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Abstract-Recent research on fibers with  very  small or very  large 
birefringence for polarization-dependent applications is reviewed.  The 
nature of random coupling between normal modes of polarization ,is 
analyzed and discussed in connection with various applications. 

I 
INTRODUCTION 

N  most applications, an optical fiber is a means for  trans- 
mitting signals  in the  form of optical power with pulse-code 

or  intensity  modulation;  the signal is detected by a  photodiode 
that is insensitive to optical polarization or phase. Recentlc 
however, attention has been directed to applications that  do 
depend  upon-  the optical polarization of the wave within a 
fiber or  at its output. Yet, nominally circular fibers do  not 
maintain the  input  state of polarization for more than  a few 
meters; thus, fibers must be  specially  designed to maintain 
polarization. 

As in bulk media, the evolution of the polarization state in 
an optical fiber can be described in terms of  a “modal bi- 
refringence,” i.e., the difference in effective indexes for the 
orthogonally polarized normal modes. It is our purpose to re- 
view the  experimental progress in minimizing or maximizing 
modal birefringence as required for various applications. We 
will be concerned with fibers that  support only one mode in 
each polarization. We also outline  an analysis that describes 
the  nature of random coupling between the  two normal modes 
of a  fiber.  The  effects of modal noise and dispersion in a bi- 
modal fiber are also discussed. Before getting to these topics, 
however, we review briefly some applications concerned  with 
polarization in fibers. 

APPLICATIONS 
A. Small  Birefringence 

Faraday Effect: The Faraday effect produces a  rotation 
of the plane of polarization about  a magnetic field vector. The 
angle  is equal to the  product of the  Verdet  constant,  the mag- 
nitude  of  the field, and  the  optical  path  length. This rotation 
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of a linear polarization vector can be regarded as being the 
consequence of a change in phase between the right- and left- 
hand circular polarization waves that represent the linear 
polarizatiofi wave. In  the simplest case, the Faraday effect  can 
only be observed satisfactorily in a fiber medium with  perfect 
circular symmetry  about the fiber axis so that  the  two circular 
polarized waves  are normal modes and, in the absence of a 
magnetic field, have identical phase velocities. That is, the 
fiber must have a modal birefringence that is vanishingly  small. 
Then, although  the Verdet constant for glass is small, large 
rotations can be realized because of  the long path  length 
available.  The current in a  conductor can be determined by 
measuring the magnetic field it induces in a fiber coiled 
around  the  conductor  or, alternatively, in a straight fiber with 
the  conductor wrapped around  it [ l ]  , [2] . 
B.  Large Birefringence 

1) Interferometers: Nominally circular fibers do  not main- 
tain the sense  of polarization present at  the  input  for more 
than  a few meters [3] , [4] because of polarization-coupling 
perturbations that are randomly distributed along the length 
of the  fiber, as we describe in greater detail subsequently. 
However, any device that depends upon  the  interference  of 
two  coherent optical beams, as in homodyne  or  heterodyne 
detection, requires that the  interacting beams have identical 
polarizations for efficient operation. If the polarizations of 
the  two beams are 90” apart, complete fading can result. Vari- 
ous fiber optic sensors that depend upon interference have 
been proposed. In a fiber gyroscope [ 5 ]  -[7], the phases of 
two waves traveling in  opposite directions in a coil of fiber are 
compared.  In  a pressure sensor [8] , two separate fibers form 
the arms of  an interferometer bridge; one fiber is subjected to 
the pressure to be measured and  the  other serves  as reference; 
the photoelastically induced phase shft  provides a measure of 
the pressure. These applications require fibers that maintain 
polarization over lengths of several tens to several thousand 
meters. As we discuss later, large modal birefringence is  re- 
quired for polarization maintaining fibers. 
2) Integrated  Optics: Many of the waveguide optical 

switches that have been discussed in connection  with  inte- 
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Fig. 1. Polarization coupling by  random  perturbations:  (a) unper- 
turbed cross section;@) shear perturbation y; (c) random  fluctuations 
of y(z); (d) power spectrum of fluctuations versus spatial frequency. 

grated optical  circuits  operate effectively only  on light that is 
well  polarized [9]. Thus, if  such  switches are to be  utilized 
at the terminals  of  long  distance communication  systems,  the 
fibers employed  must  maintain  polarization over tens of kilo- 
meters.  If  the switches are used  in a system linking computer 
elements  withm  a building, shorter lengths on  the  order of a 
kilometer  may be suitable. Alternatively, one may  employ 
polarization-insensitive switches [ 101 . 

3) Heterodyne Communications: If the  two normal modes 
of  polarization  were uncoupled over  several kilometers  in  a 
practical fiber, the  information  capacity  could  be  doubled by 
transmitting  independent signals on each  polarization.  Hetero- 
dyne  detection  could  then be employed  for greater sensitivity. 

4) Nonlinear Effects: Optical fiber nonlinear interactions, 
such as optical Kerr [ l l ]  effect,  second-harmonic  generation, 
parametric oscillation, and Raman laser oscillation E121 , are 
governed  by  polarization selection rules. Thus, their efficiency 
of operation  depends  upon  controlling polarization in  the 
interaction region. 

5 )  Polarization  Devices: Several magnetooptic  and  birefrin- 
gent optical devices, familiar in bulk form, having  been adapted 
to the fiber geometry. These include a Faraday isolator [13] 
and a variable compensator  [14] . Modal  birefringence in  the 
Faraday  device is compensated  for by utilizing a periodic  mag- 
netic field in  contrast to the  uniform field assumed in  the 
previous section. 

MODAL BIREFRINGENCE 
So called "single-mode'' fibers  with  nominal circular sym- 

metry  about the fiber axis are in  fact  bimodal  in that  they can 
propagate  two nearly  degenerate modes  with  orthogonal 
polarizations; these are the HETI- and HEYl-modes.  The 
principal axes, x and y,  are determined  by  the  symmetry ele- 
ments of the cross section,  as in Fig. l(a). The larger the 
anisotropy of the cross section,  the greater the difference in 
the  propagation  constants 0, and by for  the  two  normal 
modes.  If  the  fiber cross section is independent of fiber  length 
z ,  then  the fiber behaves like a birefringent medium  with 
modal  birefringence B given  by 

(a) (b) 
Fig. 2. Beat length: (a) states of polarization versus @(z); (b) scattered 

intensity observed normal to fiber at angle 8. 

where h is the  optical wavelength.  Light  polarized  along  one 
of the principal axes  will retain its polarization for all z .  Light 
polarized at an  angle 0 with respect to the  x-axis will  pass 
through various states  of  elliptic polarization  as the phase 
retardation 

varies with  length, provided the  two normal mode  components 
maintain phase coherence. 

The coherence time for  a  source  with  uncorrelated spectral 
frequency width Af is l/Af. The two normal mode  compo- 
nents will  be coherent as long as the delay  between their 
transit times  is  less than  the coherence time. The  maximum 
fiber length LC for which this birefringent coherence holds is 
approximately [ 151 

LC - c/BAf = h2/BAh (3) 

where Ah is the wavelength spectral  width.  For h = 1 ,um and 
Ah = 1 nm,  (3) gives LC = 250  km  for B = 4 X IO-' and LC = 
1 m for B = 8 X which covers the experimental range of 
B, as noted below.  For a single-mode  laser with Af  = 1 MHz, 
the corresponding  values  of LC are 7.5 X lo7 km and 3.8 X 
lo3 km, respectively. 

For  incident linear polarization with 0 = 45" a t  z = 0, the po- 
larization becomes circular for CP = 7r/2, linear with 8 = -45O 
for cP = 7r, circular for CP = 37r/2, and linear with 0 = 45" for 
cP = 27r,  as shown  in  Fig. 2(a). The length L corresponding to 
@ ( L )  = 27r is called the "beat  length," 

L = V B .  (4) 

The beat  length  can be observed directly by  means  of  dipole 
(Rayleigh) scattering  from  the fiber [ 161 . Since the  radiation 
pattern of a dipole has  a  null along the dipole axis and  a maxi- 
mum  normal to the axis, a fiber viewed  along the direction of 
the  incident polarization  will exhibit  a series of  dark and 
brirrht  bands with oeriod L as shown in Fie. 2(b). It is thus 
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Fig. 3. Polarization beats: L = 1.5 mm at h = 0.515 ~m, B = 3 X 10-4 
(see [ 341 ). 

possible to determine B from the observed beat length. The 
beats in the fiber photographed in Fig. 3 have L = 1.5 mm at 
X = 0.515 pm;  therefore, B = 3 X 

In  a real fiber,  perturbations along the fiber can couple 
energy from  one  normal mode to the  other. These perturba- 
tions ma)'  be variations in geometry,  composition, or strain. 
They can originate in the  preform, in the drawing apparatus, in 
the cabling, or simply in bends and twists of the fiber. If the 
perturbations  could be determined quantitatively along the 
length of each fiber, the  state of the  output polarization could 
be calculated directly [17]. However, since this information 
is usually not available, we take  the  perturbation to be a 
random function of z. Perturbations having principal axes not 
coincident with  the  unperturbed fiber axes will  serve to couple 
energy between the normal modes. The coupling strength is 
greatest when the  perturbation axes make an  angle  of 45" with 
the fiber axes. A shear strain that will couple x and y po- 
larizations is illustrated in Fig. l(b). The coupling strength is, 
roughly speaking, a  function of the  ratio of the birefringence 
of the  perturbation to the birefringence of the  unperturbed 
fiber. 

Light can be completely coupled from one polarization 
mode to the  other only if the  perturbation has period A, such 
that 

10, - fly I = K k   A K  (5) 

where K = 27r/A is the spatial frequency of  the  perturbation  in 
the  z-direction  and A K  = n/l, with I the length of fiber.  In gen- 
eral, the  perturbation y(z) will  be a random function of z with 
average  value (y(z)) = 0, as shown in Fig. l(c). The random 
function describing each length of fiber depends upon  its 
history. Deterministic periodic perturbations such as those 
due to the  pitch of lead screws and  natural resonances in the 
drawing process or  the lay of fibers in a cable may also be 
present. The Fourier transform of the correlation function 
y(z) yields the power spectrum I r ( K )  l 2  as a  function of spa- 
tial frequency. 

No statistical data are available on  the  nature of I r ( K )  l 2  for 
polarization-coupling perturbations. However, measurements 
of  fluctuations in fiber diameter [I&] with  z yield a power 
spectrum  with  a low-pass filter characteristic as illustrated 

schematically in Fig. l(d). Typically, the power spectrum  at 
A = 1 mm is - 40 dB below the value at A -+ 00. Thermo- 
dynamic considerations also lead to the conclusion that  the 
power spectrum of fluctuations produced in  the fiber drawing 
process must  approach  cutoff for A less than  a critical value. 
In  addition,  the observation that scattering losses  are  negligible 
in a good fiber indicates that significant fluctuations in fiber 
properties must have periods greater than  about 1 mm since 
coupling between guided and radiation modes would require a 
period A < AJAn = 1 mm, when X = 1 pm and the core- 
cladding index difference An = Thus, we expect 
I r ( K )  l 2  to have a low-pass shape similar to that shown in 
Fig. l(d). 

If we define a  cutoff spatial frequency Kc such that 

where q is  an integer, say 4, then  the  transfer of power be- 
tween polarizations should be  small for 

or, in terms of the  beat length (4) and cutoff period A, = 
2 ./Kc , the power transfer should be small for 

L<<&. (8) 

Based on  the estimate above  of & = 1 mm, (8) requires 
B>> Since I r ( K )  l 2  probably does not vanish iden- 
tically even for K >> K c ,  we can always expect some coupling 
for long fibers. A more rigorous treatment  of polarization 
coupling is given in a later section. 

The design of polarization maintaining fiber should be con- 
cerned with  two aspects of the problem: 1) maximize the 
modal birefringence B or, equivalently, minimize the  beat 
length L ;  2) minimize the  strength of polarization coupling 
perturbations  with period A = X/B, i.e., increase 4. Efforts 
to increase B by introducing geometrical anisotropy  or strain 
birefringence in the fiber cross section will be described later. 
On the  other  hand, very little is known at present about  the 
nature, sources, or statistics of polarization-coupling perturba- 
tions. Any effects that alter the principal axes must be con- 
sidered; these include eccentricities in the  preform  or  the 
drawing apparatus,  fluctuations  in drawing speed and  tempera- 
ture, mechanical resonances near the  molten  preform  tip, 
twisting and bending of the  fiber, transverse strains due to 
jacketing, and cabling, and axial strains due to differential 
thermal expansion of components of the fiber. Thus, research 
along the second path 2) is needed in order to realize the 
ultimate in polarization maintaining fibers. 

SMALL BIREFRINGENCE 
Modal birefringence B can be separated into  two compo- 

nents: a geometrical contribution G and  an effective material 
birefringence M due to strain 

B = M + G .  (9)  
The M and G contributions may have either  the same or op- 
posite signs. The effective M is  an average, weighted by  the 
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square of the  modal wave function, over the actual material 
birefringences  of the  core  and cladding  glasses. 

These strain and  geometrical effects on polarization in opti- 
cal fibers were first discussed  by Snitzer  and Osterberg [19] . 
Ramaswamy [20]  noted  that,  for  a small  core  cladding index 
difference, An, strain birefringence could make the dominant 
contribution to B. 

Various  expressions  have been  proposed  for G but for small 
ellipticity e,  a good approximation is [21] , [22] 

G = c C - e z A 3 / 2  = C  .e2A2 x A 

d (1 0) 

where d is  the mean  core  diameter 

A = Anln (1 1) 

e = [ l  - (d,/d,)2] ‘1’ (1 2) 

and d, and d, are the  minor  and major  core diameters, respec- 
tively. The constant C depends upon  the fiber V value [see 
(15)]  and  has  its maximum  value  (-0.06) a,t+ V = 2.5, near the 
cutoff  for  the first higher order  mode;  and C = 2 f i  d / V .  

It is clear from  (9)  and  (10)  that  in  order to obtain B + 0 
for use in Faraday  effect or circular polarization  applications 
M ,  e and  A  must  be small  and d/h large (while still maintaining 
fundamental  mode behavior).  Very low birefringence fibers 
have  been obtained [23],  [24]  in this way.  The  lowest  value 
reported [24] is B = 4.5 X lo-’ (L = 140 m at h = 0.63  pm)  in 
a  fiber  for which the  thermal  expansion coefficients for core 
and  cladding  glasses  were matched to minimize M .  Extreme 
care must  be  taken  in  jacketing  and winding  these fibers in 
order not to introduce  bends  or twists that  contribute to bi- 
fringence [23] . Strain birefringence  can be reduced  almost 
completely by  employing a  liquid core fiber [25] ; thus only 
the  strain  in  the cladding contributes to M .  

LARGE  BIREFRINGENCE 
For  applications  that require a well-defined linear polariza- 

tion, it is  advantageous to maximize B by maximizing M ,  G, 
or both M and G. For large eccentricity,  the  approximate 
relation 

G = C‘(An)’ (13) 

holds  with C’, a  coefficient that depends  upon  the  eccentricity 
and effective V-value.  In one  approach [26] , the maximum 
value  of C‘, which  occurs for a slab geometry (e  = l), is about 
0.4 for  a single-mode fiber. In another  approximation [20] , 
E271 3 

C’ = [(4n)2/2n] [(v, + 2)-3 - (v, + 2)-3]  (14) 

where the V values are 

F=dik(2nAn)’I2, i=x ,y  (15) 

and 

k = 2 r/h. (1 6) 

The  range  of validity of (14) is discussed in [20] . The maxi- 
mum value  of C’ obtained for a  fundamental-mode design  is 
about  unity. By “fundamental  mode,” we mean that  the wave 
function does not exhibit  a  null  in  either  the x- or y-direc- 
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Fig. 4. Slab  model:  (a)  and  (b) slabs free; (c) slabs joined. 

tions, i.e., V, < V,, where V, gives the  cut off for  the  next 
higher order  mode  and is roughly V, = 4 1271 -[29] . Thus, at 
h = 1 pm with e = $, for d, = 5 pm, we require  An < 5 X 
for fundamental-mode  operation  and calculate from  (10) 
G < 3 X IO-’; but for d, = 1 pm we require An < 0.14  and 
calculate G < 2 X Hence, it is  possible to obtain large 
G, in principle, but at  the expense  of  very  small  core dimen- 
sions, which are difficult to manage in practice. 

Experimentally,  a  beat length L = 0.75 mm at h = 0.63 pm 
(B = 8 X has been reported by Dyott et al. [25] for  a 
fiber with heavily doped core  (Ge + P) having  An = 0.065  with 
e = 0.6. The fiber was  collapsed elliptically with core dimen- 
sions 0.85 pm  by  2.14  pm. No attenuation measurements 
were reported. All  of the  modal birefringence was attributed 
to G, although it seems  reasonable  (as noted below) that 
some M contribution may also be present.  It can  be  shown 
[27]  that M and G, as  given in  (9), are both positive, and 
therefore, would add to give the observed B. 

In  an earlier experiment, elliptical core [20]  or cladding 
[30] -1321  geometries  were  achieved in borosilicate fibers by 
collapsing the  preform  under vacuum  or  by  grinding flats on 
the  preform  before collapse, respectively. Because  of the 
smaller An  the G values  were quite small  and  most 
of the observed B was attributed  to  strain  effects. 
Although Dyott 1251 , [26] did not indicate  the details of  his 
elliptical fiber, one  may surmise that  it resembles these boro- 
silicate fibers in  terms of strain  effects. 

Transverse strain birefringence  can  be produced  intentionally 
by differential thermal  contraction as the fiber is  drawn from 
a  preform  in  order to maximize B. The  maximum effect is 
obtained in a slab geometry [27] as illustrated  in Fig. 4.  Con- 
sider a very thm slab of  heavily doped silica with thckness t l  

sandwiched  between two thick slabs  of  silica  of  thickness to 
with to >> tl . If each slab has  the same width w at some  high 
temperature Ti and if the slabs  are free to move, then  at a 
lower temperature Tf the inner slab  will  have a lesser width 
by  an amount Aw  because the thermal expansion coefficient 
a1 for doped silica  is greater than  the coefficient a0 for pure 
silica, for  most  common  dopants. On the  other  hand, if the 
slabs are attached  at  their  interfaces  at Ti in  a  preform  and are 
drawn into a fiber at Tf (room  temperature),  the  inner slab 
will  be under  tension  in  the  x-direction,  the plane  of the slabs, 
with  strain 

Since the  outer slabs are thick,  they are rigid and assume their 
strain-free equilibrium dimensions.  There is no constraint 
present in the  y-direction so that S,, = 0 for all slabs. (The 
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strain in the inner slab in the  z-direction will  be the same as 

The outer slabs serve  as the strain inducing jacket,  the  doped- 
inner slab  as the cladding, and  a more heavily doped region in 
that slab as the guiding core. We can calculate the strain bi- 
refringence b in core and cladding glasses, and  estimate  the 
effective modal birefringence M by introducing  certain simpli- 
fying assumptions [27] . The expansion coefficient a1 is ap- 
proximately a linear function  of  dopant  concentration.  The 
initial temperature to be used in (17) is roughly the glass 
softening temperature. With suitable estimates for these pa- 
rameters for realizable concentrations of typical dopants,  the 
values calculated [27]  for glasses with 10 M percent Bz 03, or 
25 M percent GeO,, or  14 M percent P z 0 5 ,  respectively, are 

S,; S, = Sz.) 

S, = t7.6 x 10-4, t16.3 x 10-4, +20.8 x 10-4 (18) 

b = (n, - n,) = t 2  X t 4  X l o w 4 ,   t 5  X (19) 

where b is obtained  from S, via the  photoelastic  constant. The 
birefringence b in (19) corresponds to the core doping con- 
centration,  the birefringence in the more lightly doped cladding 
would be somewhat less. Both S, and b are proportional to 
doping concentration  and could be increased beyond (18) and 
(19) if higher concentrations could be realized. The tensile 
strain values in (18) are already close to the elastic limits for 
glass. The material birefringence b can be measured directly 
on slices of fiber by means of a polarizing microscope [27] . 

The effective modal strain birefringence M would be  given by 
an average of material birefringence b over core and cladding 
with  the wave function squared as weighting factor. Far from 
cutoff, we have to good approximation 

M =  b (20) 

with b the material birefringence in the core glass. Thus, at 
h = 0.5  pm,  the beat lengths corresponding to (19) are 

L = 2.5,1.25,1 mm. (21) 
As a practical matter,  it is useful to’ allow the  jacket to sur- 

round  the cladding as in Fig.  5(b). The strain birefringence is 
not significantly reduced as long as the thickness of the added 
wall 2w’ is much less than w,  so that S,, in  the inner slab  is 
negligible. 

On the other  hand, if w’ is large, 2w’>> w, S, and S, 
should be equal so that b = 0. Nevertheless, experimental 
fibers with  an elliptical core and/or cladding surrounded by a 
thick  jacket  do exhibit strain birefringence [31] . The pro- 
posed reason is that  the materials flow rather  than yield to 
elastic strain as we have assumed above. The silica hardens at a 
temperature well  above that  for  the heavily doped glasses. 
When M was plotted against ellipticity e for  a fiber with  a 
round silica core, elliptical borosilicate cladding, and  thick sur- 
rounding silica jacket,  it was found  that M = b approached 
2 X as e approached 1, in agreement with (19). 

Preforms with the ideal slab geometry are difficult to pre- 
pare with high purity glasses. However, strain birefringence 
approximating that of the slab geometry can be intentionally 
introduced by the “exposed cladding” technique 1331 . One 
starts  with  a circular preform  containing core, cladding, and 
thick  jacket. Then part of the  jacket is removed to asym- 

‘ 
(b) 

IDEAL FIBER 

ACTUAL FIBER 

(C) 

Fig. 5 .  Exposed  cladding method (from [34]): (a) cutting the preform; 
(b) ideal, slab-like cross section; (c) photograph of fibers. 

metrically expose,  or nearly expose,  the cladding. The tech- 
nique was first applied to a borosilicate fiber [33] and later 
applied to  a germanosilicate fiber [34] as illustrated in Fig. 5. 
The round  preform,  with  about  25  percent GeOz in  the  core, 
is cut as indicated in Fig. 5(a). When the fiber is drawn, sur- 
face tension minimizes the perimeter and produces the cross 
section  photographed in Fig. 5(c), which is seen to be  a good 
approximation to the ideal geometry in Fig. 5(b). Based on 
the beat length L = 1.5 mm at h = 0.515 pm for  this fiber 
[34], as shown  in Fig. 3,  B = M =  3.2 X which is in 
reasonable agreement with (19) when uncertainties  in  the cal- 
culation and  experiment are considered. The material bi- 
refringences b measured in the core and cladding, respectively, 
using a polarizing microscope were t3.3 X and t2.1 X 
loc4. The geometrical contribution to B should be relatively 
small and is neglected here. 

If a normal mode with polarization x is excited  at  the  input 
of a fiber of length E and  the output powers in the two normal 
modes are Px and P,,, then  the  extinction  coefficient r) is  de- 
fined as 

17 = p y p x  * (22) 

For E = 10 m  at h = 0.515 pm,  the measured g for  the above 
fiber was less than  It was difficult to measure very  small 
g because of energy guided in  the cladding. The fiber at- 
tenuation was  also  large (>lo0 dB/km), which limited the 
length that could be studied  [34] . 

ANALYSIS OF RANDOM POLARIZATION COUPLING 

We would like to calculate the powers P, and Py as func- 
tions of fiber length  z due to  the random  perturbations that 
couple the  two polarizations. Since every length of fiber is 
different and may vary with time or  environment,  the best we 
can do is to compute an ensemble average  over  all fiber 
lengths: 

(7) = (PJ(P,). (23) 
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The problem of mode coupling by random  perturbations has 
been treated by Marcuse 1351, [36] . Adapting his analysis to 
polarization modes, we find 

<Px> = e-hz cosh hz (24) 

<P,> = e-hz sinh hz (25) 

(77) = tanh hz (26) 

for Px (0) = 1 and Py (0) = 0.  
The coupling parameter h is obtained  from [36] 

f x , ( z ) = ~ ~ ~ E ~ . y ( z ) . E y ~ ~ y  4 1Q (27) 

with 

I! = 3 E . c ~ ~ I  E, I' dx dy (28) 

where y(z) (e - F) is a tensor random  quantity that repre- 
sents  the small deviations of  the dielectric tensor e ( x , y )  from 
the  unperturbed dielectric tensor T as a  function of z .  Only 
off-diagonal elements y,, ( z )  give nonvanishmg coupling. 

Any strains or geometrical variations that have principal 
axes not coincident with x, y will contribute to yx,. These 
distortions may be  introduced during manufacture  or during 
operation as the result of bends, twists, stresses, or tempera- 
ture changes. Strains  introduced by a bend produce  a bi- 
refringence with axes in the plane of the  bend and normal to 
it [ 3 7 ]  . Strains introduced  by  a twist rotate  the polarization 
through an  angle about 0.07 times the twist angle [38]. 
Lateral strains produced by  external stresses introduce differ- 
ential birefringence components along and  normal to the 
stress [39]. 

The optical fields Ex and E, for  the fundamental HE:,- and 
HE$,-modes  have similar functional  forms but with x and y 
interchanged.  Thus, (27) and (29) give 

f x y  (z)  = ( m i )  ?x, (z> (29) 

(yx, ( z ) )  = 0 .  (3 0) 

N u )  = ( T x y  (2) yx, (z - u)) (3 1) 

where i = On the average, the  perturbation vanishes: 

The autocorrelation  function of the random perturbations is 

and  the power spectrum is 
m 

( I  r (K)  12)  = 1 R(u)  exp (-iKu) du. (32) 
- m  

Thus [35], 

h = (k2/4)  ( I I' (Bk) 1') (33) 

where Bk = (0, - 0,) is the difference in propagation con- 
stants  for  the  coupled modes. 

It is  clear from (26) that (71) -+ 1 as z -+ M, unless h is identi- 
cally zero. In most cases of practical interest, hz << 1, so that 

( r ) )  = hz. (34) 

For the 10 m long fiber with r) < 1 0-3 that was mentioned in 

the previous section, we estimate h < m-l, and,  for  a 
fiber having the statistical properties of this 10 m  section, we 
calculate from (34) 7) < lo-' for Z = 1 km. 

It is evident from  (33) that h can be reduced by reducing 
I r ( K )  1' at K = Bk either  by reducing the power spectrum 
function or, assuming 1 r(K) 1' decreases monotonically with 
increasing K ,  by increasing B. A direct experimental study of 
I r ( K )  l 2  on  a scale  less than A = 1 mm would appear to be 
quite  tedious  and difficult. However, one could make reason- 
able changes in fiber preparation and measure h in order to 
note improvements. One could also prepare similar fibers with 
different values of B in  order to  map I F ( K )  1'. 

MODAL NOISE IN BIMODAL FIBERS 
The problem of modal noise in multimode fibers has been 

discussed by  Epworth [40]. The relative delays between 
modes may vary with time due to  thermal  drifts in the wave- 
length of the laser source, or to thermal or mechanical phase 
shifts in the  fiber. With a  coherent source, the interference 
(speckle) pattern  at  the  output of the fiber will fluctuate. 
However, if the fiber is  lossless, the  total  output power  will be 
constant. On the  other  hand, if  an aperture (such as a mis- 
aligned splice) or mode-selective loss (such as micro- or macro- 
bending) is present,  the  total output power  will fluctuate. The 
amplitude  of  fluctuations, normalized to the average power, 
will increase with a decrease in  number of modes propagated, 
other things being equal. 

The worst case occurs in a bimodal fiber where complete 
fading can occur as the phase shift between the modes varies 
between 0 and 180". A "single-mode'' fiber that is propagating 
two modes with orthogonal polarizations is a case  in point. 
Then any polarization-sensitive loss will  give  rise to modal 
noise, or fading. 

A beam splitter used as a  monitor is  an example of a 
polarization-sensitive device that should be avoided. However, 
because of the paraxial nature of the fundamental-mode fiber, 
other  types of perturbations, such as bending loss in  a coiled 
fiber, nonnormal splices, or directional coupler taps are not ex- 
pected to  introduce  substantial polarization-dependent ab- 
sorption. Nevertheless, the designer of a nominally circular 
"single-mode'' fiber system should make a  quantitative esti- 
mate of this noise source or avoid introducing polarization- 
sensitive loss mechanisms. 

DISPERSION IN BIREFRINGENT FIBERS 
In  a typical fiber system, special  care  is not taken to excite 

just one of  the  normal modes of polarization and  the light 
travels in both modes of the fiber. The delay between the 
two orthogonally polarized waves  is 

T = (Z/C) (. + k g ) .  (35) 

The second term may be neglected when the modes are far 
from  cut-off or when B x M  with G negligible. In this case, 
the pulse-spreading of an impulse traveling in both polariza- 
tions is  given by (r/Z) = 1 ps/km (=SO0 G Hz . km) for B = 
3 X corresponding to a nominally circular fiber, and 
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(7/1) = 1  ns/km ( ~ 5 0 0  MHz km)  for B = 3 X In  the 
former example, B will not limit the performance  of systems 
with  bit-rates less than 1 Gbit/s  and Z < 100 km,  but in the 
latter example B will introduce  a modal dispersion limit unless 
all the energy is propagated in one  mode. I 

If G is not negligible and  the fiber is operated near cutoff, 
the second term in (35) must be taken into account. The two 
terms may have opposite signs so that 7(V) is maximum at 
V =  1.2 and vanishes at V =  2.5 [21] , [22],  [26] . The maxi- 
mum value is approximately 

T (1.2) m 2nZeA2/c. (3 6) 

For e = 0.1 and A = 0.06, (36) gives a polarization dispersion 
of 40 ps/km or  25 GHz * km. Polarization dispersion of  this 
magnitude is the limiting bandwidth  constraint  for slightly 
elliptical single-mode fibers operating near the minimum ma- 
terial dispersion wavelength at 1.3 pm  or near the waveguide 
compensated minimum at 1.5 pm  [41] . More complete calcu- 
lations  [41] also show that  the core ellipticity must be less 
than 2.5 percent in  order to realize a  bandwidth of 100 GHz 
km  at 1.15 pm. 

The polarization-mode dispersion has been measured [ 151 in 
a nominally circular fiber and found to  be in agreement with 
(35). Compensation of  the dispersion in a  short length of 
fiber by a  double twist was also demonstrated. It was noted 
that  for random coupling between the polarizations, the dis- 
persion delay would be proportional to Z’I’, as  in multimode 
fibers with mode coupling. The pulse spreading in  the presence 
of mode coupling is proportional to (ZZC)’’’, where Z, is a char- 
acteristic coupling length  [42] . In  the case  of (26), 1, m h-’.  
Thus, large h would reduce modal dispersion well below the 
value calculated in (35). 

CONCLUSIONS 
Interest  in the utilization of polarization effects in fibers is 

continuing to  grow. A number  of valuable and elegant devices 
have already been proposed and  demonstrated;  and we should 
expect  others. 

Practical application of these devices  call for low-loss fibers 
that possess either very low modal birefringence or very  large 
birefringence with very small mode coupling perturbations. 
Virtually nothing has been done to  study  or minimize these 
perturbations. Although the problem is difficult to attack,  it 
is essential for  the realization of polarization maintaining fibers. 

Fibers with modal birefringence B as  small  as 4.5 X lo-’, 
with  beat  length L = 140 m at h = 0.63  pm, have been demon- 
strated. These fibers appear to be suitable for Faraday effect 
devices requiring relatively short lengths in a well-controlled 
environment. 

Fibers, with B as  large  as 8 X with L = 0.75 mm at 
h = 0.63  pm, have already been demonstrated. These fibers 
may be suitable for sensor and other applications requiring 
short lengths. However, unless the  cut off period 4 for  cou- 
pling perturbations can be increased well beyond L ,  it is not 
likely that polarization can be satisfactorily maintained over 
lengths much greater than 1 km. 

Although losses appear to be  large in the large B fibers at 
present, high-loss may not be intrinsic, even with  the high 

doping concentrations required. Nevertheless, recent measure- 
ments indicate Rayleigh scattering can introduce losses in  ex- 
cess of 2 dB/km  at  1.5  pm for fibers heavily doped  with 
germanium [43] . New geometries, fabrication conditions, or 
dopants may soon provide low-loss, polarization-maintaining 
fibers. 

REFERENCES 
[ l ]  H. Harms, A. Papp,  and K. Kempter,  “Magnetooptical  properties 

of  index-gradient  optical  fibers,”  Appl.  Opt., vol. 15, pp. 799- 
801, 1976. 

(21 A. M. Smith,  “Polarization and magnetooptical  properties of 
single-mode optical  fibers,”  Appl.  Opt., vol. 17, pp. 52-56, 1978. 

[3] L. G. Cohen, “Measured attenuation and  depolarization of light 
transmitted  along glass fibers,”  Bell  Syst. Tech. J., vol. 50, pp. 

[4] F. P. Kapron, N. F. Borelli, and D. B. Keck, “Birefringence in 
dielectric optical waveguides,” IEEE J. Quantum  Electron., vol. 

[5]  V. Vali and R. W. Shorthill,  “Ring  interferometer 950 m. long,” 

[6] S .  Ezekiel  and S .  R. Balsamao, “Passive ring  resonator laser gyro- 

(71 R. Ulrich and M. Johnson,  “Fiber-ring interferometer: Polariza- 

[SI G. B. Hocker,  “Fiber-optic sensing of pressure and temperature,” 

191 R. A.  Steinberg  and T. G. Giallorenzi,  “Performance  limitations 
imposed on optical waveguide switches  and modulators by 
polarization,” Appl. Opt., vol. 15, pp. 2440-2453, 1976. 

[ lo ]  R. C. Alferness,  “Polarization-independent  optical  directional  cou- 
pler switch using weighted  coupling,” Appl. Phys. Lett., vol. 35, 
pp. 148-750, 1979; W. K. Burns, T. G. Giallorenzi,  R. P. Moeller, 
and E. J. West, “Interferometric waveguide modulator with po- 
larization-independent operation,” Appl. Phys. Lett., vol. 33, pp. 

[ 111 R.  H. Stolen  and A. Ashkin,  “Optical  communication effect in 
glass waveguide,” Appl. Phys. Lett., vol. 22, pp. 294-296, 1973. 

[ 121 R. H. Stolen,  “Polarization  effects in fiber  Raman and Brillouin 
lasers,” IEEE J. Quantum  Electron., vol. QE-15, pp. 1157-1160, 
1979. 

[13] R.  H. Stolen and E. H. Turner,  “Faraday rotation in highly bi- 
refringent  optical  fibers,”Appl.  Opt., vol. 19, pp. 842-845,  1980. 

[ 141 R. Ulrich,  “Polarization  stabilization  on a single-mode fiber,” 
Appl. Phys. Left., vol. 35, pp. 840-842, 1979. 

[15] S .  C. Rashleigh and R. Ulrich, “Polarization  mode  dispersion  in 
single-mode fibers,” Opt. Lett.,  vol. 3, pp. 60-62,  1978. 

[16] A. Papp and H. Harms,  “Polarization  optics of index-gradient 
optical waveguide fibers,” Appl. Opt., vol. 14, pp. 2406-2411, 
1975. 

[ 171 A. Simon and R. Ulrich,  “Evolution of polarization  along a single- 
mode  fiber,”Appl. Phys. Lett., vol. 31, pp. 517-520, 1977. 

[ 181 P. H. Krawarik and L. S .  Watkins, “Fiber  geometry  specifications 
and  its  relation to measured  fiber  statistics,” Appl. Opt., vol. 17, 

[ 191 E. Snitzer and H. Osterberg, “Observed dielectric waveguide 
modes in  the visible spectrum,” J. Opt. Soc. Amer., vol. 51, pp. 

[ 201 V. Ramaswamy and W. S .  French, “Influence of noncircular  core 
on  the  polarization  performance of  single mode  fibers,”  Electron. 
Lett., vol. 14, pp. 143-144,  1978; V. Ramaswamy, W. G. French, 
and R. D. Standley,  “Polarization  characteristics  of  noncircular 
core single-mode fibers,” Appl. Opt., vol. 17, pp. 3014-3017, 
1978; V.  Ramaswamy, R. D. Standley, D. Sze, and E. G.  French, 
“Polarization  effects  in  short  length, single-mode fibers,”  Bell 
Syst..Tech. J., vol. 57, pp. 635-651,  1978. 

[21] J .  D. Love, R. A. Sammut,  and A. W. Snyder,  “Birefringence in 
elliptically  deformed  fibres,”  Electron. Lett., vol. 15, pp. 615- 
616,1979. 

[22] D. L. A. Tjaden,  “Birefringence in single-mode optical fibre  due 
to core  ellipticity,”  Philips J.  Res., voi. 33, pp. 254-263,  1978. 

[23] H. Schneider, H. Harms, A. Papp,  and H. Aulich, “Low- 
birefringence single-mode optical  fibers:  Preparation  and  po- 
larization  characteristics,”  Appl.  Opt., vol. 17, pp. 3035-3037, 
1978. 

23-42,  1971. 

QE-8, pp. 222-225, 1972. 

Appl. Opt., V O ~ .  16, pp. 290-291, 1977. 

scope,” Appl. Phys. Lett., vol. 30, pp. 478-480,  1977. 

tion  analysis,”Opt. Lett.,vol. 4, pp. 152-154, 1979. 

Appl. Opt., V O ~ .  18, pp. 1445-1448, 1979. 

944-947, 1978. 

pp. 3984-3989,1978. 

499-505, 1961. 



22 IEEE  JOURNAL OF QUANTUM  ELECTRONICS, VOL. QE-17, NO. 1, JANUARY 1981 

[24] S. R. Norman, D.  N. Payne, M. J. Adams, and A. M. Smith, 
“Fabrication of  single-mode fibers  exhibiting  extremely  low  po- 
larization birefringence,” Electron. Lett., vol. 15, pp.  309-310, 
1979. 

[25] A. Papp and H.  Harms, “Polarization optics  of liquid-core optical 
fibers,” Appl. Opt., vol. 16,  pp.  1315-1319,  1971. 

[26] R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of po- 
larization  in optical-fiber waveguides with elliptical cores,” Elec- 
tron. Lett., vol. 15,  pp. 380-382, 1979. 

1271 I. P. Kaminow and V. Ramaswamy, “Single-polarization optical 
fibers: Slab model,” Appl. Phys. Lett., vol. 34, pp. 268-370, 
1979. Note: a factor  of 2 is  missing  in the  square  root of (4); 
the quantity 10.8 should read 20.8 in  (12). 

[28] J. R. Cozens and R. B. Dyott, “Higher-mode cutoff  in elliptical 
dielectric waveguide,” Electron. Lett., vol. 15,  pp.  558-559, 
1979. 

[29]  In  [26] and [28],  the cut-off condition is based on  the smaller 
core diameter rather  than  the larger diameter.  This  approach  may 
allow multimode behavior in  the long dimension. 

[ 301 R. H .  Stolen,  V. Ramaswamy, P. Kaiser, and W. Pleibel, “Linear 
polarization in birefringent single-mode  fibers,”AppZ. Phys. Lett., 
vol.  33, pp. 699,  701,  1978. 
V. Ramaswamy, R. H. Stolen, M. D.  Divino, and W. Pleibel, “Bi- 
refringence in elliptically clad borosilicate single-mode  fibers,” 

V. Ramaswamy, W. G. French,  and J. W. Shiever, “Borosilicate 
single polarization fibers,” in Tech. Dig. Integrated and Guided- 
Wave Con5 , Include Village, NV, Paper MA5, Jan.  1980. 
V. Ramaswamy, I. P. Kaminow, P. Kaiser, and W. G. French, 
“Single polarization optical fibers: Exposed cladding technique,” 
Appl. Phys. Lett., vol. 33,  pp. 814-816, 1978. 
I. P. Kaminow, J. R. Simpson, H. M. Presby, and  J. B. MacChesney, 
“Strain birefringence in single-polarization germanosilicate opti- 
cal fibers,” Electron. Lett., vol. 15,  pp. 677-679, 1979. 
D.  Marcuse, Theory of Dielectric Optical Waveguides. New 
York: Academic, 1974, ch. 5 .  
D. Marcuse, “Coupled-mode theory  for  anisotropic  optical wave- 
guides,” Bell Syst. Tech. J., vol. 54,  pp. 985-995, 1975. 
R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending induced 
birefringence in single-mode fibers,” Opt.  Lett., vol. 5,  pp. 273- 
275, 1980; S. C. Rashleigh and R. Ulrich, “High birefringence in 
tension-coiled single-mode fibers,” Opt. Lett., vol. 5, pp. 354- 
356,  1980. 

Appl. Opt., V O ~ .  18, pp.  4080-4084,  1979. 

[38] R. Ulrich and A. Simon, “Polarization Optics of twisted single- 
mode fibers,” Appl.  Opt., vol. 18, pp. 2241-225 1, 1979; yi FuJii 
and K. S ~ O ,  “Polarization coupling in  twisted elliptical optical 
fiber,”Appl. Opt., vol. 19, pp. 2602-2605, 1980. 

[39J Y. Namihira, M. Kudo,  and Y. Mushiake, “Effect of mechanical 
stress on  the transmission characteristics of optical fiber,” Trans. 
IECE (Japan), vol.  60-C, pp. 107-115, 1977. 

[40] R. E. Epworth,  “The  phenomenon of modal noise  in fiber sys- 
tems,” presented at the  Opt.  Fiber Commun. Conf., Washington, 
DC,  Mar. 1979,  paper  Th  Dl. 

[41] H. Tsuchiya  and N. Imoto, “Dispersion-free  single-mode fibre in 
1.5 pm wavelength region,” Electron. Lett., vol. 15,  pp. 476- 
478,  1979. 

[42] S. D. Personick, “Time dispersion in dielectric waveguide,” Bell 
Syst. Tech. J., vol. 50,  pp. 843-859, 1971. 

[43] H. Matsumura, T. Katsuyama, and T. Suganuma, “Fundamental 
study of single polansation  fibres,”presented  at  the 6th European 
Conf.  Opt. Commun., York, England, Sept. 1980. 


