

IEEE std 829-2008 and Agile Process– Can They Work

Together?

Ning Chen

Department of Computer Science, California State University, Fullerton, California, USA

Abstract - IEEE Standard for software and system test

documentation (i.e., IEEE std 829-2008) is a comprehensive

guide that specifies a common framework for planning the

testing activities. The agile process is known for its promotion

of frequent delivery of working software over comprehensive

documentation and responding to change over following a

plan. Although the IEEE std 829-2008 has strong association

with the traditional waterfall development process, it does

offer flexibility that allows user to combine or eliminate some

of the test documentation content topics. Furthermore, it does

not prohibit short-term and incremental planning. The

underlining philosophies of the test standard and agile process

are not at odd. This paper attempts to investigate whether they

can be married and work together to great effect.

Keywords: IEEE std 829-2008, Agile

1 Introduction

 One measurement of the importance of testing is the cost

associated with it. Some industry survey reveals that between

30 and 50 percent of the cost of development is spent on

testing [1]. Since any modification of the software, even a

simple change, may inadvertently break the whole software,

testing will not stop even after the end of the development.

For this reason alone, having quality test documents during

and after the development phase to support testing activities

becomes essential. Instead of inventing quality test documents,

one can easily find templates from IEEE std 829-2008 [2] that

offers a general framework for needed test documents.

Professionals coming from traditional waterfall development

camp embrace IEEE std 829-2008 wholeheartedly due to the

fact that the standard indeed has a deep root in the waterfall

community. Time moves on and nowadays, agile process with

a philosophy of working software over extensive

documentation comes into the picture [3]. The arrival of agile

stirs up two important questions. The first question is that do

we still need to have standard test documents when using agile

as the development and testing process? If the answer for the

first question is affirmative, we have a follow-up question on

hand– can IEEE std 829-2008 and agile development/testing

process work together? This paper starts with a review of

IEEE std 829-2008 and agile development and testing process.

An analysis and comparison of IEEE std 829-2008 and Agile

is followed. Our answer to the question we raised is

affirmative. We, then, propose a way of integrating IEEE std

829-2008 to a variant of agile (Scrum) with some insights we

contemplated. The paper ends with a conclusion section that

summaries with our findings, insights and suggestions.

2 What is IEEE 829-2008?

 We start our discussion on IEEE829-2008 with one of its

main goals of “establish(ing) a common framework for test

processes, activities, and tasks in support of all software life

cycle processes, including acquisition, supply, development,

operation, and maintenance Processes.” [2] As we noted in the

introduction, the goal of establishing a common framework for

test processes, activities, and tasks is the key that motives us to

see whether this common framework can work with the agile

development and testing process. The standard comes with

132 pages in length and is not that easy to comprehend. We

feel that the entry point of unwrapping this not-so-small

document is the understanding of the consequence-based

integrity level scheme promoted by the standard. The standard

says that there are four integrity levels:

Level 4⎯Catastrophic

Level 3⎯Critical

Level 2⎯Marginal

Level 1⎯Negligible

The descriptions of level are:

Level 4 (Catastrophic) -Software must execute correctly or

grave consequences (loss of life, loss of system, environmental

damage, economic or social loss) will occur. No mitigation is

possible.

Level 3 (Critical) - Software must execute correctly or the

intended use (mission) of system/software will not be realized

causing serious consequences (permanent injury, major system

degradation, environmental damage, economic or social

impact). Partial-to-complete mitigation is possible.

Level 2 (Marginal) – Software must execute correctly or an

intended function will not be realized causing minor

consequences. Complete mitigation possible.

Level 1 (Negligible) - Software must execute correctly or

intended function will not be realized causing negligible

consequences. Mitigation not required.

 Most readers will not have any difficulty on accepting this

consequence-based integrity level scheme, after all, the

descriptions are very easy to understand and they are quite

reasonable and acceptable. In terms of what documents are

required at each level, the standard says that:

Level 4: 10 test documents

Level 3: 10 test documents

Level 2: 8 test documents

Level 1: 7 test documents

 It is a bit surprising to see that there is not too huge

difference between levels. No difference (counting number of

documents) between Level 4 and Level 3. The main difference

between Level 3 and Level 2 is the adding of two so-called

Master Test Plan and Master Test Report. The adding of the

master plan and report probably is due to the desire to give

stakeholders some long-term (in the context of time) and

global (in the context of scope) view and awareness of what’s

going on. The difference between Level 2 and Level 1 is the

adding of a so-called Level Interim Test Status Report. The

adding of the interim report most likely is driven by the idea

that the stakeholders may need to know the status of the

project more frequently (shorter time period). Although the

small difference as the level goes up is a bit unusual, the

increased frequency of reporting and the more long-term

planning and broader view as level goes up are quite expected.

What are those 10 documents (maximum number for Level 3

and 4)? The standard specifies the following:

Master Test Plan (MTP)

Level Test Plan (LTP)

Level Test Design (LTD)

Level Test Case (LTC)

Level Test Procedure (LTPr)

Level Test Log (LTL)

Anomaly Report (AR)

Level Interim Test Status Report (LITSR)

Level Test Report (LTR)

Master Test Report (MTR).

All users of the standard have no problem on forming an

intuitive understanding of the term “plan, design, case,

procedure, log, and report.” The term “master” is also quite

straightforward. The only curiosity one may have is on the

definition of “level.” What is the definition of the term

“level”? Is it related to the term “integrity level” in some way?

A careful reader of the standard may soon find the following:

(T)he word “Level” is replaced by the organization’s name

for the particular level being documented by the plan (e.g.,

Component Test Plan, Component Integration Test Plan,

System Test Plan, and Acceptance Test Plan).

After further readings, a reader may encounter the following:

Other possible examples of levels include operations,

installation, maintenance, regression, and nonfunctional

levels such as security, usability, performance, stress, and

recovery. Any one of the example levels may be more than one

level for an organization; e.g., Acceptance testing may be two

levels: Supplier’s System and User’s Acceptance test levels.

 At this point, most of the readers of the standard can easily

come to the following realizations:

1. We are not talking about 10 documents – it actually is

10 different kinds of documents. Depending on the

actual project (and the replacement of the term Level

by other terms such as Component, Integration,

System, and Acceptance), the total number of

documents may easily explodes.

2. For those who are familiar with the V model shown in

Fig. 1 [4], they may immediately feel that IEEE829-

2008 maps to the V model almost perfectly. For

example, in the V-model, it talks about Unit

(component) testing, Integration testing, System

testing and Acceptance testing that mirror to the

Level Test Plan/Design/Case/Procedure/Log/Report

mentioned in the IEEE 829-2008 directly.

Figure 1. The V-Model [4]

 To end our discussion on IEEE 829-2008 in this section

(and to provide convenience to the readers of this paper), we

decide to include a brief description of those 10 different

kinds of documents as follows:

Master Test Plan (MTP) - There can be only one

MTP for a project. The MTP identifies how many

levels of test are required

Level Test Plan (LTP) - it covers scope, approach,

resources and schedule of the testing activities and

identifies the items being tested, the features to be

tested, the testing tasks to be performed, the

personnel responsible for each task, and the

associated risks.

Level Test Design (LTD) - it specifies features to be

tested, approach refinements, test identification,

feature pass/fail criteria and test deliverables.

Level Tests Case (LTC) - it identifies inputs/outputs

for each test.

Level Test Procedure (LTPr) - it covers the

description of the steps to be taken to execute the test

cases.

Level Test Log (LTL) - it provides a chronological

record of relevant details about the execution of tests.

Anomaly Report (AR) - it documents any event that

occurs during the testing process that requires

investigation.

Level Interim Test Status (LITSR) - it summarizes

the results of the designated testing activities and

optionally to provide evaluations and

recommendations based on these results.

Level Test Report (LTR) - it summaries the results

of the designated testing activities and to provide

evaluations and recommendations based on these

results.

Master Test Report (MTR) - it summarizes the

results of the levels of the designated testing

activities and to provide evaluations based on these

results.

3 What is Agile?

 Like most researchers in software engineering, we start our

discussion on Agile by quoting the Agile Manifesto [2]:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

 The Agile method of software development is built on a

series of iterative development cycles where a set of features

or user requirements are the basis for each iteration. The

process is repeated until all requirements are delivered in the

released software. The Agile framework is based upon the

Value and Principles of the Agile Manifesto

We also would like to quote the Twelve Principles of Agile

[5]:

1. Our highest priority is to satisfy the customer

through early and continuous delivery of valuable

software.

2. Welcome changing requirements, even late in

development. Agile processes harness change for the

customer's competitive advantage.

3. Deliver working software frequently, from a couple

of weeks to a couple of months, with a preference to

the shorter timescale.

4. Business people and developers must work together

daily throughout the project.

5. Build projects around motivated individuals. Give

them the environment and support they need, and

trust them to get the job done.

6. The most efficient and effective method of conveying

information to and within a development team is

face-to-face conversation.

7. Working software is the primary measure of

progress.

8. Agile processes promote sustainable development.

The sponsors, developers, and users should be able

to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and

good design enhances agility.

10. Simplicity--the art of maximizing the amount of work

not done--is essential.

11. The best architectures, requirements, and designs

emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to

become more effective, then tunes and adjusts its

behavior accordingly.

 Next we would like to summarize some insights reported in

literatures on the agile process from several aspects:

From the aspect of Test Documentation [6]:

• Agile is not an excuse to not providing test

documentation.

• Agile does say that huge volume of test

documentation most likely is counter-productive.

• From the Manifesto – “Valuing working software

over documentation” does not mean that test

documentation is not valuable.

• Agile encourages test documenting early and often.

From the aspect of testing [1]:

• To get working software, it must be tested.

• To know if it was tested properly, there should be

some test documentation.

From the aspect of processes and plans [7]:

• Agile means that individuals should make conscious

decisions that react to changing situations. They

should not just follow rigid plans.

From the aspect of timing of the documentation [7]:

• In agile we write test case for each iteration. We get

feedback from stakeholders and then write test cases

for the next iteration.

4 Is it possible integrating IEEE

829-2008 to Agile Process?

 At a first glance, we may conclude that IEEE 829-2008 is an

alternative expression of the V-model and demands great

number of documents. Since the V-model follows purely the

waterfall process, integrating a waterfall model to an agile

process is, of course, futile. This first glance, in our opinion, is

a fallacy. A careful analysis reveals that there is a time-line

expression embedded in the V-model. The left leg of the V

implies a sequence of events that happened at a sequenced

time line. The bottom of the V indicates the midpoint of the

process and the right leg, again, shows a sequence of events in

a time-line manner. Does the IEEE 829-2008 dictate any time-

line fashion? The answer is no. The IEEE 829-2008 does tell

us what documents to produce [8][9][10]. Nonetheless, it

never tells us when to produce those documents, nor it tells us

how to produce those documents. One may still argue that

IEEE 829-2008 is so heavily documentation oriented. There is

no hope of integrating it into the agile process in which we

value simple or even no test documents. Again, we believe

this argument is a fallacy too. Clearly, a careful reader can

find the following description that shows the flexibility of the

standard [2]:

Users of this standard may choose to add, combine, or

eliminate whole documents and/or documentation content

topics based on the needs (and integrity level) of their

individual systems.

 As for the argument that agile tends to end up with simple or

even no test document, our counter argument goes as follows:

Since any software project eventually ends up with spending

30 to 50% of its resource and budget on testing, a decision to

produce (using any process) simple or even no test documents

does not make business sense. Lastly we wish to argue that

the IEEE 829-2008 focuses mainly on what to produce, not on

when to produce, and not on how (in the context of process) to

produce test documents. On the other hand, the Agile Process

focuses mainly on how to produce, for sure, not on what to

produce. We really don’t see any inherent barriers in

integrating what and how together to achieve a greater effect.

Our answer to the question asked in the title of this paper –

“IEEE std 829-2008 and Agile Process– can they work

together?” therefore is affirmative.

5 Our attempt on integrating IEEE

829-2008 to Agile Process

 Of course, the devil is in the details. As a reader of this

paper, you may demand to see the details on integrating IEEE

829-2008 to an agile process. We present our attempt as

follows. For simplicity, in this paper we focus our attempt on

one variant of agile process (i.e., Scrum) only. Figure 2

[11][12][13] shows a typical Scrum process.

Figure 2 Scrum Process [13]

 First we would like to briefly describe the Scrum Process.

The main difference between Scrum and traditional waterfall

or V model is that the Scrum development is done in time-

boxed efforts called Scrum sprints. At the beginning of each

Scrum sprint, the team conducts a sprint planning on the goal

of the sprint driven by some user stories or requirements. The

duration of the Scrum sprint typically varies from two weeks

to a month. The important rule is that the team keeps a very

close interaction at a 24-hour cycle called daily Scrum

meeting and stand up. The goal of each Scrum sprint is to

produce some working software. The desire of producing

working software at the end of every Scrum sprint implies that

each Scrum sprint needs to go through all phases of the

software development life cycle. Since the testing is part of the

software development life cycle, it becomes clear that testing

must be one of the activities performed in each Scrum sprint.

Agile promotes the iterative code development. Can test and

test documentation also be iteratively done? We think the

answer is affirmative. We argue that iterative test activities (in

which planning and developing test documents are

continuously refined and logging and reporting are

continuously performed) can tag along with iterative code

development seamlessly. Even after accepting the iterative test

activities, a critic may still complain the excess number of

documents required by IEEE 829-2008. How about the 10

different kinds of test documents (shown below again for

convenience) specified in IEEE 829-2008?

Master Test Plan (MTP)

Level Test Plan (LTP)

Level Test Design (LTD)

Level Test Case (LTC)

Level Test Procedure (LTPr)

Level Test Log (LTL)

Anomaly Report (AR)

Level Interim Test Status Report (LITSR)

Level Test Report (LTR)

Master Test Report (MTR).

 How do you weave those 10 kinds of test document

development into Scrum sprints? Our attempt starts at the

Level Test related documents first and address the Master Test

Plan and Report later.

Level Test Plan (LTP)

Initially LTP can be roughly drafted at the first sprint planning

meeting. In most sprints, level test plans may include unit test

plans, integration test plans, system test plan and acceptance

test plan. The main reason for having a complete set of level

test plans (unit, integration, system, acceptance) in most

sprints is that the goal of each sprint is to deliver a potentially

shippable product by the end of each sprint. A shippable

product indeed needs to go through, at least, unit test,

integration test, system test and acceptance test [14]. Will a

complete set of level test documents bogs down the sprint?

We don't think so. In early sprints, although we need to work

on a complete set of level test plans, every one of them, in

fact, is very simple to begin with. Again, the rationale is that

development plans are iterative and test plans will be

developed iteratively as well. Those level plans are reviewed

at every sprint retrospective meeting and revised as necessary.

Level Test Design (LTD)

Level test designs include unit test designs, integration test

designs, system test design and acceptance test design.

Level Test Case (LTC) and Level Test Procedure (LTPr)

Level test designs include unit test cases and procedures,

integration test cases and test procedures, system test cases

and test procedures and acceptance test cases and test

procedures.

Level Test Log (LTL) and Anomaly Report (AR)

Level test logs and anomaly reports may include unit test logs

and anomaly reports, integration test logs and anomaly

reports, system test logs and anomaly reports and acceptance

test logs and anomaly reports. LTL and AR are continuously

created, reviewed, and revised as needed during sprint.

Level Interim Test Status Report (LITSR)

Created and updated daily following daily scrum.

Level Test Report (LTR)

Level test reports may include unit test reports, integration test

reports, system test reports and acceptance test reports. Most

of those reports can be created and revised prior to sprint

review meeting.

 How about the Master Test Plan (MTP)? We propose that

a Master Test Plan can be produced early in the project at

sprint 0 to start the process. Later on, we could use the Master

Test Plan to tie the Level Test Plans generated from each

sprint together to create a final version of the Master Test Plan

and Report. Sure enough, some of our readers may point out

that what we have attempted is just to compress the whole

testing life cycle into one individual Scrum sprint. Doing so

will simply bog down each Scrum sprint and is totally against

the sprite of Agile. There are two arguments to respond to

such a criticism. First, if iterative code planning and

development can be accepted/tolerated why not iterative test

planning, design, and reporting? Second, if it becomes

apparent that resources need to be reserved for other high

priority tasks, we may also consider to combine some type of

test documents which is certainly allowed by IEEE 829-2008.

For example, in some small-size projects, one may combine

Level Test Plan (LTP), Level Test Design (LTD) and Level

Test Procedure (LTPr) into one document. Level Test Log

(LTL) and Anomaly Report (AR) also can be merged.

6 Conclusions

 In this paper our main goal is to convince our readers that

integrating a testing standard such as IEEE 829-2008 to an

agile process should be done and can be done. First, why it

should be done? Our premise on “should be done” is purely

based on business reasoning and is not related to what

development process used (waterfall or agile). Any modern

software product development requires, at the minimum, some

testers’ participation. In some large organizations, having a

separate department or team that works on software quality

assurance is also not that uncommon. Furthermore, it is an

industry consensus that testing eventually may consume 30 to

50% of all resources spent. Having spent and committed such

a large portion of resources and personnel on testing but not

demanding the ultimate fruit of testing (i.e., test documents) is

simply beyond any business sense. If the premise on

demanding quality test documents is valid, the desire to have

standardized test documents (such as documents specified in

IEEE 829-2008) becomes not that to understand. In this

globalization era insisting on one-of-kind, ad-hoc approach, in

most business scenarios, proves fatal. The argument on “can

be done” is a bit challenging due to some ill perceptions from

both agile and waterfall communities. Our main defense is to

point out that IEEE 829-2008 is NOT a mirror image of the V

model. The standard does not have embedded time-line as in

the V model and it mainly focuses on the notion of “what to

produce.” The agile process, on the other hand, mainly focuses

on “how to produce.” Integrating “what to produce” and

“how to produce” is actually natural and logical. We further

support our argument by providing an attempt in which we

integrated IEEE 829-2008 documents to Scum agile process.

The corner stone of this integration is hinged on the fact that at

the end of each Scrum sprint a potentially shippable product is

created. This fact implies that we should start a complete set

of level test documents at the beginning of each sprint and

incrementally improve them very similar to what we have

done on the iterative development of source code.

7 Acknowledgement

 The author would like to thank

1.the class of cpsc545 of the Master of science in Software

Engineering (MSE) program at California State University,

Fullerton for contributing some of insights mentioned in this

paper.

2. the MSE research and development fund for partial

supports.

8 References

[1] Burnstein, Ilene. “Practical Software Testing”. NY:

Springer-Verlag, 2003

[2] IEEE 829-2008 IEEE Standard for Software and

System Test documentation

[3] Agile manifesto. Retrieved from

http://agilemanifesto.org/

[4] The V-Model (Software Development). Retrieved

from

http://en.wikipedia.org/wiki/VModel_%28software_developm

ent%29

[5] 12 Principles of Agile software Development.

Retrieved from

http://www.agilityspeaks.com/capabilities/aboutus/agile-

development/

[6] Lisa Crispin, article titled “Agile Documentation”,

03/02/2011. Retrieved from

http://www.stickyminds.com/sitewide.asp?Function=edetail&

ObjectType=COL&ObjectId=16698&tth=DYN&tt=siteemail

&iDyn=2

[7] Janet Gregory, Lisa Crispin, Book - Agile Testing: A

Practical Guide for Testers and Agile Teams, Jan. 2009,

Addison-Wesley Professional

[8] Glazer, H., J. Dalton, D. Anderson, M. Konrad, S.

Shrum. “CMMI or Agile: Why Not Embrace Both!” Software

Engineering Institute. November 2008.

[9] Curran, C. “Are Agile and CMMI Compatible?” CIO

Dashboard. 25 June 2010. Retrieved from

http://www.ciodashboard.com/it-processes-and-

methodologies/agile-cmmi-compatible

[10] Shelton, C. “Agile and CMMI: Better Together”.

ScrumAlliance. 9 July 2008. Retrieved from

http://www.scrumalliance.org/articles/100-agile-and-cmmi-

better-together

[11] Agile Scrum. Retrieved from

http://en.wikipedia.org/wiki/Scrum_(development)

[12] “Inside the Inbox”. Retrieved from

http://www.ecircle.com/blog/2011/08/04/enare-effectively-

integrating-marketing-tools/

[13] Scrum (Development). Retrieved from

http://en.wikipedia.org/wiki/Scrum_%28development%29

[14] Ship it! - Scrum’s “Potentially Shippable” Product

Increment. Retrieved from

http://agilemakingprogress.blogspot.tw/2011/03/ship-it-

scrums-potentially-shippable.html

http://agilemanifesto.org/
http://www.agilityspeaks.com/capabilities/aboutus/agile-development/
http://www.agilityspeaks.com/capabilities/aboutus/agile-development/
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=16698&tth=DYN&tt=siteemail&iDyn=2
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=16698&tth=DYN&tt=siteemail&iDyn=2
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=16698&tth=DYN&tt=siteemail&iDyn=2
http://www.ciodashboard.com/it-processes-and-methodologies/agile-cmmi-compatible
http://www.ciodashboard.com/it-processes-and-methodologies/agile-cmmi-compatible
http://www.scrumalliance.org/articles/100-agile-and-cmmi-better-together
http://www.scrumalliance.org/articles/100-agile-and-cmmi-better-together
http://en.wikipedia.org/wiki/Scrum_(development)
http://www.ecircle.com/blog/2011/08/04/enare-effectively-integrating-marketing-tools/
http://www.ecircle.com/blog/2011/08/04/enare-effectively-integrating-marketing-tools/
http://www.ecircle.com/blog/2011/08/04/enare-effectively-integrating-marketing-tools/
http://en.wikipedia.org/wiki/Scrum_%28development%29
http://agilemakingprogress.blogspot.tw/2011/03/ship-it-scrums-potentially-shippable.html
http://agilemakingprogress.blogspot.tw/2011/03/ship-it-scrums-potentially-shippable.html

