a]phenanthren-1-yl)-2,5-
dihydrofuran-2-one 

0.999 -
10.30±0.00 

-
10.33±0.06 

-7.92±0.70 Trp52, Asn154, Ala155, Ala156, Ile157, 
Val158, Gln160, Gly164, Thr166, Leu167, 
Phe171, Ser176 

ZINC000103216961; Fumiquinazoline D 0.999 -
10.30±0.00 

-
10.30±0.00 

-7.87±0.01 Thr49, Ser51, Tyr109, Tyr111, Tyr112, 
Gly147 

ZINC000253504772; 4-(7-)[5-()5-[(4,5-dihydroxy-6-methyloxan-2-
yl)oxy]-4-hydroxy-6-methyloxan-2-yl)oxy)-4-hydroxy-6-
methyloxan-2-yl]oxy)-3a,11-dihydroxy-9a,11a-dimethyl-
hexadecahydro-1H-cyclopenta[a]phenanthren-1-yl)-2,5-
dihydrofuran-2-one 

0.999 -
10.33±0.06 

-
10.07±0.31 

-7.61±0.27 Thr54, Ala55, Arg107,  Val158, Leu159, 
Gln160, Leu161, Thr166, Leu167, Glu174, 
Ser176 

ZINC000253504760; 4-(7-)[5-()5-[(4,5-dihydroxy-6-methyloxan-2-
yl)oxy]-4-hydroxy-6-methyloxan-2-yl)oxy)-4-hydroxy-6-
methyloxan-2-yl]oxy)-3a,11-dihydroxy-9a,11a-dimethyl-
hexadecahydro-1H-cyclopenta[a]phenanthren-1-yl)-2,5-
dihydrofuran-2-one 

0.999 -
10.30±0.00 

-
10.30±0.00 

-7.56±0.59 Thr49, Ala50, Ser51, Trp52, Phe53, Thr54, 
Arg92, Arg107, Tyr109, Phe110, Tyr111, 
Tyr112, Gly147, Arg149, Gly175, Arg177 

ZINC000252515584; (1R,3S,6S,7E,13S,16R,17R,21S,22S)-28-
hydroxy-17-[(2R,4R,5S,6R)-4-hydroxy-5-[(2S,4R,5R,6R)-5-
hydroxy-4-(2-methoxy-6-methylbenzoyl)oxy-6-methyloxan-2-
yl]oxy-6-methyloxan-2-yl]oxy-3,22-dimethyl-23,26-dioxo-24,27-
dioxapentacyclo[23.2.1.01,6.013,22.016,21]octacosa-
4,7,14,25(28)-tetraene-4-carboxylic acid   

0.999 -
11.13±0.06 

-
11.17±0.06 

-7.41±0.38 Ala155, Ala156, Ile157, Val158, Gln160, 
Leu161, Thr166, Leu167, Ala173, Ser176, 
Ser180 

ZINC000253504766; 4-(7-)[5-()5-[(4,5-dihydroxy-6-methyloxan-2-
yl)oxy]-4-hydroxy-6-methyloxan-2-yl)oxy)-4-hydroxy-6-
methyloxan-2-yl]oxy)-3a,11-dihydroxy-9a,11a-dimethyl-
hexadecahydro-1H-cyclopenta[a]phenanthren-1-yl)-2,5-
dihydrofuran-2-one 

0.999 -
10.30±0.00 

-
10.30±0.00 

-7.18±0.68 Thr54, Ala55, Arg107, Tyr109, Ala155, 
Ala156, Val158, Leu159, Gln160, Leu161, 
Pro162, Gly164, Glu174, Ser176, Arg177 

ZINC000253394134; (2E,4Z,8R,9S,10S,11R,13R,18R,22Z)-27,28-
dihydroxy-9,15-dimethyl-7,12,20,26,29-
pentaoxaspiro[hexacyclo[21.5.2.1⁸,¹¹.0¹,²⁵.0⁹,¹⁸.0¹³,¹⁸]hentriacontane-
10,2'-oxirane]-2,4,14,22-tetraene-6,21-dione 

0.999 -
10.20±0.00 

-
10.20±0.00 

-6.78±0.01 Gln160, Leu161, Pro162, Gln163, Gly164, 
Leu167, Ala173, Glu174 

ZINC000226650999; [5-(6-benzamidopurin-9-yl)-3,4-bis[(2,4-
dichlorobenzoyl)oxy]oxolan-2-yl]methyl 2,4-dichlorobenzoate   

0.999 -
10.07±0.25 

-8.83±0.84 -6.49±0.20 Val158, Leu159, Gln160, Leu161, Pro162, 
Gly164, Thr166, Leu167, Tyr172, Ala173, 
Gly175, Ser176 

ZINC000253500795; 3-hydroxy-6-[(9-hydroxy-
4,4,6a,6b,8a,11,11,14b-octamethyl-
1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,14a,14b-
octadecahydropicen-3-yl)oxy]-4-[(3,4,5-trihydroxy-6-methyloxan-2-
yl)oxy]-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid 

1.000 -
10.30±0.00 

-
10.30±0.00 

-5.71±0.34 Ala155, Ala156, Ile157, Val158, Gln160, 
Leu161, Pro162, Gly164, Ala173, Glu174, 
Ser176 
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Table 5: Virtual screening (obtained by AutoDock VINA), molecular docking (obtained by 

AutoDock 4.2.6) results and ROC probability of compounds binding to 2’-o-ribose-

methyltransferase. Details see Table 3. 

 

Dataset ROC 
probability 

VINA 
blind 
(LBE)  

VINA 
defined 
(LBE) 

Autodock 
defined 
(LBE) 

Interacting amino acid residues 

FDA approved drugs: 
     

Dihydroergotamine 1.000 -
10.40±1.80 

-
11.90±0.00 

-12.74±0.29 Asp75, Met131, Tyr132, Asp130, Asn43, Tyr47, 
Ser74, Leu100, Asp99, Cys115, Gly73, Ala72 

Nilotinib 1.000 -9.80±0.36 -9.70±0.17 -11.75±0.13 Asn101, Gly71, Asp130, Met131, Asp133, 
Ser74, Tyr47, Asn43, Gly81, Pro80, Asp99, 
His69, Gly73, Ala72 

Telithromycin 1.000 -
10.00±0.17 

-8.80±0.17 -10.99±0.18 Asn29, Leu100, Lys170, Asn198, Glu147, 
Lys148, Phe150, Phe149, Asp133, Tyr132, 
Pro134, Ser201, Asn29, Asp99, Asp114 

Posaconazole 1.000 -9.67±0.64 -9.43±0.06 -8.64±0.46 Asn138, Cys25, Lys137, Glu173, Leu27, 
Ser202, Lys135, Thr136, Thr172, Pro132, 
Ser201, Asn29, Glu203, Tyr132, Lys170, Lsy46 

Ergotamine 1.000 -
10.10±1.56 

-9.10±0.46 -12.26±0.67 Asp114, Leu100, Met131, Tyr132, Pro134, 
Lys170, Asp130, Tyr47, Asn43, Pro80, Gly81, 
Ala72, Gly73 

Lumacaftor 0.999 -9.97±0.29 -9.80±0.00 -9.95±0.18 Cys115, Phe149, Met131, Tyr132, Lys170, 
Gly71, Asp114, Leu100, Asp99, Gly73, Asp130 

Venetoclax 1.000 -
10.63±0.12 

-9.50±0.35 -11.20±0.71 Lys170, Thr172, Met132, Pro134, Tyr132, 
Asp130, Lys46, Gly71, Leu100, Asp99, His69, 
Asn101, Ser74, Asp75, Gly81, Pro80, Ala79, 
Thr82 

Paritaprevir 1.000 -
10.47±0.64 

-9.67±0.75 -10.89±0.64 Lys170, Asn198, Leu27, Ser202, Ser201, 
Gln28, Ser200, Asn29, Tyr30, Lys170, Asp130, 
Lys46, Asn198, Leu239, Ser33, Met42, Asn43 

Tenoposide 1.000 -
10.07±0.50 

-7.63±0.49 -9.64±0.10 Asn29, Lys46, Lys170, Thr172, Ser202, 
Ser201, Asn29, Tyr132, Lys170, Asp130, 
Glu203, Asn198, Asp130, Gly70, Gly73, Asn43, 
Gly81, Pro80 

Ivermectin 1.000 -8.97±1.76 -6.30±1.39 -8.06±0.30 Gln28, Asn29, Lys170, Leu27, Ser202, Tyr132, 
Asp130, Gly73, Ser74, Tyr30 

Natural compounds from literature: 
     

Procyanidin 1.000 -9.00±0.00 -9.20±0.72 -10.64±0.81 Gly71, Asn101, Lys170, Asp130, Cys115, 
Asp114, Gly113, Asn101, Ser98, Ser74, Asp75, 
Asp99 

Loniflavone 1.000 -
11.27±0.06 

-
11.23±0.06 

-10.16±0.26 Asn29, Leu100, Cys115, Tyr132, Asn198, 
Asn138, Ser201, Asn198, Gly71, Asp99, Cys115 

Tingeninb 0.999 -9.27±0.12 -8.87±0.29 -9.04±0.00 Leu100, Tyr132, Lys170, Gly73, Gly71, Asp99, 
Asn43, Lys46, Asp130, Met131, Lys76 

3,5-Dicaffeoylquinic Acid 1.000 -9.53±0.40 -9.30±0.10 -7.28±0.23 Cys115, Lys146, Glu147, Gly148, Phe149, 
Asp133, Tyr132, Met131, Asp114, Cys115 

3,4,Dicaffeoylquinicacid 1.000 -8.87±0.12 -8.97±0.06 -7.23±0.27 Ser33, Tyr30, Ser201, Lys170, Asp130, Gly71, 
His69, Ala72, Gly81, Met42 

4,5,Dicaffeylquinicacid 1.000 -8.80±0.17 -9.00±0.00 -7.21±0.15 Lys46, Asn198, Glu173, Thr172, Tyr132, 
Lys170, Glu203, Leu27, Gly73, Gly71 

Strictinin 1.000 -9.97±0.21 -9.83±0.06 -6.54±0.29 Gln28, His174, Asn198, Ser33, Gln28, Thr174, 
Ser202, Asp32, Asn29 

TirucallinA 1.000 -
10.60±0.44 

-
10.37±0.84 

-6.27±1.09 Asn138, Asn198, Lys46, Val139, Lys137, 
His174, Tyr132, Lys45, Ser201, Pro134, Asp75, 
Asn43 
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Punicalagin 1.000 -9.17±0.06 -5.47±0.31 -6.16±0.04 lys46, Lys170, Lys137, Asn138, Thr136, 
Pro134, Tyr132, Lys170, Met131, Asp130, 
Asp75, Asp32 

Rutin 1.000 -8.83±0.29 -8.73±0.46 -5.86±0.41 Leu100, Tyr132, Lys135, Gly148, Ph149, 
Cys115, Asp114, Asp99, Gly71 

Natural compounds from ZINC database: 
     

ZINC000008635475; N-[4-()[(2R,4S,5R)-5-[1-methyl-3-
(naphthalen-2-yl)-1H-pyrazol-5-yl]-1-azabicyclo[2.2.2]octan-
2-yl]methyl)sulfamoyl)phenyl]acetamide 

1.000 -
11.50±0.17 

-
11.40±0.17 

-11.65±0.29 Gly81, Phe149, Met131, Tyr132, Pr134, Met131, 
Cys115, Asp130, Gly71, Leu100, Asp99, His69, 
Ala72, Gly73, Thr82, Asp75, Pro80 

ZINC000008299969; 3-[(3S,3aR,6S,6aR)-6-[(4-)[1,1'-
biphenyl]-4-yl)pyrimidin-2-yl)amino]-hexahydrofuro[3,2-
b]furan-3-yl]-1-[3-(trifluoromethyl)phenyl]urea 

1.000 -
11.03±0.58 

-
10.70±0.00 

-11.03±0.26 Gly71, Asn43, Phe149, Met131, Tyr132, 
Cys115, Leu1100, Asp99, Ser74, Asp75, Pro80, 
Lys76 

ZINC000253504772; 4-(7-)[5-()5-[(4,5-dihydroxy-6-
methyloxan-2-yl)oxy]-4-hydroxy-6-methyloxan-2-yl)oxy)-4-
hydroxy-6-methyloxan-2-yl]oxy)-3a,11-dihydroxy-9a,11a-
dimethyl-hexadecahydro-1H-cyclopenta[a]phenanthren-1-
yl)-2,5-dihydrofuran-2-one 

1.000 -
11.77±0.42 

-
11.57±0.46 

-11.02±0.10 Asn29, Leu100, Lys170, Asn198, Gly148, 
Phe150, Phe149, Met131, Lys170, Asn198, 
Ser201, Asn29, Asp199 

ZINC000253504766; 3-[(3S,5S,8S,9R,10S,12R,13S,14S,17S)-
3-[(2S,4R,5R,6R)-5-[(2R,4R,5R,6R)-5-[(2S,4R,5S,6R)-4,5-
Dihydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-
2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-12,14-dihydroxy-
10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-
tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-
one 

1.000 -
11.47±0.38 

-
11.27±0.06 

-10.59±0.47 Leu100, Glu147, Lys170, Asn198, Gly148, 
Phe149, Cys115, Asp114, Asp130, Lys46, 
Gly71, Met42 

ZINC000253407092; 4-[3-((4,5-bis[(4,5-dihydroxy-6-
methyltetrahydro-2H-pyran-2-yl)oxy]-6-methyltetrahydro-
2H-pyran-2-yl)oxy)-14,16-dihydroxy-10,13-
dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-
yl]-2(5H)-furanone 

1.000 -
11.10±0.87 

-
10.10±0.00 

-10.35±0.16 Ser33, Tyr30, Ser201, Lys170, Asp130, Gly71, 
His69, Ala72, Gly81, Met42 

ZINC000003841299; N-[(6aS,8S)-2-(4-chlorophenyl)-6,12-
dioxo-5,6a,7,8,9,10-hexahydropyrido[2,1-
c][1,4]benzodiazepin-8-yl]cyclopentanecarboxamid 

1.000 -
11.50±0.00 

-
11.50±0.00 

-10.11±0.02 Tyr132, Thr172, Met131, Asp130, Lys170, 
Gly71, Leu100, Asp99 

ZINC000253504770; 4-(7-)[5-()5-[(4,5-dihydroxy-6-
methyloxan-2-yl)oxy]-4-hydroxy-6-methyloxan-2-yl)oxy)-4-
hydroxy-6-methyloxan-2-yl]oxy)-3a,11-dihydroxy-9a,11a-
dimethyl-hexadecahydro-1H-cyclopenta[a]phenanthren-1-
yl)-2,5-dihydrofuran-2-one 

1.000 -
11.47±0.29 

-
11.30±0.00 

-10.01±1.52 Asn29, GLN28, Asn198, Ser201, Glu203, 
Tyr132, Lys170, Asp75, Met42, Ser33, Val197 

ZINC000004222225; N-[(6As,8S)-6,12-dioxo-2-[3-
(trifluoromethyl)phenyl]-5,6a,7,8,9,10-hexahydropyrido[2,1-
c][1,4]benzodiazepin-8-yl]pyrazine-2-carboxamide 

1.000 -
12.10±0.00 

-
12.10±0.00 

-9.95±0.04 Gly71, Gly73, Ser74, Phe149, Asp133, Tyr132, 
Met131, Cys115, Asp114, Leu100, Asp99, 
Glu147, Gly148, Lys146, Asp133 

ZINC000253532087; 3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl 9-(hydroxymethyl)-
2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-)[(3,4,5-
trihydroxy-6-methyloxan-2-yl)oxy]methyl)oxan-2-yl)oxy]-
1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-
icosahydropicene-4a-carboxylate 

1.000 -
10.17±1.67 

-9.20±0.00 -8.54±0.58 Gln28, Asn29, His174, Val139, Glu173, Thr172, 
Ser202, Gln28, Leu27, Gly71, Asn101, Asp99, 
Ser74, Gly73, Asp75, Asp130 

ZINC000253532091; 3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl 9-(hydroxymethyl)-
2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-)[(3,4,5-
trihydroxy-6-methyloxan-2-yl)oxy]methyl)oxan-2-yl)oxy]-
1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-
icosahydropicene-4a-carboxylate 

1.000 -
10.20±1.56 

-9.47±0.29 -8.25±1.14 Lys170, Asp130, Gly73, Lys46, Asn43, Asp75, 
Ser74, Glu203, Glu173, Leu27, Gln28, Asn29, 
Ser202 

 

 

  



Figure 1: Flowchart of the in silico strategy to identify drug candidates against SARS-CoV-2.  



Figure 2: Receiver operating characteristic (ROC) curves for spike protein (A), nucleocapsid protein (B), 
2’-o-ribose-methyltransferase (C).  



Figure 3: Docking poses of simeprevir (red), loniflavone (green) and ZINC27215482 (blue) on spike 
protein (yellow). Residues forming hydrogen bonds are labelled bold.  

 



Figure 4: Docking poses of conivaptan (red), amyrin (green) and ZINC27215482 (blue) on nucleocapsid 
protein (gray). Residues forming hydrogen bonds are labelled bold.  

 



Figure 5: Docking poses of dihydroergotamine (red), procyanidin (green) and ZINC8635475 (blue) on 2’-
o-ribose-methyltransferase (purple). Residues forming hydrogen bonds are labeled bold. 

 




