
IDocs: A
Guide for

New
Developers

ebook author: Tony Cecchini

http://www.itpsap.com/blog/wp-content/uploads/2013/07/EDi-Architecture.png
http://www.itpsap.com/blog/wp-content/uploads/2013/07/ALE-Architecture.png
http://www.itpsap.com/blog/wp-content/uploads/2013/08/Basic-Idoc-Type.png
http://www.itpsap.com/blog/wp-content/uploads/2013/08/IDoc-Segment-Display.png
http://www.itpsap.com/blog/wp-content/uploads/2013/08/Idoc-Segment-Fields.png
http://www.itpsap.com/blog/wp-content/uploads/2013/08/IDoc-Format.png
http://www.itpsap.com/resources.jsp
http://www.itpsap.com/blog/wp-content/uploads/2013/09/IDoc-Extension-of-Invoic02-1.png
http://www.itpsap.com/blog/wp-content/uploads/2013/09/IDoc-Extension-of-Invoic02-2.png
http://www.itpsap.com/blog/wp-content/uploads/2013/09/IDoc-Extension-of-Invoic02-3.png
http://www.itpsap.com/blog/wp-content/uploads/2013/09/IDoc-Extension-of-Invoic02-4.png
http://www.itpsap.com/blog/wp-content/uploads/2013/09/IDoc-Extension-of-Invoic02-5.png
http://www.itpsap.com/blog/wp-content/uploads/2013/09/IDoc-Extension-of-Invoic02-6.png
http://www.itpsap.com/blog/wp-content/uploads/2013/09/IDoc-Extension-of-Invoic02-7.png
http://www.itpsap.com/blog/wp-content/uploads/2013/09/IDoc-Extension-of-Invoic02-8.png
http://www.itpsap.com/blog/wp-content/uploads/2013/09/IDoc-Extension-of-Invoic02-9.png
http://www.itpsap.com/blog/wp-content/uploads/2013/09/IDoc-Extension-of-Invoic02-a.png
http://www.itpsap.com/blog/wp-content/uploads/2013/09/IDoc-Extension-of-Invoic02-b.png
http://www.itpsap.com/blog/wp-content/uploads/2013/09/IDoc-Extension-of-Invoic02-c.png
http://www.itpsap.com/blog/wp-content/uploads/2013/10/WE81-New-Entries.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/10/IDoc-Custom-MSG-Type.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/10/IDoc-Message-Type-Transport1.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/10/IDoc-WE82-New-Entries.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/10/IDOC-WE82-Assignment.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/10/IDoc-Transport-for-WE82.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/10/we20-screen1.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/10/We20-Screen-2.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/10/WE20-Screen-3.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/10/WE20-Screen-41.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/10/WE20-Screen-5.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/11/IDoc-User-Exit-1.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/11/IDoc-User-Exit-2.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/11/IDoc-User-Exit-3.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/11/IDoc-User-Exit-5.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/11/IDoc-User-Exit-6.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/11/IDoc-User-Exit-7.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/11/IDoc-User-Exit-8.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/11/IDoc-User-Exit-9.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/11/IDoc-User-Exit-A.jpg
http://www.itpsap.com/blog/wp-content/uploads/2013/11/IDoc-User-Exit-B.jpg

IDocs: A Guide for New Developers

The SAP IDoc Technology
The SAP IDoc Technology, is used in ALE, EDI, and 3rd Party Systems
Integration scenarios.

For some of my readers this may be trip down memory lane, but for some,
the New Developers, I hope to give you the tools you need to understand
and demystify the IDoc concept. So.. for you old dogs, think of it as a
remedial and chime in with comments and suggestions. let’s get started!

What are IDocs?
You have probably heard the term IDoc many times. This blog will help you
understand exactly what an IDoc is and what it does.

Let’s look at some important facts about IDocs.

- The term IDoc stands for intermediate document. It is simply a data
container used to exchange information between any two processes that
can understand the semantics of the data.

- An IDoc is created as a result of executing an Outbound ALE or EDI process
whereas with an inbound ALE or EDI process, an IDoc serves as input to
create an application object in SAP, like a Sales Order or PO.

IDocs: A Guide for New Developers – Part 1

http://www.itpsap.com/blog/2013/07/16/idocs-guide-for-developers-part-1/

IDocs: A Guide for New Developers

- IDocs in the SAP system, are stored in database tables. We can use
transactions to view, edit, and process them. When an IDoc is generated in
the system, a unique number is assigned to it via a Number Range Object.
This number is unique within a client. IDocs

- IDocs are independent of the direction of data exchange. An inbound and
an outbound process can use an IDoc. For example, the ORDERS01 IDoc is
used by the Purchasing module to send a purchase order, and is also used
b y the Sales and Distribution module to accept a sales order. Using this
technique avoids creating redundant IDoc types.

 The IDoc Interface
How are IDocs used? What is EDI? ALE? I might be giving my age away here….
but the IDoc interface has been around since release 2.2, when IDocs were
initially used in the EDI process. So this is a PROVEN, Scalable technology
that is used in a wide variety of interfacing requirements.

OK, let me define some of the concepts we will touch on…

IDocs: A Guide for New Developers – Part 1

http://www.itpsap.com/blog/2013/07/16/idocs-guide-for-developers-part-1/

IDocs: A Guide for New Developers

EDI Integration (Electronic Data Interchange)

EDI is the electronic exchange of business documents between trading
partners in a common industry−standard format, such as ANSI X12 or
EDIFACT. Several applications (purchasing, sales, or shipping) in SAP are
enabled for EDI. To use EDI, an application rst creates an application
document, such as a purchase order. Then the EDI interface layer converts
the application document (the purchase order) into an IDoc, which is
transferred to an EDI subsystem, or PI with an EDI Plug-in. The EDI
middleware translates the IDoc into an industry−standard format and then
transfers it to a business partner over a network.

IDocs: A Guide for New Developers – Part 1

http://www.itpsap.com/blog/2013/07/16/idocs-guide-for-developers-part-1/

IDocs: A Guide for New Developers

Advantages of EDI process
- Reduced data Entry Errors
– Reduced Processing cycle time
– Availability of data in electronic form
– Reduced Paper Work
– Reduced Cost
– Reduced Inventories and Better Planning
– Standard Means of Communicating

ALE Integration (Application Link Enabling)
ALE enables the exchange of data between two SAP systems. This allows SAP
business processes and applications to be distributed across multiple SAP
systems. ALE ensures integration in a distributed SAP environment. The IDoc
acts as the data container . SAP introduced ALE as its initiative to support a
distributed yet integrated environment. ALE allows for e cient and reliable
communication between distributed processes across physically separate
SAP systems to achieve a distributed, yet integrated, logical SAP system.
Because ALE architecture is independent of the participating systems, this
enabled SAP to use this technique for SAP to non−SAP systems as well. This
was huge in the early years of ALE and led to it being widely adopted as a
“Best Practice” for communicating with SAP and Non-SAP systems.

IDocs: A Guide for New Developers – Part 1

http://www.itpsap.com/blog/2013/07/16/idocs-guide-for-developers-part-1/

IDocs: A Guide for New Developers

ALE supports
- Distribution of applications between different releases of R/3 Systems
– Continued data exchange after a release upgrade without requiring special
 maintenance
– Customer-specific extensions.
– Communication interfaces that allow connections to non-SAP systems.

Let’s wrap this up by examining some of over-arching
benefits of using the IDoc Technology…

IDocs: A Guide for New Developers – Part 1

http://www.itpsap.com/blog/2013/07/16/idocs-guide-for-developers-part-1/

IDocs: A Guide for New Developers

Independence from Applications
The biggest advantage of using the IDoc interface is that it ’s an open
interface. It ’s independent of the internal structure used by SAP to store
data and independent of the sending and receiving applications. Any
application that can understand the syntax and semantics of the data can
use the IDoc interface.

Exception Handling via Workflow
Handling exceptions is always very important and usually a second thought
in most designs. If you have designed sophisticated applications in the past,
you can, no doubt, relate to the agony of designing a consistent means of
logging errors and exceptions across the board and then developing tools to
display that information.

IDoc Monitoring
Well with IDocs, you get comprehensive information about the processing.
Several standard tools are available to display the logged information. In
particular, SAP uses the work ow technology to route an error intelligently
to the right person so they can see what happened, why, and how to
proceed. By using the IDoc interface, you automatically take advantage of
this exception−handling process. This is both for standard and for your
custom IDocs. No extra code required.

IDocs: A Guide for New Developers – Part 1

http://www.itpsap.com/blog/2013/07/16/idocs-guide-for-developers-part-1/

IDocs: A Guide for New Developers

IDoc Modification and Enhancement
Using standard tools we will discuss in later blogs, (the IDoc editor and
Segment editor), you can either enhance standard SAP IDocs or create new
IDocs in the system to support custom interfaces. Your newly developed
IDocs integrate seamlessly into the standard EDI interface because they are
developed using standard tools provided by the system. IDocs developed in
this manner become available in the standard list of SAP IDocs and can take
advantage of all the tools designed for standard IDocs, such as IDoc
monitoring, error handling, and archiving. We will talk at length about each
one of these in turn in later.

Summary
So in summary, IDocs act as containers for data exchanged between two
applications. The IDoc interface is functionally rich and provides a robust
environment for interfacing SAP with SAP, as well as with external
applications. Using the IDoc interface for integrating external applications
with the SAP system o ers several bene ts, such as a thoroughly
documented interface, independence of the application product, numerous
testing and troubleshooting tools, and a sophisticated means of error
handling via workflow.

IDocs: A Guide for New Developers – Part 1

http://www.itpsap.com/blog/2013/07/16/idocs-guide-for-developers-part-1/

IDocs: A Guide for New Developers

The SAP IDoc Technology
Let us continue our look at SAP IDocs and the IDoc Technology by exploring
the architecture of an IDoc. The architecture can be best explained by
looking at an IDoc’s definition and run−time components.

IDoc Definition Components
Each of the following sections begins with a formal de nition of the
component.

IDocs: A Guide for New Developers – Part 2

http://www.itpsap.com/blog/2013/08/14/idocs-guide-developers-part-2/

IDocs: A Guide for New Developers

Basic IDoc Type
Basic IDoc type de nes the structure and format of the business document
that is to be exchanged between two systems. Lets look at an example below
for Basic IDoc Type ZOIPRO01.

A basic IDoc type has the following attributes – (You can display a Basic IDoc
Type in transaction WE30).

IDocs: A Guide for New Developers – Part 2

http://www.itpsap.com/blog/2013/08/14/idocs-guide-developers-part-2/

IDocs: A Guide for New Developers

The rst attribute we will look at is NAME. This can be up to a
thirty−character name. Custom IDoc types always start with a Z. The last two
characters are the version number. After a basic IDoc type is released and
you move to a newer version of the SAP system, any changes to the
structure of the basic IDoc type will create a new basic IDoc type. In general,
the version number is incremented by one. So in the example above we
have a custom IDoc type named ZOIPRO01. If we changed this after it was
released, it would be named ZOIPRO02…etc..etc. You can see SAP doing the
same thing if you look at the delivered Basic IDoc Types ORDERS01,
ORDERS02, ORDERS03, …. ORDERS06…etc

Next you will see a list of SEGMENTS. These segments make up the IDoc
structure. We have Z1HEAD, Z1OPER, Z1TEXT, Z1SALE, Z1SERIAL and
Z1BILLH. These segments may have a de ned HIERARCHY. The hierarchy of
segments speci es the physical sequence and any parent−child relationship
in the segments. A parent−child relationship signi es that the child segment
cannot exist without the parent. In our example above the segment Z1OPER
is a child of the parent segment Z1HEAD. Therefore an instance of the CHILD
cannot occur unless it follows a related PARENT segment.

Segments
A segment de nes the format and structure of a data record. Segments are
reusable components, which means they can be used in more than one
IDoc type. A segment consists of various elds that represent data in a data
record. Data elements can be of two types: positional or based on qualifiers.

A positional data eld occupies a xed position in an IDoc. These elds
always occur in the same position shown in the segment.

IDocs: A Guide for New Developers – Part 2

http://www.itpsap.com/blog/2013/08/14/idocs-guide-developers-part-2/

IDocs: A Guide for New Developers

For example, assume a segment has a date eld for three dates: the delivery
date, the goods issue date, and the order creation date. Instead of creating
three separate elds and assigning a xed position to each one, the three

elds can be represented using two elds a quali er eld and a date eld.
The quali er eld identi es the type of date, and the date eld contains the
date. You will usually see this when an IDoc represents an EDI Message. This
is so we can match the IDoc elds to the EDI Message Implementation Guide
from the partner we are trading with.

A eld can also be based on a quali er, in which case the value represented
in a field is tied to the qualifier.

OK, lets look at the attributes of an IDoc Segment. If you “double-click” on a
segment ; a popup will be displayed showing you speci c attributes about
that segment. Lets “double-click” on Z1HEAD first.

IDocs: A Guide for New Developers – Part 2

http://www.itpsap.com/blog/2013/08/14/idocs-guide-developers-part-2/

IDocs: A Guide for New Developers

Data Field
I’d like you to notice is each segment has an attribute that de nes whether
the segment is OPTIONAL or MANDATORY . In the example, Z1HEAD is
NOT a mandatory segment. If the CHECK-BOX was checked, the of course it
would be. Each segment also has an attribute that de nes the MINIMUM
and the MAXIMUM number of times a data record corresponding to a
segment can exist in an IDoc.

A data eld represents a single data item that is used in a segment. All data
eld values must be alphanumeric values. The valid data types for a eld are

CHAR, CLNT, CUKY, DATS, LANG, and NUMC. If you press the segment editor
button, which is transaction WE31, you will see a list of the data elds
defined for a segment.

IDocs: A Guide for New Developers – Part 2

http://www.itpsap.com/blog/2013/08/14/idocs-guide-developers-part-2/

IDocs: A Guide for New Developers

 IDoc RUN Time Components
An IDoc has a record−oriented structure, which is very much like the record
structure in a file . At run time the following events occur.

An IDoc is an instance of an IDoc type. What does this mean? Well, above we
created or viewed an existing DEFINITION of a Basic IDoc Type. When and
IDoc is actually created in the system, it is assigned an IDoc Number from a
Number Range Object and viola it is instantiated or externalized as an
object we can work with in ECC.

- A unique IDoc number is allocated. (via a Number Range Object)
– One control record is attached to the IDoc.
– Status records are attached.
– Syntax rules are checked.

Lest look at the graphic below. It represents the 3 types of records that
make up an IDoc. We will go into each one individually in a moment.

IDocs: A Guide for New Developers – Part 2

http://www.itpsap.com/blog/2013/08/14/idocs-guide-developers-part-2/

IDocs: A Guide for New Developers

Technical Description of the IDoc Format
IDoc CONTROL RECORD
An IDoc consists of a header record, any number of lines of application data
(application records), and any number of status records per IDoc.

IDoc DATA RECORDS
The header contains general information about which data is supposed to
be transferred, who is the sender, and who is the receiver. This
information basically includes the IDoc number, sender and receiver
information, and information such as the message type it represents and
the IDoc type. The control record data is stored in the EDIDC table. The key
to this table is the IDoc number.

The data records contain business-related information. To make sure the
technical format is independent of the business object and can also be
understood by non-SAP systems, the content of each data record is stored
as a string of 1000 characters. This character string is preceded by a control
area containing information about how to interpret the 1000 characters.
Data records for IDocs from version 4.0 on are stored in the EDID4 table.

IDocs: A Guide for New Developers – Part 2

http://www.itpsap.com/blog/2013/08/14/idocs-guide-developers-part-2/

IDocs: A Guide for New Developers

IDoc STATUS RECORDS
Status records contain information about the previous statuses of the IDoc,
such as “successfully created” or “successfully posted.” Status records aren’t
transferred between partner systems; that is, both the sender and receiver
keep their own status records in their respective systems. The format of the
status record is supplied by SAP, and the formats are stored in the EDIDS
table. The key for this table is the IDoc number, date and time a message
was logged, and a status counter.

Finally lets close this month’s Blog by looking at what the IDoc SYNTAX Check
does.

When any IDoc is created, it goes through a syntax check to ensure its
integrity. The syntax of an IDoc is governed by the de nition of its IDoc type.
Remember we can de ne or view this in WE30 as we did at the beginning of
this writing. The syntax rules checked for an IDoc are as follows.

Syntax Rules for an IDoc
- Only valid segments as defined in the IDoc type are allowed.
– Segments specified as mandatory must exist.
– A data record cannot exceed the maximum number of repetitions de ned
for the segment type.
– Segments must occur in the same physical sequence de ned in the IDoc
structure. For example, a child segment cannot exist without its parent
segment. A parent segment, however, can exist without a child segment.

IDocs: A Guide for New Developers – Part 2

http://www.itpsap.com/blog/2013/08/14/idocs-guide-developers-part-2/

IDocs: A Guide for New Developers

Summary
So in summary, an IDoc type represents the de nition component of an
IDoc. An IDoc type is a version−controlled object that de nes a list of
permitted segments for an IDoc and the hierarchical arrangement of those
segments. The IDoc type effectively defines the syntax of an IDoc.

An IDoc is the run−time instance of an IDoc type. An IDoc consists of a
control record, several data records,and a list of status records. The control
record de nes control information such as sender and receiver information.
The data records contain the application data that is to be transferred via
IDocs. The status records contain status information (success or failure)
recorded at each point in the process.

IDocs: A Guide for New Developers – Part 2

http://www.itpsap.com/blog/2013/08/14/idocs-guide-developers-part-2/

IDocs: A Guide for New Developers

The SAP IDoc Technology
In this month we will continue our look at SAP IDocs and the IDoc
Technology by exploring IDoc extensions and enhancements.

Why do We Need an Extended IDoc?
Standard SAP sends out or receives in data through IDocs using standard
delivered Segments, Message Types and elds. But sometimes, these elds
are not su cient for a speci c end-to-end business scenario as far as data
transfer is concerned. So in such scenarios, we can add new segments with
completely new structures to the standard IDoc as an extension. We create
a brand new structure and insert it into existing delivered IDoc structure
creating a whole new IDoc satisfying the requirement. This new IDoc is called
an Extended IDoc.

IDocs: A Guide for New Developers – Part 3

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/

IDocs: A Guide for New Developers

As an example, lets take a scenario in billing, where we already have a
prede ned IDoc type ‘INVOIC02’. But the requirement is to transfer an
additional structure containing the elds VBRK-KTGRD (Account assignment
group for this customer) and VBRK-MANSP (Dunning block). In order to ful ll
this requirement, we need to create a new segment structure, add two
additional elds to it, then add it as an extension to the existing IDoc Type

‘INVOIC02. Sound good? OK lets take each step in turn …..

Create a new IDoc Segment using transaction WE31
Our rst task is to create a segment with the two new elds VBRK-KTGRD
(Account assignment group for this customer) and VBRK-MANSP (Dunning
block). In this transaction we create a segment type. This segment type has
two fields KTGRD and MANSP as speci ed from VBRK table. This segment will
be used in the final extended IDoc.

Lest take a look at the standard IDoc INVOIC02 using transaction WE30. We
want to add our new segment under the rst header segment E1EDK01 as a
CHILD segment.

IDocs: A Guide for New Developers – Part 3

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/

IDocs: A Guide for New Developers

OK, now lets use WE31 to create a new Segment ZE1EDK01.

IDocs: A Guide for New Developers – Part 3

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/

IDocs: A Guide for New Developers

Next we enter a description, add our two new fields and hit save.

IDocs: A Guide for New Developers – Part 3

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/

IDocs: A Guide for New Developers

When you hit SAVE, you will get a popup as below. Just put in your User-id.
The next popup will be for the transport system, for now, lets just make this
a LOCAL OBJECT.

IDocs: A Guide for New Developers – Part 3

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/

IDocs: A Guide for New Developers

At this point we can RELEASE the segment by following the menu path
below. If for some reason you need to change the segment after it has been
released, go back and cancel the release and make your changes.

IDocs: A Guide for New Developers – Part 3

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/

IDocs: A Guide for New Developers

Create a new IDoc Type (Extension) using
transaction WE30
Now we can use transaction WE30 to create the new Extension Type
ZINVOIC02. Fill in the Obj. Name and hit CREATE.

Please be sure to mark the new IDoc type as an
extension!

When you hit the CREATE button, a new popup screen will appear. Fill in the
description and enter the IDoc Type we want to extend and hit the GREEN
Check.

IDocs: A Guide for New Developers – Part 3

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/

IDocs: A Guide for New Developers

For us this will be INVOIC02.

You will get a screen showing our extension ZINVOIC02 and a set of
segments belonging to the standard IDoc INVOIC02. Since the extension has
VBRK-KTGRD and VBRK-MANSP and they belong to “HEADER” tab in SAP
Billing transaction VF02 the extension is done for the relevant segment type
E1EDK01 related to “Header General Data”. Click on the E1EDK01 Segment
to place focus on that segment and click the create button.

IDocs: A Guide for New Developers – Part 3

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/

IDocs: A Guide for New Developers

When you hit the CREATE button, yet another new set screens will appear.
The rst Pop-Up is information only and you can ENTER past this. You will
see our new segment will be a CHILD segment to the PARENT segment
E1EDK01.

IDocs: A Guide for New Developers – Part 3

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/

IDocs: A Guide for New Developers

The next screen is for identifying our new segment we created way back
using transaction WE31, and, maintaining the attributes for the new
segment. The attributes include whether it is a mandatory Segment. The
Maximum and minimum numbers specify the number of times the segment
can be repeated in sequence. The Hierarchy level suggests the parent/child
relationship. Segments which have a parent segment (like ours) have a
hierarchy level which is one higher than that of their parent.

We will use our new custom Segment ZE1EDK01, set it to mandatory, and
use a minimum and maximum of 1. Enter these values and click the GREEN
check button.

Almost there! Now after you hit the GREEN check, you will have the distinct
privilege of seeing the result of your hard work. The actual Extension Type
with our new segment shown. All we need to do now is hit the SAVE button.
Again, for our purposes we will make this a LOCAL object so no transports
are necessary.

IDocs: A Guide for New Developers – Part 3

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/

IDocs: A Guide for New Developers

The last and nal step is set the RELEASE ag on this extension. Once you
have done this the IDoc Extension is ready to use!

IDocs: A Guide for New Developers – Part 3

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/

IDocs: A Guide for New Developers

Summary
So in summary, we needed a IDoc Type that was di erent than the delivered
IDoc Type of INVOIC02. We needed to add new elds. We achieved this by
creating a custom segment, adding our elds to it, then inserting into the
delivered IDoc Type as a NEW IDoc Extension.

IDocs: A Guide for New Developers – Part 3

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/

IDocs: A Guide for New Developers

The SAP IDoc Technology
We will continue our look at SAP IDocs and the IDoc Technology by
exploring how we can use the new custom IDoc extension we created in
the last Chapter.

Create an IDoc Message Type
The message type determines the technical structure of the message, along
with the data contained. Through con guration it will also determine the
process ow involved in a “Distributed environment”. The Message Type
controls Process Code, which in turn drives a Function Module to derive the
content of the message in an OUTBOUND scenario or execute the desired
SAP process in an INBOUND scenario. Finally, it also controls how the IDocs will
be processed (batch, immediately etc). The former is accomplished in
conjunction with Partner Pro le con guration which we will discuss later in
the blog.

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

For starters – there exist many delivered standard IDoc message types prede ned by
SAP. Here are a few of them as an example……

 SAP Object IDoc Message Type

CUSTOMER DEBMAS
VENDOR CREMAS
MATERIAL MATMAS
SALES ORDER ORDRSP
PURCHASE ORDER ORDERS
INVOICE INVOIC

We can also create a customized logical message type according to our
specifc requirements. Since we are using the invoice here we could use the
existing message type INVOIC, but I want to show you how to create your
own logical message type, so we will create a custom one. We will use
ZINVOIC as our custom message type.

Create a new Custom IDoc Message Type using
transaction WE81
Execute transaction WE81. Enter into Change mode by clicking the button.
Hit New Entries as shown in the screen below.

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

You will then be able to enter our NEW Custom Message Type along with a
description and hit SAVE . See below…

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

When you hit SAVE, you will be prompted by SAP to create a transport. For
our purposes I am creating a transport with the text “DO NOT TRANSPORT”
as this is for education purposes and there is no real requirement behind
this.

That is it! We have created a custom IDoc Message type. Now we have to link
this new message type to our IDoc Extension we created earlier.

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

Create a New IDoc Assignment using transaction
WE82
In order to use the new IDoc extension we created, we need to assign or link
the Custom Message type to it. In order to this we use transaction WE82.
Lets look at the screen below. Enter into Change mode by clicking the
CHANGE button. Hit New Entries.

Next we enter in the information. So we enter our custom Message type
ZINVOIC, the Basic IDoc (delivered or IDoc Type we extended) INVOIC02 and
our Extension ZINVOIC02. For release I put 700, but for you, please enter
your ABAP AS release.

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

Hit the Save Button and you’ll be prompted again to use the Transport we
created previously. Go ahead an use it.

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

Create an IDoc Entry for the Partner Profile using transaction WE20

The next step in con guring this IDoc Interface would be to create an entry
in the Partner Pro le using transaction WE20. Lets take a look at the
transaction. Please note this will be an Outbound Invoice, so our partner
could be a Customer, but will likely be the Middleware your company is using
such as PI (Process Integration, formerly know as XI). We will choose an XI
Partner. Expand the tree for Customer (see bellow)

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

We will Choose the XI_EDI Customer.

Next, we need to click on the CREATE button to create a new entry.
Again,since this is an outbound Interface, we need to be working in the
“OUTBOUND PARAMETERS” section shown below. Take note there is already
an entry for ORDRSP (Order Response), this is one of the delivered Message
Types we discussed at the beginning of this Blog.

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

Lets add our Entry… and take a look at each of the areas noted in the screen
shot in turn.

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

First, take a look at #1. You will notice we used a Partner Type of BP. This is
the Bill-To Pary and makes sense as this is an Invoice.

Next, #2 is the Custom Message type we created. Note the description to the
right of the entry.

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

Next, #3 is the Receiver Port and Package size. The Port Speci es how the
IDocs are transferred. There are various technical possibilities for this
communication known as port types. While the Package size describes the
number of IDocs to send in one package or call to the Middleware.

Next #4 is used to either send the IDoc immediately (Real -Time) or to collect
them and use a batch job (RSEOUT00) to send at a de ned interval (Near
Real – Time).

Finally #5 shows the delivered Basic IDoc and our Extension that has the
new Fields.

IDoc Processing and Message Control
To complete this outbound Entry it will be necessary to ll in the Message
Control Tab. While it is not my intent to teach this subject in this blog, a
rudimentary understanding will be necessary.

What is Message Control ?

Message control is a mechanism in which you can trigger the outputs based
on certain conditions . As SAP puts it is is “The output or follow up
processing of partner-dependent messages is automated via Message
Control. The application then calls Message Control via the speci ed
interfaces.” There can be di erent forms of output like Work ow, print
output, IDoc dispatch or even a fax. This is normally con gured for the
transactional data being entered and requirement being addressed.

SD and MM applications use message control for the message output.
Message control is also referred as Output control.

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

Follow the link Message Control Explained for a detailed information on
Message Control including how to configure it.

OK, lets end this month’s blog by adding the details of the Message Control
Tab and save our entry. Take a look at the screen below

IDocs: A Guide for New Developers – Part 4

https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/6074
http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

These three key elds – Application, Message type and Process Code
assigned in the message control tab together uniquely identify a message
type which uniquely identifies an IDoc type.

Application: The Application speci ed in message control determines the
output type and uniquely identi es a message type which can be assigned
uniquely to an IDoc type. For Example: ‘EA’ is used for ‘Purchasing RFQ’ in
Materials Management (MM) and V3′ is used for ‘Billing’ in Sales and
Distribution (SD).

Message type: Message type along with the application uniquely identi es
a message type which can be assigned uniquely to an IDoc type.
For Example: ‘LAVA’ = ‘Shipping notification’ in dispatch (application ‘V2′).

Process code: The Process code is used by an IDoc Interface to determine
the application Function Module which converts the SAP document into an
IDoc.For Example: ME10: Purchase order (MM)

Here are the values we have chosen:

The application is V3: Billing
The Message type RD00: Invoice
The process code SD09: INVOIC: Invoice

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

Lets double click on the Process Code in this screen to see the con gured
Function Module we will be using.

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

We would then be taken to Transaction WE41.

The function module which is embedded in each process code follows a
naming convention “IDOC_<OUTPUT / INPUT >_NAME OF MESSAGE TYPE”.
For our example the delivered Message Type for an Invoice is INVOIC and
this is an Outbound scenario, so the function module will be
“IDOC_OUTPUT_INVOIC”. (If this was a completely “Brand New” interface and
not an Extension, we would need to create and con gure our on function
module.)

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

Summary
So in summary, we needed to create a New Message Type ZINVOIC. We then
assigned our IDoc Extension to the new Message Type. We con gured the
Partner Pro le to use our new IDoc Extension. We also touched on Message
Control for Outbound IDoc scenarios.

IDocs: A Guide for New Developers – Part 4

http://www.itpsap.com/blog/2013/10/21/idocs-guide-developers-part-4/

IDocs: A Guide for New Developers

The SAP IDoc Technology
In this month we will continue our look at SAP IDocs and the IDoc
Technology by exploring how we can use the new custom IDoc extension we
created in the last blog. If you need a refresher on how to extend an
IDoc CLICK HERE

Finding and Updating an IDoc Customer Exit
Using SMOD
If you recall from last month’s blog, the Function Module we are
using follows a naming convention “IDOC_<OUTPUT / INPUT >_NAME OF
MESSAGE TYPE”. For our example the delivered Message Type for an Invoice
is INVOIC and this is an Outbound scenario, so the function module will be
“IDOC_OUTPUT_INVOIC”.

IDocs: A Guide for New Developers – Part 5

http://www.itpsap.com/blog/2013/09/18/idocs-guide-developers-part-3/
http://www.itpsap.com/blog/2013/11/09/idocs-guide-developers-part-5/

IDocs: A Guide for New Developers

The User Exit for the transaction can be found using the transaction SMOD.
Here we need to give the package to nd the exact enhancement and the
respective function module which will serve our purpose. The steps are as
follows…

Go to SE37 to nd the package of “IDOC_OUTPUT_INVOIC” and click on
Display.

After clicking on display. Go to the “Attributes” tab and look for the package
name.

Here we get the Package as “VED”, Use this Package name in SMOD to nd
the respective User Exit function module.

IDocs: A Guide for New Developers – Part 5

http://www.itpsap.com/blog/2013/11/09/idocs-guide-developers-part-5/

IDocs: A Guide for New Developers – Part 5

Go to Transaction SMOD and give the value of Package we got (here “VED”)
in F4 help or utilities-> Find.

IDocs: A Guide for New Developers – Part 5

http://www.itpsap.com/blog/2013/11/09/idocs-guide-developers-part-5/

IDocs: A Guide for New Developers

Hit the green check and we get the set of User Exit Names. One way to nd
the most suitable exit could be by the short text description. Sometimes you
have to read the documentation for each exit, and sometimes it ’s plain old
trial and error using the debugger and breakpoints. You can scroll through
the Exits using the up and down arrows.

The short text for EXIT_SAPLVEDF_002 is “User_Exit Customer Enhancement
in Data Segments for billing Docu”. This sounds like us. Lets talk through the
business requirement.

“We have to add a custom segment ZE1EDK01 as a child of standard
segment E1EDK01 when creating the OUTBOUND IDoc for a billing
document.”

IDocs: A Guide for New Developers – Part 5

http://www.itpsap.com/blog/2013/11/09/idocs-guide-developers-part-5/

IDocs: A Guide for New Developers

OK, this looks promising. I usually double click into the User Exit Function
and examine the Import/Export and tables parameters so I know I can get at
the data I need, and update the structure or tables I need.

I can see in tables section of the “Formal” Parameters that I have access to
INT_EDIDD and is typed to EDIDD. This is good as this is the IDocs segments.
All I need to do is read this table looking for the segment E1EDK01, USE
OPEN SQL to get the data I need and build and APPEND my custom Segment
ZE1EDK01. This is a perfect place to do this.

Using Transaction CMOD to Build a Project and
User Exit

IDocs: A Guide for New Developers – Part 5

http://www.itpsap.com/blog/2013/11/09/idocs-guide-developers-part-5/

IDocs: A Guide for New Developers

First we need to create a project that will hold our enhancement. Execute
transaction CMOD (Customer MOD) and ll in a project name and click
create. I will use the name ZBILL as my project name.

Fill in some descriptive text and click on Enhancement Assignments.

IDocs: A Guide for New Developers – Part 5

http://www.itpsap.com/blog/2013/11/09/idocs-guide-developers-part-5/

IDocs: A Guide for New Developers

You can add the enhancement LVEDF001 that we found using SMOD
and hit enter. You will most likely get the following error.

IDocs: A Guide for New Developers – Part 5

http://www.itpsap.com/blog/2013/11/09/idocs-guide-developers-part-5/

IDocs: A Guide for New Developers

You can add the enhancement LVEDF001 that we found using SMOD and hit
enter. You will most likely get the following error.

This means the enhancement is ALREADY in a project and can’t be added to
this one. The project is BPID. If we look at project BPID we will see it is
already there.

Adding your Custom Code to the CMOD Function Exit

IDocs: A Guide for New Developers – Part 5

http://www.itpsap.com/blog/2013/11/09/idocs-guide-developers-part-5/

IDocs: A Guide for New Developers

Double Click on Components and you will see the exit EXIT_SAPLVEDF_002
we found using SMOD. Now all we have to do is add the code and make sure
we activate the project and our code will be used when the IDocs are
generated for outbound processing.

Double click into the exit and add the following code…

IDocs: A Guide for New Developers – Part 5

http://www.itpsap.com/blog/2013/11/09/idocs-guide-developers-part-5/

IDocs: A Guide for New Developers

We have now populated our two new elds KTGRD and MANSP of our new
custom segment ZE1EDK01.

Summary
So in summary, We used transaction SMOD to view the enhancements
available for a package. We chose an enhancement suitable for our
requirement and created or modi ed a PROJECT to include this
enhancement. We then chose the correct component and added our
custom code and activated the Project.

IDocs: A Guide for New Developers – Part 5

http://www.itpsap.com/blog/2013/11/09/idocs-guide-developers-part-5/

IDocs: A Guide for New Developers

This was a very rudimentary example of how to enhance the supplied
solution using Customer Exits (CMOD). I chose this method over BAdi’s and
other enhancement techniques as it lends it self nicely as an introduction
for beginners. For a detailed and in-depth study of all the possible
Enhancement techniques available in SAP, I would ask you to read our blogs
on “The New Enhancement Framework”.

Learn more

I hope this has helped you begin your own journey into
IDoc development in SAP. If you found value in this

information, then click the button below to learn more.

IDocs: A Guide for New Developers – Part 5

http://www.itpsap.com/blog/2011/10/16/the-new-enhancement-framework-part-1/
http://www.itpsap.com/
http://www.itpsap.com/blog/2013/11/09/idocs-guide-developers-part-5/

