
2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 1

Design and Implementation of an Overlay File
System for Cloud-Assisted Mobile Apps

Nafize R. Paiker, Jianchen Shan, Cristian Borcea,
Narain Gehani, Reza Curtmola, Xiaoning Ding

Abstract—With cloud assistance, mobile apps can offload their resource-demanding computation tasks to the cloud. This leads to a
scenario where computation tasks in the same program run concurrently on both the mobile device and the cloud. An important
challenge is to ensure that the tasks are able to access and share the files on both the mobile and the cloud in a manner that is
efficient, consistent, and transparent to locations. Existing distributed file systems and network file systems do not satisfy these
requirements. Current systems for offloading tasks either do not support file access for offloaded tasks or do not offload tasks with file
access. The paper addresses this issue by designing and implementing an application-level file system called Overlay File System
(OFS). To improve efficiency, OFS maintains and buffers local copies of data sets on both the cloud and the mobile device. OFS
ensures consistency and guarantees that all the reads get the latest data. It combines write-invalidate and write-update policies to
effectively reduce the network traffic incurred by invalidating/updating stale data copies and to reduce the execution delay when the
latest data cannot be accessed locally. To guarantee location transparency, OFS creates a unified view of the data that is location
independent and is accessible as local storage. We overcome the challenges caused by the special features of mobile systems on an
application-level file system, like the lack of root privilege and state loss when application is killed due to the shortage of resource and
implement an easy to deploy prototype of OFS. The paper tests the OFS prototype on Android OS with a real mobile app and real
mobile user traces. Extensive experiments show that OFS can effectively support consistent file accesses from computation tasks, no
matter whether they are on a mobile device or offloaded to the cloud. In addition, OFS reduce both file access latency and network
traffic incurred by file accesses.

Index Terms—Cloud, mobile devices, task offloading, storage, file system, consistency.

F

1 INTRODUCTION

VARIOUS systems have been designed to allow mo-
bile apps to use cloud resources (e.g., public cloud,

personal cloud, or cloudlet) by offloading their resource-
demanding tasks to the cloud in the form of threads, objects,
or procedures [2], [3], [4], [5], [6]. For example, a mobile
app may record video clips on a mobile device, analyze and
augment them in the cloud, and then play back the video
clips on the mobile device. This leads to a scenario where the
computation tasks in the same mobile app can be offloaded
to the cloud and/or run concurrently on both the mobile
device and the cloud. These tasks work collaboratively and
may need to save, read, and overwrite files on both the
mobile device and the cloud.

The decomposition and distribution of tasks and their
memory states have been studied extensively, and a few
programming models, along with the supporting middle-
ware and system infrastructure, have been developed, e.g.,
Avatar [3], [7], MAUI [5], CloneCloud [6], Sapphire [2], and
COMET [4]. However, supporting efficient file access, espe-
cially file sharing between the tasks in the same mobile app
running on both the mobile device and the cloud remains
a challenging issue and has received little attention. Due
to this issue, systems such as MAUI and COMET cannot
offload tasks in mobile apps if the tasks need to access files.

Existing file systems are not effective in handling re-

A preliminary version of this paper appeared on MSST 2016 [1]

• The authors are with the Department of Computer Science, New Jersey
Institute of Technology, Newark, NJ 07102-1982 USA. E-mail: {nrp48,
js622, borcea, narain.gehani, reza.curtmola, xiaoning.ding}@njit.edu

mote file access for the offloaded tasks of mobile apps.
This seriously limits the capability of mobile systems to
freely offload tasks to the cloud. Network file systems and
distributed file systems, such as NFS [8] and Dropbox [9],
only support remote file access from the platforms where
their client software is properly set up. However, setting up
the client software usually requires root privilege, which the
mobile user may not have. It also needs the credentials of
the user to access the file server, which the user may not
be willing to release to the cloud. Moreover, if a task is
accessing an open file saved in a network/distributed file
system, it must reopen the file after the task is offloaded
in order to continue accessing the file. This requires that
mobile apps must be aware of task offloading, which makes
programming cumbersome and error-prone.

Another issue with existing network file systems and
distributed file systems is that they cannot satisfy the con-
sistency requirements of cloud-assisted mobile apps at low
overhead. For example, to guarantee correct execution, com-
putation tasks concurrently running on the cloud and the
mobile device often require strong consistency (i.e., no stale
data returned to the tasks). However, most network/dis-
tributed file systems, especially those designed for mobile
devices (e.g., Coda [10], [11]), cannot guarantee such consis-
tency. Some systems even rely on users to manually resolve
inconsistencies. The inconsistencies caused by such systems
will lead to incorrect results or application crashes. Some
other file systems (e.g., NFS) support strong consistency but
at high costs of network traffic and energy on the mobiles,
and thus are not practical for mobile apps.



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 2

To address these problems, we propose an application
level file system named Overlay File System (OFS). OFS
supports remote file access by providing the tasks on the
mobile device and the cloud with an efficient, consistent,
and transparent view of data that is accessible as local
storage. It supports task offloading in the form of threads,
objects, or procedures. OFS manages file access and file
sharing in a mobile app. It effectively hides the boundary
between the mobile device and the cloud, and provides a
unified environment for the tasks in the mobile app, such
that the tasks can migrate freely between the mobile device
and the cloud. By default, OFS ensures that all tasks whether
on the mobile or offloaded to the cloud read the latest data
in the file. OFS uses an adaptive method named delayed-
update, which combines the conventional write-invalidate
and write-update policies, to reduce file access latency and
network traffic overhead, while ensuring strong consistency.
Some applications, e.g., health-monitoring apps, may not
require strong consistency. For such applications, OFS also
provides a relaxation mechanism that allows applications
to use recent but not the latest copies of file data. This
can further reduce file access latency and network traffic
overhead. To guarantee location transparency, OFS creates a
unified view of the data that is independent of location and
is accessible as local storage.

Compared to conventional network/distributed file sys-
tems, OFS has several advantages for running cloud-
assisted mobile apps. First, the strong consistency model
ensures the correct execution of computation tasks dis-
tributed across the mobile device and the cloud. Second,
tasks accessing files can be moved freely across different
devices. This is because the states of files and file operations
are in the app’s user space, and thus can be duplicated
and moved with the tasks to new locations. Third, at the
application-level, it simplifies application development and
system management. For example, with OFS, root privilege
is not required to set up the system and there is no need to
save the to-be-accessed files into a network/distributed file
system before the app runs. Programmers do not have to
worry about whether a task is running on the mobile or has
been offloaded to the cloud.

The special features of mobile systems and the require-
ment to run OFS at the application level present a few imple-
mentation challenges. For example, most mobile devices are
not rooted and applications do not have root privilege. In
addition, mobile OSs (e.g., Android) may kill processes and
reclaim their memory spaces, making it challenging to main-
tain OFS system states at the application level. Focusing on
these challenges, the paper has studied the implementation
techniques and built an OFS prototype on Android. The
prototype implements major OFS functionalities into a set
of “sticky” application services. An app get OFS services
through the code injected by OFS with AspectJ [12].

The paper has also implemented a real app, named photo
enhancement app, and has used this app and real mobile user
traces to test the functionalities and performance of OFS.
Our case study with the photo enhancement app shows
that OFS can effectively support consistent file accesses
from computation tasks, no matter whether they run on
a mobile device or has been offloaded to the cloud, and
that existing cloud storage systems, including Dropbox and

Google Drive, cannot provide such support. The experimen-
tal results with the app and real user traces show that the
delayed-update policy used in OFS can effectively reduce
file access latency by up to 21% relative to commonly used
write-update and write-invalidate consistency policies. The
results also show that, with the delayed-update policy in
OFS, the network traffic incurred by file accesses is signifi-
cantly lower (by up to 67%) than that with the write-update
policy, and is comparable to that with the write-invalidate
policy, which is the lower limit to maintain consistency.

To the best of our knowledge, this is the first work
that provides a system solution to support efficient and
transparent file access in cloud-assisted mobile apps. We
make the following contributions. First, we determine the
requirements for a file system to effectively support offload-
ing tasks to the cloud. Second, we design and implement
OFS as a solution to meet these requirements. Third, we use
a real app and user traces to show that OFS can effectively
support task offloading and efficient execution of offloaded
tasks by significantly decreasing both file access latency and
network traffic incurred by file accesses.

2 BACKGROUND

This section introduces first several approaches to offload
tasks in mobile apps to the cloud. It also presents problem
of using network/distributed file systems or cloud storage
in the current context. Finally, it summarizes the require-
ments on file systems for cloud-assisted mobile apps, which
underpin the design of OFS.

2.1 Approaches to Offload Computation to the Cloud

To effectively leverage cloud-assistance, a system needs to
support task migration between the mobiles and the cloud.
A few different methods can migrate tasks, including their
code and the required in-memory data sets. Some systems
(e.g., Sapphire and Avatar) encapsulate and transfer the
code and memory state of a task (e.g., data in heaps) in
an object. Other systems (e.g., COMET) offload tasks in
the form of threads. They use distributed shared memory
(DSM) and transfer the memory state on-demand when it
is accessed remotely by the threads. A computation task
may also be offloaded by making remote procedure calls
(RPC) to the cloud. Since a VM is a complete running
environment for an app, from memory state to storage,
Cloud-assistance can also be implemented by migrating
the VM containing the tasks (e.g., Cloudlet [13]). However,
compared to moving a thread/object/procedure, migrating
a VM incurs much higher overhead.

In this paper, we target the approaches that offload
computation tasks in the form of objects, threads, or pro-
cedures. The cost function used by the system to balance
the overhead and the benefit of task offloading is beyond
the scope of the paper. At the current stage, we assume that
there is a cost function that comprehensively considers the
overhead of both transfering in-memory data and accessing
files remotely for making task offloading decisions.

The tasks in an app run concurrently at the cloud and
the mobile device. They often need to access their data sets
saved in files. The needs cannot be satisfied by transfering
the files to be accessed by a task before offloading the task to
the cloud. It is not easy to identify all these files, especially



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 3

when a task needs to access new files that are generated
after it starts. Thus, not all the files can be transferred a
priori. More importantly, tasks on the mobile device and
the cloud may update and read the same set of files con-
currently. This method cannot guarantee the consistency of
the shared files. Inconsistency leads to incorrect results or
application crashes. For these reasons, systems supporting
task offloading (e.g., COMET and MAUI) usually cannot
migrate tasks if they need to access files. 1

This problem can be mitigated by using networked/dis-
tributed file systems (e.g., NFS) or cloud storage platforms
(e.g., Dropbox). However, existing networked/distributed
file systems and cloud storage systems are not designed for
collaborative tasks on mobile devices. They are designed for
scenarios in which a file is opened, modified, and closed
on one device, and then is opened and accessed elsewhere.
Concurrent reads and writes on different devices to the
same file are not designed or implemented [14]. Thus, their
implementations cannot support consistent file access and
file sharing with low overhead.

2.2 Requirements on File System Design

To support remote file access and file sharing among the
distributed tasks of cloud-assisted mobile apps, a file system
should be able to locate and transfer data, and to manage
data sharing. To accommodate features of mobile apps and
hardware characteristics of mobile devices, a file system
must satisfy the following requirements:
•Location transparency: The file system should be able to
provide an app with access to remote files as though they
were local, and should be able to maintain file sessions
during the location changes of a task (i.e., task migrations)
such that a task does not need to close all its files before
migration. In the paper, a file session is defined as the set of
file operations between opening and closing a file and the
set of states that are managed by the file system to correctly
handle the operations. Existing file systems cannot provide
enough transparency. For example, a task can only access
the files opened on its current device and must re-open the
files after it moves to another device.
•Consistency: Reading stale data may lead to incorrect
results or crash an app. Thus, the file system must guarantee
strong consistency by default so that a task always reads
the latest updates. However, in the case where an app can
tolerate relaxed consistency, the file system should be able
to take the opportunity to relax consistency and improve
performance.
•Performance: Mobile devices have limited resources in
terms of energy and network bandwidth. Thus, cloud-
assisted apps often need to pay for the network traffic
through cellular networks. It is important for the file system
to satisfy file access requests with low latency (for higher
performance and power efficiency) and little network traffic
(for lower monetary cost and energy consumption). Existing

1. The DSM model implemented in COMET can be extended to help
accessing memory-mapped files. However, the files must be opened
and memory-mapped on the mobile device before tasks are offloaded
to the cloud. Opening a file and establishing memory mapping in the
cloud require additional system support beyond the DSM mechanism.
The DSM model cannot facilitate file access through a standard file I/O
interface.

offloaded task

ext4
OS

NFS

offloading 

middleware

OFS

standard file 

I/O interface

local 

accesses

block buffer

mobile app

ext4OS Dropbox

local 

accesses

block buffer

cloud mobile device

unbufferred

remote accesses

offloading 

middleware

OFS

standard file 

I/O interface

Fig. 1: Overall Architecture of Offloading Ecosystem

networked/distributed file systems are not optimized for
cloud-assisted apps.
•Easy deployment: To freely offload tasks, a design that can
simplify the deployment of the file system and data is highly
desirable. Since a mobile user may have limited privileges
on the cloud platform accepting offloaded tasks, the deploy-
ment of the file system should require minimal privileges
in addition to those needed to run the task. At the same
time, the file system should have minimal requirements
on data deployment. Conventional networked/distributed
file systems usually require that files be deployed under
specific directories to enable remote access. However, it is
challenging, if not impossible, to identify all the files to
be accessed remotely by mobile apps and organize them
accordingly, since the files to be accessed by mobile apps
may be determined by user requests. At the same time, most
networked/distributed file systems require root privilege to
deploy and to run, which is missing on most mobile devices.
3 OFS DESIGN
3.1 Overall System Architecture
OFS is a component of the system that offloads and manages
computation tasks. Figure 1 illustrates the position of OFS
on the mobile device and the cloud platform, and explains
how OFS interacts with other components in these plat-
forms. Unlike conventional file systems, which are part of
the operating system, OFS functions at the application level.
Its code is executed in user mode, and its data structures
(e.g., information about the files, file accesses, and the buffer
caching file data) are maintained in user space. However,
OFS relies on the native file systems in the OS to actually
read data from the storage or write data into the storage.

There are several reasons for this application-level de-
sign. First, OFS is solely designed to provide file accesses for
the correct and efficient execution of mobile apps. It does not
provide system-wide management, e.g., user access control,
or a tree of files and directories presented to the user. It does
not manage storage space either. Second, building OFS at
the application level makes it an overlay file system that sits
above all the native file systems, thus allowing it to work
with any native file systems through the standard system
call interface. Third, keeping all the functionality and data
structures within virtual memory spaces at the application
level simplifies deployment. For example, there is no need
to acquire root privilege to set up the file system. Finally,
this design helps to improve efficiency since accessing the
data structures and file data cache in virtual memory space
does not incur costly kernel-application context switches.

The objective of OFS is to provide efficient, transparent,
and consistent file access and file sharing for tasks in a



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 4

Fig. 2: OFS (Overlay File System) Architecture

cloud-assisted mobile app. For this purpose, OFS intercepts
and monitors the file access requests from the tasks in the
app. These requests can be intercepted without modifying
existing apps using techniques such as code injection and
byte code manipulation. How this is achieved in our OFS
prototype will be introduced in Section 4.2. OFS fulfills
the requests for accessing local files by passing them to
the OS and then to the corresponding native file systems
holding the files. For the requests accessing remote files, OFS
maintains a buffer named block buffer to cache the blocks
read from remote files through the network. To fulfill the
requests, OFS looks up the block buffer and serves the re-
quests if the desired file blocks are cached there. Otherwise,
it redirects the unsatisfied requests to the platform storing
the files. Note that a file may be stored on the mobile and
requested by a task from the cloud or vice versa.

OFS maintains consistency between the blocks in the
block buffer and their counterparts saved in remote files,
such that a task can always access the latest updates no
matter where it runs. To handle other file related requests
(e.g., opening files and creating files), OFS forwards these
requests to the platform storing the files and updates the
related metadata.
3.2 OFS Architecture and Design
Figure 2 shows the major components of OFS. The na-
tive/OFS switch intercepts file I/O requests before they reach
the OS and decides for each request whether it should be
handled by a native file system or by OFS. Generally, OFS
handles all the requests to be files that are currently accessed
by offloaded tasks, and forwards other requests to native
file systems. Thus, in the cloud, all the requests made by
offloaded tasks are handled by OFS. On the mobile device,
if a file is not currently accessed by offloaded tasks, the ac-
cesses to the file should be forwarded to the corresponding
native file system; otherwise, they are handled by OFS. To
improve performance, read-only files (e.g., libraries) can be
distributed on both sides and accessed locally without the
intervention of OFS.

The native/OFS switch needs to notify the consistency
manager about all the accesses before it passes the requests
to either a local file system or the buffer management
component. When handling a write request, it only proceeds
after the consistency manager confirms that the write will
not cause inconsistency. When handling a read request,
it just notifies the consistency manager, since the access
information is needed there to detect access patterns.

The buffer management is in charge of managing the block
buffer. To look up the buffer, we maintain a mapping table
for each file and save the mapping table in the data structure

of the file. We also maintain the status of the blocks in the
mapping table. Thus, when the file is accessed, OFS can
quickly locate the mapping table, from which it determines
whether the requested block is buffered, and, if it is, whether
the buffered block is up-to-date.

We use an LRU-like algorithm to evict blocks to keep the
buffer size within a pre-set limit, which is selected by the
user during installation based on the memory capacity of
the devices. Due to the high network overhead, it is not cost-
effective to offload tasks accessing a large amount of data.
Thus, a small size limit (e.g., 1/32 of memory capacity as the
default limit) should work well for most of the workloads.

We create the block buffer in the virtual address space.
This is not only for fast access and ease of deployment,
but also to simplify the system design, since the man-
agement of the physical space of the buffer (e.g., space
allocation/deallocation and swapping) can be done with
by the memory management of the operating system. At
the same time, it puts the physical memory space occupied
by the block buffer under unified management with other
system components and apps. This helps the operating
system balance system memory usage for the overall benefit
of system performance. For space efficiency, the block buffer
only caches the content of remote files. It does not buffer the
content in local files to avoid double buffering in both the
block buffer and the OS buffer cache.

The session management component maintains file ses-
sions and prevents them from being interrupted by task
migrations. Specifically, when a task is migrated, the session
management component is notified. On the destination plat-
form, the session management component must correctly
set up the state required by the unfinished file sessions in
the task. For example, it must copy file states, such as the
current offset in each file and the opening mode of the file,
from the source platform.

Though buffering data improves efficiency, it incurs con-
sistency issues. The consistency management component pro-
vides the consistency guarantee that is required by concur-
rent programs. For this purpose, it monitors all the accesses
to the shared files, as well as the blocks cached in the block
buffer. Enforcing consistency usually incurs a large amount
of network traffic (e.g., when write-update policy is used)
or increased read access latency due to increased misses in
the buffer (e.g., when write-invalidate policy is used). Both
long access latency and increased network traffic are not
desirable for task offloading in mobile apps. Thus, we use an
adaptive algorithm named delayed-update combining write-
invalidate and write-update (Section 3.3) to reduce both
latency and network traffic.

3.3 Consistency Management in OFS

3.3.1 Consistency Management Design Objectives

OFS aims to provide an environment in which the tasks of
a mobile app can access and share their files concurrently
from both the mobile device and the cloud in the same
way as they do when they run on the same device, where
they share the OS buffer cache and can always see the latest
updates. This will not only guarantee the correct execution
of mobile apps, but will also simplify app development,
because programmers will not be concerned with getting



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 5

stale data in apps. Therefore, the first design objective is to
ensure strong consistency.

Enforcing strong consistency may incur high overhead.
There are two common policies for keeping consistency.
Write-invalidate policy invalidates all the duplicates of a file
block before writing the block locally. Write-update policy
ensures that a write operation does not complete until
all the duplicates are updated. The write-invalidate policy
minimizes the amount of data transferred over the net-
work (i.e., network overhead) but increases the latency for
read operations because invalidating duplicates reduces the
number of local accesses. The write-update policy helps to
keep the duplicates valid and, thus, read access latency low,
but incurs a large amount of network traffic for broadcasting
all updates and high overhead for write accesses. Therefore,
the second design objective is to reduce the network traffic
incurred by enforcing strong consistency and, at the same
time, keep the access latency low.

Strong consistency may not be always desirable. There
are situations in which enforcing strong consistency is not
necessary or the overhead incurred by enforcing strong
consistency is too high. Thus, the third design objective is to
satisfy consistency demands other than strong consistency.
For example, a health monitoring app collects wellness
data of a user every second using the sensors on a mobile
device and analyzes the data in the cloud. While the latest
data is preferred by the analysis in the cloud, using the
data collected a few seconds ago still generates sensible
results. If the mobile device is short of resources (e.g., low
power level), updating the data lazily is a better choice than
enforcing strong consistency.

3.3.2 Delayed-Update Algorithm

To achieve the strong consistency, we design a hybrid ap-
proach named delayed-update, which combines the write-
invalidate and write-update policies. This new policy gives
better file latency and reduces network traffic. On a write
operation, it invalidates duplicates first to ensure consis-
tency. Then, instead of waiting for a read operation to trigger
an update of a duplicate, it predicts when a duplicate is
about to be read and it updates this duplicate just before
the read. The delayed-update approach reduces network
traffic because it does not transfer the updates that have
been overwritten before a read. It keeps the access latency
low because duplicates are validated and updated before
reads. A challenging issue with delayed-update is to predict
when the duplicates should be validated and updated. We
address this issue by monitoring the file access patterns of
of mobile apps, as described later in this section.

In some scenarios, accessing the latest data is not re-
quired. For example, in a health-monitoring app, health
related data, such as body temperatures and heart rates, is
collected and saved periodically. The values of the data may
not change rapidly over time. Thus, it may not cause prob-
lems if the health-monitoring app uses the data collected re-
cently, e.g., 5 seconds ago. For such scenarios, OFS provides
a relaxation mechanism that allows an app to use recent but
not the latest copies of file data. The mechanism extends the
delayed-update approach with a knob named relaxation to
relax the requirement on enforcing consistency. Using the
same health monitoring app as an example, if the app can

use the data generated 5 seconds ago, the relaxation is set to
5. A suitable relaxation value is application-dependent and
data-dependent. By default, OFS sets relaxation to 0 in order
to enforce strong consistency. In the cases where relaxation
can be applied, OFS relies on application developers and
users to decide suitable relaxation values and adjusts the
values through an API provided by OFS. With a large relax-
ation value, delayed-update can update duplicates even less
frequently to reduce resource consumption.

To reflect the current status of a block, the delayed-
update algorithm keeps the following information on both
the mobile device and the cloud, for each block that has been
accessed by the app.

• A shared flag indicates if there are duplicates of the block
cached in block buffers or saved in storage.

• A valid flag indicates if the block content is up-to-date.
• For each valid block, we also attach an expiration time to

implement the relaxation feature. A valid block with a
non-zero expiration time indicates that the block content
is not up-to-date, but can still be used by the app until
the expiration time. The block is invalidated when the
expiration time is reached.

• The location of the latest update.
• An overwritten threshold indicates when remote duplicates

should be updated.
• An overwritten counter counts how many times a block has

been overwritten.

When a block is being read, its content is returned im-
mediately if the block is valid; otherwise, the latest update
is fetched remotely, and the status of the block is updated
to valid and shared. When a block is being written, the
block is updated immediately if it is not shared; otherwise, a
message is sent to invalidate the duplicates before the block
is updated and the “shared” flag is reset. When such an
invalidation message is received on either the mobile device
or the cloud, the corresponding block is invalidated (when
the relaxation is zero) or marked with an expiration time
(when the relaxation is greater than zero); at the same time,
the location of the latest update is recorded in the mapping
table maintained by the buffer management component.

The delayed-update algorithm tries to update remote
duplicates when they are about to be read. To achieve this
goal, the algorithm updates and uses the overwritten thresh-
old as an indicator. When the number of block overwrites
reaches this threshold, the remote duplicates are updated.
The threshold is dynamically updated based on the history
of accesses. Specifically, every time a block is overwritten,
the overwritten counter is incremented. When the content
updated in the block is accessed somewhere else (i.e., the
platform other than the one generating the content), the
overwritten threshold is updated with the value of the
overwritten counter, and the overwritten counter is reset.
Thus, the threshold reflects how many times a block is
overwritten before the content is used, and can be used to
predict when remote duplicates should be updated.

In order to describe the basic idea of the delayed-update
algorithm, we use an illustrative example with a series of
reads (R1 ∼ R7) and writes (W1 ∼ W15) on the same block,
as shown in Figure 3. Writes are on the mobile device, and
reads are in the cloud. The states of the valid flag, shared



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 6

Fig. 3: Workflow of Delayed-Update Algorithm

flag, overwritten threshold, and overwritten counter used
in the algorithm are marked with v, s, t, and c in the figure.

When the block is being written for the first time on
the mobile device (W1 in Figure 3), the shared flag shows
that it has a duplicated copy, thus an invalidation message
is sent to the cloud to invalidate the copy. On receiving
the message, OFS in the cloud sets the valid flag to false
and acknowledges the message. On receiving the acknowl-
edgement, OFS in mobile device sets the shared flag to
false. Subsequent updates to the block, W2 and W3, can be
performed directly since there is no duplicated copy. When
the cloud tries to read the block, it checks the valid flag first.
If the block is invalid (e.g., R1 in Figure 3), a miss occurs and
the block is propagated. Thus, the shared flag on the mobile
device is changed to true, and further updates (W4) will
result in an invalidation message. Until now, the algorithm
performs exactly as a write-invalidation algorithm, except
that the algorithm maintains an overwritten counter and an
overwritten threshold for the block on each side (c and t
in the figure for the mobile device). The counter is reset
every time the block is propagated (e.g., R1), and incre-
mented every time the block is overwritten. The value of the
overwritten counter is saved into the overwritten threshold
before it is reset (e.g., the change of the t value correspond-
ing to R1). With more updates performed on the block (W5

and W6), the overwritten counter keeps increasing. When
the value of the overwritten counter reaches the value of
the overwritten threshold (3 when W6 is performed), the
mobile device propagates the new content in the block to the
cloud before a read is issued in the cloud (R2). This reduces
the latency. This part shares a similar idea with the write-
update algorithm. However, it only performs updates when
it predicts that the updates are necessary. The prediction
relies on the program maintaining a regular access pattern
(e.g., the time period from W1 to R3). Misprediction occurs
when the program changes its access pattern (e.g., W10, W11,
and R4). However, the algorithm can quickly adapt and
adjust the prediction based on the new pattern, as it does
for W12, W13, and R5.

4 OFS IMPLEMENTATION

OFS sits between mobile apps and the offloading middle-
ware and it is implemented at the application level rather
than the OS level. This presents several challenges to the
implementation, including the lack of root privilege and
state loss when application is killed due to the short of

Fig. 4: Architecture of OFS Implementation

resource. This section introduces the implementation details
of OFS, particularly how these challenges are addressed.

4.1 Implementation Details

We have implemented an OFS prototype with Java on
Android. Though the implementation is Android-based,
the techniques used are generic and can be adapted to
implement OFS on other mobile OSs.

At the application level, OFS can be implemented in two
ways: as a library that is dynamically linked into each app,
or as a set services, which are independent threads running
in the background without interaction with users. With the
library implementation, the OFS code, system states, and
block buffer are in the memory space of each app. Thus,
the app can directly access OFS functionalities and data
with high efficiency. However, this implementation incurs
consistency issues, since mobile OSs, such as Android and
iOS, may kill an app and reclaim its memory space when
it is switched to the background. Inconsistency is caused if
there are unsynchronized OFS system states or file data in
the memory space, which are lost when the memory space is
reclaimed. The other issue is that the library implementation
does not support file sharing between apps.

We choose to implement OFS into a set of application ser-
vices (named OFS middleware) and keep application-specific
states inside each app. The services start automatically when
the system is on. They are marked as “sticky” services, so
that they are less likely to be killed by the OS than normal
application threads and other services. In some rare cases
when these “sticky” services are killed by the OS, they will
be restarted automatically by the OS, at a later time, before
other services and apps. OFS has a simple checkpointing
mechanism implemented to back-up OFS system states into
storage before the services are killed. The checkpointing
mechanism can also be used to handle network disconnec-
tion problems of offloaded tasks. If an offloaded task was
disconnected due to network issues, OFS can roll back to
the state before the task was offloaded.

To facilitate the accesses to OFS services, we provide a
component, named OFS stub, which is linked into each app
process as the interface between the app process and OFS.

Figure 4 shows the architecture of the implementation,
which has two layers. The upper layer, named OFS stub, is
mainly in charge of intercepting file I/O requests, maintain-



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 7

ing app-specific information, and interacting with OFS mid-
dleware to satisfy file I/O requests. It consists of two major
components, the native/OFS switch and the session registry.
The native/OFS switch is as introduced in Section 3. The
session registry, as a part of session management in Figure 2,
is in charge of maintaining file sessions by managing and
updating the data structures used by the app for accessing
open files, such as status of the file (location, open mode,
etc), current offset, length and so on.

For the tasks offloaded into the cloud, the session reg-
istry provides the data structures for accessing files. For
the tasks on the mobile device, the session registry mainly
serves as a registration list of all the files that are currently
accessed by offloaded tasks. The list is used by the na-
tive/OFS switch on the mobile device to filter requests2. The
session registries in the cloud and on the mobile device are
updated consistently when a file is accessed by an offloaded
task and the information of the file cannot be found in the
session registries. Specifically, before a task is offloaded, the
session registry on the mobile device is empty, and thus all
the file accesses of the app are handled by native file systems
on the mobile device. Later, when a task is offloaded into the
cloud and the task starts to access a file, the session registry
in the cloud is searched. Since the required data structure for
accessing the file cannot be found there, the access cannot
proceed before the data structures are set up and registered
as a file session. To set up and register the data structures,
the OFS stub in the cloud generates a reopening request,
which is forwarded to the OFS stub in the mobile device.
On receiving the re-opening request, the OFS stub in the
mobile device registers the file in its session registry. In this
way, the file is marked as being accessed by an offloaded
task, and later accesses to the file are forwarded to OFS by
the native/OFS switch. Then, the OFS stub in the mobile
device sends back the information required for accessing the
file (e.g., file offset and open mode) to the OFS stub in the
cloud, which then uses the information to update the session
registry in the cloud. With the information, later accesses can
be handled by OFS.

Using Filesystem in Userspace (FUSE) [15] may simplify
the implementation. However, FUSE requires root permis-
sion and rooted systems. Android needs to be recompiled in
order to implement OFS in the existing FUSE daemon. Thus,
rather than using FUSE, we implemented the OFS middle-
ware using app services, which run on both mobile device
and the cloud. The main service, middleware service, imple-
ments the other three major components of OFS described in
Section 3.2. Two supporting services assist the main service
to interact with other system components. Specifically, the
app service interacts with apps to receive requests and deliver
responses; and the network service maintains the interaction
between the OFS instances running in the cloud component
and the mobile device.

In OFS, a large amount of data may be exchanged over
network or locally across different OFS components, and
some messages (e.g., events and updates on staled data)
must be processed promptly. Thus, OFS must handle data

2. The native/OFS switch in the cloud determines that all the file
accesses should be handled by OFS, except for the accesses to the files
pre-configured to be accessed locally (e.g., read-only files).

communication with high efficiency. For network commu-
nication, we adopted a NIO-based TCP library named Kry-
onet [16], which is usually used by online games for high
network throughput and low latency. For local communi-
cation, we used Android’s Binder IPC mechanism. Broad-
castReceiver mechanism is not used since it may reduce the
communication throughput between the OFS stub and the
OFS middleware by up to 3x based on our experiments.

We used the offloading service of the Avatar plat-
form [17] as the offloading platform for our implementation.
Avatar is a distributed mobile-cloud platform where each
mobile device has a surrogate in the cloud. It also supports
offloading Plain Old Java Objects (POJO) to the cloud. POJO
is a software engineering term used to describe a Java object
not bound by any special restriction or external class path.
As the Avatar platform supports multi-threading program-
ming, offloading an object only blocks the relevant threads
in the mobile device instead of all of them. Unlike a regular
offloading platform, offloading in Avatar aims to improve
battery consumption, network bandwidth and latency for a
group of users. It uses annotations to intercept the targeted
code segment and uses a profiler to decide whether to
offload based on QoS defined by the targeted user group.
For the experiments conducted in Section 6, we hardcoded
which operations are being offloaded to the cloud in order
to ensure the intended task is always offloaded.

4.2 Implementation Challenges and Solutions
To implement OFS in userspace, we solve several issues.
One issue is how OFS can interact with different apps
to intercept their file I/O requests and satisfy them. To
address this issue, our implementation intercepts library
calls, instead of system calls. The interception of library
calls does not require a system-level privilege and can be
implemented with various approaches, e.g., manipulating
symbol tables or binary weaving [12], [18]. Our current
prototype uses AspectJ [12] in the OFS stub to automatically
link the required code to interact with the existing code of
the app without additional effort from the app programmer.
In this way, an app can be automatically enhanced with OFS
support; and the app developers do not need to be aware of
task offloading or implement the code that handles file I/O
issues for offloaded tasks.

Specifically, the method interception mechanism in As-
pectJ is used to capture the calls related with file I/O
requests. Then, the code to analyze the requests and to
call the methods in OFS stub is injected using the weaving
mechanism. While the capturing of file I/O requests and
the injection of OFS code can be performed when the app is
compiled or after the app is compiled (e.g., when the app is
being loaded), the current prototype finishes this process at
compile time to minimize runtime overhead3.

Another issue with a user-level implementation on An-
droid is how to manage the accesses to app-private files. In
android, an app can have two types of files. Private files
are saved in the internal (private) storage space, and are
only accessible from the apps that created the files. Public
files are saved in the external (public) storage space, and

3. An alternate approach that does not need recompilation is to inter-
pose the library function call paths. This can be done by instrumenting
the binaries of the app with tools such as PIN [19] or ProbeDroid [20].



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 8

can be accessed by any apps. Since OFS middleware runs
as application services and cannot access private files of
any app, if an offloaded task needs to access a private file
saved on the mobile device, the accesses to the private file
are forwarded back from OFS middleware to the OFS stub
in the corresponding app and performed by the OFS stub.
OFS does not buffer the data in private files. This rarely
degrades performance, since private files are usually small
files, such as settings, configurations, and cached data, and
are infrequently accessed.

4.3 Interface with Task Offloading Systems

OFS must work synergistically with task offloading systems.
However, it is challenging for an OFS implementation to be
compatible to different offloading systems, which may be
implemented in different ways at different system levels.
As explained in Section 2, computation tasks may be of-
floaded in the form of objects, threads, or procedures. These
different methods correspond to different ways of system
implementation. If OFS is built inside an offloading system
as a component, different OFS implementations are needed
for different task offloading systems.

To increase compatibility and reduce development ef-
forts, we decouple the implementation from specific task
offloading systems, and keep a narrow interface between
OFS and task offloading systems. With our implementation,
the middleware service and the OFS stubs do not inter-
act directly with task offloading systems. A simple utility,
named offloading service, is developed to accept notifications
from task offloading middlewares. The offloading service is
notified when a cloud-assisted app is launched, when there
is a task newly offloaded to the cloud, or when an offloaded
task is about to be migrated back to the mobile device. Based
on the notification, the offloading service instructs the OFS
middleware to update system states and the related app
threads to update application-specific states.

For example, when an object is migrated into the cloud
by the Avatar offloading platform, the OFS offloading ser-
vice in the cloud is notified about the migration with infor-
mation, such as the ID of the offloaded object. The offloading
service contacts the application thread responsible for the
offloaded object in the cloud, such that the injected OFS code
in the thread can re-establish existing file sessions by re-
opening files and moving file pointers. Then, it notifies the
OFS middleware about the offloaded object, such that sub-
sequent file I/O requests from the offloaded thread can be
serviced by the OFS middleware. Such interactions induce
a one-time overhead which is included in the performance
results presented in Section 6.

5 CASE STUDY WITH A REAL APP

We implemented a photo enhancement app as a case study.
It illustrates the demand for transparently supporting file
accesses of cloud-assisted apps, and demonstrates the ad-
vantages of OFS. With the app, we explain how our OFS
implementation efficiently supports the file accesses of the
tasks distributed across the mobile device and the cloud.

The photo enhancement app processes the photos se-
lected by the user. For each photo, it performs a few
photo enhancement operations, including applying color
reduction, adding salt noise, applying sharpening filters,

and adding a watermark. The app displays the photo to
the user after the operations. We implemented each photo
enhancement operation in a Java class using OpenCV [21].

Based on the same source code implementation, we have
built three versions of the app: 1) a conventional mobile app
named PE-Mobile that executes all the operations locally on
the mobile device, including the enhancement operations,
2) a cloud-assisted app named PE-Offload that can offload
photo enhancement operations to the cloud and access the
photos using a cloud storage system, and 3) a cloud-assisted
app named PE-OFS that can offload photo enhancement
operations to the cloud and access the photos using OFS.

For fair comparison, we hard-coded the task offloading
part in the app to offload all the photo enhancement opera-
tions to the VM. We did not link PE-Offload with OFS stub, in
order to test whether a cloud storage system (e.g., Dropbox
or Google Drive) can be used to support the file accesses
of the app. The last version, PE-OFS, was built with OFS
support. Compared to PE-Offload, the enhancement with
the OFS support in PE-OFS only requires the linking of
OFS supporting library with the app, and does not incur
additional efforts on programming or annotation.

Before running the app, we deployed the OFS middle-
ware on a mobile device and an Android-x86 VM (detailed
configuration in Section 6). Though OFS can be distributed
and deployed through app stores, such as Google Play Store,
currently the middleware is packed in Android application
packages. Thus, we copied the packages (the apk files) into
the mobile device and the virtual machine, and side-loaded
the packages. Root privilege was not requested during the
installation. However, we performed some simple configu-
ration before PE-OFS could run: pair the mobile device and
the VM, and allow access to library files.

We first run PE-Mobile to process a set of photos with dif-
ferent sizes to verify the functionalities of the app. Then, we
run PE-Offload to process the same set of photos. We want
to justify the necessity to design a system to transparently
support the file accesses of a cloud-assisted application. To
make the photos accessible to the tasks offloaded to the VM,
we installed the Dropbox client app on both the mobile
device and the VM. Before the execution, we must first
upload the photos into a Dropbox directory on the mobile
device and mark them available for offline accesses in order
to download them into the device. Only after the down-
loading is finished, can we launch PE-Offload. Even though
the photos were accessible from the VM, we found that
the photo enhancement tasks offloaded to the VM crashed
during execution. This is because these tasks access each
photo using the file handle created on the mobile device
when the photo file is opened before any enhancement
operations start, and the file handle is invalid in the VM.
To solve the problem, we have to change the source code
of the app, such that a photo must be re-opened before
each enhancement operation and closed after the operation.
With this improvement, the enhancement operations can
be finished on the VM without crashing. But we find that
the app may display may display the old versions of the
photos on the mobiles, despite the fact that newer versions
with enhancements exist in the cloud. This is caused by
Dropbox being unable to promptly update the copies on the
mobile device. Thus, we have to re-examine the photos after



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 9

both the Dropbox instance on the VM and the instance on
the mobile device finish the synchronization with Dropbox
server. We have also tested PE-Offload by saving the photos
into a Google Drive and experienced similar problems.

Despite the increased management and programming
efforts, with existing cloud storage systems, a cloud-assisted
program still may not be able to deliver correct results. This
clearly shows that existing cloud storage systems cannot
meet the requirements of cloud-assisted apps and a system
must be designed to support the file accesses of these apps
transparently and consistently.

We have also tested PE-OFS with the same set of pho-
tos. We run PE-OFS for two times. We first run PE-OFS
completely on the mobile device without offloading any
enhancement operations. Then we run it with the enhance-
ment operations offloaded to the VM. With PE-OFS, the
photos can be enhanced and correctly displayed after the en-
hancements no matter whether the enhancement operations
are offloaded to the cloud or not. When the enhancement
operations are performed on the mobile device, PE-OFS
shows similar performance as PE-Mobile. The end-to-end
latency for the enhancement operations on each photo is less
than 0.6% higher than PE-Mobile. When the enhancement
operations are offloaded to the cloud, compared to PE-
Mobile, the end-to-end latency is reduced by 43% on average
with PE-OFS, and the combined energy consumption of
both the app and OFS middleware running on the mobile
device is reduced by on average 3%.

The above experiments show that OFS has low overhead
and can effectively support the seamless execution of cloud-
assisted apps on the mobile device and in the cloud. We
will present the detailed performance results in Section 6. In
this section, we focus on explaining how OFS transparently
supports the consistent file accesses of PE-OFS on both
mobile device and in the cloud.

6 PERFORMANCE EVALUATION

This section assesses the performance of OFS and evalu-
ates its delayed-update consistency policy by comparing
the performance with other consistency policies. We use
the following metrics: 1) Execution time and average file I/O
latency measure the performance of OFS and comparison so-
lutions. 2) Network overhead quantifies the network overhead
introduced by each solution. It practically represents the cost
of achieving lower I/O latency. 3) Number of overwrites per
data transfer measures how many overwrites are performed
on a file block until it is transferred. Practically, it helps us
estimate the benefits of delayed-update policy. The higher
the values of this metric, the more reduction in network
overhead. 4) Power consumption quantifies the power con-
sumed by the OFS middleware and the app using OFS.
6.1 Experiment Setup
The experiments were conducted on a Nexus 6 mobile
phone running Android 7 and a x86 VM running Android
6. The VM was hosted on an OpenStack-based cloud. It
has 2 virtual CPUs, 3GB memory, and 16GB storage. The
physical machine hosting the VM has an Intel Xeon (E5-
2630) processor, 78GB memory, and 2TB storage. We in-
stalled the OFS middleware on both the mobile phone and
the VM. In the middleware, in addition to the delayed-
update policy, we also implemented the write-invalidate

and the write-update policies, which can replace the default
delayed-update policy through OFS configuration. For our
experiments, we set the block buffer size to be 64MB. The
replacement algorithm is run when block buffer is full and
new data needs to be saved. With this size, hit ratios are
above 95% for all workloads.

We first tested our implementation by running the afore-
mentioned photo enhancement app. We use the app to
enhance three sets of photos, 15 photos in each set. The res-
olutions of these three sets of photos are 2.1 megapixel, 5.0
megapixel and 9.7 megapixel, respectively. For each photo,
the app first displays the original photo. Then, it enhances
the photo on the VM. When the enhancements finish, it
displays the enhanced photo on the phone immediately.

Then, we tested OFS with the traces collected on the
PhoneLab testbed [22] from six real mobile users, one trace
for each user. The traces include the file I/O system calls
captured on Android phones using boinic [23] when the
users were actively using these phones for different amounts
of time and executing different apps with different I/O
patterns. To replay the traces, we first developed an app.
The app creates some threads on the phone and some other
threads on the VM. These threads read the records of file I/O
operations in a trace and perform the corresponding oper-
ations on the corresponding files. To support the execution,
we created a set of files based on the file names and paths in
the traces. The contents in the files are randomly generated,
since no computation is carried out on the contents.

To imitate the concurrent execution of the tasks offloaded
to the cloud and the tasks on the phone, we divided the file
operations in each trace into two sets, and re-played one
set of operations with the threads on the phone and the
other set with the threads on the VM. We divided the oper-
ations in two ways to imitate two different task offloading
schemes: 1) thread offloading, and 2) procedure offloading.
The traces have the IDs of the threads performing I/O
operations. For thread offloading, we sorted the threads based
on the number of I/O operations performed by them, then
divided the threads into two sets, each set of threads having
approximately 50% of the I/O operations. We replayed the
I/O operations of one set of threads in the VM and the
rest of the file operations one the phone. In the case of
procedure offloading, for each thread, we first replayed 30%
of its file operations on the phone, then replayed 50% of
its file operations in the cloud, and finally replayed the rest
(20%) of its file operations on the phone again. The 50%
file operations replayed in the VM imitate those caused by
procedure offloading. Thus, we obtained 12 workloads: one
set of six traces for thread offloading, and one set of six
traces for procedure offloading.

6.2 Results with Photo Enhancement App

This subsection evaluates the performance of the photo
enhancement app PE-OFS we built for the case study (Sec-
tion 5) to understand the advantages and overhead of OFS.

For each set of photos, we first run PE-Mobile on the
phone; then we run PE-OFS under four scenarios: 1) PE-
OFS (mobile only): only on the phone without task offload-
ing, 2) PE-OFS (write-invalidate): on the phone with photo
enhancement operations offloaded to the VM and the write-
invalidate policy used to maintain consistency, 3) PE-OFS



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 10

Fig. 5: Average processing time of the photo enhancement app.

(a) latency (b) power consumption

Fig. 6: Average read latency, average write latency, average I/O, and
average power consumption for photo enhancement app.

(write-update): on the phone with photo enhancement opera-
tions offloaded to the VM and the write-update policy used
to maintain consistency, and 4) PE-OFS (delayed update): on
the phone with photo enhancement operations offloaded to
the VM and the delayed-update policy used to maintain
consistency. When PE-OFS is launched, the photos are saved
in the VM in the second scenario, and are saved on the
mobile device in other scenarios.

Figure 5 compares the end-to-end processing time for
the above scenarios. First, it shows that, when running
on the phone without task offloading, PE-OFS has similar
performance with PE-Mobile, indicating the low overhead
of OFS. On the VM, photo processing can be finished much
faster than on the phone. Based on our measurement, the
processing time is reduced by 86% on the VM on average
for all the photos than on the phone. Therefore, despite
that large network latency can offset the benefits of task
offloading, when PE-OFS run on the phone with photo pro-
cessing tasks offloaded to the VM, the average processing
time with PE-OFS is still shorter than that with PE-Mobile
by at least 31%. As shown in the figure, the performance
advantage of PE-OFS is more prominent with larger photos.
As shown with the last three bars in each group, for PE-OFS
the average processing time is the longest with the write-
update policy, and is the shortest with the delayed-update
policy. Compared to the delayed update policy, the average
processing times with write-invalidate and write-update
policies are 5% and 20% higher than that with delayed-
update.

To better understand the performance difference, we
measure latencies of file read operations and the latencies
of file write operations, and show the average latencies of
reads, writes, and all the file operations in Figure 6(a). Gen-
erally, average latencies are higher with bigger photos than
with smaller photos, because the app reads/writes a whole
photo in one I/O operation. As shown in the figure, among

(a) Thread offloading (b) Procedure offloading
Fig. 7: Average I/O latency for six mobile users.

three policies, the write-invalidate policy incurs the highest
average read latency due to the long latencies caused by
reading invalidated duplicates; and the write-update policy
incurs the highest write latency, since it must update all
the duplicates on each write. The delayed-update policy
updates duplicates only when they are predicted to be read
soon. Compared to write-update, the average write latency
with delayed-update is 23% lower, since it does not need
to update duplicate on every write with delayed-update.
Compared to write-invalidate, the average read latency is
29% lower with delayed-update, which may have validate
duplicates before they are read. On average, the average
latency of file I/O operations are 8% and 12% lower with
delayed-update policy than with write-invalidate and write-
update policies, respectively.

The last experiment measures the power consumption
(i.e., energy consumed every second) incurred by the app
using Trepn Power Profiler [24]. For PE-OFS, the power
consumption consists of two parts: the power consumption
of the app itself and the power consumption of OFS middle-
ware. Figure 6(b) shows the average power consumption.
From the figure, it is clear that with the increase of image
size, the average power consumption increases. For small
photos, the average power consumption with PE-Mobile is
lower than that with PE-OFS. For medium and large photos,
the average power consumption with PE-Mobile is higher
than that with PE-OFS if write-invalidate or delayed update
policy is used. When write-update is used, due to the large
amount of energy consumed for updating duplicates fre-
quently, the power consumption with PE-OFS is higher than
PE-Mobile. With similar or lower power consumption to PE-
Mobile, the reduced processing time with PE-OFS is also
translated into reduced energy consumption, particularly
when the consistency policy used in OFS is properly chosen.

6.3 Results with the Real Mobile User Traces

This section tests the performance of OFS using the file
operations in the traces. We compare the performance
of delayed-update policy with three alternative consis-
tency policies: write invalidate, write update, and optimal
delayed-update. The original delayed-update policy relies
on the prediction of future accesses to make decision on
whether remote duplicates should be updated. The optimal
delayed-update policy can be considered as an improved
delayed-update policy, in which the prediction is 100%
correct, with the knowledge on the file accesses issued in the
future. Though it is not possible to make 100% correct pre-
diction in practice, by comparing the performance between
the delayed update policy and the optimal delayed-update
policy, we can estimate the potential to further improve
the delayed update policy. We implemented the optimal



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 11

(a) Thread offloading (read) (b) Procedure offloading (read) (c) Thread offloading (write) (d) Procedure offloading (write)

Fig. 8: Average latency of read operations and write operations.

delayed-update policy by modifying the OFS middleware
to accept the hints passed from the trace-replaying app.

Figure 7 compares the average latency of file I/O opera-
tions with these policies for thread offloading and procedure
offloading. The I/O latency mainly consists of network
latency, the time to access the local storage, and the time
spent on IPC between the user app and the OFS middle-
ware. As shown in the figure, the average I/O latency with
delayed-update policy is lower than that with the write-
update policy across all the workloads. Compared to the
write-update policy, with the delayed-update policy, OFS
can reduce I/O latency by 3% ∼ 28% for different workloads
(21% on average). The delayed-update policy also incurs
lower I/O latency than the write-invalidate policy for these
workloads (6% ∼ 33% lower), except for the trace of user 1
in the thread offloading scenario (4% higher). Compared to
the delayed-update policy, with the optimal delayed-update
policy, the average I/O latency can be reduced by 7% ∼ 24%.
This shows that the performance of delayed-update policy
can be further improved if sophisticated algorithms can be
used to improve prediction accuracy.

The results also show that, in general, procedure offload-
ing benefits more from OFS than thread offloading. This
is because in procedure offloading, a bulk of I/O opera-
tions are migrated to the cloud together, where in thread
offloading, different threads can run on mobile device and
cloud simultaneously while accessing same file. This causes
thread offloading to be more expensive in order to maintain
consistency. Therefore, we conclude that offloading systems
should implement procedure offloading in order to take full
advantage of OFS.

To gain further insights into the behavior of OFS, Fig-
ure 8 shows the average latency for read operations and
write operations for the two sets of workloads. As expected,
write-update achieves the lowest read latency and the high-
est write latency due to its design of updating blocks for
every write, while write-invalidate achieves the lowest write
latency and the highest read latency due to its design of up-
dating blocks upon read operations. The optimal delayed-
update policy combines the advantage of write-update on
low read latency and the advantage of write-invalidate on
low write latency, with read latency and write latency close
to those of write-update and write-invalidate repsectively.
Though the delayed-update policy cannot achieve such low
latency limited by its prediction accuracy, it balances read
latency and write latency well to improve overall perfor-
mance. For these workloads, compared to write-update,
on average it reduces write latency by 34%, at the cost of
18% higher read latency; compared to write-invalidate, on

(a) Thread offloading (b) Procedure offloading
Fig. 9: The amount of network overhead incurred by the workloads.

average it reduces read latency by 38%, at the cost of slightly
increased write latency (11% higher). Relative to the optimal
delayed-update policy, the write latency with the current
delay-update policy is 7% higher and the read latency is
19% higher, indicating that the delayed-update policy tends
to over-predict the arrival time of read operations.

We also measured the amount of network traffic with
the two sets of workloads. Figure 9 shows that, as expected,
the write-update policy incurs the most network traffic,
while the write-invalidate policy incurs the least. Generally,
the network traffic incurred by OFS (the delayed-update
policy) is much less than that of write-update (67% less on
average), and only slightly higher (3% ∼ 14%) than that of
write-invalidate. Note that, with write-invalidate, updates
are transferred only when they must be propagated to
satisfy the requests for data. Thus, the network overhead can
hardly be further reduced. This is mirrored by the network
traffic incurred by the optimal delayed-update policy, which
is also slightly higher than that with the write-invalidate
policy by 1.2%. Let us also note that similar to the results
for file I/O latency, procedure offloading leads to lower
network overhead.

The results with file I/O latency and network traf-
fic clearly demonstrate the advantages of OFS. It reduces
the file I/O latency substantially compared to the write-
invalidate policy, while maintaining a similar network over-
head. The write-update policy performs poorly in terms of
both average file I/O latency and network overhead.

To gain insights into the factors that lead to the OFS
benefits, we collected the number of overwrites per trans-
ferred data block. As shown in Figure 10, a block may be
overwritten multiple times before it is transferred. This is
the reason why the policies except for write-update can
effectively reduce the latency of write operations (Figure 8)
and network overhead (Figure 9). The figure also shows that
with OFS the average number of overwrites per transfer (4
∼ 37 times across different users) is only slightly lower that



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 12

(a) Thread offloading (b) Procedure offloading
Fig. 10: The average number of overwrites per data transfer.

(a) Thread offloading (b) Procedure offloading
Fig. 11: Average I/O latency when the value of relaxation time is
increased from 0 sec to 5 sec.

(a) Thread offloading (b) Procedure offloading
Fig. 12: Normalized network overhead incurred when the value of
relaxation time is increased from 0 sec to 5 sec.

with the write-invalidate policy and the optimal delayed-
update (5 ∼ 43 times across different users). This explains
why the latency and network traffic of write operations with
OFS is slightly higher to that with the write-invalidate and
the optimal delayed-update policy (Figure 8 and Figure 9).

Figure 10 also shows that the number of overwrites is
significantly higher for procedure offloading than for thread
offloading. This result explains why procedure offloading
performs better than thread offloading in terms of write
latency and network overhead.

To understand the impact of relaxation time on perfor-
mance, we changed the length of relaxation time from 0
seconds (i.e., regular delayed-update with no relaxation)
to 5 seconds, and measured the average I/O latency and
total network overhead. Figure 11 and 12 show the decrease
of I/O latency and network overhead with relaxation time
for different workloads. Since the network overhead varies
significantly for different users, we normalized the overhead
to the one without relaxation for each user, and show in
Figure 12 the normalized network overhead. When the
relaxation time is increased to 5 seconds, the average I/O
latency is reduced by 36% on average for the traces of the
6 users with thread offloading and 43% on average with
procedure offloading; the amount of network overhead is

reduced by 25% on average with thread offloading and
32% on average with procedure offloading. The average
I/O latency is reduced because the overhead associated
with the latest update to each block across the Internet is
amortized by a larger number of read operations before the
relaxation time expires. The amount of network overhead is
reduced because multiple updates to the same file block on
a device can be consolidated and propagated together with
one network transfer when the relaxation time expires.

The figures also show that, with the increase of relax-
ation time, though average I/O latency and the amount
of network overhead keep getting reduced, the reduction
becomes less prominent. The reasons are as follows. With
the increase of relaxation time, the cost of propagating
an update is amortized by an increasingly larger number
of read operations, and thus the benefit of amortization
diminishes. At the same time, there are a limited number of
updates to the same file block in a period; thus, the number
of updates that can be consolidated before the relaxation
time expires may not keep increasing.

7 RELATED WORK

OFS is an easily deployable file system that supports seam-
less, transparent, consistent file I/O of mobile apps with
concurrent tasks running on mobile devices and in the
cloud. This section first presents methods used by existing
mobile-to-cloud offloading systems to handle file I/O. Then
it compares existing distributed and network file systems
with OFS. Finally, the section discusses existing consistency
policies.

7.1 File I/O in Existing Cloud Offloading Systems

A few systems that offload computation from the mobile
to the cloud have been developed [2], [4], [5], [6], [13],
[25], [26]. However, none of them is able to handle the
file I/O of offloaded tasks efficiently, if at all. Some of
them, such as MAUI [5], and ThinkAir [25] assume that
the to-be-accessed files are already available in the cloud
when tasks are migrated. They do not have mechanisms
to support consistent remote file accesses. On the other
hand, the offloading tool for Android applications based on
autonomous method selection [26] does not offload methods
with file I/O. It should be noted that all of these offloading
systems, like OFS, work at user-level.

CloneCloud [6] migrates threads in application-level
VMs. It supports access to local files. But, accessing and
updating the same file from both the mobile device and
the cloud simultaneously is not supported. COMET [4]
provides distributed shared memory support for migrating
threads between mobile devices and cloud. However, it does
not support offloading threads that perform file operations.
Sapphire [2] is a distributed programming platform for
developing and deploying apps spanning mobile devices
and clouds. Tasks are distributed using Sapphire Objects
(SO) that encapsulate both data and code. Sapphire SOs may
access remote files with a simple RPC-based mechanism. But
the design lacks transparency and efficiency. For example,
SOs accessing files cannot move, and all the file accesses
have to go through network. Just-in-time (JIT) provisioning
in cloudlets [13] uses a synthesis server to help prepare
virtual disks for the tasks offloaded to cloudlets. Since the



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 13

files to be accessed by the tasks are included in the virtual
disks, JIT provisioning and cloudlets can satisfy file I/O
requests of offloaded tasks. This design is for VM-based
task offloading, which usually incurs a high overhead. OFS
targets offloading tasks in the context of threads, objects, or
procedures.
7.2 Distributed and Network File Systems
Various distributed and network file systems were devel-
oped for different purposes [8], [10], [11], [27], [28], [29],
[30], [31]. Most distributed and network file systems (e.g.,
NFS [8], AFS [32], Coda [10], [11], and BlueFS [31]) are
for users accessing their files from different devices or
sharing files. Some of them (e.g., Coda and BlueFS) target
mobile users and take into consideration the characteristics
of mobile devices (e.g., limited resources and network con-
nection). OFS is designed mainly to support the file accesses
of the tasks offloaded to the cloud from mobile devices.

OFS differs from existing distributed and network file
systems from the following perspectives. First, conventional
distributed and network file systems usually require that
the client software be installed and configured before they
can access files, making them cumbersome to use in task-
offloading scenarios. OFS works at the application level and
can be established on demand when a task in an app is
offloaded to the cloud. Second, unlike OFS, conventional
distributed and network file systems do not provide support
for tasks that have opened files at the time of offloading.
Last but not least, OFS supports efficient and consistent file
sharing in task-offloading scenarios, as we will explain in
detail in the next subsection.
7.3 Consistency Policies
Different policies are adopted in distributed and network
file systems to enforce consistency. For example, Coda [10],
[11] supports disconnected operations, which allow users to
update files when network is disconnected. However, this
leads to consistency issues that need to be solved by users.
BlueFS [31] cannot avoid conflicts either, and it requires
users to manually resolve conflicts. This is not practical for
mobile apps that offload tasks to the cloud – any benefits in
performance will be lost if the users are asked to help solve
consistency issues through conflict resolution.

NFS [8] supports close-to-open consistency. To guarantee
file consistency, applications need to use either file locks or
shared reservations to avoid interleaving file sessions. This
model does not fit task-offloading scenarios, where tasks
running in parallel at the mobile and the cloud may need to
update/read a file concurrently.

Mobile File System (MFS) [30] is a cache manager for
adapting data accesses in collaborative applications to net-
work variability when they access a distributed file system.
MFS supports consistent accesses to shared files. But the
consistency scheme is designed to target network band-
width variation and network latency is not a major concern.
The scheme may cause high file I/O latency, which is not
desirable in task-offloading scenarios.

Raindrop File System (RFS) [27] aims at mobile devices
accessing files saved in cloud. It implements a client-centric
management scheme, in which clients decide synchroniza-
tion points to manage consistency. However, how to select
appropriate synchronization points is a challenging and

unsolved problem. When used in task-offloading scenarios,
RFS increases the difficulty of programming and cannot
guarantee the required file consistency.

Simba [28], [29] provides a reliable and consistent syn-
chronization service for mobile devices. With Simba, mobile
apps can always see a consistent view of their data, and the
data can be stored locally on the mobile device, in the cloud,
and/or on other mobile devices. In addition to calling Simba
API to access/update data, it is also the app’s responsibility
to call Simba API to register data, synchronize updates, and
resolve conflicts. OFS, on the other hand, does not require
apps to handle these operations, and can be used when apps
do not have offloading logic.

8 CONCLUSION AND FUTURE WORK

Research described in this paper has been driven by the
demand for offloading mobile app tasks to the cloud. The
paper has identified one major obstacle to satisfying this
demand, namely the lack of effective support to allow the
offloaded tasks to access and share files with the rest of the
app on the mobile device. To remove this obstacle, we have
presented and implemented an overlay file system (OFS),
which provides efficient, consistent, and location transpar-
ent access to files in a mobile cloud environment where app
tasks could be executed at either platform. The experimental
results based on real app and real mobile user traces have
demonstrated that OFS can effectively support consistent
file accesses from both the mobile device and the cloud
and achieve substantially lower file access latency than
competing methods. Furthermore, OFS is able to reduce the
response time and energy consumption of mobile apps by
speeding up the app execution through offloading support.
As a result, the battery life of the mobile devices can be
extended. Finally, we have learned that OFS works best for
read-intensive apps, with few writes, and for systems that
implement procedure offloading. OFS has two limitations.
First, due to the application level implementation, OFS is
not aware of the physical locations of the files. Thus, even if
a file is physically saved in a cloud storage, OFS still needs
to fetch the file data from the mobile device before the data
can be accessed by the tasks offloaded in the cloud. This
increases the overhead of accessing files in a cloud storage.
Second, OFS only supports the scenario, in which the mobile
app on a single mobile device offloads tasks to the cloud.
It cannot support mobile distributed apps offloading tasks
from multiple mobile devices. Our future work on OFS will
focus on removing these limitations.

ACKNOWLEDGMENT

This research was supported by the National Science
Foundation (NSF) under Grants No. CNS 1409523, SHF
1617749, CNS 1054754, and DGE 1565478, and by the De-
fense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL) under Contract
No.A8650-15-C-7521. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of NSF, DARPA, and AFRL. The United States Government
is authorized to reproduce and distribute reprints notwith-
standing any copyright notice herein.



2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2763158, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPUTING 14

REFERENCES

[1] J. Shan, N. R. Paiker, X. Ding, N. Gehani, R. Curtmola, and
C. Borcea, “An overlay file system for cloud-assisted mobile
applications,” in MSST ’16, 2016.

[2] I. Zhang, A. Szekeres, D. Van Aken, I. Ackerman, S. D. Gribble,
A. Krishnamurthy, and H. M. Levy, “Customizable and extensible
deployment for mobile/cloud applications,” in OSDI ’14, 2014, pp.
97–112.

[3] C. Borcea, X. Ding, N. Gehani, R. Curtmola, M. A. Khan, and
H. Debnath, “Avatar: Mobile distributed computing in the cloud,”
in MobileCloud ’15, 2015.

[4] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code offload by migrating execution transparently,” in
OSDI ’12, 2012, pp. 93–106.

[5] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: making smartphones last longer
with code offload,” in MobiSys ’10, 2010, pp. 49–62.

[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: Elastic execution between mobile device and
cloud,” in EuroSys 2011, 2011, pp. 301–314.

[7] M. A. Khan, H. Debnath, N. R. Paiker, N. Gehani, X. Ding,
R. Curtmola, and C. Borcea, “Moitree: A middleware for cloud-
assisted mobile distributed apps,” in MobileCloud ’16, 2016.

[8] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler,
D. Noveck, D. Robinson, and R. Thurlow, “The NFS version 4
protocol,” in SANE 2000, 2000.

[9] “Dropbox,” https://www.dropbox.com/, [Online; accessed 12-
Jan-2017].

[10] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in
the coda file system,” ACM TOCS, vol. 10, no. 1, pp. 3–25, 1992.

[11] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan, “Exploiting
weak connectivity for mobile file access,” SIGOPS Oper. Syst. Rev.,
vol. 29, no. 5, pp. 143–155, 1995.

[12] “AspectJ,” https://eclipse.org/aspectj/, [Online; accessed 12-Jan-
2017].

[13] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan, “Just-
in-time provisioning for cyber foraging,” in MobiSys ’13, 2013, pp.
153–166.

[14] O. Kirch, “Why NFS sucks,” Linux Symposium, vol. 2, pp. 51–64,
2006.

[15] “Filesystem in Userspace (FUSE),”
https://github.com/libfuse/libfuse, [Online; accessed 12-Jun-
2017].

[16] “Kryonet,” https://github.com/EsotericSoftware/kryonet/, [On-
line; accessed 12-Jan-2017].

[17] G. Gezzi, “Smart execution of distributed application by balancing
resources in mobile devices and cloud-based avatars,” Master’s
thesis, University of Bologna, Bologna, Italy, 2016.

[18] W. R. Dieter and J. E. Lumpp Jr, “User-level checkpointing for
linuxthreads programs.” in USENIX ATC, 2001, pp. 81–92.

[19] “Pin - A Dynamic Binary Instrumentation Tool,”
https://software.intel.com/en-us/articles/pin-a-dynamic-
binary-instrumentation-tool, [Online; accessed 14-Jun-2017].

[20] “ProbeDroid: A Dynamic Binary Instrumentation Kit for Android
App Analysis,” http://www.zsshen.org/program-analysis-and-
binary-instrument, [Online; accessed 12-Jun-2017].

[21] “OpenCV: Open source computer vision,” http://opencv.org/,
[Online; accessed 12-Jan-2017].

[22] “PhoneLab: A smartphone platform testbed,” https://www.
phone-lab.org/, [Online; accessed 02-Jan-2017].

[23] “Bionic sources (official repository),” https://android.
googlesource.com/platform/bionic/, [Online; accessed 5-Mar-
2016].

[24] “Trepn power profiler,” https://developer.qualcomm.com/
software/trepn-power-profiler, [Online; accessed 12-Jan-2017].

[25] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in Infocom ’12, 2012, pp. 945–953.

[26] A. Zanni, S. young Yu, S. Secci, R. Langer, P. Bellavista, and
D. Macedo, “Automated Offloading of Android Applications for
Computation/Energy-usage Optimizations,” in Infocom ’17, 2017,
demo paper.

[27] Y. Dong, H. Zhu, J. Peng, F. Wang, M. P. Mesnier, D. Wang, and
S. C. Chan, “RFS: A network file system for mobile devices and
the cloud,” SIGOPS Oper. Syst. Rev., vol. 45, no. 1, pp. 101–111,
2011.

[28] Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu, “Reliable,
consistent, and efficient data sync for mobile apps,” in FAST’15,
2015, pp. 359–372.

[29] D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. V. Mad-
hyastha, and C. Ungureanu, “Simba: Tunable end-to-end data
consistency for mobile apps,” in EuroSys ’15, 2015, pp. 7:1–7:16.

[30] B. Atkin and K. P. Birman, “MFS: an adaptive distributed file
system for mobile hosts,” in Cornell University Technical Report,
2003.

[31] E. B. Nightingale and J. Flinn, “Energy-efficiency and storage
flexibility in the blue file system,” in OSDI ’04, 2004, pp. 363–378.

[32] R. Többicke, “Distributed file systems: Focus on andrew file sys-
tem/distributed file service (AFS/DFS),” in MSST’94, 1994, pp.
23–26.

Nafize R. Paiker received his BS degrees in
2008 from Military Institute of Science and Tech-
nology, Bangladesh. He is a PhD student in the
Department of Computer Science at New Jersey
Institute of Technology. His research interests
include Mobile Computing, Cloud Computing,
Parallel and Distributed Computing.

Jianchen Shan received his BS and MS de-
grees in 2008 and 2011 both from Shanghai
University, China. He is currently a PhD student
in the Department of Computer Science at New
Jersey Institute of technology. His research inter-
ests include Parallel and Distributed Computing
and Cloud Computing.

Cristian Borcea received his Ph.D. degree from
Rutgers University in 2004. He is currently a
Professor with the Department of Computer Sci-
ence, New Jersey Institute of Technology. He is
also a Visiting Professor with the National Insti-
tute of Informatics, Tokyo, Japan. His research
interests include mobile computing and sensing,
ad hoc and vehicular networks, distributed sys-
tems, and cloud computing. Borcea is a member
of the ACM, IEEE, and USENIX.
Narain Gehaini is currently a Professor of Com-
puter Science at New Jersey Institute of Technol-
ogy. Previously, he was with Bell Labs. Narain
has worked extensively in programming lan-
guages, software, and databases. He has au-
thored several software systems, holds several
patents, and has written many books and numer-
ous papers in computer science. Narain got his
PhD in computer science from Cornell Univer-
sity.

Reza Curtmola is an Associate Professor in the
Department of Computer Science at NJIT. He
received the B.Sc. degree in Computer Science
from the Politehnica University of Bucharest, Ro-
mania, in 2001, the M.S. degree in Security Infor-
matics in 2003, and the PhD degree in Computer
Science in 2007, both from The Johns Hopkins
University. He spent one year as a postdoctoral
research associate at Purdue University. He is
the recipient of the NSF CAREER award. His

research focuses on storage security, applied cryptography, and security
aspects of wireless networks. He is a member of the ACM and the IEEE
Computer Society.

Xiaoning Ding is an Assistant Professor at New
Jersey Institute of Technology. His interests are
in the area of experimental computer systems,
such as distributed systems, virtualization, oper-
ating systems, and storage systems. He earned
his Ph.D. degree in computer science and engi-
neering from the Ohio State University.


