
IEEE floating point  

IEEE Standard 754 floating point is the most 
common representation today for real numbers 
on computers, including Intel-based PC's, 
Macintoshes, and most Unix platforms 
Limited range and precision (finite space) 
Overflow means that values have grown too 
large for the representation, much in the same 
way that you can overflow integers.  
Underflow is a less serious problem because is 
just denotes a loss of precision, which is 
guaranteed to be closely approximated by zero.  
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Floating Point 

“real numbers” having a decimal portion != 0 
Example: 123.14 base 10 

Meaning: 
 1*102 + 2*101 + 3*100 + 1*10-1 + 4*10-2 

Digit format:  dmdm-1…d1d0 . d-1d-2…d-n 
dnum  summation_of(i = -n to m) di * 10i  

Example: 110.11 base 2 
Meaning: 
 1*22 + 1*21 + 0*20 + 1*2-1 + 1*2-2 

Digit format: bmbm-1…b1b0 . b-1b-2…b-n 
bnum  summation_of(i = -n to m) bi * 2i  

“.” now a “binary point”  
In both cases, digits on the left of the “point” are weighted 
by positive power and those on the right are weighted by 
negative powers 
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Floating Point 

Shifting the binary point one position left 
Divides the number by 2 
Compare 101.11 base 2 with 10.111 base 2 

Shifting the binary point one position right 
Multiplies the number by 2 
Compare 101.11 base 2 with 1011.1 base 2 

Numbers 0.111…11 base 2 represent numbers just below 
1  0.111111 base 2 = 63/64 
Only finite-length encodings 

1/3 and 5/7 cannot be represented exactly 
Fractional binary notation can only represent numbers 
that can be written x * 2y i.e. 63/64 = 63*2-6 

Otherwise, approximated 
Increasing accuracy = lengthening the binary representation 
but still have finite space 
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Practice Page 

Fractional value of the following binary values: 
.01 =  
.010 =  
1.00110 =  
11.001101 =  

123.45 base 10 
Binary value =  
FYI also equals: 
 1.2345 x 102 is normalized form 
 12345 x 10-2 uses significand/mantissa/coeefficient and 

exponent 
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Floating point example  

Put the decimal number 64.2 into the IEEE 
standard single precision floating point 
representation… 
 

 SEE HANDOUT 
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IEEE standard floating point 
representation 

The bit representation is divided into 3 fields 
The single sign bit s directly encodes the sign s 
The k-bit exponent field encodes the exponent 
 exp = ek-1…e1e0 

The n-bit fraction field encodes the significand M (but the 
value encoded also depends on whether or not the 
exponent field equals 0… later) 
 frac = fn-1…f1f0 

Two most common formats 
Single precision (float) 
Double-Precision (double) 
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Sign Exponent Fraction Bias 

Single Precision (4 bytes) 1 [31] 8 [30-23] 23 [22-00] 127 

Double Precision (8 bytes) 1 [63] 11 [62-52] 52 [51-00] 1023 



The sign bit and the exponent 
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The sign bit is as simple as it gets.  
0 denotes a positive number; 1 denotes a negative number. 
Flipping the value of this bit flips the sign of the number.  

 
The exponent field needs to represent both positive and 
negative exponents.  

A bias is added to the actual exponent in order to get the 
stored exponent.  
For IEEE single-precision floats, this value is 127. Thus, an 
exponent of zero means that 127 is stored in the exponent 
field. A stored value of 200 indicates an exponent of (200-127), 
or 73. For reasons discussed later, exponents of -127 (all 0s) 
and +128 (all 1s) are reserved for special numbers.  
For double precision, the exponent field is 11 bits, and has a 
bias of 1023.  
 



More on the “bias” 

In IEEE 754 floating point numbers, the exponent is biased in the engineering sense of the 
word – the value stored is offset from the actual value by the exponent bias.  
Biasing is done because exponents have to be signed values in order to be able to 
represent both tiny and huge values, but two's complement, the usual representation for 
signed values, would make comparison harder. 
To solve this problem the exponent is biased before being stored, by adjusting its value to 
put it within an unsigned range suitable for comparison. 

 

By arranging the fields so that the sign bit is in the most significant bit position, the biased 
exponent in the middle, then the mantissa in the least significant bits, the resulting value 
will be ordered properly, whether it's interpreted as a floating point or integer value. This 
allows high speed comparisons of floating point numbers using fixed point hardware. 

 

When interpreting the floating-point number, the bias is subtracted to retrieve the actual 
exponent. 

 

For a single-precision number, an exponent in the range −126 .. +127 is biased by adding 
127 to get a value in the range 1 .. 254 (0 and 255 have special meanings). 
For a double-precision number, an exponent in the range −1022 .. +1023 is biased by adding 
1023 to get a value in the range 1 .. 2046 (0 and 2047 have special meanings). 
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The fraction 

Typically called the “significand” 
Represents the precision bits of the number.  
It is composed of an implicit (i.e. hidden) leading 
bit and the fraction bits.  
In order to maximize the quantity of 
representable numbers, floating-point numbers 
are typically stored in normalized form. 

This basically puts the radix point after the first non-
zero digit (see previous example)  
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FYI: A nice little optimization is available to us in base two, since the only 
possible non-zero digit is 1. Thus, we can just assume a leading digit of 1, and 
don't need to represent it explicitly. As a result, the mantissa/significand has 
effectively 24 bits of resolution, by way of 23 fraction bits. 



Putting it all together 

So, to sum up:  
The sign bit is 0 for positive, 1 for negative.  
The exponent's base is two.  
The exponent field contains 127 plus the true 
exponent for single-precision, or 1023 plus the 
true exponent for double precision.  
The first bit of the mantissa/significand is 
typically assumed to be 1.f, where f is the field of 
fraction bits.  

 

269 


