
IEEE floating point

IEEE Standard 754 floating point is the most
common representation today for real numbers
on computers, including Intel-based PC's,
Macintoshes, and most Unix platforms
Limited range and precision (finite space)
Overflow means that values have grown too
large for the representation, much in the same
way that you can overflow integers.
Underflow is a less serious problem because is
just denotes a loss of precision, which is
guaranteed to be closely approximated by zero.

260

Floating Point

“real numbers” having a decimal portion != 0
Example: 123.14 base 10

Meaning:
 1*102 + 2*101 + 3*100 + 1*10-1 + 4*10-2

Digit format: dmdm-1…d1d0 . d-1d-2…d-n
dnum  summation_of(i = -n to m) di * 10i

Example: 110.11 base 2
Meaning:
 1*22 + 1*21 + 0*20 + 1*2-1 + 1*2-2

Digit format: bmbm-1…b1b0 . b-1b-2…b-n
bnum  summation_of(i = -n to m) bi * 2i

“.” now a “binary point”
In both cases, digits on the left of the “point” are weighted
by positive power and those on the right are weighted by
negative powers

261

Floating Point

Shifting the binary point one position left
Divides the number by 2
Compare 101.11 base 2 with 10.111 base 2

Shifting the binary point one position right
Multiplies the number by 2
Compare 101.11 base 2 with 1011.1 base 2

Numbers 0.111…11 base 2 represent numbers just below
1  0.111111 base 2 = 63/64
Only finite-length encodings

1/3 and 5/7 cannot be represented exactly
Fractional binary notation can only represent numbers
that can be written x * 2y i.e. 63/64 = 63*2-6

Otherwise, approximated
Increasing accuracy = lengthening the binary representation
but still have finite space

262

Practice Page

Fractional value of the following binary values:
.01 =
.010 =
1.00110 =
11.001101 =

123.45 base 10
Binary value =
FYI also equals:
 1.2345 x 102 is normalized form
 12345 x 10-2 uses significand/mantissa/coeefficient and

exponent

263

Floating point example

Put the decimal number 64.2 into the IEEE
standard single precision floating point
representation…

 SEE HANDOUT

264

IEEE standard floating point
representation

The bit representation is divided into 3 fields
The single sign bit s directly encodes the sign s
The k-bit exponent field encodes the exponent
 exp = ek-1…e1e0

The n-bit fraction field encodes the significand M (but the
value encoded also depends on whether or not the
exponent field equals 0… later)
 frac = fn-1…f1f0

Two most common formats
Single precision (float)
Double-Precision (double)

265

Sign Exponent Fraction Bias

Single Precision (4 bytes) 1 [31] 8 [30-23] 23 [22-00] 127

Double Precision (8 bytes) 1 [63] 11 [62-52] 52 [51-00] 1023

The sign bit and the exponent

266

The sign bit is as simple as it gets.
0 denotes a positive number; 1 denotes a negative number.
Flipping the value of this bit flips the sign of the number.

The exponent field needs to represent both positive and
negative exponents.

A bias is added to the actual exponent in order to get the
stored exponent.
For IEEE single-precision floats, this value is 127. Thus, an
exponent of zero means that 127 is stored in the exponent
field. A stored value of 200 indicates an exponent of (200-127),
or 73. For reasons discussed later, exponents of -127 (all 0s)
and +128 (all 1s) are reserved for special numbers.
For double precision, the exponent field is 11 bits, and has a
bias of 1023.

More on the “bias”

In IEEE 754 floating point numbers, the exponent is biased in the engineering sense of the
word – the value stored is offset from the actual value by the exponent bias.
Biasing is done because exponents have to be signed values in order to be able to
represent both tiny and huge values, but two's complement, the usual representation for
signed values, would make comparison harder.
To solve this problem the exponent is biased before being stored, by adjusting its value to
put it within an unsigned range suitable for comparison.

By arranging the fields so that the sign bit is in the most significant bit position, the biased
exponent in the middle, then the mantissa in the least significant bits, the resulting value
will be ordered properly, whether it's interpreted as a floating point or integer value. This
allows high speed comparisons of floating point numbers using fixed point hardware.

When interpreting the floating-point number, the bias is subtracted to retrieve the actual
exponent.

For a single-precision number, an exponent in the range −126 .. +127 is biased by adding
127 to get a value in the range 1 .. 254 (0 and 255 have special meanings).
For a double-precision number, an exponent in the range −1022 .. +1023 is biased by adding
1023 to get a value in the range 1 .. 2046 (0 and 2047 have special meanings).

267

The fraction

Typically called the “significand”
Represents the precision bits of the number.
It is composed of an implicit (i.e. hidden) leading
bit and the fraction bits.
In order to maximize the quantity of
representable numbers, floating-point numbers
are typically stored in normalized form.

This basically puts the radix point after the first non-
zero digit (see previous example)

268

FYI: A nice little optimization is available to us in base two, since the only
possible non-zero digit is 1. Thus, we can just assume a leading digit of 1, and
don't need to represent it explicitly. As a result, the mantissa/significand has
effectively 24 bits of resolution, by way of 23 fraction bits.

Putting it all together

So, to sum up:
The sign bit is 0 for positive, 1 for negative.
The exponent's base is two.
The exponent field contains 127 plus the true
exponent for single-precision, or 1023 plus the
true exponent for double precision.
The first bit of the mantissa/significand is
typically assumed to be 1.f, where f is the field of
fraction bits.

269

