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Temperature Sensitivity and Shape Optimization
of Solid-State Wave Gyroscopes

Erdal Yilmaz, Member, IEEE, and David Bindel, Member, IEEE

Abstract—We analyze the change of angular gain and vibration
frequency of solid-state wave gyroscopes as a result of geometry
perturbations due to thermal expansion. We analyze sensitivity
of the device to thermal expansion effects by an isoparametric
finite element analysis method, and we analyze the sensitivity
to thermal changes in the material properties assuming a linear
dependence on temperature. We quantify these sensitivities for
common device geometries, and use our analysis as the basis for a
local optimization problem that minimizes temperature sensitivity
as a function of device shape.

Index Terms—gyroscope, solid-state wave, rate-integrating,
temperature sensitivity, shape optimization.

I. INTRODUCTION

TEMPERATURE is one of the most important environ-
mental factors affecting gyroscope performance. Temper-

ature variations change both material properties and geometry
of resonators. The elastic coefficients of conventional mate-
rials used in microfabrication change almost linearly within
the standard range of operational temperatures. Also, due to
thermal expansion, the device geometry and material density
change slightly. Owing to these changes, in harsh operating
conditions, like very low or high temperatures, or in the case of
a thermal shock, gyroscope parameters drift considerably. For
high-performance gyroscope design, it is critical to identify,
quantify and control these drifts.

A solid-state wave gyroscope is a particular type of Coriolis
Vibratory Gyroscope [1]. Its resonator is an axisymmetric
thin shell with degenerate pairs of vibrational modes. The
degeneracy is split as a result of coupling by the Coriolis
force. A standing wave pattern, formed by the split pair, rotates
together with the gyro platform. However, it lags behind by
a certain ratio, called Bryan’s factor, which is a function of
device cross section and vibration mode pair [2], [3]. Based on
the orientation of the standing wave, we can measure rotation
of the platform. This property holds even if the rotation speed
is not constant [4].

As material properties and geometry change due to thermal
effects, the frequency, damping and coupling coefficients of
vibrations drift [5], [6]. But the temperature induced changes
to the shape of an axisymmetric resonator leave the symmetry
intact. As a result, the modal frequencies and damping co-
efficients of the mode pair change together without splitting.
Equivalently, we can consider thermal expansion as an axisym-
metric imperfection [3]. Because it depends on the geometry
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of the cross section and Poisson’s ratio, Bryan’s factor is also
affected by thermal expansion.

Designers search for active or passive methods to minimize
thermal effects and provide simple calibration procedures.
An active control mechanism that keeps the temperature
constant, as in oven-controlled crystal oscillators, minimizes
drifts at the expense of additional power and requires a well-
designed thermal isolation stage [7]. Another mechanism can
be constructed by observing changes in some parameters,
due to temperature, to compensate for the drifts in others.
Frequency based compensation is common in practice utilizing
phase locked loops in a feedback circuit [8], [9]. However,
a passive control mechanism, like composite material design
[10], is desirable, because active control increases mechanical
and electrical complexity and thereby the size and power
consumption.

Structural shape optimization is another passive control
mechanism which can be used to minimize performance
degradation due to enviromental factors [11]. Conventional
shapes for solid-state wave gyros include rings, cylinders and
hemispherical shells. As a result of miniaturization efforts,
half-toroidal shells have also been fabricated [12]. These
simple shapes allow analytical solutions for gyro related vi-
bration problems and are relatively easy to fabricate. However,
there is no a priori reason why these shapes would result in
robust designs. Based on sensitivity analysis [13], local shape
optimization of conventional geometries might improve gyro
performance.

The paper is organized as follows. In the next section,
we present a lumped model of a solid-state wave gyro and
define scale factors for two operation modes. In Section III,
we describe the computational details in our simulations.
We show how temperature sensitivities can be computed via
axisymmetric thermal expansion, and we formulate a local
shape optimization problem to minimize the sensitivities. In
Section IV, we present our results for conventional geometries.
Lastly, we discuss possible geometric improvements.

II. BACKGROUND

The lumped model of a solid-state wave gyroscope involves
two degenerate, coupled, damped and driven harmonic oscil-
lators:

q̈ + 2(γI +AgΩJ)q̇ + ω2q = f + ξ (1)

I ≡
[
1 0
0 1

]
, J ≡

[
0 −1
1 0

]
(2)

where the vectors q(t), f(t) and ξ(t) correspond to generalized
coordinates, drive forces and noise, respectively [14]. ω is the
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Fig. 1. Wave-inertia effect and operation in rate-integrating mode. Top left:
Initial position of standing wave. Top right: (x, y) inertial frame, (x′, y′)
gyroscope frame, (x′′, y′′) standing wave frame. The device rotates by θ.
Standing wave rotates by (1−B)θ. A material point is marked with a circular
dot and a point of anti-node of the standing wave is marked with a square
dot. Bottom left: Initial position of the linear trajectory. Bottom right: Line
rotates by −Agθ.

undamped angular vibration frequency and Ω is the rotation
rate of the gyro platform. γ = ω/2Q is the damping coefficient
and Q represents the quality factor. Ag is known as angular
gain.

As the device temperature T changes, coefficients of the
lumped model drift. Computing γ(T ), Ag(T ) and ω(T ) re-
quires modeling geometric changes of the resonator. In this
paper, we focus on computing the last two. The damping
coefficient γ(T ) depends on the relevant damping mecha-
nisms. The most common damping mechanisms are anchor
loss, surface loss and thermoelastic dampings. The dominant
damping mechanism is design dependent. In this paper, we
only provide a formulation for sensitivity of thermoelastic
damping; but similar mathematical ideas can be used to
compute the sensitivity of other damping effects. We will also
leave aside the noise performance which is partly studied for
rate mode operation in [15].

The ideal rate-integrating mode of operation corresponds to
a rotating linear trajectory in the configuration space (q1, q2)
(Fig. 1) [4]. In fact, it is an ellipse degenerated to a line. When
the gyro system rotates by an angle θ around its symmetry
axis, the orientation of the linear trajectory rotates by −Agθ.
For a device using vibration modes with azimuthal number m
and corresponding Bryan’s factor, B:

Ag = B ×m (3)

Computation of B for a general axisymmetric body was
previously shown [3].

Solid-state wave gyroscopes may be coupled to control
circuitry to compensate for energy loss in rate integrating mode
or to maintain the vibration shape in a reference state when
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Fig. 2. Left: Axisymmetric shell. Clamped at the bottom boundary, free at
the top boundary. Center: Cross section in (r, z)-plane. Right: Computational
mapped domain.

operating in rate mode. In either mode, the sensor output is
the desired rotation angle or rotation rate times a scale factor
that depends on the angular gain Ag and the control circuit
transfer function. The angular gain will drift with temperature,
resulting in temperature sensitivity of the scale factor. The
control circuit also exhibits temperature sensitivity, but we
focus on the sensitivity of the mechanical system in this paper.

III. METHOD

We consider the steady-state temperature distribution of the
resonator, the substrate and their environment. By differenti-
ating a linear axisymmetric thermal expansion problem, we
compute the sensitivities of gyro parameters to temperature,
without solving for the deformation field explicitly. Tempera-
ture is treated as a global geometric design parameter.

A. Shell Geometry

Typical solid-state wave gyroscope resonators are axisym-
metric shells clamped at one of two boundaries and free on
the other (Fig. 2). The cross section of the shell’s midsurface
forms a plane curve on (r, z)-plane. We parametrize this curve
by its arclength, s. We use h, L and d to represent the thickness
of shell, the length of midline curve and the distance of the
clamped boundary from the symmetry axis respectively. We
denote the signed curvature of the midline as κ(s).

A plane curve (r0(s), z0(s)) is fully determined by its
curvature κ(s) up to a rotation:

dφ

ds
= κ(s) (4)

dr0
ds

= cos(φ(s)) (5)

dz0
ds

= sin(φ(s)) (6)

where φ(s) is the angle of the tangent to the curve. By
integrating the ODE with initial conditions (φ(0), d, 0) over
the range s ∈ [0, L], we construct a particular curve. Since
translation in z-coordinate has no effect on our computations,
we put the clamped boundary at the coordinate (d, 0). The
free boundary appears at s = L.

A standard approach in shape optimization is to use B-spline
representation. A special type of spline functions, NURBS, are
capable of representing quadratic shapes which are typical in
engineering design [16]. For local optimization, we can use
the coordinates of NURBS control points as design variables.



IEEE SENSORS JOURNAL, VOL. 16, NO. 2, FEBRUARY 2016 3

For computations, we define a smooth mapping from
(x1, x2) ∈ [−h/2, h/2]× [0, L] to the cross section on (r, z)-
plane using the midline coordinates (r0, z0):

r(x2) = r0(x2)− x1 sin(φ(x2)) (7)
z(x2) = z0(x2) + x1 cos(φ(x2)) (8)

For a valid representation, the cross-section should be in the
right half-plane (r ≥ 0) and non-self-overlapping. One of the
necessary conditions for the latter is |κ| < 2/h. Also, if for
every point A and B on the midline with ∆s > π/ |κ|max,
|AB| > h holds, then these two conditions are sufficient to
establish the non-self-overlapping property. Checking these
conditions is important if one chooses to generate random
curves.

B. Axisymmetric Thermal Deformation

In a material with initial strain ε0 and initial stress σ0, the
constitutive relationship is given as:

σ = C : (ε− ε0) + σ0 (9)

where C is the constitutive tensor for linear elasticity; see,
e.g. [17, §2.7]. In an isotropic material, thermally induced
initial strain is proportional to the temperature change ∆T =
T − T0 and linear thermal coefficient of expansion αL. In
our computations, we did not consider initial stress. Once the
shells are released, they are attached only at one boundary,
therefore they should not have built-in tension around their free
edge where most of the vibration energy is located. If there is
some unreleased stress, it will definitely cause problems.

For an axisymmetric expansion, the displacements are non-
zero only on the cross section, i.e. uθ = 0, and two compo-
nents of strain are zero, εrθ, εzθ = 0. After discretizing by
finite elements in the standard way, the discretized displace-
ment vector satisfies the matrix equation:

KTuT = fT (10)

In general, Eq.(10) is nonlinear, as the stiffness matrix and
thermal load vectors depend on the deformed geometry, i.e.
KT (uT ) and fT (uT , T ). In order to compute temperature sen-
sitivities, we need temperature derivatives of these quantities.

dKT

dT
uT + KT

duT
dT

=
dfT
dT

(11)

dKT

dT
=
∂KT

∂E

∂E

∂T
+
∂KT

∂ν

∂ν

∂T
+
∂KT

∂uT

∂uT
∂T

(12)

dfT
dT

=
∂fT
∂T

+
∂fT
∂E

∂E

∂T
+
∂fT
∂ν

∂ν

∂T
+
∂fT
∂uT

∂uT
∂T

(13)

For the temperature range of interest (-40C to 85C) the
material parameters for common microfabrication materials
change linearly. We write Young’s modulus and Poisson’s
ratio as follows: E(T ) = E0(1 + αE(T − T0)), ν(T ) =
ν0(1 + αν(T − T0)), where αE and αν are linear thermal
coefficients. The room temperature values are E0 = E(T0)
and ν0 = ν(T0). The material density also changes as
ρ(T ) = ρ0(1− 3αL(T − T0)) (Table I).

When the shell is thick enough, i.e. h/L � αL∆T , the
nonlinear effects can be ignored. Besides, in order to compute

the temperature sensitivities, we do not need to solve Eq.(10)
to find the deformation. The information from the temperature
derivative of the shape, duT /dT , is sufficient. Hence, we can
set ∆T = 0, uT = 0, and simply compute duT /dT on the
original geometry.

duT
dT

= K−1T
dfT
dT

(14)

C. Temperature Sensitivities

Due to thermal expansion, the computational domain be-
comes a function of temperature. Similar to geometric design
parameters, we can compute the temperature derivatives of
gyroscope parameters, which are basically quantities derived
from the finite element matrices. In other words, we can
compute the following: dω

dT , dγ
dT and dAg

dT .
For small damping and platform rotations, we can treat the

damping and Coriolis terms as perturbations to the original
vibration problem:

Ku = λMu (15)

where λ = ω2. By taking temperature derivatives of both sides
we can form a linear system to solve du/dT and dλ/dT :[

K− λM −Mu
uT 0

] [
u′

λ′

]
=

[
λM′u−K′u

0

]
. (16)

The primed variables stand for temperature derivatives. We
also used the normalization constraint uTu′ = 0.

The temperature derivatives of the finite element matrices
can be obtained via isoparametric sensitivity analysis with
mesh derivative expressed as the solution of Eq. 14 [13]. We
can express temperature sensitivity of frequency as:

1

ω

dω

dT
=

1

2λ

dλ

dT
. (17)

In a similar way, we find the temperature sensitivity of
Bryan’s factor. For the degenerate vibration modes u1 and
u2 with azimuthal number m, Bryan’s factor is:

B =
b

2mµ
, µ = uT1 Mu1, b = uT2 Cu1 (18)

where M and C are mass and gyroscopic finite element
matrices, and

µ′ = 2uT1 Mu′1 + uT1 M
′u1, (19)

b′ = −uT1 Cu′2 + uT2 C
′u1 + uT2 Cu′1. (20)

Finally, the temperature sensitivity of angular gain can be
obtained from that of Bryan’s factor:

1

Ag

dAg
dT

=
1

B
dB
dT

=
b′

b
− µ′

µ
. (21)

The sensitivity of the damping coefficient γ is related to
frequency and quality factor:

1

γ

dγ

dT
=

1

ω

dω

dT
− 1

Q

dQ

dT
. (22)

We already showed how to compute the first term. For quality
factor, similar temperature derivatives of matrices and vectors
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are needed depending on the damping model. In [18], a per-
turbation approach to compute thermoelastic damping yields
the following equations:

Q−1 = ξ |Imz| , ξ =
χ2T

ρcvE
, z =

uTKuθθ

uTKuuu
. (23)

The oscillating temperature field θ is solved as a perturbation:

(iωCθθ + ηKθθ)θ = −iωCθuu. (24)

Definitions of constants and finite element matrices involved
with Eq. 23–24. can be found in [18]. The sensitivity of quality
factor is:

1

Q

dQ

dT
= −Q d

dT
(ξ |Imz|). (25)

D. Simulation Approximations

While performing our simulations, we made some sim-
plifying assumptions. Other than assuming a linear thermal
expansion problem and linear temperature dependence of
material properties, as mentioned in previous sections, we
removed the substrate and post on which the resonator sits
from the simulations. We assumed post radius expands with
a linear thermal expansion coefficient αS . The effect of this
geometrical change shows itself as a translation in r-direction.
The expansion of the post together with the resonator in z-
direction can simply be ignored, since z-direction translations
do not affect the results. Also, at the clamp position, we let the
boundary expand in the thickness direction. This simply con-
strains ur and uz at the clamped boundary to be proportional
to distance from the midline, and also ur/uz = − tanφ0.

E. Shape Optimization
A meaningful cost function is important to any optimization

task. Ideally, the cost function for optimizing a gyro would
reward high performance and penalize sensitivity to imper-
fections or temperature variations; but to compute such a cost
function, we would need a detailed analysis involving not only
the resonator, but also the associated control circuitry. As a first
step to demonstrate our approach, we instead use a simpler
cost function, and only minimize temperature sensitivity. For
example, if we want to minimize the temperature sensitivity of
ω and Ag , we can define the following weighted cost function:

C(ψ) = wf (ω′/ω)2 + wg(A
′
g/Ag)

2 (26)

where the weights wf and wg reflect how much we want to
penalize sensitivity of frequency or angular gain, respectively,
with constraints:

ωmin < ω < ωmax (27)

|dω/dT | < ω′max (28)

Agmin < Ag < Agmax (29)

|dAg/dT | < A′gmax (30)

and minimize over the space of feasible device cross-sections.
We can either search locally, starting with an initial shape
and improving it using gradient-based shape optimization,
or search globally by randomly generating feasible midline
curves.

TABLE I
MATERIAL PROPERTIES AND GEOMETRY OF RESONATORS

Parameter Symbol Value
Young’s modulus E0 80GPa
Poisson’s ratio ν0 0.26
Material density φ0 2200 kg/m3

Thermal expansion coefficient of resonator αL 1.4× 10−6K−1

Thermal expansion coefficient of substrate αS 2.6× 10−6K−1

Thermal coefficient of E αE 2.5× 10−4K−1

Thermal coefficient of ν αν 3.0× 10−4K−1

Thickness to length ratio h/L 0.01
Post radius to length ratio (cylindrical) d1/L 12/5π
Post radius to length ratio (spherical) d2/L 12 sin(π/12)/5π
Post radius to length ratio (toroidal) d3/L 2/5π
Radius of hemisphere to length ratio R2/L 5π/12
Minor radius of torus to length ratio R3/L 1/π

r

z

d1 r

z
R2

d2 r

z

d3 R3

Fig. 3. Left: Cylindrical shell. Center: Truncated hemispherical shell. Right:
Half-toroidal shell.

IV. RESULTS

In this section, we present sensitivity computations for
certain device geometries and explore design space for im-
provements. In our simulations we used the spectral element
method.

A. Conventional Resonator Geometries

We investigated temperature sensitivities for three common
geometries: a cylindrical shell, a truncated hemispherical shell
and a half-toroidal shell (Figure 3). They all have the same
midline length and shell thickness. We select value of d so that
radial extents, rmax, are the same. We selected amorphous sil-
icon dioxide (aSiO2) and silicon for the materials of resonator
and post respectively. We computed thermal coefficients of
elastic properties of aSiO2 from tabulated data provided in
[19]. Numerical values used in these simulations are shown in
Table I. We are mainly interested in wineglass modes which
we identify with their azimuthal number m. These are flexural
modes with 2m nodal meridians. Simulation results for each
shape and azimuthal numbers m = 2 : 5 are tabulated in
Tables II, III and IV.

TABLE II
CYLINDRICAL SHELL

m Ag
1
Ag

dAg

dT
( ppb
K

) ω ( 1
L

√
E0
ρ0

) 1
ω
dω
dT

( ppm
K

)
2 0.744 −613 0.345 102.2
3 0.577 −1694 0.214 108.5
4 0.461 −1668 0.159 119.4
5 0.380 −1509 0.161 137.9
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TABLE III
TRUNCATED HEMISPHERICAL SHELL

m Ag
1
Ag

dAg

dT
( ppb
K

) ω ( 1
L

√
E0
ρ0

) 1
ω
dω
dT

( ppm
K

)
2 0.554 −305 0.028 108.2
3 0.487 −126 0.061 101.5
4 0.413 −24 0.115 105.0
5 0.353 131 0.182 108.8

TABLE IV
HALF-TOROIDAL SHELL

m Ag
1
Ag

dAg

dT
( ppb
K

) ω ( 1
L

√
E0
ρ0

) 1
ω
dω
dT

( ppm
K

)
2 0.304 −576 0.040 121.6
3 0.357 −220 0.091 110.5
4 0.341 14 0.165 110.5
5 0.311 379 0.252 111.2

Since all thermal coefficients are small, we can write
temperature sensitivity of angular gain or frequency as a sum
of all effects:

y = CLαL + CSαS + CEαE + Cναν (31)

where y is either (1/Ag)dAg/dT or (1/ω)dω/dT , and C’s are
constants for a particular resonator. By setting all α’s to zero
except one, we can compute the contribution of each thermal
effect. Tables V–X show decomposition of these effects for
each geometry.

TABLE V
CYLINDRICAL SHELL - THERMAL EFFECT COMPONENTS OF ANGULAR

GAIN SENSITIVITY

m 1
Ag

dAg

dT
( ppb
K

) CLαL CSαS CEαE Cναν

2 −613 56 −313 0 −356
3 −1694 251 −199 0 −1747
4 −1668 229 −117 0 −1781
5 −1509 178 −70 0 −1618

TABLE VI
CYLINDRICAL SHELL - THERMAL EFFECT COMPONENTS OF FREQUENCY

SENSITIVITY

m 1
ω
dω
dT

( ppm
K

) CLαL CSαS CEαE Cναν
2 102.16 −4.90 0.67 125 −18.6
3 108.48 −7.96 1.05 125 −9.5
4 119.41 −8.38 −0.05 125 2.9
5 137.94 −4.90 −2.62 125 20.5

TABLE VII
TRUNCATED HEMISPHERICAL SHELL - THERMAL EFFECT COMPONENTS

OF ANGULAR GAIN SENSITIVITY

m 1
Ag

dAg

dT
( ppb
K

) CLαL CSαS CEαE Cναν

2 −305 −105 −269 0 70
3 −126 0 −145 0 18
4 −24 0 −90 0 66
5 131 0 −63 0 194

TABLE VIII
TRUNCATED HEMISPHERICAL SHELL - THERMAL EFFECT COMPONENTS

OF FREQUENCY SENSITIVITY

m 1
ω
dω
dT

( ppm
K

) CLαL CSαS CEαE Cναν
2 108.25 −6.73 0.37 125 −10.3
3 101.55 0.64 −1.06 125 −23.0
4 105.03 0.70 −1.09 125 −19.6
5 108.83 0.70 −1.09 125 −15.8

TABLE IX
HALF-TOROIDAL SHELL - THERMAL EFFECT COMPONENTS OF ANGULAR

GAIN SENSITIVITY

m 1
Ag

dAg

dT
( ppb
K

) CLαL CSαS CEαE Cναν

2 −576 −4 −441 0 −131
3 −220 0 −231 0 11
4 14 0 −143 0 156
5 379 0 −99 0 477

TABLE X
HALF-TOROIDAL SHELL - THERMAL EFFECT COMPONENTS OF

FREQUENCY SENSITIVITY

m 1
ω
dω
dT

( ppm
K

) CLαL CSαS CEαE Cναν
2 121.63 0.64 −0.28 125 −3.7
3 110.52 0.70 −0.60 125 −14.6
4 110.49 0.70 −0.61 125 −14.6
5 111.19 0.70 −0.61 125 −13.9

Though these results do not show a single common pattern,
they nonetheless highlight some critical aspects of the designs.
Investigations for particular designs reveal dominant factors
and provide intuition for further improvements. For example:
• The cylindrical design is particularly sensitive to Pois-

son’s ratio, and so is more sensitive to temperature
variations than the hemispherical and toroidal designs.

• The effect of substrate thermal expansion matter just as
much to thermal sensitivity in the other designs, high-
lighting the importance of selection of the post material
and radius.

• However, for m = 2, substrate expansion is relatively
important to the toroidal shell, and expansion of the res-
onator is almost irrelevant. The sensitivity to the substrate
is greater for the toroidal shell than for the truncated
hemisphere, even though the toroidal shell has a smaller
anchor; thus, we attribute this effect to the shape itself.

• In general, the m = 3 modes are less sensitive to
temperature than the m = 2 modes, particularly when
the substrate effects are minimized. As discussed in [3],
the m = 3 mode may also be relatively robust to
microfabrication imperfections.

• For all devices and modes, angular gain is independent of
Young’s modulus. Frequency sensitivity depends strongly
on thermal variations of Young’s modulus, much more
than on any geometric effects; hence, new geometries are
unlikely to improve frequency sensitivity.

To illustrate how simulation can guide design for lower
thermal sensitivity, we consider two design problems. The first
one is related to the release of a hemispherical shell resonator
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Fig. 4. Temperature sensitivities of angular gain of truncated hemispherical
shell as a function of post radius to shell radius ratio. Smaller posts are
desirable for m = 2, 3 modes. It looks possible to null temperature sensitivity
of angular gain for m = 4.
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Fig. 5. Temperature sensitivities of frequency of truncated hemispherical shell
as a function of post radius to shell radius ratio.

by chemical etching. It is important to stop etching at the
right time since it determines the post radius, d2 (Fig.3). For
a constant shell radius, R2, we swept d2 value to analyze its
effect. We set h/R2 = 0.01 and selected characteristic length
as R2 (Figures 4 and 5).

We observe that the sensitivity of angular gain changes
more for the toroidal and hemispherical shells compared to
the cylindrical shell.

The second problem involves selecting d3 and R3 values
for a toroidal geometry with a simple constraint: d3 + 2R3 =
rmax. This problem is related to the design of a resonator
which encompasses a constant amount of circular area on the
chip. We select rmax as the characteristic length and keep
h/rmax = 0.01 constant in simulations (Figures 6 and 7).

For both problems we can identify m = 4 mode as a
good design candidate for minimal temperature sensitivity
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Fig. 6. Temperature sensitivities of angular gain of toroidal shell as a function
of post radius to rmax ratio. Smaller posts are desirable for m = 2, 3 modes.
It looks possible to null temperature sensitivity of angular gain for m = 4, 5.
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Fig. 7. Temperature sensitivities of frequency of toroidal shell as a function
of post radius to rmax ratio.

of angular gain. Also noticable is the high sensitivity of all
characteristics of m = 2 mode to the design variables.

Finally, we investigated the effect of thickness for both
truncated hemisphere and half-toroid shells. Results are shown
in Figures 8–11.

B. Gradient-Based Shape Optimization

The main idea of this section is to improve an initial design
by deforming the shapes using gradient information. In the
previous section, we showed how to optimize temperature
sensitivity by sweeping a simple parametric family of standard
geometries, such as spheres of varying radius. However, it
is usually difficult and sometimes impossible to achieve an
optimization goal with only a few design parameters. Standard,
simple shapes offer too little flexibility. Instead, we represent
the midline curve with NURBS [16], keeping the number of
control variables small to simplify the optimization task.
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Fig. 8. Temperature sensitivities of angular gain of truncated hemispherical
shell as a function of thickness.
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Fig. 9. Temperature sensitivities of frequency of truncated hemispherical shell
as a function of thickness.
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Fig. 10. Temperature sensitivities of angular gain of toroidal shell as a
function of thickness.
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Fig. 11. Temperature sensitivities of frequency of toroidal shell as a function
of thickness.

As a simple example, we represent the truncated hemi-
spherical shell with three control points (Fig. 12). The only
optimization variables are the coordinates of the middle point;
the positions of the points at the clamped and free edges are
fixed. Initially, we constrain the motion of our control point to
the line connecting its initial position to the center of sphere.
In this form, the problem is similar to 1DOF design problems
we looked at perviously, and we search for an optimal position
on the line with a gradient based method. It is also easy
to verify the result a sweeping analysis (Fig. 12). For the
subsequent computations, we used an open source nonlinear
optimization package [20]. With this particular geometry and
materials, we searched an optimal location on the dashed line.
We selected the initial position as the origin and the negative
direction is towards the spherical center. We searched within
a coordinate range of [−0.35, 0.2] on this line. We found null
locations for temperature sensitivity of angular gain for modes
m = 2 and 5. However, it was a monotonically decreasing
function of the coordinate along the dashed line for modes
m = 3 and 4. If we consider contour plots of this function,
as a function of (r, z)-coordinates of the middle control point,
its zero locations will be possibly be curves. It is less likely
to have isolated null points or two-dimensional null regions.
During the line search, for m = 2, 5 one of those curves
intersected the dashed line within our search range providing
us with luck. Consequently, we can hope to find an optimal
location for m = 3, 4 by searching a two dimensional region.
We selected a rectangular region as shown in Fig. 13. This
selection is a subset of regions where the generated curve can
be written a single valued function, z(r). It is convex and an
increasing with r. Luckily, we found a null location for mode
m = 4 (Fig. 13). Gradient search converged to a point on the
boundary of the box. When we swept the region, we found
that the converged result actually sits inside a valley, which is
one of those null curves we mentioned.

Even though a local minimum exist for m = 3, it does not
improve the sensitivity of the original design by even a factor
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Fig. 12. The simplest shape optimization problem. Bottom left: Three control
points representing truncated hemispherical shell. The middle point is free to
move along the dashed line while the other two are fixed. Bottom middle and
right: Optimal shape and new position of the control point which minimizes
temperature sensitivity of angular gain for modes m = 2 and m = 5
respectively. Top: Local minimum of the cost function for m = 2 and m = 5
by sweeping the position of control point on the dashed line.

of two. In order to find a null solution for m = 3, we could
introduce another free control point. Instead, we prefered to
use results from previous section as a guideline. We found
that the effect of the substrate is considerable, so we let the
control point at the clamp to move in the r direction within a
box constraint, [0, d2]. This finally resulted in a null for m = 3.

The more control points we have, the better we can control
the shape. However, this results in solving a higher dimen-
sional optimization problem. As an example, we demonstrate
local optimization of toroidal shell problem with two repre-
sentations, with 5 and 9 control points, respectively (Fig. 14).
As in the case of the hemispherical shell, it is possible
to represent the initial geometry perfectly using quadratic
NURBS. However, if the control points are allowed to move
without constraints, the resulting spline may fail to be twice
differentiable, which we do not want. We can address this
problem in one of two ways. We can constrain the knot
locations, e.g. forcing the three inner points to be co-linear in
the five point case (for C1 continuity) and matching curvature
at the middle point. This reduces the number of effective
degrees of freedom from 6 to 4 in the 5-point case, and from
14 to 8 in the 9-point case. A simple alternative is to use
higher-order NURBS functions (at least two higher than the
maximum knot multiplicity), which leaves the optimization
problem free from equality constraints. In Figure 14, we show
two shape improvements for m = 2.

As we have seen with the previous examples, even for
a simple cost function without many constraints, it can be
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Fig. 13. Left: 2DOF optimization. The middle point is free to move in
a 2D rectangular region. Optimal shape and position shown for m = 4.
Middle and right: 3DOF optimization. Control point at the clamp is also free
to move in radial direction. Optimal shapes and positions for m = 3 and
m = 4 respectively. Bottom: Surface plot of the logarithm of cost function
corresponding to the 2DOF problem. The shaded region is divided into 25
steps in (r, z)-directions. (x, y)-indices correspond the location of the control
point within this design space. In the valley, the temperature sensitivity of
angular gain is zero.

r

z

r

z

r

z

r

z

Fig. 14. Top: Two representations of a toroidal shell with 5 and 9 control
points corresponding to a quadratic and a quartic NURBS. Bottom: Improved
shapes for m = 2.

challenging to find an optimal solution. So far, we just used
wf = 0 and wg 6= 0 with box or linear constraints. Adding
new degrees of freedom helped us achieve design goals in
otherwise impossible situations. Control points allowed us to
define free form shapes. Still, we only sought a local optimum
starting from a familiar initial geometry.

The next obvious question we can ask is whether there is
a different geometry which brings together many desirable
qualities at once. One can attempt to answer such a question
by randomly searching the space of all possible curves. Since
we did not have many realistic performance measures, we did
not go into this direction.

V. DISCUSSION

The analysis in this paper demonstrates our computational
approach, but in practical applications it is important to con-



IEEE SENSORS JOURNAL, VOL. 16, NO. 2, FEBRUARY 2016 9

sider features other than temperature sensitivity. For example,
even though post radius can form a good design variable to
minimize temperature sensitivity of angular gain, we know that
larger posts will in general result in lower quality factors. Also,
operating in the m = 4 mode may require more electrodes
than other modes, and the resulting design may be more
strongly affected by microfabrication imperfections [3]. From
this perspective, the m = 3 mode with a small post may be
preferable. In addition, we have reported linear sensitivity at
a fixed operating temperature. Linear sensitivity analysis is
less expensive than sweeping the temperature. But variations
with temperature may not be linear over the whole temperature
range, either because of geometry variations or because of
nonlinear dependence of material parameters on temperature.
We leave a more complete investigation of nonlinear effects
to future work.

VI. CONCLUSION

We showed that temperature sensitivity of angular gain is
an additive component to scale factor sensitivity. Starting from
linear thermal expansion, we computed temperature sensitivi-
ties of both angular gain and vibration frequency. We analyzed
conventional geometries and decomposed sensitivities into
thermal effects due to resonator expansion, post expansion
and change of material properties. We discovered that thermal
effects can compensate each other and through simple geo-
metrical design we can null angular gain sensitivity. We also
showed how gradient based shape optimization techniques can
be used to improve performance.
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