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Abstract—To improve responsiveness, oftentimes developers
use asynchronous programming. In the post-PC era, asyn-
chronous programming is even more in demand because mo-
bile and wearable devices have limited resources and access
the network excessively. One contemporary development task
is refactoring long-running, blocking synchronous code (e.g.,
accessing the web, cloud, database, or file system) into non-
blocking asynchronous code. This paper educates the mobile app
developer on the kinds of refactorings they need to perform
to improve responsiveness, along with the obstacles of using
asynchrony. We also present our formative studies on under-
standing the challenges that developers face when retrofitting
asynchrony, our program analyses and transformations together
with our growing, practical toolset and resources that enable app
developers to retrofit asynchrony.

Index Terms—refactoring, asynchronous programming, pro-
gram analysis.

I. INTRODUCTION

SYNCHRONOUS programming is in demand today.

Asynchrony is essential for I/O activities that are po-
tentially blocking (e.g., accessing the web or the file system),
or for long-running CPU activities (e.g., image encoding/de-
coding). Asynchrony helps an application to stay responsive
because the application can continue with other work.

Asynchrony is especially valuable for applications that
access the Ul thread. Today’s Ul frameworks are usually
designed around the use of a single UI event thread: every
operation that modifies Ul state is executed atomically as
an event on that thread. The UI “freezes” when it cannot
respond to input, or when it cannot be redrawn, and because
it seems non-responsive, the user might become frustrated.
It is recommended that long-running CPU-bound or blocking
I/O operations execute asynchronously so that the application
continues to respond to Ul events.

Other times, asynchrony is the natural programming model.
For example, event-driven programming models arise naturally
to match the asynchronicity of input streams coming from
diverse sources such as touchscreen, accelerometer, micro-
phones, and other sensors on smartphones. Similarly, modern
web applications make extensive use of asynchrony, via AJAX
requests, and also of asynchronous code loading to reduce
perceived page load time.

Without any loss of generality, in the rest of this paper we
will use the domain of mobile devices as examples of asyn-
chronous programming (other domains like desktops/laptops
and web have the same asynchronous constructs). We focus
on mobile apps because we expect to find many exemplars
of asynchronous programming, given that responsiveness is
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critical. Mobile apps can easily be unresponsive [1] because
mobile devices have limited resources and have high latency
(excessive network accesses). With the immediacy of touch-
based Uls, even small hiccups in responsiveness are more
obvious and jarring than when using a mouse or keyboard.
Some sluggishness might motivate the user to uninstall the
app, and possibly submit negative comments in the app
store. Moreover, mobile apps are becoming increasingly more
important. End users are rapidly moving from the desktop to
the mobile world. According to Gartner [2], by 2016 more
than 300 billion apps will be downloaded annually.

There are several key problems that programmers encounter
when working with asynchrony:

Lack of methods and tools for converting synchronous
to asynchronous code. In our formative studies based on
hundreds of open-source apps, we found that half of all
asynchrony usages in real-world apps have not been intro-
duced from scratch, but have been converted from previously
existing synchronous code. This step is a source-to-source
transformation that needs to preserve the current functionality
of the application (albeit improve some non-functional prop-
erty such as responsiveness), thus it is a refactoring [3]-[6].
This refactoring requires complex code transformations that
invert the flow of control and introduce callbacks to notify
the caller when an asynchronous operation is finished. Also,
the refactoring requires reasoning about non-interference of
asynchronous operations with the main thread of execution,
otherwise the asynchrony can lead to non-deterministic data
races. In our preliminary studies [7], [8] we have found,
reported, and submitted hundreds of accepted patches against
data-races caused by manual refactoring for asynchrony in
Android and C# applications.

Currently, developers solve such problems and carry such
non-trivial transformations manually. However, interactive
refactoring tools can help.

Lack of clear knowledge of how to convert synchronous
into asynchronous code. There are extensive program-
mer documentation (e.g., Android Best Practices for Perfor-
mance [9]) or tools that detect I/O blocking operations (e.g.,
StrictMode [10] for Android). But they primarily focus on
designing async programs from scratch. Thus, many existing
programs suffer from poor responsiveness. A recent award-
winning ICSE’14 paper [1] found that 75% of performance
bugs in Android arise because of missed opportunities to
introduce asynchrony in UI code. In our own preliminary
results [7], [8] we discovered hundreds of places in Ul code
where asynchrony should have been used. We suggested 10
such places to the developers of four projects, and they
subsequently changed their code to use asynchrony. This
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shows the need for educational resources on how to retrofit
asynchrony.

We started to address some of these challenges by releasing
educational resources, such as http://learnasync.net, that show
thousands of examples of correct and incorrect usage of asyn-
chrony in real-world apps. On the tooling side, we have been
developing automated refactorings for converting synchronous
into asynchronous code. We implemented refactorings that
improve responsiveness of mobile apps by extracting long-
running CPU or I/O blocking code into asynchronous code. We
explored different flavors of asynchrony, such as framework-
based callbacks in the Android SDK, task-based futures and
continuations, etc.

Moreover, we also implemented refactorings for modern-
izing legacy asynchronous code. For example, one of our
refactorings replaces the legacy style of asynchrony in the
10-year old Asynchronous Programming Model (APM) from
.NET 1.0 with modern asynchronous language constructs such
as the async/await from the most recent version of .NET.

The interested reader can learn more and download our
growing toolset for refactoring at: http://refactoring.info/tools

II. EXAMPLES OF REFACTORINGS FOR ASYNCHRONY

We will first introduce the asynchrony terminology, then we
will use examples from the domain of GUI programming on
mobile devices to illustrate different refactoring flavors and
the refactorings that we support. Although our code examples
use C# and .NET APIs, similar constructs already exist or are
planned for Java and Android.

Most GUI frameworks such as the ones in .NET, Android,
108, etc., use an event-driven model. Events in mobile apps
include lifecycle events (e.g., GUI screen creation), user
actions (e.g., button click, menu selection), sensor inputs (e.g.,
GPS, screen orientation change), etc. Developers define event
handlers to respond to these events.

GUI frameworks use a single thread model to process
events [9]. When an application is launched, the system creates
a main thread, i.e., the Ul event thread, in which it will run the
application. This thread is in charge of dispatching UI events
to appropriate widgets or lifecycle events to screen pages. The
main thread puts events into a single event queue, dequeues
events, and executes corresponding event handlers.

When a GUI event handler executes a synchronous long-
running CPU-bound or blocking I/O operation, the user inter-
face will freeze because the UI event thread cannot respond to
events. Consider the example in Fig. 1a which shows a handler
that responds to a button click by downloading the content of
the entry webpage of IEEE Computer Society and displaying
it. Notice that the main thread invokes a blocking, potentially
long-running operation, getResponse, which downloads the
content of the webpage, and the UI will become unresponsive
while the download is in progress. Fig 2a shows the execution
flow for this code, and highlights the time when the UI is
frozen during the page download.

To avoid unresponsiveness, programmers exploit asyn-
chrony by encapsulating and running blocking I/O or long-
running CPU computations in the background.

Next, we present the two prevalent styles of asynchronous
programming. In Sec. II-A we present the framework-based,
callback-based style, and in Sec. II-B we present the new
pause-and-play style based on async/await language con-
structs. Our refactoring toolset targets both styles.

A. Refactoring from synchronous to callback-based asyn-
chrony

Figure 1b shows the refactored, asynchronous version of the
code in Fig. 1a. The .NET framework introduced a callback-
based Asynchronous Programming Model (APM), in its first
version and APM has been in existence for 10 years. APM
asynchronous operations are started with a Begin method
invocation. The result is obtained with an End method in-
vocation. In Fig. 1b, BeginGetResponse is such a Begin
method, and EndGetResponse is an End method.

Fig 2b shows the execution flow for the asynchronous
code in Fig 1b. BeginGetResponse initiates an asynchronous
HTTP GET request. The .NET framework starts the I/O opera-
tion in the background (in this case, sending the request to the
remote web server). Control is returned to the calling method,
the UI event handler in this case, which can then continue
to do something else, thus it is responsive. When the server
responds, the .NET framework will “call back” to the appli-
cation to notify that the response is ready. EndGetResponse
is then used in the callback code to retrieve the actual result
of the operation.

Notice an important difference between the synchronous
example in Fig. la/2a and the asynchronous, callback-based
example in Fig. 1b/2b. In the synchronous example, the
Button_Click method contains the Ul update (setting the
download result as contents of the text box). However, in
the asynchronous example, the final callback contains an
invocation of Dispatcher.BeginInvoke(...) to change
context from the thread pool to the UI event thread and to
post an update on the display (updating GUI elements from
outside of the UI thread results in dataraces).

There are many other variations of the prevalent callback-
based asynchronous programming. The .NET framework also
supports a Task Asynchronous Programming (TAP) model,
that uses lightweight tasks. The task represents the asyn-
chronous operation and its future result. Other languages such
as Java, Scala or Python also use the task-based concepts
(sometimes called futures), though any long-running or block-
ing I/O operation needs to be encapsulated by the programmer
into a task. For example, the Android app developer needs
to encapsulate such tasks in AsyncTask (for short-running
operations) or IntentService (for long-running operations).

B. Refactoring  from  callback-based
async/await language constructs

asynchrony  to

So far, the dominant models for asynchronous APIs (e.g.,
Android, C# versions prior to 5.0, etc.) rely on programmers
reasoning about callbacks. However, callbacks invert the con-
trol flow, are awkward, and obfuscate the intent of the original
synchronous code [11], [12].
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void Button_Click(...) { 1 void Button_Click(...) { 1 async void Button_Click(...){
var request = WebRequest.Create(”computer.org”); 2 var request = WebRequest.Create(”computer.org™); 2 var request = WebRequest.Create(”computer.org”);
var response = request.GetResponse(); 3 request.BeginGetResponse(Callback, request); 3 var response = await request.GetResponseAsync();
var stream = response.GetResponseStream(); 4 4 var stream = response.GetResponseStream();
textBox.Text = stream.Read AsString(); 5 5  textBox.Text = stream.ReadAsString();
} 6 void Callback(IAsyncResult aResult) { 6 }
7  var request = (WebRequest)aResult. AsyncState; 7
8  var response = request.EndGetResponse(aResult); 8
9 var stream = response.getResponseStream(); 9
10 var content = stream.ReadAsString(); 10
11 Dispatcher.BeginInvoke(() => { 11
12 textBox.Text = content; 12
13} 13
14 } 14 .

(a) Original sync code

(b) callback APM

(c) async/await

Fig. 1: Synchronous and two asynchronous versions of the same code for reading text from the web. Subfigure (a) shows the original
synchronous code, (b) shows the asynchronous refactoring using callback-based constructs, (c) shows the async/await version.
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(a) Execution of the synchronous code.

(b) Execution of the callback-based APM code (c¢) Execution of the async/await-based code

Fig. 2: Runtime execution flow of the code in Fig. la—c. Notice that the time flows from top to bottom. In subfigure (a) the UI is frozen
while waiting for the I/O operation, whereas in subfigures (b) and (c) the UI can process other events during the I/O operation.

Lets revisit our example in Fig 1b. Using the APM-style
has two main drawbacks. First, the code that must be exe-
cuted after the asynchronous operation is finished, must be
passed explicitly to the Begin method invocation. Even more
scaffolding is required: The End method must be called, and
that usually requires the explicit passing and casting of an
‘async state’ object instance - see Fig 1b, lines 7-8. Second,
even though the Begin method might be called from the UI
event thread, the callback code is executed on a thread pool
thread. To update the UI after completion of the asynchronous
operation from the thread pool thread, an event must be sent
to the UI event thread explicitly - see Fig 1b, line 11-13.

Recently, major programming languages (C# and Visual Ba-
sic [13], F# [11], and Scala [14]) introduced async constructs
that resemble the straightforward coding style of traditional
synchronous code. In the remainder of this section we will
use the variant introduced by C# 5.0.

The model introduced by C# 5.0 is based on the async and
await keywords. When a method has the async keyword
modifier in its signature, the await keyword can be used
to define pausing points. When a Task is awaited in an
await expression, the current method is paused and control
is returned to the caller. When the await’ed background
operation is completed, the method is resumed from right after
the await expression.

Figure lc shows the async/await-based equivalent of
Fig. 1b. The code following the await expression can be
considered a continuation of the method, exactly like the
callback that needs to be supplied explicitly when using APM

or plain TAP. Figure 2c shows the execution flow for the
async/await-based code in Fig. lc.

There is one important difference between async/await
continuations, and APM callback continuations: APM al-
ways executes the callback on a thread pool thread. In
async/await continuations, the await keyword, by default,
captures information about the thread in which it is executed.
This captured context is used to schedule execution of the rest
of the method in the same context as when the asynchronous
operation was called. In our example, because the await
keyword is encountered in the UI event thread, once the
background operation is completed, the continuation of the
rest of the method is scheduled back onto the UI event thread.
This behavior allows the developer to write asynchronous code
that resembles the original synchronous code (compare Fig. 1a
and Fig. 1c).

With the advent of new async/await constructs, the asyn-
chronous code looks deceptively similar to the synchronous
code. While we applaud such engineering feats from the
language designers and compiler writers, the app developer
needs to be aware of the fundamental differences in the
execution models, as illustrated in Fig. 2a, 2b, 2c.

III. FORMATIVE STUDIES

It is easy for academic research to become disconnected
from the software practice and for researchers to build tools
that do not solve immediate real-world problems. In order
to avoid this, we started building a refactoring toolset for
asynchrony which is grounded on empirical studies of how
developers use, misuse, or underuse asynchrony.
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We describe below two recent studies we conducted to ob-

tain a deep understanding of the problems with asynchronous
programming in Android and Windows Phone apps.
Study of Asynchrony in Android [7]. We conducted a for-
mative study to understand how Android developers use asyn-
chrony to improve responsiveness. We analyzed a corpus of
the top 104 most popular Android apps in GitHub, comprising
1.34M SLOC, produced by 1139 developers. This formative
study answers questions about use, misuse, and underuse of
asynchrony. We found that 48% of the studied projects use
asynchrony in hundreds of places, and half of these retrofitted
asynchrony via manual refactoring. This shows that refactoring
is in demand.

We also found that 251 places in 51 projects execute
long-running operations in the UI event thread, and should
have used asynchrony. We submitted refactoring patches for
6 apps. Developers of 4 apps replied and accepted 10 of our
refactorings. This shows that refactorings are valuable.
Study of Asynchrony on Windows Phone [8]. For our Win-
dows phone study, we analyzed 1378 open source Windows
Phone (WP) apps, comprising 12M SLOC, produced by 3376
developers. This study helps us understand how programmers
use asynchrony via the newly introduced language constructs
async/await [13]. The next major version of Java also plans
to support similar language constructs.

We found that in 76% of cases, developers use the old
style of callback-based asynchronous idioms. However, Mi-
crosoft officially no longer recommends these asynchronous
idioms [15]. Since refactoring callback-based idioms to new
async/await idioms is non-trivial, there is a need for refac-
toring tools.

IV. REFACTORING OBSTACLES

While asynchronous programming is key for improving
responsiveness, it also presents several obstacles that
developers must overcome. Based on our formative studies,
in this section we present a list of top-10 questions that app
developers must answer competently before they refactor
synchronous into async code. Answering these questions
wrongly, or not answering them at all, has severe consequences
for (i) correctness [7] — resulting in data-races which are
hard to debug, (ii) performance [8] — resulting in significant
slowdowns or even deadlocks, (iii) maintainability [8], [16]
— resulting in obsolete code, and (iv) usability — resulting in
confusing interfaces.

Obstacle #1: Concurrency.

Below are some concurrency-related questions, related to
(1) parallel execution, (2) data dependencies, (3) calling con-
text, and (4) continuation:

1) What other code may run in parallel with the asyn-
chronous code? Besides the main thread, are there other
event handlers, or background threads spawned by the
app, that could be running in parallel with the async
code?

2) Are there dependencies between the code to be executed
asynchronously and the other code that may run in
parallel?

3) Is the code to be refactored called from within UI event
thread or other thread?

4) After getting back the result from the async code, does
the continuing code update the UI?

In our formative study of Android apps, we found that for
13 apps that contained manual refactorings, the asynchronous
code accesses objects in a way which is not thread-safe.
We discovered 77 data races on GUI widgets; while 53
races were already fixed by developers in later versions, we
discovered and reported 24 new races along with the patch
to fix them. The developers acknowledged and accepted our
patch, showing that manual refactoring is error-prone.

Inspired by these developer needs, we released a refactoring
tool, ASYNCHRONIZER, which helps the Android programmer
to safely convert synchronous into asynchronous code. As
is typical in the refactoring community, to ensure the safety
of our automated refactorings, each refactoring is guarded
by preconditions, i.e., certain criteria that the input code
must satisfy before it can be safely refactored. Due to lack
of space here, the interested reader can learn more about
these preconditions in our research papers [7], [8], [16] and
download the tools at [17].

Obstacle #2: Performance. Below are some performance
questions, related to (1) non-blocking execution on the UlI,
(2) identifying other opportunities, and (3) vendor-specific
guidelines:
1) After I encapsulate work within a task, does the code
launch it asynchronously?
2) Is there any other long-running or I/O blocking code still
in the UI thread?
3) Does my code follow the vendor-specific performance
recommendations for the platform that I am targeting?

We found misuses as real anti-patterns, which hurt perfor-
mance and caused serious problems like deadlocks. In our
Android case study, we found that in 4% of the cases, the
code launches an asynchronous task and immediately blocks to
wait for the task’s result. Thus, the code appears to have async
syntax, but runs synchronously instead of asynchronously. We
found similar problems in our previous studies on concurrent
libraries in C# [8], [18]. We found that 14% of methods
that use (the expensive) async/await keywords do this
unnecessarily: the awaited statement is the last one in an
async method, thus the method will be paused unnecessarily
since the async method will be awaited anyway at its call
site. In the example below, the last await is unnecessary
because the task returned by SendPutRequestAsync and
then ChangeTemperatureAsync will be awaited anyway at
the call site of ChangeTemperatureAsync (not shown here):

public async Task<?> ChangeTemperatureAsync(...) {

J;éi;urn await SendPutRequestAsync(url, requestString);
}

In addition, in our WindowsPhone study, we found that 19%
of methods do not follow an important good practice [19] that
an async method should be awaitable unless it is the top level
event handler. When an async method returns void instead
of a Task, the code fires an async method which can not be
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awaited later on, thus wasting resources. We call this idiom
“fire-and-forget”.

Moreover, we found that 1 out of 5 apps misses opportuni-
ties in async methods to increase asynchrony.

We also found that developers (almost) always unnecessarily
capture Ul context, hurting performance. Recall the example
from Fig. 1c where the remainder of the async method exe-
cutes on the Ul thread. As asynchronous GUI apps grow larger,
there can be many small parts of async methods all using the
UI event thread as their context. This can cause sluggishness
as responsiveness suffers from “death by a thousand of paper
cuts”: the asynchronous code should run in parallel with the
UI event thread instead of constantly badgering it with bits of
work to do.

Such large numbers of misused async/await suggest a
need for transformation tools that find and fix performance
anti-patterns. Thus, we developed a tool, ASYNCFIXER, which
detects and recommends fixes for several async/await
anti-patterns. We encourage the reader to try it at:
http://learnasync.net

Obstacle #3: Continuous, sometimes aggressive, API evolu-
tion. Like any useful API, the asynchronous APIs constantly
evolve to support better constructs, hardware improvements
that enable compiler optimizations, etc. Just because the de-
veloper has used asynchrony on her code, it does not mean that
she will never change that async code again. The app developer
must answer questions related to evolution of programming
models:

1) Am I willing to learn a new programming model and

change my already asynchronous code to support it?

We already presented in the previous section the refac-
toring from legacy callback-based async code into modern
async/await. As another example, consider the evolution
of async constructs inside of the Android platform. An-
droid provides three major async constructs: AsyncTask,
IntentService, and AsyncTaskLoader. AsyncTask is de-
signed for encapsulating short-running tasks, while the other
two are good choices for long-running tasks. However, as our
most recent formative study [16] on a corpus of 611 Android
apps shows, AsyncTask is the most widely used construct,
dominating by a factor of 3x over the other two choices
combined.

Using AsyncTask excessively for long-running tasks results
in memory leaks, lost results, and wasted energy [16]. Thus, a
developer might consider refactoring from an AsyncTask to
IntentService. However, this refactoring is non-trivial due
to drastic changes in communication with the GUI. This is a
challenging problem because a developer needs to transform a
shared-memory based communication (through access to the
shared variables) into a distributed-style (through marshaling
objects on special channels). Fortunately, this is a problem that
is in the realm of semi-automated refactoring tools.

Inspired by these obstacles, we released two refactoring
tools that modernize existing async code: (i) ASYNCDROID
enables the Android programmer to convert AsyncTask
to IntentService; (i) ASYNCIFIER enables the .NET
programmer to upgrade APM call-back style code into

modern async/await. Both are available at [17].

Obstacle #4: Changing the UI paradigm. As a result
of retrofitting asynchrony, the app developer might have to
change the UI paradigm as well. Consider again the motivating
example from Fig. 1. Using the UI (not shown here) for
the synchronous model of Fig. 1a, a user can only press the
button once, then has to wait for the download to finish before
executing other UI actions. With the asynchronous models of
Fig. 1b—c, the user can click the download button multiple
times consecutively. Thus, multiple requests for downloading
the same page might be in progress at the same time. This can
frustrate the user and/or lead to inefficient use of resources.
The app developer must answer questions related to (1) Ul
workflow, and (2) UI decomposition:

1) If an async operation is already in progress, should the
triggering UI widget be disabled?

2) How can I group my UI widgets to balance responsive-
ness (making the user feel in control) and efficient use
of resources (to avoid wasted subsequent requests that
are overriding each others’ result)?

Answering such questions might require the developer to
rethink the UI workflow model and layout. For example, a
developer might disable a UI widget while an async operation
is in progress, or show progress report during long-running
operations, etc.

V. PRACTICAL IMPACT OF OUR REFACTORING TOOLSET
A. Online Educational Resources

In our formative studies, we have seen extensive underuse
and misuse of asynchronous constructs. This raises the ques-
tion: Why is the misuse so extensive? Are developers unaware
of the risks or performance characteristics of async/await?

To significantly improve education, we developed a portal,
http://learnasync.net with educational resources for the .NET
programmer who wants to learn about async constructs.

Developers learn a new programming construct through
both positive and negative examples. Thus, on our portal, we
provide thousands of real-world examples of all asynchronous
idioms. Because developers might need to inspect the whole
source file or project to understand the example, our portal
links to highlighted source files on GitHub, so developers see
the async code in its surrounding context.

So far, our portal has received more than 36,000 visitors
within the 2 years since we launched it.

B. Transformation tools

Android tools. Our refactoring tool, ASYNCHRONIZER, en-
ables app developers to extract long-running operations into
AsyncTask, the primary callback-based async construct in
Android.

To evaluate ASYNCHRONIZER’s usefulness, we used it to
refactor 135 places in 19 open-source Android projects. We
evaluate ASYNCHRONIZER from five angles. First, since 95%
of the cases meet refactoring preconditions, it means that the
refactoring is highly applicable. Second, in 99% of cases,
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the changes applied by ASYNCHRONIZER are similar with
the changes applied manually by open-source developers,
thus our transformation is accurate. Third, ASYNCHRONIZER
changes 2394 LOC in 62 files in just a few seconds per
refactoring. Fourth, using ASYNCHRONIZER we discovered
and reported 169 data races in 10 apps. Developers of 5 apps
replied and confirmed 62 races. This shows that the automated
refactoring is safer than manual refactoring. Fifth, we also
submitted patches for 58 refactorings in 6 apps. Developers of
4 apps replied and accepted 10 refactorings. This shows that
ASYNCHRONIZER is valuable.

The tool and experimental subjects are available for
download at: http://refactoring.info/tools/asynchronizer

NET tools. We developed both refactoring tools
(ASYNCIFIER), and tools to find and fix misuses of
async constructs (ASYNCFIXER). In our paper [8] we show
that our tools are highly applicable and efficient. Developers
find our transformations useful. Using ASYNCIFIER, we
applied and reported refactorings in 10 apps. 9 replied and
accepted each one of our 28 refactorings. The developer of
PHONEGUITARTAB said that he had “been thinking about
replacing all asynchronous calls [with] new async/await
style code”. This illustrates the demand for tool support for
refactoring.

Using ASYNCFIXER, we found and reported misuses in
19 apps. 19 replied and accepted each of our 286 patches.
This shows that developers deeply care about these problems.
The developer of SOFTBUILDDATA experienced performance
improvements after applying our patch: “[...] response time
has been improved to 28 milliseconds from 49 milliseconds.”

A subset of our ASYNCIFIXER will ship with the official
release of Visual Studio at the end of 2015. Developers can
find demos and download our tools at: http://learnasync.net

C. From individual to ecosystem outreach

There are several ways for researchers to move their re-
search into practice: to connect with individual developers
and companies, or to connect with whole communities of
developers. We call the former the “downstream” approach,
because the researcher integrates the research at the end of
an already existing pipeline of tools that developers already
use. We call the latter the “upstream” approach, because the
researcher packages the research into an ecosystem of tools
that gets supplied to a large community of developers. We
have been pursuing both outreach approaches.

On the individual outreach, we have been submitting refac-
toring patches to hundreds of open-source projects. Moreover,
we recently replicated our open-source study [8] of asyn-
chronous constructs on the code-base of an industrial partner
from the Pacific NorthWest. At the end of this experience, the
industrial partner had a clear sense of how their proprietary
codebase compares to the open-source projects in terms of
density of usage, misusage, and under-usage of async con-
structs. This was a clearly a win-win situation: we expanded
our research on case studies that would otherwise be unavail-
able to us, while the company gained a deeper understanding

of their async code practices and a list of actionable items.
We are proactively looking for new partnerships.

On the ecosystem approach, we have been already working
with IDE developers (Visual Studio, Eclipse, NetBeans) by
contributing our research as plugins that already ship with
the official IDE version. We will continue to explore this
even more. We are currently working with Google to deploy
our refactoring and transformation tools as analyzers for
the Shipshape [20] static analysis platform. The vision is
for Shipshape to become a widely-used platform. Any app
developer that wants to check code quality, for example before
submitting an app to the app store, would run Shipshape on
her code base. Shipshape allows custom analyzers, such as
our async analysis and transformations, to plug in through a
common interface. Shipshape generates analysis results along
with transformation patches that developers can accept on their
code. We expect that by contributing new async analyzers to
ShipShape, millions of app developers would benefit by being
able to execute our analysis and transformations on their code.

While the ecosystem outreach approach provides a massive
impact opportunity, the individual outreach has its own ben-
efits. Among others, it provides unique points of interaction
with developers, early feedback from users, deep insights into
problems that industry faces, and the ability to replicate open-
source experiments on industrial code bases. Thus, we are
always interested in industrial partners that want to engage
with us.

VI. RELATED WORK

Empirical studies [1], [21] of performance bug patterns
in Android apps revealed that lack of responsiveness is the
main culprit. Testing researchers [22]-[25] have used machine
learning, concolic, and random testing to generate test inputs
for mobile apps. However, our work is complementary: we
explore how programmers can use refactoring to eliminate the
performance issues that are detected by testing.

While refactoring has been traditionally associated with
improving the design of code, the refactoring community
has been taking a similar approach to improve other non-
functional requirements, for example performance. In 2009 we
published the first research paper [26] that opened the field
of interactive refactorings for parallelism, and continued to
publish extensively on this topic, see our summary paper [27]
that also describes the related work in this field, afferent tools
are available online [17].

While our formative studies [7], [8], [16] identified misuse
and underuse of refactoring in the specific context of re-
sponsiveness in mobile apps, other researchers have described
such problems in general software: Kim et al. [28] present a
field study at Microsoft on refactoring challenges and benefits,
Murphy-Hill et al. [29] present the state of the practice in
refactoring usage, others [30], [31] studied use/disuse/misuse
of refactoring in general.

VII. CONCLUSION

With their rich array of sensors, camera, and GPS, all
integrated in a convenient form factor, mobile devices can
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offer new and exciting applications and services that were
not possible before on consumer devices. But these can be
harnessed only if mobile applications leverage asynchrony to
ensure responsive behavior.

This paper gives a flavor of the kinds of refactorings that
app developers must perform on their code base in order to
improve responsiveness. We presented the benefits, but also the
obstacles of asynchrony, along with our ongoing refactoring
tools to retrofit asynchrony, as well as to migrate legacy async
code to modern constructs. We also present transformation
tools that find and fix misuses of async constructs.

Moreover, we hope that our educational resources show
developers the potential as well as the pitfalls of using async
constructs in their code. We are constantly looking for indus-
trial partners that we can help to discover their async practices
and refactor their code to improve responsiveness.
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