
Question 1 solution:

a. Identify and discuss each of the indicated dependencies.

C1  C2 represents a partial dependency, because C2 depends only on C1, rather than on the entire

primary key composed of C1 and C3.

C4  C5 represents a transitive dependency, because C5 depends on an attribute (C4) that is not

part of a primary key.

C1, C3  C2, C4, C5 represents a set of proper functional dependencies, because C2, C4, and C5

depend on the primary key composed of C1 and C3.

b. Create a database which has all of its tables in 2NF (but not all in 3NF), showing the

dependency diagrams for each table.

C1 C2

C1 C3 C4 C5

Table 1

Primary key: C1

Foreign key: None

Normal form: 3NF

Table 2

Primary key: C1 + C3

Foreign key: C1 (to Table 1)

Normal form: 2NF, because the

table exhibits the transitive

dependencies C4 C5

c. Create a database whose tables are all in 3NF, showing the dependency diagrams for each

table.

C1 C2

C1 C3 C4

C4

Table 1

Primary key: C1

Foreign key: None

Normal form: 3NF

Table 2

Primary key: C1 + C3

Foreign key: C1 (to Table 1)

C4 (to Table 3)

Normal form: 3NF

Table 3

Primary key: C4

Foreign key: None

Normal form: 3NF

C5

Question 2 solution:

a. Based on this dependency diagram, create a complete set of tables (in the form of

corresponding dependency diagrams) that represent all of the royalty information and that,

all together, represent a database that is in 2NF, but not in 3NF.

b. Now create a new complete set of tables (some of which may be the same as in part (a)) that

represent all this royalty information but which are in 3NF. Please be sure to indicate the

dependencies.

Question 3 solution:

There are no composite keys being used, therefore, by definition, there is not an issue with partial

dependencies and the entities are already in 2NF. Based on the descriptions of the attributes, it appears

that the patient name, phone number, and address can be determined by the patient id number.

Therefore, the following transitive dependency can be determined.

App_PatientID  (App_Name, App_Phone, App_Street, App_City, App_State, App_Zip)

As discussed in the chapter, ZIP_Codes can be used to determine a city and state; therefore, we also

have the transitive dependency:

App_Zip  App_City, App_State

Doc_EmpID Doc_Fname Doc_LName Doc_CellPhone

App_Num Doc_EmpID App_Date App_Time App_PatientID App_Name App_Phone

App_Street App_City App_State App_Zip App_Status

Since the first transitive dependency completely encloses the second transitive dependency, it is

appropriate to resolve the first transitive dependency before resolving the second. The following shows

the results of resolving the first transitive dependency.

Doc_EmpID Doc_Fname Doc_LName Doc_CellPhone

App_Num Doc_EmpID App_Date App_Time

App_PatientID App_Name App_Phone

App_StatusApp_PatientID

App_Street App_City App_State App_Zip

Finally, the second and final transitive dependency can now be resolved as shown in the final

dependency diagram below

Doc_EmpID Doc_Fname Doc_LName Doc_CellPhone

App_Num Doc_EmpID App_Date App_Time

App_PatientID App_Name App_Phone

App_StatusApp_PatientID

App_Street

App_City App_StateApp_Zip

App_Zip

Note that at this time we have resolved all of the transitive dependencies. Decisions on whether or not

to denormalize, and perhaps not remove the final transitive dependency, have yet to be made. Also,

the structures have not yet had the benefit of additional design modifications such as achieving proper

naming conventions for the attributes in the new tables. However, creating the fully normalized

structures is an important set toward making informed decisions about the compromises in the design

that we may choose to make.

