IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions

IEEE Power \& Energy Society

Sponsored by the
Power System Instrumentation and Measurements Committee

IEEE

3 Park Avenue
New York, NY 10016-5997, USA

This is a Redline Document produced by Techstreet, a business of Thomson Reuters.

This document is intended to provide users with an indication of changes from one edition to the next. It includes a full-text version of the new document, plus an indication of changes from the previous version.

Redlines are designed to save time and improve efficiencies by using the latest software technology to find and highlight document changes. More professionals are using valuable new technologies like redlines, to help improve outcomes in a fastpaced global business world.

Because it may not be technically possible to capture all changes accurately, it is recommended that users consult previous editions as appropriate. In all cases, only the current base version of this publication is to be considered the official document.

Redline Processing Notes:

1. Red Text-Red strikethrough text denotes deletions.
2. Blue Text - Blue underlined text denotes modifications and additions.

IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions

Sponsor
Power System Instrumentation and Measurements Committee
of the
IEEE Power \& Energy Society

Approved 2 February 2010
IEEE-SA Standards Board

Figure 1 © 1983 IEEE. Reprinted, with permission, from the IEEE and R. H. Stevens.
Abstract: Definitions used for measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions are provided in this standard. Mathematical expressions that were used in the past, as well as new expressions, are listed, as well as explanations of the features of the new definitions.

Keywords: active power, apparent power, nonactive power, power factor, reactive power, total harmonic distortion

[^0]IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied "AS IS."

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation, or every ten years for stabilization. When a document is more than five years old and has not been reaffirmed, or more than ten years old and has not been stabilized, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon his or her independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered the official position of IEEE or any of its committees and shall not be considered to be, nor be relied upon as, a formal interpretation of the IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Recommendations to change the status of a stabilized standard should include a rationale as to why a revision or withdrawal is required. Comments and recommendations on standards, and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board

445 Hoes Lane
Piscataway, NJ 08854
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by The Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +19787508400 . Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

Introduction

This introduction is not part of IEEE Std 1459-2010, IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions.

The definitions for active, reactive, and apparent powers that are currently used are based on the knowledge developed and agreed on during the 1940s. Such definitions served the industry well, as long as the current and voltage waveforms remained nearly sinusoidal.

Important changes have occurred in the last 50 years. The new environment is conditioned by the following facts:
a) Power electronics equipment, such as Adjustable Speed Drives, Controlled Rectifiers, Cycloconverters, Electronically Ballasted Lamps, Arc and Induction Furnaces, and clusters of Personal Computers, represent major nonlinear and parametric loads proliferating among industrial and commercial customers. Such loads have the potential to create a host of disturbances for the utility and the end-user's equipment. The main problems stem from the flow of nonactive energy caused by harmonic currents and voltages.
b) New definitions of powers have been discussed in the last 30 years in the engineering literature (Filipski and Labaj [B9] ${ }^{\text {a }}$). The mechanism of electric energy flow for nonsinusoidal and/or unbalanced conditions is well understood today.
c) The traditional instrumentation designed for the sinusoidal $60 / 50 \mathrm{~Hz}$ waveform is prone to significant errors when the current and the voltage waveforms are distorted (Filipski and Labaj [B9]).
d) Microprocessors and minicomputers enable today's manufacturers of electrical instruments to construct new, accurate, and versatile metering equipment that is capable of measuring electrical quantities defined by means of advanced mathematical models.
e) There is a need to quantify correctly the distortions caused by the nonlinear and parametric loads, and to apply a fair distribution of the financial burden required to maintain the quality of electric service.
This standard lists new definitions of powers needed for the following particular situations:

- When the voltage and current waveforms are nonsinusoidal
- When the load is unbalanced or the supplying voltages are asymmetrical
- When the energy dissipated in the neutral path due to zero-sequence current components has economical significance
The new definitions were developed to give guidance with respect to the quantities that should be measured or monitored for revenue purposes, engineering economic decisions, and determination of major harmonic polluters. The following important electrical quantities are recognized by this standard:
- The power frequency ($60 / 50 \mathrm{~Hz}$ or fundamental) of apparent, active, and reactive powers. These three basic quantities are the quintessence of the power flow in electric networks. They define what is generated, transmitted, distributed, and sold by the electric utilities and bought by the end users. This is the electric energy transmitted by the $60 / 50 \mathrm{~Hz}$ electromagnetic field. In polyphase systems, the power frequency positive-sequence powers are the important dominant quantities. The power frequency positive-sequence power factor is a key value that helps determine and adjust the flow of power frequency positive-sequence reactive power. The

[^1]Copyright © 2010 IEEE. All rights reserved.
fundamental positive-sequence reactive power is of utmost importance in power systems; it governs the fundamental voltage magnitude and its distribution along the feeders and affects electromechanical stability as well as the energy loss.

- The effective apparent power in three-phase systems is $S_{e}=3 V_{e} I_{e}$, where V_{e} and I_{e} are the equivalent voltage and current. In sinusoidal and balanced situations, S_{e} is equal to the conventional apparent power $S=3 V_{\ell n} I=\sqrt{3} V_{\ell \ell} I$, where $V_{\ell n}$ and $V_{\ell \ell}$ are the line-to-neutral and the line-to-line voltage, respectively. For sinusoidal unbalanced or for nonsinusoidal balanced or unbalanced situations, S_{e} allows rational and correct computation of the power factor. This quantity was proposed in 1922 by the German engineer Buchholz [B1] and in 1933 was explained by the American engineer Goodhue [B11].
- The non- 60 Hz or nonfundamental apparent power is S_{N} (for brevity, 50 Hz power is not always mentioned). This power quantifies the overall amount of harmonic pollution delivered or absorbed by a load. It also quantifies the required capacity of dynamic compensators or active filters when used for nonfundamental compensation alone.
- Current distortion power D_{I} identifies the segment of nonfundamental nonactive power due to current distortion. This is usually the dominant component of S_{N}.
- Voltage distortion power D_{V} separates the nonfundamental nonactive power component due to voltage distortion.
- Apparent harmonic power S_{H} indicates the level of apparent power due to harmonic voltages and currents alone. This is the smallest component of S_{N} and includes the harmonic active power P_{H}.
To avoid confusion, it was decided not to add new units. The use of the watts (W) for instantaneous and active powers, volt-amperes (VA) for apparent powers, and (var) for all the nonactive powers maintains the distinct separation among these three major types of powers.

There is not yet available a generalized power theory that can provide a simultaneous common base for

- Energy billing
- Evaluation of electric energy quality
- Detection of the major sources of waveform distortion
- Theoretical calculations for the design of mitigation equipment such as active filters or dynamic compensators
This standard is meant to provide definitions extended from the well-established concepts. It is meant to serve the user who wants to measure and design instrumentation for energy and power quantification. It is not meant to help in the design of real-time control of dynamic compensators or for diagnosis instrumentation used to pinpoint to a specific type of annoying event or harmonic.

These definitions are meant to serve as a guideline and as a useful benchmark for future developments.

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the provisions of this standard does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private selfregulation, standardization, and the promotion of engineering practices and methods. By making this document available for use and adoption by public authorities and private users, the IEEE does not waive any rights in copyright to this document.

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE Standards Association web site at http://ieeexplore.ieee.org $/ \mathrm{xpl} /$ standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process, visit the IEEE-SA web site at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/ index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.

Participants

At the time this standard was submitted to the IEEE-SA Standards Board for approval, the Non-Sinusoidal Situations Working Group had the following membership:

Alexander E. Emanuel, Chair
 Eddy So, Sponsor

Jose Policarpo Abreu	David Elmore	Slobodan Pajic
Rejean Arseneau	Gaetan Ethier	Lorenzo Peretto
Santiago Barcon	Erich Gunther	Johan H. C. Pretorius
Andrew Berrisford	Dennis Hansen	Paulo Ribeiro
Yahia Baghzouz	Ernst Hanique	Daniel Sabin
Keneth B. Bowes	Gilbert C. Hensley	Kalyan Sen
James A. Braun	John Houdek	Piet H. Swart
Antonio Cataliotti	Roberto Langella	Donald Tandon
David Cooper	Michael Lowenstein	Alfredo Testa
Valentina Cosentino	William Moncrief	Grazia Todeschini
Mikey D. Cox	Alexander McEachern	Daniel Ward
Roger H. Daugherty	Dalgerti Milanez	Scott Weikel
Soni Devendra	Thomas L. Nelson	Stephan Weiss
Dario Di Cara	Vuong Nguyen	Douglas Williams
William Dickerson	Daniel Nordell	Jacques L. Willems
Alexander Domijan	Salvatore Nuccio	Daan van Wyk

The following members of the individual balloting committee voted on this standard. Balloters may have voted for approval, disapproval, or abstention.

William J. Ackerman
Ali Al Awazi
David Baron
Steven Brockschink
William Brumsickle
Gustavo Brunello
Yunxiang Chen
John Cooper
Tommy Cooper
John Crouse
Roger H. Daugherty
Gary L. Donner
Neal Dowling
Dana Dufield
Gearold O. H. Eidhin
Alexander E. Emanuel
Gary Engmann
Paul Forquer
Marcel Fortin
Randall Groves
Gary Heuston
Werner Hoelzl
Randy Horton
Innocent Kamwa
Piotr Karocki
Jon Kay
Tanuj Khandelwal
Yuri Khersonsky
Harold Kirkham
Joseph L. Koepfinger
Jim Kulchisky
Federico Lopez
Michael Lowenstein
Keith Malmedal
Jose Marrero
Kenneth Martin
William McBride
Kenneth Mcclenahan
Gary Michel
Charles Morse
Jerry Murphy
Bruce Muschlitz

Bruce Muschlitz

Michael S. Newman
David Nichols
Ulrich Pohl
Iulian Profir
Michael Roberts
Charles Rogers
Bob Saint
Steven Sano
Bartien Sayogo
Thomas Schossig
Kenneth Sedziol
Ahmed El Serafi
James E. Smith
Aaron Snyder
Eddy So
Michael Swearingen
David Tepen
John Vergis
Scott Weikel
James Wilson
Ahmed Zobaa

When the IEEE-SA Standards Board approved this standard on 2 February 2010, it had the following membership:
Robert M. Grow, Chair Tom A. Prevost, Vice Chair Steve M. Mills, Past Chair Judith Gorman, Secretary

John Barr	Alexander Gelman	David J. Law
Karen Bartelson	James Hughes	Ted Olsen
Victor Berman	Richard H. Hulett	Glenn Parsons
Ted Burse	Young Kyun Kim	Ronald C. Petersen
Richard DeBlasio	Joseph L. Koepfinger*	Narayanan Ramachandran
Andrew Drozd	John Kulick	Jon Walter Rosdah1
Mark Epstein		Sam Sciacca

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:
Howard L. Wolfman, TAB Representative Michael Janezic, NIST Representative Satish K. Aggarwal, NRC Representative

Lorraine Patsco IEEE Standards Program Manager, Document Development

Matthew J. Ceglia
IEEE Standards Program Manager, Technical Program Development

Contents

1. Overview 1
1.1 Scope 1
1.2 Purpose 2
2. Normative references 2
3. Definitions 2
3.1 Single phase 2
3.2 Three-phase systems 13
Annex A (informative) Theoretical examples 30
Annex B (informative) Practical studies and measurements: A detailed explanation of apparent power components 34
Annex C (informative) Bibliography 39

IEEE Trial-Use-Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions

IMPORTANT NOTICE: This standard is not intended to ensure safetv, security, health, or environmental protection in all circumstances. Implementers of the standard are responsible for determining appropriate safetv, security, environmental, and health practices or regulatory requirements.
This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading "Important Notice" or "Important Notices and Disclaimers Concerning IEEE Documents." Thev can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

1. Overview

This arial- standard is divided into three clauses. Clause 1 lists the scope of this document. Clause 2 lists references to other standards that are useful in applying this standard. Clause 3 provides the definitions, among which there are several new expressions.

The preferred mathematical expressions recommended for the instrumentation design are marked with a $\|$ sign. The additional expressions are meant to reinforce the theoretical approach and to facilitate a better understanding of the explained concepts.

1.1 Scope

This document provides definitions used for measurement of electric power to quantify the flow of electrical energy in single- phase and three-phase circuits under sinusoidal, nonsinusoidal, balanced, er and unbalanced conditions. It lists the mathematical expressions that were used in the past, as well as new expressions, and explains the features of the new definitions.

1.2 Purpose

This document provides organizations with criteria for designing and using metering instrumentation
This trial-use standard is meant to provide organizations with criteria for designing and using metering instrumentation.

2. Normative references

This trial use standard shall be used in conjunction with the following publications. If the following publications are superseded by an approved revision, the revision shall apply.

The following referenced documents are indispensable for the application of this document (i.e., they must be understood and used, so each referenced document is cited in text and its relationship to this document is explained). For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

DIN 40110-1997, Quantities Used in Alternating Current Theory. ${ }^{1}$
IEEE Std 280-1985 (Reaff 1997), IEEE Standard Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering. ${ }^{2}$

IEC 80000-6:2008, ISO 31-5:1992 Quantities and Units-Part 6:5: Electricity and Magnetism. ${ }^{3}$ Electromagnetism. ${ }^{2}$

3. Definitions

For the purposes of this document, the following terms and definitions apply. The IEEE Standards Dictionary: Glossary of Terms \& Definitions should be referenced for terms not defined in this clause. ${ }^{3}$

NOTE-_Mathematical expressions that are considered appropriate for instrumentation design are marked with the sign $\|$. When the sign $\|$ appears on the right side, it means that the last expression that is listed is favored. Each descriptor of a power type is followed by its measurement unit in parentheses. ${ }^{4}$

3.1 Single phase

3.1.1 Single-phase sinusoidal

A sinusoidal voltage source

$$
v=\sqrt{2} V \sin (\omega t)
$$

supplying a linear load will produce a sinusoidal current (assumed lagging the voltage) of

$$
i=\sqrt{2} I \sin (\omega t-\theta)
$$

where

$$
V \quad \text { is the rms value of the voltage }(\mathrm{V})
$$

$I \quad$ is the rms value of the current (A)
${ }^{1}$ DIN publications are available from the DIN Deutsches Institut für Normung, Burggrafenstrasse e.V., Burggrafenstrabe 6, Postfach 1107, 1262310787 Berlin 30 , Ger-many (011 4930 260 1362)., Germany
${ }^{2}$ IEEE(http://www.din.de). ${ }^{2}$ IEC publications are available from the Institute Sales Department of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piseataway, NJ 08855 1331, USA (http://standards.ieee.org).
${ }^{3}$ ISO publications are available from the ISO Central Secretariat the International Electrotechnical Commission, Case Postale 56, $+131,3$ rue de Varembé, $\mathrm{CH}-1211$, Genève 20,
Switzerland/Suisse (http://www.ise iec.ch/). ISO IEC publications are also available in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.
${ }_{4}^{3}$ The IEEE Standards Dictionary: Glossary of Terms \& Definitions is available at http://shop.ieee.org/.
${ }^{4}$ Notes in text, tables, and figures of a standard are given for information only and do not contain requirements needed to implement this standard.
$\omega \quad$ is the angular frequency $2 \pi f(\mathrm{rad} / \mathrm{s})$
$f \quad$ is the power system frequency (Hz)
$\theta \quad$ is the phase angle between the current and the voltage (rad)
t is the time (s)
For more information on symbols and units, see IEEE Std 280 ${ }^{\text {TM }}-1985$ [B13] and IEC 80000-6:2008.

3.1.1.1 Instantaneous power (W)

The instantaneous power p is given by

$$
\begin{aligned}
& \| p=v i \\
& p=p_{a}+p_{q}
\end{aligned}
$$

where

$$
\begin{array}{ll}
p_{a}=V I \cos \theta[1-\cos (2 \omega t)]=P[1-\cos (2 \omega t)] ; & P=V I \cos \theta \\
p_{q}=-V I \sin \theta \sin (2 \omega t)=-Q \sin (2 \omega t) ; & Q=V I \sin \theta
\end{array}
$$

NOTE 1-The component $p_{\underline{a}}$ is the instantaneous active power. It is produced by the active component of the current (i.e., by the component that is in phase with the voltage). The instantaneous active power $\underline{p}_{\underline{a}}$ is the rate of flow of the energy

$$
w_{a}=\int_{t_{0}}^{t} p_{a} d t=P\left(t-t_{0}\right)-\frac{P}{2 \omega}\left[\sin (2 \omega t)-\sin \left(2 \omega t_{0}\right)\right]
$$

This energy flows unidirectional from the source to the load. Its steady-state rate of flow is not negative, $p_{a} \geq 0$.

2-The instantaneous power $p_{. q}$ is produced by the reactive component of the current, i.e., the component that is in quadrature with the voltage. It is the rate of flow of the energy

NOTE 2-The instantaneous active power has two terms: the active or real power \underline{P} and This type of energy oseillates between the source inductances, capacitances, the intrinsic power $-P \cos (2 \omega t)$. The intrinsic power is always present when net energy is transferred to the load; however, this oscillating component does not cause power loss in the supplying lines.

NOTE 3-The component p_{q} is the instantaneous reactive power. It is produced by the reactive component of the current (i.e., the component that is in quadrature with the voltage). The instantaneous reactive power p_{q} is the rate of flow of the energy

$$
w_{q}=\int_{t_{0}}^{t} p_{q} d t=\frac{Q}{2 \omega}\left[\cos (2 \omega t)-\cos \left(2 \omega t_{0}\right)\right]
$$

This energy component oscillates between the sources and the electromagnetic energy stored within the magnetic field of the inductors and electric field of the capacitors of electrical equipment, as well as the mechanical energy stored in moving masses pertaining to electromechanical systems (motor and generator rotors, plungers, and armatures). The average value of this rate of flow is zero, and the net transfer of energy to the load is nil; nevertheless, these power oscillations do cause power loss (Joule and eddy-current) in the conductors.

3.1.1.2 Active power (W)

The active power P_{2} which is also called real power, is the mean average value of the instantaneous power during the ebservation measurement time interval $\underline{\tau}$ to $\underline{\tau}+k T$

$$
\begin{aligned}
& \| P=\frac{1}{k T} \int_{\tau}^{\tau+k T} p d t \\
& \| P=\frac{1}{k T} \int_{\tau}^{\tau+k T} p d t=\frac{1}{k T} \int_{\tau}^{\tau+k T} p_{a} d t
\end{aligned}
$$

where

$$
\begin{array}{ll}
T=1 / f & \text { is the cycle time }(\mathrm{s}) \\
k & \text { is a positive integer number } \\
\tau & \text { is the moment when the measurement starts } \\
P=V I \cos \theta &
\end{array}
$$

NOTE $-P$ is also equal to the average of $p_{\underline{q}}$ over a period, or an integer number of periods, because the average of p_{q} is zero.

3.1.1.3 Reactive power (var)

The magnitude of the reactive power Q is equals the amplitude of the oscillating instantaneous reactive power p_{q}.

$$
\begin{aligned}
& Q=V I \sin \theta \\
& Q=\frac{1}{2 \pi} \oint v d i=\frac{-1}{2 \pi} \oint i d v=\frac{1}{k T \omega} \int_{\mathrm{r}}^{r+k T} v \frac{d i}{d t} d t=\frac{-1}{k T \omega} \int_{\mathrm{r}}^{r+k T} i \frac{d v}{d t} d t=\frac{-\omega}{k T} \int_{\mathrm{r}}^{r+k T} v\left[\int j d t\right] d t \\
& \| Q=\frac{\omega}{k T} \int_{\tau}^{\tau+k T} i\left[\int v d t\right] d t
\end{aligned}
$$

NOTE 1- If the load is inductive, then $Q>0$. If the load is capacitive, then $Q<0$. This means that when the current lags the voltage $\theta>0$ and vice versa.

NOTE 2-The application of the previous definitions to nonsinusoidal conditions is presented in A.2.

3.1.1.4 Apparent power (VA)

The apparent power S is the product of the root-mean-square (rms) voltage and the rms current (see The IEEE Standards Dictionary: Glossary of Terms \& Definitions ${ }^{5}$).

$$
\| S=V I
$$

$$
S=\sqrt{P^{2}+Q^{2}}
$$

NOTE Instantaneous power p follows a sinusoidal oseillation with a frequency $2 f-2 \omega / 2 \pi$ biased by the active power P. The amplitude of the sinusoidal oscillation is the apparent power S.

3.1.1.5 Power factor

3.1.1.6-Complex power (VA)

$$
\boldsymbol{S}=\boldsymbol{V} \boldsymbol{I}^{*}=P+j Q
$$

where

$$
\begin{aligned}
& V=V \angle 0^{\circ} \text { is the voltage phasor, } \\
& I^{*}=I \angle \theta
\end{aligned}
$$

is the conjugated current phasor.

This expression stems from the power triangle, S, P, Q, and is useful in power flow studies. Figure 1 summarizes the conventional power flow directions as interpreted in literature (Stevens [B12] ${ }^{4}$).

3.1.2 Single-Phase nonsinusoidal

For steady state conditions a nonsinusoidal instantaneous voltage or current has two distinctive components: the power system frequency components ψ_{1} and i_{1}, and the remaining terms ψ_{H} and i_{H} that contains all integer and noninteger number harmonics.

$$
\begin{aligned}
& v_{t}=2 V_{1} \sin \left(\omega t-\alpha_{4}\right) \\
& \dot{t}_{+}=2 I_{+} \sin \left(\omega t-\beta_{+}\right) \\
& \forall_{H-}=2 \sum_{h \neq 1} V_{h} \sin \left(h \omega t-\alpha_{h}\right) \\
& \dot{t}_{H-}=2 \sum_{-h \neq 1} I_{h} \sin \left(h \omega t-\beta_{h}\right) \\
& { }^{4} \text { The numbers in brackets correspend to these of the bibliography in Annex } C \text {. }
\end{aligned}
$$

NOTE 1-The apparent power of a single-phase load can be interpreted as the maximum active power that can be transmitted through the same line while keeping the load rms voltage V constant and the supplying line power loss constant (i.e., the rms current I constant). This is an ideal condition, for which the process of energy conversion at the load remains unchanged, but the utilization of the supplying line is improved (i.e., the thermal stress of the line or cable remains the same while the amount of energy transmitted through the supplying line is increased). This concept implies that an additional load with unity power factor can be connected in parallel with the original load compensated by means of a shunt capacitance or an active compensator.

NOTE 2-The instantaneous power p follows a sinusoidal oscillation with a frequency $2 f=2 \omega / 2 \pi$ biased by the active power P. The amplitude of the sinusoidal oscillation is the apparent power S.
${ }^{5}$ The IEEE Standards Dictionary: Glossary of Terms \& Definitions is available at http://shop.ieee.org/.

3.1.1.5 Power factor

$$
\| \mathrm{PF}=\frac{P}{S}
$$

NOTE 1-The power factor can be interpreted as the ratio between the energy transmitted to the load over the maximum energy that could be transmitted provided the line losses are kept the same.

NOTE 2-For a given S and V, maximum utilization of the line is obtained when $P=S$; hence, the ratio P / S is a utilization factor indicator.

NOTE 3-When a load, or a cluster of loads, is to be compensated to a higher power factor, the load voltage will increase by a certain increment. If the new voltage is larger than the recommended value, the load voltage can be reduced and brought within recommended range by means of voltage regulators, transformer tap-changers, or other methods of voltage control.

3.1.1.6 Complex power (VA)

The complex power is a complex quantity in which the active power is the real part and the reactive power is the imaginary part

$$
\underline{\boldsymbol{S}=P+j Q=\mathbf{V I}}{ }^{*}
$$

where according to 3.1.1
$\underline{\mathbf{V}=V / 0^{\circ} \text { is the voltage phasor }}$
$\boldsymbol{I}=I /-\theta \quad$ is the current phasor
$\underline{\mathbf{I}^{*}=I / \theta} \quad$ is the complex conjugate of the current phasor

This expression stems from the power triangle, S, P, and Q, and is useful in power flow studies. Figure 1 summarizes the conventional power flow directions as interpreted in literature (see Stevens [B19]). The angle θ is the phase angle of the equivalent complex impedance $Z / \theta=\mathbf{V} / \mathbf{I}$.

Figure 1-Four-quadrant power flow directions
(© 1983 IEEE. Reprinted, with permission, from the IEEE and R. H. Stevens [B19])

3.1.2 Single-phase nonsinusoidal

For steady-state conditions, a nonsinusoidal periodical instantaneous voltage or current has two distinct components: the power system frequency components v_{1} and i_{1} and the remaining term $v_{\underline{H}}$ and $i_{\underline{H_{2}}}$ respectively.
$\underline{v}=v_{1}+\underline{v}_{\underline{H}}$ and $i=i_{1}+\underline{i}_{\underline{H}}$
where

$$
\begin{aligned}
& v_{1}=\sqrt{2 V_{1}} \sin \left(\omega t-\alpha_{1}\right) \\
& i_{1}=\sqrt{2 I_{1}} \sin \left(\omega t-\beta_{1}\right) \\
& v_{H}=V_{0}+\sqrt{2} \sum_{h \neq 1} V_{h} \sin \left(h \omega t-\alpha_{h}\right) \\
& i_{H}=I_{0}+\sqrt{2} \sum_{h \neq 1} I_{h} \sin \left(h \omega t-\beta_{h}\right)
\end{aligned}
$$

The corresponding rms values squared are as follows:

$$
\begin{aligned}
& V^{2}=\frac{1}{k T} \int_{\tau}^{\tau+k T} v^{2} d t=V_{1}^{2}+V_{H}^{2} \\
& I^{2}=\frac{1}{k T} \int_{\tau}^{\tau+k T} i^{2} d t=I_{1}^{2}+I_{H}^{2}
\end{aligned}
$$

where

$$
V_{H}^{2}=V_{0}^{2}+\sum_{h \neq 1} V_{h}^{2}=V^{2}-V_{1}^{2}
$$

and

$$
I_{H}^{2}=I_{0}^{2}+\sum_{h \neq 1} I_{h}^{2}=I^{2}-I_{1}^{2}
$$

are the squares of the rms values of $\underline{v}_{\underline{H}}$ and $\underline{i}_{\underline{H}}$, respectively.

NOTE 1 -The direct voltage and the direct current terms V_{0} and I_{0}, must be included in V_{H} and I_{H}. They correspend to a hypethetical $-\alpha_{\theta}=\beta_{\theta}=-45^{\circ} ;-\left(\sin \left(\alpha_{\theta}\right)=\sin \left(\beta_{\theta}\right)=\sin 45^{\circ}=42\right)$. Significant direct current (dc) components are rarely present in alternating current (ac) power systems; however, traces of dc are common.

NOTE 2-Distorted waveforms often contain frequency components called interharmonics (see IEC 61000-4-7:2002 [B12]). A special group of interharmonics is characterized by $h<1$. The components belonging to this group have periods larger than the period T of the fundamental frequency. They are called subsynchronous frequency components or subsynchronous interharmonics (in the earlier documents, they are called subharmonics).

NOTE 3-If the distorted voltage and current waveforms consist of harmonics only, then a measurement time interval $k T$ (see 3.1.1.2) enables the correct measurement of rms and power values. If the monitored waveform contains an interharmonic, the measurement time interval $k T$, which is needed to correctly measure rms values and powers, is the least common multiple of the periods of the fundamental component and the interharmonic component (i.e., $k T=m T_{\underline{i}}$; $\underline{T}_{\underline{i}} \equiv 1 / f_{\underline{i}}$, where $f_{\underline{i}}$ is the interharmonic frequency and $k, m=$ integer numbers). When the measurement time interval $k T$ does not include an integer number of periods T_{i} (i.e., $k T \neq m T_{\underline{i}}$), the rms value of the interharmonic as well as the powers associated with it are incorrectly measured (see Peretto et al. [B17]). This error is also reflected in the measurement accuracy of the total rms and powers values. The error is also compounded by the fact that cross-products between the interharmonic current and harmonic voltages (and vice versa) do not yield instantaneous powers with zero mean value.

If at least one of the interharmonics of order h is an irrational number, then the observed waveform is not periodic (it is called nearly periodic.) In such a case, the measurement time interval $k T$ should be infinitely large to have a correct measurement of the rms value or power. For practical situations when the bulk power is carried by the fundamental components, such errors are small (see A.1). The larger the measurement time $k T$, the less significant become the errors caused by interharmonics (see Peretto et al. [B16]). The theoretical measurement error created when the active power of an interharmonic is measured is strongly affected by the phase angle between the voltage and the current. The closer the phase angle is to $\pm 90^{\circ}$, the larger becomes the error (see Peretto et al. [B16]).

Figure 2 presents the envelopes of the maximum errors made when the rms value of an interharmonic is measured in function of the number of cycles m.

For example, if $m=20$, the rms value of the interharmonic will be measured with a maximum error of $\pm 0.2 \%$.

Figure 2-Percent maximum error of rms measurement versus number of cycles

3.1.2.1 Total harmonic distortion (THD)

The overall deviation of a distorted wave from its fundamental can be estimated with the help of the total harmonic distortion. The total harmonic distortion of the voltage is as follows:

$$
\| \mathrm{THD}_{V}=\frac{V_{H}}{V_{1}}=\sqrt{\left(\frac{V}{V_{1}}\right)^{2}-1}
$$

The total harmonic distortion of the current is as follows:

$$
\| \mathrm{THD}_{I}=\frac{I_{H}}{I_{1}}=\sqrt{\left(\frac{I}{I_{1}}\right)^{2}-1}
$$

3.1.2.2 Instantaneous power (W)

$$
\begin{aligned}
& p=v i \\
& p=p_{\underline{a}}+p_{q}
\end{aligned}
$$

where the first term

$$
p_{a}=V_{0} I_{0}+\sum_{h} V_{h} I_{h} \cos \theta_{h}\left[1-\cos \left(2 h \omega t-2 \alpha_{h}\right)\right]
$$

is the part of the instantaneous power that is equal to the sum of harmonic active powers. The harmonic active power of order h is caused by the harmonic voltage of order h and the component of the harmonic current of order h in-phase with the harmonic voltage of order h. Each instantaneous active power of order \underline{h} has two terms: an active, or real, harmonic power $P_{\underline{h}} \equiv V_{h} \underline{I}_{\underline{h}} \underline{\cos } \underline{\theta}_{\underline{h}}$, and the intrinsic harmonic power $-P_{\underline{h}} \underline{\cos \left(2 h \omega t-2 \alpha_{\underline{h}}\right) \text {, which does not contribute to net transfer of energy or to additional power loss in }}$ conductors.

The second term p_{q} is a term that does not represent a net transfer of energy (i.e., its average value is nil); nevertheless, the current related to these nonactive components causes additional power loss in conductors.
is a term that contains all the components that have non zero average value, and

$$
\begin{aligned}
p_{q}= & -\sum_{h} V_{h} I_{h} \sin \theta_{h} \sin \left(2 h \omega t-2 \alpha_{h}\right)+2 \sum_{n} \sum_{\substack{m \neq n \\
m \neq n}} V_{m} I_{n} \sin \left(m \omega t-\alpha_{m}\right) \sin \left(n \omega t-\beta_{n}\right) \\
& +\sqrt{2} V_{0} \sum_{h} I_{h} \sin \left(h \omega t-\beta_{h}\right)+\sqrt{2} I_{0} \sum_{h} V_{h} \sin \left(h \omega t-\alpha_{h}\right)
\end{aligned}
$$

is a term that does not contribute to the net transfer of energy, i.e., its average value, and The angle $\theta_{h}=\beta_{h}-\alpha_{h}$ is the phase angle between the phasors $\boldsymbol{V}_{\mathbf{h}}$ and $\mathbf{I}_{\mathbf{h}}$.

3.1.2.3 Active power (W)

$$
\begin{gathered}
\| P=\frac{1}{k T} \int_{\tau}^{\tau+k T} p d t=\frac{1}{k T} \int_{\tau}^{\tau+k T} p_{a} d t \\
P=P_{1}+P_{H}
\end{gathered}
$$

The components P_{1} and P_{H} are defined in 3.1.2.4 and 3.1.2.5.

3.1.2.4 Fundamental or 60 Hz active power (W)

$$
\| P_{1}=\frac{1}{k T} \int_{\tau}^{\tau+k T} v_{1} i_{1} d t=V_{1} I_{1} \cos \theta_{1}
$$

NOTE-For ac motors, which make up The fundamental active power is often referred to by the mast majority of fundamental frequency. For example, for a 60 Hz power system P_{1} can be referred to as " 60 Hz active power."

3.1.2.5 Harmonic active power (nonfundamental active power) (W)

$$
P_{H}=V_{0} I_{0}+\sum_{h \neq 1} V_{h} I_{h} \cos \theta_{h}=P-R \|
$$

NOTE $1-P_{\underline{H}} \underline{\text { as }} \underline{\text { defined }} \underline{\text { contains }} \underline{\text { also }} \underline{\text { components }} \underline{\text { for which }} \underline{h}$ is not an integer (i.e., interharmonics and subharmonics).

NOTE 2-For ac motors, which make up most loads, the harmonic active power is not a useful power (does not contribute to the positive sequence torque). Consequently, it is meaningful to separate the fundamental active power P_{I} from the harmonic active power $P_{H_{-}}$.

NOTE 3-When it is necessary to compute separately the powers of a component with a noninteger value of h, caution must be used. A measurement error will be caused if the measurement time interval $k T$ is not an integer number of periods T / h (T / h being the period of the observed component).

NOTE 4-The harmonic active power is often referred to by the fundamental frequency. For example, for a 60 Hz power system, $P_{\underline{H}}$ can be referred to as "non- 60 Hz active power."

3.1.2.6 Fundamental reactive power (var)

$$
\begin{aligned}
\| Q_{1} & =\frac{\omega}{k T} \int_{\tau}^{\tau+k T} i_{1}\left[\int v_{1} d t\right] d t \\
& =V_{1} I_{1} \sin \theta_{1}
\end{aligned}
$$

3.1.2.7 Budeanu's reactive power (var)

$$
\begin{aligned}
& Q_{B}=\sum V_{h} I_{h} \sin \theta_{h^{h}} \\
& Q_{B}=Q_{1}+Q_{B H} \\
& =V_{t} I_{t} \sin \theta_{t}
\end{aligned}
$$

3.1.2.7 Apparent power (VA)

$$
\| S=V I
$$

NOTE-An important practical property of S is that the power loss ΔP, in feeder that supplies the apparent power S, is a nearly linear function of S^{2} (Emanuel [B4]).

NOTE 1-Apparent power is the amount of active power that can be supplied to a load, or a cluster of loads, under ideal conditions. The ideal conditions may assume the load supplied with sinusoidal voltage and current. The loads are compensated by means of active or passive devices such that the line current is sinusoidal and in phase with the voltage that, ideally, is also adjusted to be sinusoidal. The rms value of the current I is kept equal with the line rms value of the actual current. The load voltage is adjusted to a value that yields unchanged load performance (i.e., the same amount of useful energy is converted and delivered by the load). If the performance criterion is the electrothermal conversion of the electric energy, then the rms value of the voltage at the terminals where the measurement is implemented must be kept constant.

NOTE 2-An important practical property of S is that the power loss $\otimes P$, in the feeder that supplies the apparent power \underline{S}, is a nearly linear function of S^{2} (see Emanuel [B7]).

$$
\Delta P=\frac{r_{e}}{V^{2}} S^{2}+\frac{V^{2}}{R}
$$

where

$R \quad$ is an equivalent shunt resistance, representing transformer core losses and cable dielectric losses
$r_{e} \quad$ is the effective Thevenin resistance. Theoretically r_{e} can be obtained from the equivalence of losses as follows:

$$
r_{e} I^{2}=r_{d c} \sum_{h} K_{s h} I_{h}^{2}
$$

Where
$I=S / V$
$\underline{K s h}>1 \quad$ is a coefficient that accounts for the skin effect and proximity effect, as well as the losses caused in cable sheath. This coefficient is a function of harmonic frequency and the geometry and conductors' material. The value of r_{e} is affected by the current harmonic spectrum.
$r d c \quad$ is the Thevenin dc resistance (\wedge).
Kshis the skin effect coefficient for the h harmonic,

3.1.2.8 Fundamental or $60 / 50 \mathrm{~Hz}$ apparent power (VA)

Fundamental apparent power S_{l} and its components P_{I} and Q_{l} are the actual quantities that help define the rate of flow of the electromagnetic field energy associated with the $60 / 50 \mathrm{~Hz}$ fundamental voltage and current. This is a product of high interest for both the utility and the end-user.

$$
\begin{aligned}
& \| S_{1}=V_{1} I_{1} \\
& S_{1}^{2}=R_{1}^{2}+Q_{1}^{2}
\end{aligned}
$$

NOTE-The fundamental apparent power is often referred to by the fundamental frequency. For example, for a 60 Hz power system, S_{1} can be referred to as " 60 Hz apparent power."

3.1.2.9 Nonfundamental apparent power (VA)

The separation of the rms current and voltage into fundamental and harmonic terms (see 3.1.2) resolves the apparent power in the following manner (see Emanuel [B8]):

$$
\begin{aligned}
& S^{2}=(V I)^{2}=\left(V_{1}^{2}+V_{H}^{2}\right)\left(I_{1}^{2}+I_{H}^{2}\right)=\left(V_{1} I_{1}\right)^{2}+\left(V_{1} I_{H}\right)^{2}+\left(V_{H} I_{1}\right)^{2}+\left(V_{H} I_{H}\right)^{2}=\left(S_{1}^{2}+S_{N}^{2}\right) \\
& \| S_{N}=\sqrt{S^{2}-S_{1}^{2}}
\end{aligned}
$$

is the nonfundamental apparent power and is resolved in the following three distinctive terms:

$$
S_{N}^{2}=D_{I}^{2}+D_{V}^{2}+S_{H}^{2}
$$

3.1.2.10 Current distortion power (var)

$$
D_{I}=V_{1} I_{H}=S_{1}\left(\mathrm{TH}_{I}\right) \|
$$

3.1.2.11 Voltage distortion power (var)

$$
D_{V}=V_{H} I_{1}=S_{1}\left(\mathrm{THD}_{V}\right) \|
$$

3.1.2.12 Harmonic apparent power (VA)

$$
S_{H}=V_{H} I_{H}=S_{1}\left(\mathrm{THD}_{I}\right)\left(\mathrm{THD}_{V}\right) \|
$$

$$
S_{H}=\sqrt{P_{H}^{2}+D_{H}^{2}}
$$

3.1.2.13 Harmonic distortion power (var)

$$
\| D_{H}=\sqrt{S_{H}^{2}-P_{H}^{2}}
$$

In practical power systems, $\mathrm{THD}_{V}<\mathrm{THD}_{I_{2}}$ and S_{N} can be computed using the following expression (see Emanuel [B8]):

$$
S_{N} \approx S_{1} \sqrt{\left(\mathrm{THD}_{I}\right)^{2}+\left(\mathrm{THD}_{V}\right)^{2}}
$$

When $\mathrm{THD}_{V} \leq 5 \%$ THD $\leq 200 \%$, this expression yields an error less than 0.15% for any value of $T H D_{I}$.

For $\mathrm{THD}_{V}<5 \%$ and $\mathrm{THD}_{I}>40 \%$, an error less than 1.00% is obtained using the following expression (see Emanuel [B8]):

$$
S_{N} \approx S_{1}\left(\mathrm{THD}_{I}\right)
$$

3.1.2.14 Nonactive power (var)

$$
\| N=\sqrt{S^{2}-P^{2}}
$$

This power lumps together both fundamental and nonfundamental nonactive components. In the past, this power was called "fictitious power." The nonactive power N shall not be confused with a reactive power. Q_{B} (see 3.1.2.7) that leads to the following: Only when the waveforms are perfectly sinusoidal, $N=Q_{1}=Q$

3.1.2.16 Budeanu's distortion
 This power results from the resolution of S using Budeanu's
 hence,

NOTE-This distortion power is affected by the deficiency of Q_{B} (Pretorius, van Wyk, and Swart [B11]).

3.1.2.15 Fundamental or $60 / 50 \mathrm{~Hz}$ power factor

$$
P_{F 1}=\cos \theta_{1}=\frac{P_{1}}{S_{1}} \|
$$

This ratio helps evaluate separately the fundamental power flow conditions. It can be called the fundamental power factor. The fundamental power factor is often referred to by the fundamental frequency. For example, for a 60 Hz power system PF_{1} can be referred to as 60 Hz power factor. PF_{1} is also often referred to as the displacement power factor.

3.1.2.16 Power factor

$$
\begin{aligned}
& \| \mathrm{PF}=\frac{P}{S} \\
& \mathrm{PF}=\frac{P}{S}=\frac{R_{1}+P_{H}}{\sqrt{S_{1}^{2}+S_{N}^{2}}}=\frac{\left(R_{1} / S_{1}\right)\left[1+\left(P_{H} / R\right)\right]}{\sqrt{1+\left(S_{N} / S_{1}\right)^{2}}}=\frac{\left[1+\left(P_{H} / R_{1}\right)\right] \mathrm{PF}_{1}}{\sqrt{1+\mathrm{THD}_{I}^{2}+\mathrm{THD}_{V}^{2}+\left(\mathrm{THD}_{I} \mathrm{THD}_{V}\right)^{2}}}
\end{aligned}
$$

NOTE 1- - The apparent power S can be viewed as the maximmm active power that can be transmitted to a load while keeping its load voltage V constant and line losses constant. The result is that for a given S and V, maximum utilization of the line is obtained when $P=S$; hence, the ratio P / S is a utilization factor indicator.

NOTE 2-The overall degree of harmonic injection produced by a large nonlinear load, or by a group of loads or consumers, can be estimated from the ratio S_{N} / S_{l}. The effectiveness of harmonic filters also can be evaluated from such a measurement. The measurements of $S_{l}, P_{l}, \mathrm{PF}_{1}$, or Q_{l} help establish the characteristics of the fundamental power flow.

NOTE 3-In most common practical situations, it is difficult to measure correctly the higher order components of P_{H} using simple instrumentation. The main reason for this difficulty stems from the fact that the phase angle between the voltage phasor $\boldsymbol{V}_{\underline{\boldsymbol{h}}}$ and the current phasor $\boldsymbol{I}_{\underline{\boldsymbol{h}}} \underline{\text { may be near }} \pm \pi / 2$, so even small errors in phase angle measurement can cause large errors in $P_{\underline{H}}$, even to the extent of changing the sign of $P_{\underline{H}}$. Thus, one eannot rely on should use instrumentation optimized $\frac{H}{\text { specifically }}$ for measurements of P_{H} components when making technical decisions regarding harmonics compensation, energy tariffs, or to quantify the the quantification of the detrimental effects made by a nonlinear or parametric load to a particular power system (see Emanuel [B8], IEEE Working Group on Nonsinusoidal Situations [B14], and Swart et al. [B20]).

NOTE 4-When $\mathrm{THD}_{V}<5 \%$ and $\mathrm{THD}_{I}>40 \%$, it is convenient to use the following expression:

$$
\mathrm{PF} \approx \frac{1}{\sqrt{1+\mathrm{THD}_{I}^{2}}} \mathrm{PF}_{1}
$$

NOTE 5- In typical nonsinusoidal situations, $D_{I}>D_{V}>S_{H}>P_{H .}$.
The definitions presented in 3.1.2.8 through 3.1.2.16 are summarized in Table 1.

Table 1-Summary and grouping of the quantities in single-phase systems with nonsinusoidal waveforms

Quantity or indicator	Combined	Fundamental powers	Nonfundamental powers
Apparent	$\begin{gathered} S \\ (\mathrm{VA}) \end{gathered}$	$\begin{gathered} S_{1} \\ (\mathrm{VA}) \end{gathered}$	$S_{N} \quad S_{H}$ (VA)
Active	P (W)	P_{1} (W)	P_{H} (W)
Nonactive	$\begin{gathered} N \\ (\text { var }) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{1} \\ \text { (var) } \end{gathered}$	$\begin{array}{cc} D_{I} \quad D_{V} & D_{H} \\ & (\mathrm{var}) \end{array}$
Line utilization	$\mathrm{PF}=P / S$	$\mathrm{PF}_{1}=P_{1} / S_{1}$	-
Harmonic pollution	-	-	S_{N} / S_{1}

NOTE-A more detailed explanation of the power components followed by a numerical example is presented in Annex B.

3.2 Three-phase systems

321 Threennhace sinucnidal halanced

$$
\begin{aligned}
& v_{a}=\sqrt{2} V \sin (\omega t) \\
& v_{b}=\sqrt{2} V \sin \left(\omega t-120^{\circ}\right) \\
& v_{c}=\sqrt{2} V \sin \left(\omega t+170^{\circ}\right) \\
& v_{a}=\sqrt{2} V \sin (\omega t) \\
& v_{b}=\sqrt{2} V \sin \left(\omega t-120^{\circ}\right) \\
& v_{c}=\sqrt{2} V \sin \left(\omega t+120^{\circ}\right)
\end{aligned}
$$

The line currents have similar expressions, and they are as follows:

$$
\begin{aligned}
& i_{a}=\sqrt{2} I \sin (\omega t-\theta) \\
& i_{b}=\sqrt{2} I \sin \left(\omega t-\theta-120^{\circ}\right) \\
& i_{c}=\sqrt{2} I \sin \left(\omega t-\theta+120^{\circ}\right)
\end{aligned}
$$

NOTE 1—Perfectly sinusoidal and balanced three-phase, low-voltage systems are uncommon. Only under laboratory conditions, using low-distortion power amplifiers, is it possible to work with ac power sources with $\mathrm{THD}_{V}<0.1 \%$ and voltage unbalance $V^{-} / V^{+}<0.1 \%$. Practical low-voltage systems will rarely operate with $\mathrm{THD}_{V}<1 \%$ and $V^{-} / V^{+}<$ 0.4%, where V^{+}and V^{-}are the positive- and negative-sequence voltages..

NOTE 2-In the case of three-wire systems, the line-to-neutral voltages are defined assuming an artificial neutral node, which can be obtained with the help of three identical resistances connected in Y.

3.2.1.1 Instantaneous power (W)

For three-wire systems $\underline{i}_{\underline{a}}+\underline{i_{b}} \underline{+i_{\underline{c}}}=0$, and the instantaneous power has the following expressions:

$$
\| p=v_{\underline{a b}} \underline{i_{0}}+v_{\underline{c}} \underline{i_{\underline{c}}} \underline{\underline{c}}=v_{a c} \underline{i_{a}}+v_{\underline{b c}} \underline{i_{b}}=v_{\underline{b a}} \underline{i_{b}}+v_{\underline{c a}} \underline{i_{\underline{c}}}=P
$$

$\underline{\text { where }} v_{a b}, v_{b c}$, and $\underline{v}_{\underline{c a} \underline{ } \text { are instantaneous line-to-line voltages. Because the voltages and the currents are }}^{\text {and }}$ balanced, the instantaneous power p is constant and equal to the active power P.

For four-wire systems

$$
\Perp p=\underline{v}_{\underline{a}} \underline{\underline{i}} \underline{a}+\underline{v}_{\underline{b}} \underline{i} \underline{i}+\underline{v}_{\underline{c}} \underline{\underline{i}_{c}}=P
$$

If the voltages are referred to an arbitrary reference point r, then the expression of the instantaneous power is as follows:

$$
\Perp p=v_{\underline{a r}} \underline{i_{i}} \underline{+} \underline{v_{b r}} \underline{\underline{i}} \underline{\underline{b}} \underline{+v_{c} \underline{c_{i}} \underline{c}=P}
$$

where $v_{a r}, v_{b r}$, and $v_{\underline{c} \underline{-}}$ are instantaneous line-to-reference point voltages.

3.2.1.2 Active power (W)

$$
\begin{aligned}
& \| P=\frac{1}{k T} \int_{\tau}^{\tau+k T} p d t \\
& P=3 V I \cos \theta=\sqrt{3} V_{\ell \ell} I \cos \theta
\end{aligned}
$$

where
$V \quad$ is line-to neutral rms voltage
$V_{l l}$ is line-to-line rms voltage

3.2.1.3 Reactive power (var)

$$
\begin{aligned}
& Q=3 V I \sin \theta=\sqrt{3} V_{U U} I \sin \theta \\
& \||Q|=\sqrt{S^{2}-P^{2}}
\end{aligned}
$$

where S is defined in 3.2.1.4.

3.2.1.4 Apparent power (VA)

$$
\| S=3 V I=\sqrt{3} V_{\ell \ell} I
$$

3.2.1.5 Power factor

$$
\| \mathrm{PF}=\frac{P}{S}
$$

3.2.2 Three-phase sinusoidal unbalanced

In this case, the three current phasors $\boldsymbol{I}_{a}, \boldsymbol{I}_{b}$, and \boldsymbol{I}_{c}, do not have equal magnitudes, and they are not shifted exactly 120° with respect to each other. Load imbalance leads to asymmetrical currents that in turn cause voltage asymmetry. There are situations when the three voltage phasors are not symmetrical. This leads to asymmetrical currents even when the load is perfectly balanced.

The line-to-neutral voltages are as follows:

$$
\begin{aligned}
& \forall_{t}={ }_{1 n} \sin \left(\omega t+\alpha_{t}\right) \\
& \forall_{b}=2 V_{b 1 n} \sin \left(\omega t+\alpha_{b}-120^{\circ}\right) \\
& \psi_{e}=2 K_{e \mid n} \sin \left(\omega t+\alpha_{e}+120^{\circ}\right)
\end{aligned}
$$

The line eurrents have similar expressions. They are as follows:

$$
\begin{aligned}
& \dot{t}_{t t}=2 I_{t} \sin \left(\omega t-\beta_{t t}\right) \\
& \dot{t}_{b}=2 I_{b} \sin \left(\omega t-\beta_{b}-120^{\circ}\right) \\
& \dot{t}_{\epsilon}=2 I_{\epsilon} \sin \left(\omega t-\beta_{\epsilon}+120^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& v_{a}=\sqrt{2} V_{a} \sin \left(\omega t+\alpha_{a}\right) \\
& v_{b}=\sqrt{2} V_{b} \sin \left(\omega t+\alpha_{b}-120^{\circ}\right) \\
& v_{c}=\sqrt{2} V_{c} \sin \left(\omega t+\alpha_{c}+120^{\circ}\right)
\end{aligned}
$$

where at least one of the three line-to-neutral amplitudes has $\underline{V}_{2} V_{a,-} \sqrt{2}_{2} V_{\underline{b}, o r} \sqrt{2}^{2} V_{\underline{c},}$ a value different than the value of the other two amplitudes. The same may apply to the phase angles $\alpha_{a}{ }_{2} \alpha_{b}$, and α_{c}. If one phase angle has a value different than the value of the other two, the system is losing its symmetry and is unbalanced.

The line currents have similar expressions. They are as follows:

$$
\begin{aligned}
& i_{a}=\sqrt{2} I_{a} \sin \left(\omega t+\beta_{a}\right) \\
& i_{b}=\sqrt{2} I_{b} \sin \left(\omega t+\beta_{b}-120^{\circ}\right) \\
& i_{c}=\sqrt{2} I_{c} \sin \left(\omega t+\beta_{c}-120^{\circ}\right)
\end{aligned}
$$

NOTE-In the case of three-wire systems, the line-to-neutral voltages are defined assuming an artificial neutral node, which can be obtained with the help of three identical resistances connected in Y .

3.2.2.1 Instantaneous power (W)

For three-wire systems where, $i_{a}+i_{b}+i_{c}=0$, and the instantaneous power has the following expressions:

$$
\| p=v_{a b} i_{a}+v_{c b} i_{c}=v_{b a} i_{b}+v_{c a} i_{c}=v_{a c} i_{a}+v_{b c} i_{b}
$$

where $v_{a b}, v_{b c}$, and $v_{c a}$ are the instantaneous line-to-line voltages.

For four-wire systems,

$$
\Perp p=v_{\underline{a}} \underline{\underline{i}} \underline{a}+v_{\underline{b}} \underline{\underline{i}} \underline{\underline{b}}+v_{\underline{c}}^{\underline{\underline{i}}} \underline{c}
$$

If the voltages are referred to an arbitrary reference point r, then the expression of the instantaneous power is as follows:

$$
\| p=v_{\underline{a r}} \underline{i_{a}} \underline{+v_{b}} \underline{\underline{r}} \underline{i_{b}} \underline{+v_{c r} \underline{i_{c}}}
$$

$\underline{\text { where }} v_{a r}, v_{b r}$, and $v_{\underline{c r}}$ are instantaneous line-to-reference point voltages.

3.2.2.2 Active power (W)

$$
\begin{aligned}
& \| P=\frac{1}{k T} \int_{\tau}^{\tau+k T} p d t \\
& \| P=P_{a}+P_{b}+P_{c}
\end{aligned}
$$

where P_{a}, P_{b}, and P_{c} are phase active powers:

$$
\begin{array}{ll}
\| P_{a}=\frac{1}{k T} \int_{\tau}^{\tau+k T} v_{a} i_{a} d t=V_{a} I_{a} \cos \theta_{a} ; & \theta_{a}=\alpha_{a}-\beta_{a} \\
\| P_{b}=\frac{1}{k T} \int_{\tau}^{\tau+k T} v_{b} i_{b} d t=V_{b} I_{b} \cos \theta_{b} ; & \theta_{b}=\alpha_{b}-\beta_{b} \\
\| P_{c}=\frac{1}{k T} \int_{\tau}^{\tau+k T} v_{c} i_{c} d t=V_{c} I_{c} \cos \theta_{c} ; & \theta_{a}=\alpha_{a}-\beta_{a}
\end{array}
$$

3.2.2.2.1 Positive-, negative-, and zero-sequence active powers (W)

In some systems with four-wires there are situations when the use of symmetrical components may be helpful. The symmetrical voltage components V^{+}, V^{-}, and V^{0} and current components I^{+}, I^{-}, and I^{0} with the respective phase angles θ^{+}, θ^{-}, and θ^{0} yield the following three active power components:

The positive-sequence active power

$$
P^{+}=3 V_{t n}^{+} I^{+} \cos \theta^{+}
$$

The negative-sequence active power

$$
P^{-}=3 V^{-} I^{-} \cos \theta^{-}
$$

The zero-sequence active power

$$
P^{0}=3 V^{0} I^{0} \cos \theta^{0}
$$

The total active power is

$$
\underline{P=P^{+}+P^{-}+P^{0}}
$$

3.2.2.3 Reactive power (var)

Per-phase reactive powers are defined with the help of the following expressions:

$$
\begin{aligned}
& Q_{a}=\frac{\omega}{k T} \int_{\tau}^{\tau+k T} i_{a}\left[\int v_{a} d t\right] d t=V_{a} I_{a} \sin \theta_{a} \\
& Q_{b}=\frac{\omega}{k T} \int_{\tau}^{\tau+k T} i_{b}\left[\int v_{b} d t\right] d t=V_{b} I_{b} \sin \theta_{b} \\
& Q_{c}=\frac{\omega}{k T} \int_{\tau}^{\tau+k T} i_{c}\left[\int v_{c} d t\right] d t=V_{c} I_{c} \sin \theta_{c}
\end{aligned}
$$

For the imaginary component of the vector apparent power S_{V} (see 3.2.2.6), the total reactive power Q is as follows:

$$
\Perp Q=Q_{a}+Q_{b}+Q_{c}
$$

NOTE-The above previous expression of Q cannot be used in conjunction with the arithmetic apparent power S_{A}, which is defined in 3.2.2.5.

3.2.2.3.1 Positive-, negative-, and zero-sequence reactive powers (var)

The three reactive powers are as follows:

In some sittations the use of symmetrical components may be helpful.

The positive-sequence reactive power

$$
Q^{+}=3 V^{+} I^{+} \sin \theta^{+}
$$

The negative-sequence reactive power

$$
Q^{-}=3 V^{-} I^{-} \sin \theta^{-}
$$

The zero-sequence reactive power

$$
Q^{0}=3 V_{\mathrm{ll}}^{0} I^{0} \sin \theta^{0}
$$

The total reactive power is

$$
Q=Q^{+}+Q^{-}+Q^{0}
$$

3.2.2.4 Phase apparent powers (VA)

$$
\begin{aligned}
& S_{a}=V_{a} I_{a} ; \quad S_{b}=V_{b} I_{b} ; \quad S_{c}=V_{c} I_{c} \\
& S_{a}^{2}=P_{a}^{2}+Q_{a}^{2} ; \quad S_{b}^{2}=P_{b}^{2}+Q_{b}^{2} ; \quad S_{c}^{2}=P_{c}^{2}+Q_{c}^{2}
\end{aligned}
$$

3.2.2.5 Arithmetic apparent power (VA)

$$
S_{A}=S_{a}+S_{b}+S_{c}
$$

NOTE 1-The arithmetic apparent power cannot be resolved according to 3.1.1.4,

$$
S_{A} \neq \sqrt{P^{2}+Q^{2}}
$$

where

$$
P=P_{a}+P_{b}+P_{c}
$$

and

$$
Q=Q_{a}+Q_{b}+Q_{c}
$$

NOTE 2-It is recommended to renounce the arithmetic apparent power definition and replace it with the effective apparent power; see 3.2.2.8.

3.2.2.6 Vector apparent power (VA)

$$
\begin{aligned}
& S_{V}=\sqrt{P^{2}+Q^{2}} \\
& S_{V}=\left|P_{a}+P_{b}+P_{c}+j\left(Q_{a}+Q_{b}+Q_{c}\right)\right|=|P+j Q| \\
& S_{V}=\left|P^{+}+P^{-}+P^{0}+j\left(Q^{+}+Q^{-}+Q^{0}\right)\right|
\end{aligned}
$$

NOTE-It is recommended to renounce the vector apparent power definition and replace it with the effective apparent power; see 3.2.2.8.
A geometrical interpretation of S_{V} and S_{A} is presented in Figure 3.

Figure 3—Arithmetic and vector apparent powers: sinusoidal situation(VA)

3.2.2.6.1 Positive-, negative-, and zero-sequence apparent powers (VA)

$$
\begin{aligned}
& S^{+}=\left|S^{+}\right|=\left|P^{+}+j Q^{+}\right| \\
& S^{-}=\left|S^{-}\right|=\left|P^{-}+j Q^{-}\right| \\
& S^{0}=\left|S^{0}\right|=\left|P^{0}+j Q^{0}\right| \\
& S_{V}=\left|S^{+}+S^{-}+S^{0}\right| \\
& S_{A} \neq S^{+}+S^{-}+S^{0}
\end{aligned}
$$

3.2.2.7 Vector power factor and arithmetic power factor

$$
\begin{aligned}
& P_{F V}=\frac{P}{S_{V}} \\
& P_{F A}=\frac{P}{S_{A}}
\end{aligned}
$$

NOTE-A three-phase line supplying one or more customers should be viewed as one single path, one entity that transmits the electric energy to locations where it is converted into other forms of energy. It is wrong to view each phase as an independent energy route. In poly-phase systems, the meaning of power factor as a utilization indicator is retained (see 3.1.2.16). Unity power factor means minimum possible line losses for a given total active power transmitted. The following example helps clarify certain limitations pertinent to the outdated, old apparent power definitions S_{A} and S_{V}.

EXAMPLE:
A four-wire, three-phase system, Figure 4(a), supplies a resistance R connected between phases a and b. The active power dissipated by R is as follows:

$$
P_{R}=\frac{3 V^{2}}{R}
$$

and assume the line current $I_{a}=\quad \mathcal{3} v_{l m} / R$. Assuming each line has the resistance r, the total power loss is

$$
\Delta P=6 r\left(\frac{V_{t n}}{R}\right)^{2}
$$

Now, let us assume a second system with a perfectly balanced three-phase load, Figure 4(b), consisting of three resistances R_{B} connected in Y. This system dissipates the same active power as the unbalanced one; hence,

$$
P_{R B}=3 \frac{V^{2}}{R_{B}}
$$

thus, $R_{B}=R$ and the line currents flowing within the three lines, Figure 4(b), is

$$
I=\frac{V}{\underline{R}}
$$

The line power loss for this balanced system is as follows:

$$
\Delta P_{B}=3 r\left(\frac{V}{R}\right)^{2}=0.5 \Delta P
$$

Figure 4—Unbalanced system: (a) actual circuit, (b) balanced equivalent circuit, and (c) phasor diagram

The power loss dissipated in the unbalanced system is twice the power loss in the balanced one. This observation leads to the conclusion that the unbalanced system has $\mathrm{PF}<1$. The balanced system operates with minimum possible losses for a given load voltage and active power; hence, its power factor is unity.

For the unbalanced system, the arithmetic and vector apparent powers have the following components [see phasor diagram in Figure 4(c)]:

$$
\begin{aligned}
& P_{a}=V_{a} I_{a} \cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2} V_{t n} I ; \quad Q_{a}=V_{a} I_{a} \sin 30^{\circ}=\frac{1}{2} V_{t n} I \quad S_{a}=V_{a} I_{a}=V_{t n} I \\
& P_{b}=V_{b} I_{b} \cos \left(-30^{\circ}\right)=\frac{\sqrt{3}}{2} V_{t n} I ; \quad Q_{b}=V_{b} I_{b} \sin \left(-30^{\circ}\right)=\frac{-1}{2} V_{t n} I ; \quad S_{b}=V_{b} I_{b}=V_{t n} I \\
& P_{c}=Q_{c}=S_{c}=0
\end{aligned}
$$

The total active power is

$$
P=P_{a}+P_{b}=\sqrt{3} V I=\frac{3 V^{2}}{R}
$$

The total reactive power is

$$
Q=Q_{a}+Q_{b}+Q_{c}=0
$$

The vector apparent power is

$$
S_{V}=P
$$

The arithmetic apparent power is

$$
S_{A}=S_{a}+S_{b}+S_{c}=2 V I=2 \sqrt{3} \frac{V^{2}}{R}
$$

The power factor computed for the unbalanced system using S_{V} gives $\mathrm{PF}_{V}=P / S_{V}=1.0$. The power factor computed with S_{A} gives $\quad \mathrm{PF}_{A}=P / S_{A}=\sqrt{3} / 2=0.866$.

If the unbalanced load consists of a resistance connected between line and neutral, then $S_{a}=S_{b}=P$ and $\mathrm{PF}_{A}=\mathrm{PF}_{B}=1.0$.

These results indicate that both the arithmetic and the vector apparent powers do not measure or compute power factor correctly for unbalanced loads. As a rule, $\mathrm{PF}_{A} \leq \mathrm{PF}_{B}$.

3.2.2.8 Effective apparent power (VA)

This concept assumes a virtual balanced circuit that has exactly the same line power losses as the actual unbalanced circuit. This equivalence leads to the definition of an effective line current I_{e}, (see Depenbrock and an effective line-to-neutral voltage V_{e} Staudt [B4] and Emanuel [B8]).

For a four-wire system, the balance of power loss is expressed in the following way:

$$
r\left(I_{a}^{2}+I_{b}^{2}+I_{c}^{2}+\rho I_{n}^{2}\right)=3 r I_{e}^{2}
$$

where
r is the line resistance-assumed to be equal to
$\underline{I_{n}}$ is the neutral current (rms value)
$\rho=\frac{r_{n}}{r}$
$\underline{r_{n}} \underline{\text { is }}$ the neutral wire (or the equivalent neutral current return path) resistance
R is the equivalent line-to-neutral shunt resistance, also assumed to be $1 / 3$ of the equivalent line-to-
line shunt resistance.

From the above previous equations, the equivalent current and voltage for a four-wire system is obtained.

$$
\| I_{e}=\sqrt{\frac{I_{a}^{2}+I_{b}^{2}+I_{c}^{2}+\rho I_{n}^{2}}{3}}=\sqrt{\left(I^{+}\right)^{2}+\left(I^{-}\right)^{2}+(1+3 p)\left(I^{0}\right)^{2}}
$$

For practical situations where the differences between α_{a}, α_{b}, and α_{e}, do not exceed $\pm 10^{\circ}$ and the differences among the line to neutral voltages remain within the range of $\pm 10 \%$, the following simplified expression can be used:

The error caused by this simplified expression is less than 0.2% for the above conditions.
In the same manner, the equivalent current and voltage for
In case that the value of the ratio ρ is not known, it is recommended to use $\rho=1.0$.
For a three-wire system can be found by using $=3 V_{e} I^{0}=0$ and

$$
\| I_{e}=\sqrt{\frac{I_{a}^{2}+I_{b}^{2}+I_{c}^{2}}{3}}=\sqrt{\left(I^{+}\right)^{2}+\left(I^{-}\right)^{2}}
$$

NOTE-In practical systems, ϱ is time dependent. The complicated topology of the power network as well as the unknown neutral path resistance, that is function of soil moisture and temperature, make the correct estimation of ϱ nearly impossible. Since the zero-sequence resistance of three-phase lines is larger than the positive sequence resistance, it can be concluded that $\rho>1.0$, and taking $\rho=1.0$ will not put the customer at disadvantage when computing $I_{\underline{e}}$ (see Pajic and Emanuel [B16] and DIN 40110-1997).

The equivalent voltage is obtained assuming that the active components of the load consist of a set of three equivalent resistances $R_{\underline{Y}}$ connected in Y , supplied by a four-wire line and dissipating the active power $P_{\underline{Y}}$ = The remaining active load consists of three Δ-connected equivalent resistances, R_{Δ}., that dissipate the power $\quad P_{\Delta}$. The power equivalence between the actual and the equivalent system is expressed as follows:

$$
\frac{V_{a}^{2}+V_{b}^{2}+V_{c}^{2}}{R_{Y}}+\frac{V_{a b}^{2}+V_{b c}^{2}+V_{c a}^{2}}{R_{\Delta}}=3 \frac{V_{e}^{2}}{R_{Y}}+\frac{9 V_{e}^{2}}{R_{\Delta}}
$$

where

$$
\underline{V_{e}} \quad \text { is the effective line-to-neutral voltage. }
$$

With the notation

$$
\xi=\frac{P_{\Delta}}{R_{Y}}=\frac{9 V_{e}^{2}}{R_{\Delta}} \frac{R_{Y}}{3 V_{e}^{2}}=\frac{3 R_{Y}}{R_{\Delta}}
$$

results

$$
\| V_{e}=\sqrt{\frac{3\left(V_{a}^{2}+V_{b}^{2}+V_{c}^{2}\right)+\xi\left(V_{a b}^{2}+V_{b c}^{2}+V_{c a}^{2}\right)}{9(1+\xi)}}=\sqrt{\left(V^{+}\right)^{2}+\left(V^{-}\right)^{2}+\frac{\left(V^{0}\right)^{2}}{1+\xi}}
$$

In case that the value of the ratio ξ is not known, it is recommended to use $\xi=1.0$, thus leading to the following expression:

$$
\| V_{e}=\sqrt{\frac{3\left(V_{a}^{2}+V_{b}^{2}+V_{c}^{2}\right)+V_{a b}^{2}+V_{b c}^{2}+V_{c a}^{2}}{18}}=\sqrt{\left(V^{+}\right)^{2}+\left(V^{-}\right)^{2}+\frac{\left(V^{0}\right)^{2}}{2}}
$$

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 04,2014 at 19:13:43 UTC from IEEE Xplore. Restrictions apply.

NOTE-In most practical systems, $V^{0} / V^{+}<0.04$ and the ratio ξ does not affect the value of $V_{\underline{e}}$:
For practical situations where the differences between $\alpha_{\underline{a}}, \alpha_{\underline{b}}$, and $\alpha_{\underline{c}}$ do not exceed $\pm 10^{\circ}$ and the differences among the line-to-neutral voltages remain within the range of $\pm 10 \%$, the following simplified expression can be used:

$$
\| V_{e}=\sqrt{\frac{V_{a b}^{2}+V_{b c}^{2}+V_{c a}^{2}}{9}}=\sqrt{\left(V^{+}\right)^{2}+\left(V^{-}\right)^{2}}
$$

The error caused by this simplified expression is less than 0.2% for the above conditions. This equation gives accurate results for three-wire systems.

The effective apparent power (see Buchholtz [B1] and Goodhue [B7]) is as follows:

$$
\left\lfloor S_{\underline{e}}=3 V_{\underline{e}} \underline{I_{e}}\right.
$$

NOTE 1—Applying the concept of S_{e} to the unbalanced circuit described in the example given in 3.2.2.7 results in the following:

$$
\begin{aligned}
& V_{e}=V ; \quad I_{e}=\sqrt{\frac{I_{a}^{2}+I_{b}^{2}}{3}}=\frac{\sqrt{2} V}{R} \\
& S_{e}=3 \sqrt{2} \frac{V^{2}}{R} ; \quad P=\frac{3 V^{2}}{R}
\end{aligned}
$$

Hence the power factor is as follows:

$$
P_{F e}=\frac{P}{S_{e}}=\frac{1}{\sqrt{2}}=0.707<P_{F A}<P_{F V}
$$

NOTE 2-When the system is balanced, then

$$
\begin{aligned}
& V_{a}=V_{b}=V_{c}=V=V_{e} \\
& I_{a}=I_{b}=I_{c}=I \\
& I_{n}=0
\end{aligned}
$$

and

$$
S_{Y-}=S_{A}=S_{e}
$$

3. When the system is unbalanced, then

$$
S_{K} \leq S_{A} \leq S_{e}
$$

and

$$
\begin{gathered}
P_{F e} \leq P_{F A} \leq P_{F V} \\
4 \text {-Both } \\
S_{V}=S_{A}=S_{e}
\end{gathered}
$$

NOTE 3-When the vector and the arithmetic apparent powers do not satisfy the linearity requirement of system is unbalanced, then power loss ver-sus the apparent power squared (Emanuel [B4]).

$$
S_{V} \leq S_{A} \leq S_{e}
$$

and

$$
\mathrm{PF}_{e}<\mathrm{PF}_{A}<\mathrm{PF}_{V}
$$

3.2.2.9 Effective power factor

$\| P_{F e}=P / S_{e}$

3.2.2.11 Effective apparent power resolution for three-phase sinusoidal systems

3.2.3 Three-Phase nonsinusoidal balanced systems

The line to neutral voltages are as follows:
The line currents have similar expressions. They are as follows:

NOTES
1-In this case, $S_{t}=S_{b}=S_{\epsilon^{-}} P_{t}=P_{b}=P_{\epsilon^{-}} Q_{B a}=Q_{B b}=Q_{B c,}$ and $B_{t}=D_{b}=D_{\epsilon^{-}}$
Z. When triplen harmonies are present, in spite of the fact that the load is perfectly balanced, the neutral eurrent is not nil.

$$
\begin{aligned}
& \dot{t}_{n}=\dot{t}_{t-}+\dot{i}_{b}+\dot{t}_{e}=3 \quad \sum_{h=0,3,6, \ldots} 2 I_{h} \sin \left(h \omega t-\beta_{h}\right) \\
& I_{n}=\sum_{h=0,3,6, \ldots}-h
\end{aligned}
$$

The above equation illustrates the fact that such a system has the potential to produce significant additional power loss in the neutral wire and ground path. This situation should be reflected in the P_{F} expression.

3-The positive-sequence triplen harmonic voltages that contribute to the rms value of $K_{t n}$ eancel each other and do not appear in V_{11} :

The expression $f \approx-3 K_{a} I$ yields an error less than 0.33% when the rms value of all the triplen harmonies veltage is

$$
\sqrt{\sum_{h=0,3,6, \ldots} V_{h}^{2}}<0.08 V_{\ell n}
$$

These observations lead to the conclusion that for three-phase systems with nonsinusoidal wave forms the effective apparent power S_{e} and its components offer an improved set of definitions to better evaluate the power flow conditions (see 3.2.3.2).

3.2.3.1 Apparent power with Budeanu's Resolution

$$
S=3 V_{\ell n} I=\sqrt{P^{2}+Q_{B}^{2}+D_{B}^{2}}
$$

where

$$
P=P_{+} \neq P_{H} \text { is the active power (W) }
$$

where

$$
\begin{aligned}
& P_{4}=3 V_{1} I_{1} \cos \beta_{+} \\
& P_{H-}=3 \sum_{\neq 1} V_{h} I_{4} \cos \theta_{h^{H}} \\
& \theta_{h}=\theta_{h}-\beta_{h} \\
& Q_{B}=Q_{+}+Q_{B H} \text { is the Budeanu's reactive power (var) }
\end{aligned}
$$

where

$$
\begin{aligned}
& Q_{+}=3 V_{1} I_{+} \sin \left(\beta_{t}\right) \\
& Q_{H-}=3 \sum_{\neq 1} V_{h} I_{h} \sin \theta_{h^{H}}
\end{aligned}
$$

The reactive power Q_{B}, has a drawback that is explained in 3.1.2.7.

3.2.3.2 Effective apparent power (VA)

$$
H S_{e}=3 K_{e} I_{e}
$$

For a four-wire balanced system,

$$
Y_{e}=Y_{1+n}
$$

For a three wire system,

$$
\begin{aligned}
& K_{e}=K_{1 H} \vdash-3 \\
& F_{e}=t
\end{aligned}
$$

NOTE 4-Both the vector and the arithmetic apparent powers do not satisfy the linearity requirement of system power $S<S_{e}$ and $P_{E}=P / S>P_{F e}=P / S_{e} \underline{\text { loss versus the apparent power squared (see Emanuel [B8]). }}$

$$
f_{e}=S=
$$

NOTE-In a four-wire system, the apparent
The detailed resolution of S_{e} into practical components is presented in 3.2.4.3.

3.2.4 Three-Phase nonsinusoidal and unbalanced systems

This subclause covers the most general case. It deals with all the situations presented in the previous clauses.

3.2.4.1 Arithmetic apparent power (with Budeanu's Resolution) (VA)

This definition is an extension of Budeanu's apparent power resolution for single-phase systems. For each phase, a per phase apparent power is identifiable as follows:

From the above equations, the following arithmetic apparent power is obtained:

$$
S_{A}=S_{t-}+S_{b}+S_{e}
$$

NOTE The power factor $P_{F A}=P / S_{A}$ maintains the significance previously explained. However the major draw back of this definition stems from the difference between the and quantities and
(seeFigure 4).

3.2.4.2 Vector apparent power (VA), with Budeanu's Resolution

Using the same notations as in 3.2.4.1 applied to

3.2.2.9 Effective power factor

$$
\Perp \mathrm{PF}_{\underline{e}}=P / S_{\underline{e}}
$$

3.2.2.10 Positive-sequence power factor

$$
\underline{\mathrm{PF}^{+}}=P^{+} / S^{+}
$$

This index has the same significance as the fundamental power factor PF_{1} (see 3.1.2.15). It helps evaluate the positive-sequence power flow conditions.

3.2.2.11 Unbalanced power (VA)

$$
S_{U}=\sqrt{S_{e}^{2}-\left(S^{+}\right)^{2}}
$$

It evaluates the amount of VA caused by the system unbalance. It should not be confused with the voltage unbalance. It reflects on both the load unbalance and the voltage asymmetry.
where
$\underline{S^{+}}=3 V^{+} I^{+} \quad$ is the positive-sequence apparent power

$$
\underline{\left(S^{+}\right)^{2}} \equiv\left(P^{+}\right)^{2}+\left(Q^{+}\right)^{2}
$$

3.2.3 Three-phase nonsinusoidal and unbalanced systems

This subclause covers the most general case. It deals with all the situations presented in the 3.2.1 through 3.2.2.5 results in the following:
where

$$
\begin{aligned}
& P=P_{a t} \neq P_{b}+P_{e} \\
& Q_{B-}=Q_{B a t} \neq Q_{B b} \neq Q_{B e} \\
& Q_{B}=D_{B a}+D_{B b}+D_{B e}
\end{aligned}
$$

NOTE- While this expression is free of the drawback discussed in the previous note, the problems with the Budeanu's reactive power also affect this apparent power resolution. Moreover, the fact that no flow direction can be assigned to D_{B}, limits the usefulness of this definition even more.

3.2.3.1 The effective apparent power and its resolution

In the past, S_{e} was divided into active power P and nonactive power N as follows:

$$
S_{e}^{2}=P^{2}+N^{2}
$$

This approach, however, does not separate out the positive-sequence fundamental powers. The approach used in 3.1.2.8 to 3.1.2.14 and 3.2.2.8 can be expanded for this situation. The rms effective eurrent and voltage are divided into two components the fundamental and the nonfundamental (Emanuel [B5], IEEE [B9]).

Where for For a four-wire system, the balance of losses in the actual line and the fictitious one is

$$
3 r_{e} I_{e}^{2}=r_{d c} \sum_{h} K_{s h}\left(I_{a h}^{2}+I_{b h}^{2}+I_{c h}^{2}\right)+r_{n d c} \sum_{h} K_{s n h} I_{n h}^{2}
$$

For three-wire systems, $I_{n+1}=I_{n H}=0$ and the expressions become simpler. The resolution of $S_{e}=3 K_{e} I_{e 2}$

The equivalent resistance $r_{\underline{e}}=K_{s \underline{s}} \underline{r}_{d c}$ (i,e., the line resistance measured at fundamental frequency), where $\underline{r}_{d c}$ is the dc resistance and $K_{s \leq 1}$ is the skin and proximity effect coefficient at fundamental frequency (most common being 60 or 50 Hz). Thus, the equivalent current will have the following expression:

$$
I_{e}=\sqrt{\frac{1}{3}\left\{\sum_{h}\left[\frac{K_{s h}}{K_{s 1}}\left(I_{a h}^{2}+I_{b h}^{2}+I_{c h}^{2}\right)+\frac{K_{s n h} r_{n d c}}{K_{s 1} r_{d c}} I_{n h}^{2}\right]\right\}}
$$

where
$\underline{K_{s h}, K_{\text {snh }}}$
are the skin and proximity effect coefficients of the supplying line conductor and the neutral current path, respectively, computed for the h harmonic order, or any frequency component present in the currents spectra
$\underline{r_{n d c}}$
is the dc resistance of the neutral current path
The rms effective current can be separated into two components-the fundamental $I e 1$ and the nonfundamental $\underline{e}_{\underline{e H}}$, (see Emanuel [B8] and IEEE Working Group [B14].

$$
\begin{aligned}
& I_{e}=\sqrt{I_{e l}^{2}}+I_{e H}^{2} \\
& I_{e l}=\sqrt{\frac{1}{3}\left[\left(I_{a l}^{2}+I_{b 1}^{2}+I_{c l}^{2}\right)+\rho_{1} I_{n 1}^{2}\right]} ; \quad \rho_{1}=\frac{K_{s n 1} r_{h d c}}{K_{s 1} r_{d c}} \\
& I_{e H}=\sqrt{\frac{1}{3}\left\{\sum_{h \neq 1}\left[\kappa_{h}\left(I_{a h}^{2}+I_{b h}^{2}+I_{c h}^{2}\right)+\rho_{h} I_{n h}^{2}\right]\right\}} ; \quad \kappa_{h}=\frac{K_{s h}}{K_{s 1}} \quad \rho_{h}=\frac{K_{s n h}}{K_{s 1}} \frac{r_{n d c}}{r_{d d c}}
\end{aligned}
$$

In most practical applications, the ratios $\rho_{\underline{1}}, \rho_{\underline{h}}$, and $\kappa_{\underline{h}}$ are not known. Moreover, these ratios are function of temperature, network topology, and loading. Until tools that allow the correct determination of such values will be available, it is recommended to use the value $\rho_{\underline{1}} \equiv \rho_{\underline{h}}=\kappa_{\underline{h}}=1.0$. This approach leads to simpler expressions that do not disadvantage the user (i.e., yield for the effective current a value smaller than the value obtained from the exact expression). The practical expressions are as follows:

$$
\begin{aligned}
& \| I_{e}=\sqrt{\frac{I_{a}^{2}+I_{b}^{2}+I_{c}^{2}+I_{n}^{2}}{3}} \\
& \| I_{e l}=\sqrt{\frac{I_{a l}^{2}+I_{b l}^{2}+I_{c l}^{2}+I_{n l}^{2}}{3}} \\
& I_{e H}=\sqrt{\frac{I_{a H}^{2}+I_{b H}^{2}+I_{c H}^{2}+I_{n H}^{2}}{3}}=\sqrt{I_{e}^{2}-I_{e l}^{2}} \|
\end{aligned}
$$

For three-wire systems, $I_{\underline{n} 1}=I_{n h}=0$ and the expressions become simpler.

$$
\begin{aligned}
& \| I_{e}=\sqrt{\frac{I_{a}^{2}+I_{b}^{2}+I_{c}^{2}}{3}} \\
& \| I_{e l}=\sqrt{\frac{I_{a l}^{2}+I_{b 1}^{2}+I_{c l}^{2}}{3}} \\
& I_{e H}=\sqrt{\frac{I_{a H}^{2}+I_{b H}^{2}+I_{c H}^{2}}{3}}=\sqrt{I_{e}^{2}-I_{e l}^{2}} \|
\end{aligned}
$$

The practical expressions for the effective voltage are obtained in a similar manner

$$
\begin{aligned}
& V_{e}=\sqrt{V_{e l}^{2}+V_{e H}^{2}} \\
& \| V_{e}=\sqrt{\frac{1}{18}\left[3\left(V_{a}^{2}+V_{b}^{2}+V_{c}^{2}\right)+V_{a b}^{2}+V_{b c}^{2}+V_{c a}^{2}\right]} \\
& \| V_{e l}=\sqrt{\frac{1}{18}\left[3\left(V_{a l}^{2}+V_{b l}^{2}+V_{c l}^{2}\right)+V_{a b l}^{2}+V_{b c l}^{2}+V_{c a l}^{2}\right]} \\
& V_{e H}=\sqrt{\frac{1}{18}\left[3\left(V_{a H}^{2}+V_{b H}^{2}+V_{c H}^{2}\right)+V_{a b H}^{2}+V_{b c H}^{2}+V_{c a H}^{2}\right]}=\sqrt{V_{e}^{2}-V_{e l}^{2}} \|
\end{aligned}
$$

For three-wire systems

$$
\begin{aligned}
& \| V_{e}=\sqrt{\frac{V_{a b}^{2}+V_{b c}^{2}+V_{c a}^{2}}{9}} \\
& \| V_{e l}=\sqrt{\frac{V_{a b 1}^{2}+V_{b c l}^{2}+V_{c a l}^{2}}{9}} \\
& V_{e H}=\sqrt{\frac{V_{a b H}^{2}+V_{b c H}^{2}+V_{c a H}^{2}}{9}}=\sqrt{V_{e}^{2}-V_{e l}^{2}} \|
\end{aligned}
$$

The resolution of $S_{\underline{e}}=3 V_{\underline{e}} \underline{I_{e}} \underline{\text { is }}$ implemented in the manner shown in 3.1.2.9 to 3.1.2.14.

$$
S_{e}^{2}=S_{e l}^{2}+S_{e N}^{2}
$$

where

$$
\begin{aligned}
& \| S_{e 1}=3 V_{e 1} I_{e 1} \quad \begin{array}{l}
\text { is the fundamental effective apparent power and } S_{e N} \text { is the } \\
\text { nonfundamental effective apparent power. The resolution of } S_{e N} \text { is } \\
\text { identical to the resolution of } S_{N} \text { given in 3.1.2.9. }
\end{array} \\
& \| S_{e N}^{2}=S_{e}^{2}-S_{e l}^{2}=D_{e l}^{2}+D_{e V}^{2}+S_{e H}^{2}
\end{aligned}
$$

The current distortion power, voltage distortion power, and harmonic apparent power are as follows:

$$
\begin{gathered}
\| D_{e 1}=3 V_{e 1} I_{e H} \\
\| D_{e V}=3 V_{e H} I_{e 1} \\
\| S_{e H}=3 V_{e H} I_{e H}
\end{gathered}
$$

and

$$
\| D_{e H}=\sqrt{s_{e H}^{2}-P_{e H}^{2}}
$$

By defining the equivalent total harmonic distortions as follows:

$$
\begin{aligned}
& \| T H D_{e V}=\frac{V_{e H}}{V_{e 1}} \\
& \| T H D_{e I}=\frac{I_{e H}}{I_{e 1}}
\end{aligned}
$$

practical expressions, identical to those found in 3.1.2.10 through 3.1.2.14, for the nonfundamental apparent power $S_{e N}$ and its components $D_{e I}, D_{e V}$, and $S_{e H}$ are obtained.

$$
\begin{aligned}
& S_{e N}=S_{e 1} \sqrt{T H D_{e I}^{2}+T H D_{e V}^{2}+\left(T H D_{e I} T H D_{e V}\right)^{2}} \\
& D_{e I}=S_{e 1}\left(T H D_{I}\right) \\
& D_{e V}=S_{e 1}\left(T H D_{V}\right) \\
& S_{e H}=S_{e 1}\left(T H D_{I}\right)\left(T H D_{V}\right)
\end{aligned}
$$

For systems with $\mathrm{THD}_{e V} \leq 5 \%$ and $\mathrm{THD}_{e I} \geq 40 \%$, the following approximation is recommended (see IEEE Working Group [B14]):

$$
S_{e N} \approx S_{e 1}\left(T H D_{e I}\right)
$$

The load unbalance can be evaluated using the following fundamental unbalanced power:

$$
S_{U 1}=\sqrt{S_{e 1}^{2}-\left(S_{1}^{+}\right)^{2}}
$$

where
$S_{1}^{+} \quad$ is the fundamental positive-sequence apparent power (VA). This important apparent power contains the following components:

$$
\begin{array}{ll}
P_{1}^{+}=3 V_{1}^{+} I_{1}^{+} \cos \theta_{1}^{+} & \text {is the fundamental active power }(\mathrm{W}) \\
Q_{1}^{+}=3 V_{1}^{+} I_{1}^{+} \sin \theta_{1}^{+} & \text {is the fundamental reactive power (var) }
\end{array}
$$

Together they result in

$$
S_{1}^{+}=\sqrt{\left(P_{1}^{+}\right)^{2}+\left(Q_{1}^{+}\right)^{2}}
$$

and the fundamental or the $60 / 50 \mathrm{~Hz}$ positive-sequence power factor

$$
\| \mathrm{PF}_{1}^{+}=\frac{P_{1}^{+}}{S_{1}^{+}}
$$

that plays the same significant role that the fundamental power factor has in nonsinusoidal single-phase systems.

The power factor is

$$
\| P_{F}=\frac{P}{S_{e}}
$$

The most important definitions are summarized in Table 2.

Table 2-Summary and grouping of quantities for three-phase systems with nonsinusoidal waveforms

Quantity or indicator	Combined	Fundamental powers	Nonfundamental powers		
Apparent	$\begin{gathered} S_{e} \\ (\mathrm{VA}) \end{gathered}$	$\begin{array}{lc} S_{\text {el }} & \begin{array}{c} S_{1}^{+} \\ \text {(vA) } \end{array} \end{array} S_{1 \mathrm{U}}$	$S_{\text {ev }}$	(VA)	$S_{\text {eH }}$
Active	$\stackrel{P}{(\mathrm{~W})}$	$\begin{aligned} & P_{1}^{+} \\ & (\mathrm{W}) \end{aligned}$		$\begin{aligned} & P_{H} \\ & \text { (W) } \end{aligned}$	
Non-active	$\underset{\text { (var) }}{N}$	$\begin{gathered} Q_{1}^{+} \\ (\mathrm{var}) \end{gathered}$	$D_{\text {el }}$	$\begin{gathered} D_{\text {eV }} \\ (\mathrm{var}) \end{gathered}$	$D_{\text {eH }}$
Line utilization	$\mathrm{PF}=P / S_{e}$	$\mathrm{PF}_{1}^{+}=R^{+} / \mathrm{S}_{1}^{+}$		-	
Harmonic pollution	-	-		$S_{\text {eN }} / S_{\text {el }}$	
Load unbalance	-	$S_{1 U} / S_{1}^{+}$		-	

Table 2 lists the three basic powers: apparent, active, and nonactive. The columns are partitioned into three groups - the combined powers, the fundamental powers, and the nonfundamental powers. The last three rows give the following indices: power factors (i.e., line utilization factor), harmonic pollution factor, and load unbalance factor.

Annex A (informative)

Theoretical examples

A. 1 The effect of the integration interval

Table A. 1 summarizes voltage and current phasor values at the input terminals of a nonlinear load taking a total active power $P=4072.716 \mathrm{~W}$. The oscillograms are presented in Figure A.1.

Table A.1—Phasors and the active powers of the studied load

\underline{h}	$\begin{gathered} \underline{\mathrm{f}} \\ (\mathrm{~Hz}) \end{gathered}$	$\underline{V}_{\underline{h}} / \underline{\alpha}_{\underline{h}}$ (V)	$\underline{I}_{h} \underline{\beta}_{\underline{h}}$ (A)	$\underline{P}_{\underline{h}}=V_{\underline{h}} \underline{I_{\underline{L}}} \underline{\cos \left(\beta_{\underline{h}}-\alpha_{\underline{h}}\right)}$ (W)
$\underline{0.0217}$	1.302	$3.5 \cdot 10^{-4} /-90.0$	$\underline{1.48 / 80.2}$	$\underline{-5.1734 \cdot 10^{-4}}$
$\underline{0.0433}$	$\underline{2.598}$	$1.4 \cdot 10^{-3} /-107.3$	2.26/-8.4	$\underline{-4.9507 \cdot 10^{-4}}$
0.957	57.42	$\underline{0.16 /-75.5}$	$\underline{0.92 /-173.5}$	$\underline{-0.0208}$
$\underline{0.978}$	58.68	0.56/-97.2	2.24/-193.2	-0.1329
1.0	60	70.71/-7.2	70.71/-42.4	4085.72
1.022	$\underline{61.32}$	$\underline{0.46 /-82.9}$	$\underline{1.75 /-178.9}$	$\underline{-0.08425}$
$\underline{1.043}$	62.58	$\underline{0.35 /-104.3}$	0.91/-202.3	$\underline{-0.04488}$
3.0	$\underline{180}$	5.02/-76.0	19.09/18.3	-7.18671
4.268	$\underline{256.1}$	$\underline{0.95 / 176.4}$	5.43/-87.0	-0.59219
5.0	300	3.18/-114.0	7.64/-15.8	-3.46588
7.0	420	$\underline{2.33 /-142.0}$	$3.68 /-43.2$	$\underline{-1.31261}$
$\underline{9.0}$	540	$\underline{1.13 /-165.0}$	1.41 / -69.0	$\underline{-0.16724}$

The voltage and current waves contain harmonics (fundamental, 3rd, 5th, 7th, and 9th) as well as three interharmonics ($h=1.022,1.043$, and 4.268) and four subsynchronous interharmonics ($h=0.0217,0.0433$, 0.957 , and 0.978).

Figure A. 2 graphs the theoretical error

$$
\% \varepsilon_{P}=\left[\frac{\frac{1}{t} \int_{0}^{t} \text { vidt }}{4072.716}-1\right] 100
$$

Powers normalized to $S_{e 1}=3 \times 278 \times 107.38=89.70 \mathrm{kVA}$ are summarized in Table A.6.

The arithmetic apparent power is as follows:

$$
S_{A}=S_{t-}+S_{b}+S_{\epsilon}=35.524+41.306+0=76.83 \mathrm{kVA}
$$

The vector apparent power is as follows:
The effective apparent power is as follows:
versus time for $200 \mathrm{~ms}<t<3000 \mathrm{~ms}$. At $\underline{t}=\underline{200} \underline{\mathrm{~ms}}$, the error is approximately -4%, and as the measurement time reaches $3000 \mathrm{~ms}=180$ cycles, the error is significantly reduced.

Figure A. 3 presents the error obtained when only the power of the interharmonic of order $h=4.268$ is measured. In this case, the error can be significant, reaching approximately 112% at $t=300 \mathrm{~ms}$ and converging toward $\pm 8 \%$ around $t=3000 \mathrm{~ms}$.

Figure A.1-Studied voltage (upper trace) and current (lower trace) oscillograms

Figure A.2-Total active power measurement percent error versus measurement time

$$
P=P_{t-} \neq P_{b} \neq P_{\epsilon}=24.998+26.335+0=51.33 \mathrm{~kW}
$$

The power factors are as follows:

Figure A.3-Interharmonic of order $h=4.268$: active power measurement percent error versus measurement time

A. 2 The use of varmeters in the presence of distorted waveforms

Varmeters that use 90° phase shift in time of fundamental may measure correctly the reactive power under sinusoidal conditions. When the voltage and current waveforms are highly distorted, such meters yield a reading that has questionable significance (see Filipski, and Labaj [B9]; Filipski et al. [B10]; Cataliotti et al. [B2], and The IEEE Standards Dictionary: Glossary of Terms \& Definitions ${ }^{6}$). The theoretical expressions of the measured results depend on the definition on which the meter design is based

Case A:

$$
Q=\frac{1}{k T} \int_{\tau}^{\tau+k T} v(t) i(t-T / 4) d t=Q_{1}+P_{0}-P_{2}+Q_{3}-P_{4}+Q_{5} \cdots
$$

where

$$
Q_{1}=V_{1} I_{1} \sin \left(\theta_{1}\right) ; P_{0}=V_{0} I_{0} ; P_{2}=V_{2} I_{2} \cos \left(\theta_{2}\right) ; Q_{3}=V_{3} I_{3} \sin \left(\theta_{3}\right)
$$

Case B:

$$
Q=\frac{\omega}{k T} \int_{\tau}^{\tau+k T}\left[\int v d t\right] i(t) d t=Q_{1}+k \pi P_{0}+\frac{Q_{2}}{2}+\frac{Q_{3}}{3}+\cdots \frac{Q_{h}}{h}
$$

The 60 Hz positive-sequence powers give the following:

The large differences between the power factor values are due to large differences among apparent powers values.

As in the previous example the total line losses are as follows:

$$
\Delta P_{e}=3 r I_{e}=3 \times 0.021 \times 165.08^{z}=1717.8 \mathrm{~W}
$$

The neutral conductor power loss, included in ΔP_{e}, is as follows:

$$
\Delta P_{n}=r I_{n}=0.021 \times 210.66=931.9-\mathrm{W}
$$

The total harmonic distortion of the equivalent current is as follows:
${ }^{6}$ The IEEE Standards Dictionary: Glossary of Terms \& Definitions is available at http://shop.ieee.org/.

Case C:

$$
Q=\frac{-1}{k T \omega} \int_{\tau}^{\tau+k T} i \frac{d v}{d t} d t=Q_{1}+2 Q_{2}+3 Q_{3}+\cdots h Q_{h}
$$

Varmeters that operate according to Budeanu's definition (see Czarnecki [B3] and Lyon [B15]) will measure

$$
Q_{\underline{B}}=Q_{\underline{1}}+Q_{\underline{2}}+Q_{\underline{3}}+\cdots Q_{\underline{h}}
$$

Because $Q_{\underline{h}}=V_{\underline{h}} \underline{I_{\underline{h}}} \underline{\sin \left(\theta_{\underline{h}}\right) \text { can be positive or negative, it results that is not a reliable indicator of the thermal }}$ stress caused in the conductors by the reactive power (see Pretorius et al. [B18]).

In conclusion, when the voltage or the current waveforms are highly distorted, none of the previous methods yield a correct value for the fundamental reactive power or for the nonactive powers defined in this standard (see 3.1.1.3 and 3.1.2.9).

This standard emphasizes $Q_{\underline{1}}$, the fundamental reactive power, and Q^{+}, the fundamental positive-sequence reactive power, as separate quantities.

The effective apparent power is separated in five basic components (see 3.2.3.1 and Annex B):

$$
S_{e}^{2}=R_{1}^{2}+Q_{1}^{2}+D_{e I}^{2}+D_{e V}^{2}+S_{e H}^{2}
$$

and due to the neutral current contribution exceeds phase current distortions.

The ratio $D_{e I} / S_{e 1-}=1.117$ indicates a significant nonsinusoidal situation that is quantified by $S_{e N F}=100.29 \mathrm{kVA}$.

This example demenstrates that large differences can oceur between Q and $Q^{+} ; 2.62 \%$ versus 11.83%. This issue is further emphasized in Annex B, which presents actual field studies.

The terms $D_{\underline{e I}}, D_{\underline{e V}}$ and a large part of $S_{\underline{e H}}$ are nonactive powers that correctly correlate with the line power losses caused by instantaneous power components that oscillate between the measured load and the voltage source.
These components (except the harmonic active power $\quad P_{e H}=\sqrt{S_{e H}^{2}-D_{e H}^{2}}$) do not transfer net energy to the load.

Annex A

(informative)

Theoretical examples

A. 1 Single-Phase nonsinusoidal

The circuit used for this example is presented in Figure A.1(a). Voltage v and current i waveforms are presented in Figure A.1(b). Normalized harmonic voltages and currents are summarized in Table A.1.

Table A.1-Percent Harmonic Voltage-and-Current PhasorsBase Values: $V_{1}=111.09 \mathrm{~V} ; \mathrm{H}_{1}=11.17 \mathrm{~A}$

*	4	3	5	7	9	11	13	15
$V_{h}(\%)$	100.00	5.98	1.74	2.00	1.15	1.14	0.85	0.89
$t_{4}($ deg $)$	23.80	-39.12	173.3	21.39	+20.10	87.24	-60.68	156.40
$I_{4}(\%)$	100.00	51.20	12.78	12.47	5.38	5.51	3.10	3.04
$®_{h}(\mathrm{deg})$	23.31	145.70	-43.38	161.30	16.14	-141.80	82.66	79.19

The values of the rms, fundamental, and total harmonic voltage and current are as follows:

$$
\begin{aligned}
& \forall=110.35 \mathrm{~V} \\
& V_{+}=110.09 \mathrm{~V} \\
& Y_{H-}=7.55 \mathrm{~V} \\
& I=12.75 \mathrm{~A} \\
& I_{4}=41.17 \mathrm{~A} \\
& I_{H-}=6.15 \mathrm{~A}
\end{aligned}
$$

The total harmonic distortions of voltage and current are as follows:

$$
T H D_{\downarrow}=0.069
$$

$$
T H D_{F}=0.549
$$

Computations lead to the results summarized in Table A.2.

Table A.2-Percent powers Base value: $\mathrm{S}_{1}=1229.70 \mathrm{VA}$

$f_{e}=114.41$	$s_{+}=100.00$	$S_{\text {IH }}=55.59 \quad S_{H}=3.80$
$P=66.35$	$P_{t}=69.61$	$P_{H}=3.26$
$N=93.20$	$Q_{+}=73.07$	$\begin{aligned} & B_{H}=55.06 \\ & B_{ \pm}=6.91 \\ & B_{H}=1.96 \end{aligned}$
$P_{F}=P / S=0.580$	$P_{F 4}=P_{1} / S_{4}=0.696$	$S_{N} / S_{4}=0.556$
	$Q_{B}=71.58$	$B_{B}=59.69$

The nonlinear load is supplied with a 60 Hz active power $P_{4}=0.6961 \times 1229.7=856.04 \mathrm{~W}$, and operates with a power factor $P_{F}=0.580$ and a fundamental factor $P_{F 1}=\cos \theta_{1}=0.696$. Λ small part of the 60 Hz active power is converted by the triac into harmonic power (returned to the power system) as follows:

$$
P_{H-}=-0.0326 \times 1229.70=-40.1 \mathrm{~W}
$$

The fundamental current lags the fundamental voltage by an angle $\theta_{4}=23.80^{\circ}+23.31^{\circ}=47.11^{\circ}$, yielding a 60 Hz reactive power as follows:

$$
Q_{+}=0.7307 \times 1229.7=898.61 \mathrm{Var}
$$

Budeanu's reactive power $Q_{B}=880.22$ var , is smaller than $Q_{t^{-}}$
The degree of distortion can be estimated with the ratio $S_{\mu} / S_{4}=0.556$, which is nearly equal to $T H D_{I}=0.549$.

The overall amount of harmonic pollution is quantified with the help of the non 60 Hz apparent power as follows:

$$
S_{N-}=0.556 \times 1229.70=683.63 \mathrm{VA}
$$

This value is nearly equal to the current distortion power $D_{+}=677.05$ var. The small difference is due to the voltage distortion power $D_{\perp}=84.97$ var and the harmonic apparent power $S_{H}=46.73 \mathrm{VA}$.

The fundamental apparent power S_{\perp} and its components P_{\perp} and Q_{\perp} make up the bulk of the apparent power S. Nevertheless, in this particular example, the nonfundamental apparent power S_{N-} represents a significant amount of the total apparent power.

A. 2 Three-Phase balanced nonsinusoidal system

The circuit is shown in Figure A.2. In this example, the third and the ninth harmonic currents are zerosequence components and cause a large neutral current, which results in additional energy loss in the neutrat conductor. Harmonic phasors obtained from this circuit simulation are summarized in Table A.3. Voltage and eurrent components of higher interest have the following rms and total harmonic distortion values:

The neutral current has no $-60 \mathrm{~Hz}, 300 \mathrm{~Hz}$, or 420 Hz components (i.e., neither positive nor negative sequence components). The line-to-line voltage, however, lacks the 180 Hz and the 540 Hz components (zero-sequence). This sittation is reflected in the following apparent power computations:

A 0.94% difference between these two values is observed.
Table A.3-Percent harmonic voltage and current phasors Base values: $V_{1}=277.25 \mathrm{~V} ; \mathrm{H}_{1}=99.98 \mathrm{~A}$

h	1	3	5	7	9
$K_{\text {1nh }}(\%)$	100.00	13.26	1.34	1.48	3.48
$f_{\text {H }}($ deg $)$	2.35	7.76	83.54	163.20	-42.74
$I_{t}(\%)$	100.00	68.84	34.90	27.84	5.94
$®_{h}(\mathrm{deg})$	22.00	100.00	175.00	-65.01	47.99
$\pm_{n h}(\%)$	θ	206.52	θ	θ	17.82
$V_{114}(\%)$	173.20	θ	2.31	2.55	θ

The normalized equivalent voltages and currents are as follows:

The fundamental apparent power $S_{e 1}=3 K_{e 1} I_{e 1}=3 \times 277.25 \times 99.98=83.158 \mathrm{kVA}$, is chosen as the base value for the normalized power values given in Table A.4.

Table A.4-Percent powers
Base value: $\mathrm{S}_{\mathrm{e} 1}=3 \times 277.75 \times 99.98=83.158 \mathrm{kVA}$

$S_{e}=177.13$	$f_{e 4}=S_{+} \mp 00 \quad S_{U 1}=0$	$S_{\text {eN }}=146.19$	$S_{\text {eHt }}=14.45$
$P=93.67$	$P_{4}=P_{+} \stackrel{ \pm}{=} 94.18-P_{4}=0$		$P_{H}=0.513$
$N=93.20$	$Q_{4}=Q_{4-} \stackrel{ \pm}{=} 33.62-Q_{4}=0$		$\begin{aligned} & D_{e I}=145.14 \\ & D_{e V}=9.95 \\ & D_{e H}=14.45 \end{aligned}$
$S_{A}=S_{V}=130.68$	$E_{B}=23.36$	$\theta_{B}=88.07$	

In a batanced system the effective fundamental apparent power equals the fundamental positive-sequence apparent power, $S=S^{+}$. The arithmetic and vector apparent powers are also equal.

$$
S_{A}=S_{F}=3 V_{t t} I_{t}=108.67 \mathrm{kVA}
$$

The normalized values are $S_{A}=S_{F}=130.68 \%$. The normalized active power is $P=93.67 \%$ with a nor malized fundamental active power $P_{1}=94.18 \%$. These active and apparent powers give the following factors:

Significant differences are apparent among these three power factor values. The effective apparent power yields the lowest power factor. This is due to the fact that $S_{e}>S_{A}$. The equivalent current I_{e} eovers the thermal effect of the neutral current I_{A}, hence $I_{e}>I_{t}$. The definition of I_{e} is based on the equivalence of the total line power loss, neutral eurrent included.

The same result is obtained by using the following expression:
i.e., 1055 W is due to the line currents and 901 W is due to the neutral current.

The vector apparent power S_{V} definition ignores the fact that, in spite of the balanced load and symmetrical voltages, there is a substantial neutral current. This becomes evident when comparing the following expression:
The harmonic active power $P_{H}=-0.513 \%$ is not a good indicator of the harmonic pollution magnitude. Its value depends not only on the $I_{e H}$ өr $S_{e N}$, but also on the system's Thevenin impedance. A larger r will increase P_{H}, while $S_{e N}$ will remain practically unchanged. The correct way to evaluate harmonic pollution is with $S_{e N} \approx S_{e 1}\left(T H D_{e t}\right)$.

A. 3 Three-Phase unbalanced nonsinusoidal system

The previous example was modified by disconnecting phase c, Figure A.3. A capacitor $C=338 \mu F$ was connected between terminals b and n to enhance the difference between the current spectra of i_{t-1} and i_{b}.

The percent harmonic voltage and current phasors are given in Table A.5.

Table A.5-Percent harmonic voltage and-current phasors Base values: $\mathrm{V}_{\mathrm{a} 1}=271.03 \mathrm{~V} ; \mathrm{I}_{\mathrm{a} 1}=99.98 \mathrm{~A}$

${ }^{1}$	4	3	5	7	9
$F_{\text {thl }}(\%)$	100.00	10.28	4.92	7.44	8.64
$\leqslant_{\text {fal }}$ (deg)	-0.74	6.76	142.30	146.70	-47.40
$\pm_{\text {ath }}(\%)$	100.00	68.84	34.90	27.85	5.93
$®_{\text {efl }}$ (deg)	22.00	100.00	175.00	-65.00	48.00
$V_{\text {bh }}(\%)$	104.49	10.53	5.79	8.58	11.05
$\psi_{\text {bh }}$ (deg)	-121.20	6.28	167.40	125.20	-49.19
$I_{\text {bh }}(\%)$	93.49	79.77	42.30	45.81	40.59
	+20.80	99.49	65.09	+167.90	41.89
$F_{\text {eh }}(\%)$	103.73	8.69	4.30	6.58	8.22
$t_{\text {elh }}$ (deg)	121.30	9.70	157.70	136.50	-47.35
$f_{\text {ch }}(\%)$	θ	θ	θ	θ	θ
$I_{n h}(\%)$	178.12	21.01	63.28	67.87	65.75
$V_{\text {that }}(\%)$	177.56	0.26	2.48	3.19	2.43
$F_{\text {beh }}(\%)$	177.93	1.93	1.65	2.49	2.84
$V_{\text {eah }}(\%)$	178.28	1.67	1.36	1.51	0.41

Some of the important computed quantities are as follows:

$$
\begin{aligned}
& V_{\theta t}=274.53 \mathrm{~V} ; V_{\theta+}=271.03 \mathrm{~V} ; V_{\theta H-}=43.70 \mathrm{~V} ; \quad T H D_{\nu \epsilon}=0.161 \\
& V_{b}=287.57 \mathrm{~V} ; V_{b 1}=283.20 \mathrm{~V} ; V_{b H-}=49.94 \mathrm{~V} ; \quad T H D_{V b}=0.176 \\
& Y_{e}=283.81 \mathrm{~V} ; Y_{e 1}=281.13 \mathrm{~V} ; V_{e H-}=38.85 \mathrm{~V} ; T H D_{V_{e}}=0.138 \\
& F_{a b}=481.43 \mathrm{~V} ;{ }_{a b 1}=481.26 \mathrm{~V} ; Y_{a b H-}=12.79 \mathrm{~V} ; T H D_{V a b}=0.027 \\
& V_{b e}=482.41 \mathrm{~V} ; V_{b e t}=482.25 \mathrm{~V} ; V_{b e H-}=12.34 \mathrm{~V} ; T H D_{V b e}=0.026 \\
& F_{e t}=483.22 \mathrm{~V} ; K_{e a t}=483.17 \mathrm{~V} ; K_{e t H-}=7.22 \mathrm{~V} ; T H D_{\text {Vett }}=0.015
\end{aligned}
$$

$$
\begin{aligned}
& I_{t}=129.40 \mathrm{~A} ; \quad I_{t+1}=99.98 \mathrm{~A} ; \quad I_{t H-}=82.25 \mathrm{~A} ; \quad T H D_{t+}=0.823 \\
& I_{b}=143.64 \Lambda ; \quad I_{b 1}=93.48 \Lambda ; \quad I_{b H}=109.07 \Lambda ; \quad T H D_{I b}=1.167 \\
& I_{\epsilon}=0 \Lambda ; I_{e 1}=0 \Lambda ; \quad I_{e H-}=0 \Lambda ; \\
& I_{H}=210.66 \Lambda ; I_{n+}=125.93 \Lambda ; \quad I_{n H-}=168.90 \Lambda ; T H D_{I m}=1.341
\end{aligned}
$$

The equivalent voltages and currents are as follows:

Annex B

(informative)

Practical studies and measurements : A detailed explanation of apparent power components

B. 1 Power survey at a large industrial plant ${ }^{5}$

In 1997, a team South African engineers (Pretorius, van Wyk, and Swart [B11]) studied and compared a few methods of power resolutions for accuracy, usefulness, and suitability for revenue purpose. The follow-ing eonelusions were reached by the surveying team

A load is supplied with a nonsinusoidal voltage

$$
v=v_{1}+v_{2}+v_{5}+v_{7}=\sqrt{2} \sum_{h=1,3,5,7} V_{h} \sin \left(h \omega t-\alpha_{h}\right)
$$

a) Budeanu's method gives erroneous results.
b) The IEEE Working Group method (presented in this Trial Use standard), based on the Buchholz Goodhue definition of effective apparent power S_{e} and its resolution in $S_{e 1}$ and $S_{e N}$ "is encouraged because it is merely an extension of the classical sinusoidal definitions that are already well understood."
e) The IEEE Working Group method "accurately describes the rating of power compensation equipment, that ought to be used in practice and is a good resolution method to indicate the severity of distortion in practical power systems."
d) Other methods studied did yield "mathematically correct results, but are diffieult to apply in practice due to measurement problems," the stumbling block being the need for precise measurement of the active power per each harmonic order.

The diagram of the studied system is shown in Figure B.1. This facility is supplied with three-phase, 50 Hz , $11 \mathrm{kV} / 380$ V, from two separate $2 \mathrm{MVA}, 5.69 \%, \Delta / Y$ transformers. The major loads consist of 13 pulsed power supplies, ac/de converters (regulating pulse units) with the following nominal values:

380 V
78.7 A
60.35 kVA

THD $I_{I} \approx 38 \%$
This location was selected for its ideal conditions, created by the fact that several passive and active filters were already installed and permission was obtained to connect and disconnect the filters. Some of the results published in Pretorius, van Wyk, and Swart [B11] are listed and discussed in the following:

1. MEASUREMENTS AT THE PRIMARY SIDE OF TRANSFORMER 1

All the filters were disconnected. Voltage and current waveforms and spectra are presented in Figure B.2.

The most important quantities measured are as follows:

$$
i=i_{1}+i_{2}+i_{5}+i_{7}=\sqrt{2} \sum_{h=1,3,5,7} I_{h} \sin \left(h \omega t-\beta_{h}\right)
$$

(To simplify the explanations, the eventual presence of dc components was ignored.)

In this case, the instantaneous power has 16 terms that can be separated in two groups

$$
p=v i=p_{h h}+p_{m n}
$$

where

$$
p_{h h}=v_{1} i_{1}+v_{3} i_{3}+v_{5} i_{5}+v_{7} i_{7}=\sum_{h=1,3,5,7} v_{h} i_{h}
$$

${ }^{5}$ This information is provided with permission from Pretorius, van Wyk, and Swart [B11].

Values of the measured powers are given in Table B.1.

Fable B.1-Powers measured at the primary side of transformer 1

$S=993.08 \mathrm{kVA}$	$S_{\perp}=806.52 \mathrm{kVA}$ $S_{H-}=0.33 \mathrm{kVA}$	$S_{N}=579.42 \mathrm{kVA}$ $S_{H}=0.96 \mathrm{kVA}$
$P=653.78 \mathrm{~kW}$	$P_{+}=653.93 \mathrm{kV}$	$P_{H}=157 \mathrm{~W}$
	$Q_{+}=472.07 \mathrm{kvar}$	$D_{+}=579.40 \mathrm{kvar}$ $B_{+}=1.33 \mathrm{kvar}$ $D_{H}=0.94 \mathrm{kvar}$
	$Q_{B}=471.16 \mathrm{kvar}$	$D_{B}=580.35 \mathrm{kvar}$

is the instantaneous power that contains only direct products (i.e., each component is the result of interaction of voltage and current harmonics of the same order).

$$
p_{m n}=v_{1}\left(i_{3}+i_{5}+i_{7}\right)+v_{3}\left(i_{1}+i_{5}+i_{7}\right)+v_{5}\left(i_{1}+i_{3}+i_{7}\right)+v_{7}\left(i_{1}+i_{3}+i_{7}\right)=\sum_{m=1,3,5.7} v_{m} \sum_{\substack{n=1.3,5,7 \\ n \neq m}} i_{n}
$$

is the instantaneous power that contains only cross products (i.e., each component is the result of interaction of voltage and current harmonics of different orders).

The direct products yield

$$
v_{h} i_{h}=\sqrt{2} V_{h} \sin \left(h \omega t-\alpha_{h}\right) \sqrt{2} I_{h} \sin \left(h \omega t-\beta_{h}\right)=P_{h}\left[1-\cos \left(2 h \omega t-2 \alpha_{h}\right)\right]-Q_{h} \sin \left(2 h \omega t-2 \alpha_{h}\right)
$$

where

$$
P_{h}=V_{h} I_{h} \cos \left(\theta_{h}\right) \text { and } Q_{h}=V_{h} I_{h} \sin \left(\theta_{h}\right)
$$

are the harmonic active and reactive powers of order h, respectively, and $\theta_{h} \equiv \underline{\beta}_{\underline{h}}-\alpha_{\underline{h}}$ is the phase angle between the phasors $V_{\underline{h}} \underline{\text { and } I_{h}} \underline{=}$

The total active power is

$$
P=\sum_{h=1,3,5,7} P_{h}=P_{1}+P_{H}
$$

"The fundamental apparent power (806 kVA) and the fundamental reactive power (472 kvar) indicate the value of the fundamental power factor correction capacitors to overcome the effects of relatively large firing angles used in natural commatated phase control converters. (This reactive power can be corrected by means of static capacitors used in passive filter configuration.) The nonfundamental apparent power (579 kVA) and the nonfundamental reactive power (not shown) furnishes indications of the required dynamic compensator capacity when used for nonfundamental distortion correction alone." Pretorius, van Wyk, and Swart [B11].
2. MEASUREMENTS AT THE SECONDARY SIDE OF TRANSFORMER 1

Passive harmonic filters were connected at the secondary of each of the two transformers. No dynamic filters-were energized. Voltage and current waveforms and spectra are presented in Figure B.3.
where
$P_{1}=V_{1} I_{1} \cos \left(\theta_{1}\right) \quad$ is the fundamental (power-frequency) active power
$P_{H}=P_{3}+P_{5}+P_{7}=\sum_{h \neq 1} P_{h} \quad$ is the total harmonic active power

For each harmonic order, there is an apparent power of order h

$$
S_{h}=\sqrt{P_{h}^{2}+Q_{h}^{2}}
$$

The cross-products of the instantaneous powers have expressions as follows:

$$
v_{m} i_{n}=\sqrt{2} V_{m} \sin \left(m \omega t-\alpha_{m}\right) \sqrt{2} I_{n} \sin \left(n \omega t-\beta_{n}\right)=D_{m n}\left\{\cos \left[(m-n) \omega t-\alpha_{m}+\beta_{n}\right]+\cos \left[(m+n) \omega t-\alpha_{m}-\beta_{n}\right]\right\}
$$

where

$$
\underline{D}_{\underline{m} n}=V_{\underline{m}} \underline{I}_{\underline{n}}
$$

The total apparent power squared

$$
S^{2}=V^{2} I^{2}=\left(V_{1}^{2}+V_{3}^{2}+V_{5}^{2}+V_{7}^{2}\right)\left(I_{1}^{2}+I_{3}^{2}+I_{5}^{2}+I_{7}^{2}\right)
$$

may be separated in the same manner as the instantaneous power, in direct and the cross-products:

$$
\begin{aligned}
S^{2}= & V_{1}^{2} I_{1}^{2}+V_{3}^{2} I_{3}^{2}+V_{5}^{2} I_{5}^{2}+V_{7}^{2} I_{7}^{2}+V_{1}^{2}\left(I_{3}^{2}+I_{5}^{2}+I_{7}^{2}\right)+I_{1}^{2}\left(V_{3}^{2}+V_{5}^{2}+V_{7}^{2}\right) \\
& +V_{3}^{2} I_{5}^{2}+V_{3}^{2} I_{7}^{2}+V_{5}^{2} I_{3}^{2}+V_{5}^{2} I_{7}^{2}+V_{7}^{2} I_{3}^{2}+V_{7}^{2} I_{5}^{2}
\end{aligned}
$$

or

$$
S^{2}=S_{1}^{2}+S_{3}^{2}+S_{5}^{2}+S_{7}^{2}+D_{I}^{2}+D_{V}^{2}+D_{35}^{2}+D_{37}^{2}+D_{53}^{2}+D_{57}^{2}+D_{73}^{2}+D_{75}^{2}=S_{1}^{2}+S_{N}^{2}
$$

where

$$
S_{1}^{2}=P_{1}^{2}+Q_{1}^{2}
$$

The most important quantities measured are as follows:

$$
\begin{aligned}
& Y_{1 n}=242.9 \mathrm{~V} ; \Psi=616.6 \mathrm{~A} T H D_{\mathrm{V}}=0.046 ; T H D_{I}=0.913 \\
& P=331.29 \mathrm{~kW} ; P_{5}=105.5 \mathrm{~W} ; P_{7}=47.6 \mathrm{~W} ; P_{11}=6.3 \mathrm{~W} ; P_{13}=0.7 \mathrm{~W} \\
& P_{F I}=1.000 ; \quad P_{F}=0.737
\end{aligned}
$$

Values of the measured powers are given in Table B.2.
with $S_{\underline{1}}, P_{\underline{1}}$, and $Q_{\underline{1}}$ are the apparent, active, and reactive fundamental powers, and

$$
S_{N}^{2}=D_{I}^{2}+D_{V}^{2}+S_{H}^{2}
$$

Where

$$
D_{I}^{2}=V_{1}^{2}\left(I_{3}^{2}+I_{5}^{2}+I_{7}^{2}\right) \quad \text { is the current distortion power }
$$

$$
D_{V}^{2}=I_{1}^{2}\left(V_{3}^{2}+V_{5}^{2}+V_{7}^{2}\right) \quad \text { is the voltage distortion power }
$$

$$
\begin{align*}
S_{H}^{2} & =S_{3}^{2}+S_{5}^{2}+S_{7}^{2}+D_{35}^{2}+D_{37}^{2}+D_{53}^{2}+D_{57}^{2}+D_{73}^{2}+D_{75}^{2} \\
& =P_{3}^{2}+P_{5}^{2}+P_{7}^{2}+Q_{3}^{2}+Q_{5}^{2}+Q_{7}^{2}+D_{35}^{2}+D_{37}^{2}+D_{53}^{2}+D_{57}^{2}+D_{73}^{2}+D_{75}^{2} \tag{B1}
\end{align*}
$$

is the harmonic apparent power

Table B.2-Powers measured at secondary side of Transformer 1

$S=449.25 \mathrm{kVA}$	$\begin{aligned} & S_{+}=331.46 \mathrm{kVA} \\ & S_{U 1}=0.37 \mathrm{kVA} \end{aligned}$	$\begin{gathered} S_{N}=303.25 \mathrm{kVA} \\ S_{H}=13.91 \mathrm{kVA} \end{gathered}$
$P=331.29 \mathrm{~kW}$	$P_{t}=331.46 \mathrm{~kW}$	$P_{H}=163 \mathrm{~W}$
-	$Q_{+}=0.94 \mathrm{kvar}$	$\begin{aligned} & D_{L}=302.53 \mathrm{kvar} \\ & D_{\square}=15.24 \mathrm{kvar} \\ & D_{H}=13.91 \mathrm{kvar} \end{aligned}$
-	$Q_{B}=12.47 \mathrm{kvar}$	$\theta_{B}=303.17 \mathrm{kwar}$

The existence of filters causes phase shifting of phasors that produce $Q_{B}=12.47 \mathrm{kvar}<0$. Com paring Q_{t} $=0.94$ kvar with $Q_{B-}=-12.47$ kvar, it becomes obvious that Budeanu's Resolution "cannot be used to design or to specify ratings of equipment in any situation and its use in industry must be abandoned in total."

If the load is supplied by a line with a resistance r the power loss in the line is

$$
\begin{equation*}
\Delta P=r I^{2}=\frac{r}{V^{2}} S^{2}=\frac{r}{V^{2}}\left(S_{1}^{2}+S_{N}^{2}\right)=\frac{r}{V^{2}}\left(P_{1}^{2}+Q_{1}^{2}+D_{I}^{2}+D_{V}^{2}+S_{H}^{2}\right) \tag{B2}
\end{equation*}
$$

It is learned from this expression that every component of S contributes to the total power loss in the supplying system. This means that not only fundamental active and reactive powers cause losses but also the current and voltage distortion powers as well as the harmonic apparent power cause losses.

The following numerical example is meant to facilitate the understanding of the previous explanations:
The instantaneous voltages and currents are

$$
\begin{array}{ll}
v_{1}=\sqrt{2} 100 \sin \left(\omega t-0^{\circ}\right) & i_{1}=\sqrt{2} 100 \sin \left(\omega t-30^{\circ}\right) \\
v_{3}=\sqrt{2} 8 \sin \left(3 \omega t-70^{\circ}\right) & i_{3}=\sqrt{2} 20 \sin \left(3 \omega t-165^{\circ}\right) \\
v_{5}=\sqrt{2} 15 \sin \left(5 \omega t+140^{\circ}\right) & i_{5}=\sqrt{2} 15 \sin \left(5 \omega t+234^{\circ}\right) \\
v_{7}=\sqrt{2} 5 \sin \left(7 \omega t+20^{\circ}\right) & i_{7}=\sqrt{2} 10 \sin \left(7 \omega t+234^{\circ}\right)
\end{array}
$$

The calculated active powers are summarized in Table B.1.
Table B.1-Active powers

$\underline{P_{1}}(\mathrm{~W})$	$\underline{P_{\underline{3}}}(\mathrm{~W})$	$\underline{P}_{\underline{-}}(\mathrm{W})$	$\underline{P}_{\underline{7}}(\mathrm{~W})$	$\underline{P(\mathrm{~W})}$	$\underline{P}_{\underline{H}}(\mathrm{~W})$
$\underline{8660.00}$	$\underline{-13.94}$	$\underline{-11.78}$	$\underline{-1.74}$	$\underline{8632.54}$	$\underline{-27.46}$

The total harmonic active power $P_{\underline{H}}=-27.46 \mathrm{~W}<0$ is supplied by the load and injected into the power system. This condition is typical for dominant nonlinear loads. The bulk of the active power is supplied to the load by the fundamental component $P_{1}=8660.0 \mathrm{~W}$.

The four reactive powers are given in Table B. 2 .

Table B.2—Reactive powers

$Q_{\underline{1}}(\underline{\mathrm{var})}$	$Q_{\underline{\underline{3}}}(\underline{\mathrm{var}})$	$Q_{\underline{\underline{5}}(\mathrm{var})}$	$Q_{\underline{7}}(\mathrm{var})$
$\underline{5000.00}$	$\underline{159.39}$	$\underline{-224.69}$	$\underline{49.97}$

Of interest is the fact that $Q_{5} \leq 0$, whereas other reactive powers are positive. If one incorrectly defines a total reactive power as the sum of the four reactive powers (in accordance with C. Budeanu's definition):

$$
Q_{B}=Q_{\underline{1}} \pm Q_{\underline{3}} \pm Q_{\underline{5}}+Q_{2}=4984.67 \mathrm{var}
$$

and assumes that the supplying line has a resistance $r=1.0 \quad \Omega \quad$ and the load is supplied with an rms voltage $\underline{V}=240 \mathrm{~V}$, the power loss due to $Q_{\underline{B}}$ in line is

$$
\Delta P_{B}=\frac{r}{V^{2}} Q_{B}^{2}=\frac{1}{240^{2}} 4984.67^{2}=431.37 \mathrm{~W}
$$

According to the previous analysis, [see Equation (B1) and Equation (B2)], the correct way to find the corresponding power loss due to $Q_{\underline{1}}, Q_{\underline{3}}, Q_{\underline{5}}$, and $Q_{\underline{7}}$

$$
\Delta P=\frac{r}{V^{2}}\left(Q_{1}^{2}+Q_{3}^{2}+Q_{5}^{2}+Q_{7}^{2}\right)=435.39 \quad W>\Delta P_{B}
$$

The reactive power Q_{5}, despite its negative value, contributes to the line losses in the same way as the positive reactive powers. The fact that harmonic reactive powers of different orders oscillate with different frequencies reinforces the conclusion that the reactive powers should not be added arithmetically (as recommended by Budeanu).

The cross-products that produce the distortion powers $D_{\underline{I}}$ and $D_{\underline{V}}$ are given in Table B.3.

Table B.3-Distortion powers and their components

$\underline{D_{13}}(\mathrm{var})$	$\underline{D_{15}}(\mathrm{var})$	$\underline{D}_{\underline{17}}(\mathrm{var})$	$\underline{D_{\underline{I}}(\mathrm{var})}$
$\underline{2000.00}$	$\underline{1500.00}$	$\underline{1000.00}$	$\underline{2692.58}$
$\underline{D_{31}}(\mathrm{var})$	$\underline{D_{51}}(\mathrm{var})$	$\underline{D}_{\underline{11}}(\mathrm{var})$	$\underline{D_{V}}(\mathrm{var})$
$\underline{800.00}$	$\underline{1500.00}$	$\underline{500.00}$	$\underline{1772.00}$

Finally the remaining cross-products that belong to the harmonic apparent power are presented in Table B.4.

Table B.4-Distortion harmonic powers

$\underline{D_{35}}(\mathrm{var})$	$\underline{D_{37}}(\mathrm{var})$	$\underline{D_{53}}(\mathrm{var})$	$\underline{D}_{\underline{57}}(\underline{\mathrm{var})}$	$\underline{D}_{\underline{73}}(\mathrm{var})$	$\underline{D_{75}}(\mathrm{var})$
$\underline{120.00}$	$\underline{80.00}$	$\underline{300.00}$	$\underline{150.00}$	$\underline{100.00}$	$\underline{75.00}$

The studied system has the rms voltage and current:

$$
V=101.56 \mathrm{~V} \text { and } I=103.56 \mathrm{~A} \text { with the total harmonic distortions }
$$

$$
\mathrm{THD}_{\underline{V}}=0.177 \text { and } \mathrm{THD}_{\underline{I}}=0.269
$$

The apparent power and its components are represented in the following tree:

The fundamental power factor (displacement power factor) is $\mathrm{PF}_{1}=P_{1} / S_{1}=0.866$, and the power factor is $\underline{\mathrm{PF}}=P / S=0.821$. The dominant power components are P_{1} and Q_{1}. Due to relatively large distortion, $\underline{S}_{\underline{N}}$ is found to be a significant portion of \underline{S}, and the current distortion power $\underline{D}_{\underline{I}}$ is the dominant component of $S_{N}=$

Annex C

(informative)

Bibliography

[B1] Buchholz, F., "Die drehstrom-scheinleistung bei ungleichmassiger belastung der drei zweige," Licht und Kraft, no. 2, pp. 9-11, Jan. 1922.
[B2] Cataliotti, A., Cosentino, V., and Nuccio, S., "The measurement of reactive energy in polluted distribution power systems: an analysis of the performance of commercial static meters," IEEE Transactions on Power Delivery, vol. 23, no. 3, pp. 1296-1301, July 2008.
[B3] Czarnecki, L. S., "What is wrong with Budeanu's concept of reactive and distortion power and why it should be abandoned," IEEE Transactions on Instrumentation and Measurement, vol. IM-36, no. 3, Sept. 1987.
[B4] Depenbrock, M., and Staudt, V., Discussion to "Practical definitions for powers in systems with nonsinusoidal waveforms and unbalanced loads," IEEE Transactions on Power Delivery, vol. 11, no. 1, pp. 89-90, Jan. 1996.
[B5] DIN 40110-1:1994, Quantities Used in Alternating Current Theory: Two-Line Circuits. ${ }^{7}$
[B6] DIN 40110-2:2002, Quantities Used in Alternating Current Theory-Part 2: Multi-Line Circuits.
[B7] Emanuel, A. E., "Apparent power definitions for three-phase systems," IEEE Transactions on Power Delivery, vol. 14, no. 3, pp. 767-772, July 1999.
[B8] Emanuel, A. E., "On the assessment of harmonic pollution," IEEE Transactions on Power Delivery, vol. 10, no. 3, pp. 1693-1698, July 1995.
[B8] IEEE 100-1996, The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.
[B9] Filipski, P. S., and Labaj, P. W., "Evaluation of reactive power meters in the presence of high harmonic distortion," IEEE Transactions on Power Delivery, vol. 7, no. 4, pp. 1793-1799, Oct. 1992.
[B10] Filipski, P. S., Baghzouz, Y., and Cox, M. D., "Discussion of Power Definitions Contained in the IEEE Dictionary," IEEE Transactions on Power Delivery, vol. 9, no. 3, July 1994, pp. 1237-44.
[B11] Goodhue, W. M., Discussion to "Reactive power concepts in need of clarification," AIEE Transactions, vol. 52, p. 787, Sept. 1933.
[B12] IEC 61000-4-7, 2002. Electromagnetic Compatibility (EMC)—Part 4-7: Testing and Measurement Techniques-General Guide on Harmonics and Interharmonics Measurements and Instrumentation, for Power Supply Systems and Equipment Connected Thereto. ${ }^{8}$
[B13] IEEE Std 280 ${ }^{\text {TM }}$ - 1985 (Withdrawn), IEEE Standard Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering. ${ }^{9,10,11}$
[B14] IEEE Working Group on Non-Sinusoidal Situations, "Practical definitions for powers in systems with non-sinusoidal waveforms and unbalanced loads," IEEE Transactions on Power Delivery, vol. 11, no. 1, pp. 79-101, Jan. 1996.

[^2][B15] Lyon, V., [Discussion to H. L. Curtis and F. B. Silsbee paper "Definitions of power and related quantities," AIEE Transactions, vol. 54, no. 4, pp. 394-404, Apr. 1935], Electrical Engineering, p. 1121, Oct. 1935.
[B16] Pajic, S., and Emanuel, A. E., "Effect of neutral path power losses on the apparent power definition: A preliminary study," IEEE Transactions on Power Delivery, vol. 24, no. 2, pp. 517-523, Apr. 2009.
[B17] Peretto, L., Willems, J. L., and Emanuel, A. E., "The effect of the integration interval on the measurement accuracy of rms values and powers in systems with non-sinusoidal waveforms," Electrical Power Quality and Utilization Journal, vol. 13, no.1, pp. 111-117, 2007.
[B18] Pretorius, J. H. C., van Wyk, J. D., and Swart, P. H., "An evaluation of some alternative methods of power resolutions in a large industrial plant," IEEE Transactions on Power Delivery, vol. 15, no. 3, pp. 1052-1059, July 2000.
[B19] Stevens, R. H., "Power flow direction definitions for metering of bidirectional power," IEEE Transactions on Power Apparatus and Systems, vol. 102, no. 9, pp. 3018-3021, Sept. 1983.
[B20] Swart, P. H., van Wyk, J. D., and Case, M. J., "On the technique for localization of sources producing distortion in transmission networks," European Transactions on Electrical Powers (ETEP), vol. 6, no. 5, Sept./Oct. 1996.

[^0]: The Institute of Electrical and Electronics Engineers, Inc.
 3 Park Avenue, New York, NY 10016-5997, USA
 Copyright © 2010 by the Institute of Electrical and Electronics Engineers, Inc.
 All rights reserved. Published 19 March 2010. Printed in the United States of America.
 IEEE is a registered trademark in the U.S. Patent \& Trademark Office, owned by the Institute of Electrical and Electronics
 Engineers, Incorporated.
 PDF: ISBN 978-0-7381-6058-0 STD95967
 Print: ISBN 978-0-7381-6059-7 STDPD95967
 IEEE prohibits discrimination, harassment and bullying. For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html. No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

[^1]: ${ }^{a}$ The numbers in brackets correspond to those of the bibliography in Annex C.

[^2]: ${ }^{7}$ DIN publications are available from DIN Deutsches Institut für Normung, e.V., Burggrafenstrabe 6, 10787 Berlin, Germany (http://www.din.de).
 ${ }^{8}$ IEC publications are available from the Sales Department of the International Electrotechnical Commission, Case Postale 131, 3 rue de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). IEC publications are also available in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.
 ${ }^{9}$ IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854, USA (http://standards.ieee.org/).
 ${ }^{10}$ The IEEE standards or products referred to in this clause are trademarks owned by the Institute of Electrical and Electronics Engineers, Incorporated.
 ${ }^{11}$ IEEE Std 280-1985 has been withdrawn; however, copies can be obtained from Global Engineering, 15 Inverness Way East, Englewood, CO 80112-5704, USA, tel. (303) 792-2181 (http://global.ihs.com/).

