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Abstract—Reinforcement Learning (RL) is a widely known
technique to enable autonomous learning. Even though RL
methods achieved successes in increasingly large and complex
problems, scaling solutions remains a challenge. One way to
simplify (and consequently accelerate) learning is to exploit reg-
ularities in a domain, which allows generalization and reduction
of the learning space. While Object-Oriented Markov Decision
Processes (OO-MDP) provide such generalization opportunities,
we argue that the learning process may be further simplified by
dividing the workload of tasks amongst multiple agents, solving
problems as Multiagent Systems (MAS). In this work, we propose
a novel combination of OO-MDP and MAS, called Multiagent
Object-Oriented Markov Decision Process (MOO-MDP). Our
proposal accrues the benefits of both OO-MDP and MAS, better
addressing scalability issues. We formalize the general model
MOO-MDP and present an algorithm to solve deterministic
cooperative MOO-MDPs. We show that our algorithm learns
optimal policies while reducing the learning space by exploiting
state abstractions. We experimentally compare our results with
earlier approaches in three domains and evaluate the advantages
of our approach in sample efficiency and memory requirements.

Index Terms—Machine Learning, Reinforcement Learning,
Multiagent Systems, Cooperative Learning.

I. INTRODUCTION

Reinforcement Learning (RL) [1] methods aim at au-
tonomously learning how to solve tasks through interactions
with the environment. While RL has been successfully applied
to varied and increasingly complex applications [2], [3], [4],
the classical RL approach suffers from the curse of dimen-
sionality, and hence the success of RL methods is dependent
on additional techniques to help with scalability.

An appropriate task description can significantly help the
agent to find commonalities in the environment by generalizing
knowledge, and many works depict benefits when relational
techniques are used, such as Relational MDP (RMDP) [5],
[6] and Object-Oriented MDP (OO-MDP) [7]. Both models
describe tasks through objects and their relations. While the
former relies on relational predicates, the latter defines its
state-action space over objects within the environment and
their attributes. OO-MDPs have been used in many works
recently [8], [9], [10], [11], [12], as it provides an intuitive
way to describe tasks (through observable object attributes)
and enables generalization opportunities[7]. Moreover, the
class descriptions required by OO-MDP usually demand less
knowledge than RMDP’s propositional functions.
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Another aspect to take into account when scaling RL to
complex domains is the presence of multiple autonomous
agents in the environment. In a world where more and more
devices have computing power, many tasks can (sometimes
must) be solved by Multiagent Systems (MAS) [13]. In
addition to providing a decision autonomy to each agent in
the environment, MAS also involve the property of interacting
with other agents, which requires the ability to cooperate,
coordinate, and negotiate with each other, Multiagent Rein-
forcement Learning (MARL) [14] solves the learning task
in MAS; however, RL techniques are not easily-portable to
MAS, because other agents actuating in parallel render the
environment non-stationary. Also, the state transition becomes
dependent on the joint action of all agents, instead of single ac-
tions. Some MARL approaches assume that a centralizer agent
executes the entire reasoning process and determines actions
to be executed for all agents [15]. However, the reasoning
agent would tackle a learning task that grows exponentially
according to the number of agents. Hence, such approach is
infeasible for most domains, for which distributed solutions are
usually more desirable [3]. Moreover, a distributed approach
enables the quick deployment of new agents in the system,
which is not always trivial when using a single controller.

Although the workload to solve the task can be divided
among several agents, the learning task is still hard to solve.
Hence, MARL can also benefit from relational techniques
to generalize knowledge in the domain [16]. Although some
works indicate that relational techniques can benefit learning
in MAS [17], [18], OO-MDP has not been used for MAS yet.
While the first effort to extend OO-MDP to MAS appeared in
BURLAP [19], a library of planning and learning RL methods
based on relational task descriptions, no work presented a
formal OO-MDP framework for MAS nor distributed OO-
MDP solutions for a generic number of agents.

We here argue that each agent in a MAS can be seen as an
object, and extend OO-MDP for MAS, defining the Multiagent
Object-Oriented MDP (MOO-MDP). We also contribute a
model-free algorithm to solve deterministic distributed MOO-
MDPs for cooperative domains, hereafter called Distributed
Object-Oriented Q-Learning (DOO-Q). DOO-Q helps to ac-
celerate learning by reasoning over abstract states. Moreover,
under certain constraints, DOO-Q still learns optimal policies
without observing the entire concrete state space. Thus, the
contributions of this paper are threefold: (i) We propose the
MOO-MDP model that abstracts the state space in MAS
through object-oriented task descriptions; (ii) We contribute
an algorithm to solve MOO-MDPs and prove that it learns
optimal joint policies (under certain conditions); and (iii) We
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present empirical evaluations in several domains comparing
our algorithm with previous techniques.

This article extends our previous work [20] by deepening
our discussion of related work and experiments, presenting
additional experimental evidence, and presenting in full the
theoretical proof of convergence to an optimal joint policy.

The remainder of this article is organized as follows: In
Section II we define all relevant concepts for our proposal.
In Section III we introduce the MOO-MDP formalism and in
Section IV we present an algorithm to learn an optimal policy
in deterministic cooperative MOO-MDPs. The experimental
evaluation is presented in Section V and results are discussed
in Section VI. Finally, we conclude our article and point
toward further works in Section VII.

II. BACKGROUND ON REINFORCEMENT LEARNING

Markov Decision Processes (MDP) are used to model
sequential decision-making problems that can be solved with
RL. An MDP is described by 〈S, A, P, R, γ〉 [21], where S is
the set of environment states. A common and convenient way
to describe states is through a factored description, that is, a
state is composed of a Cartesian product of state variables. A
is the set of actions available to an agent, P : S × A × S →
[0, 1] is the state transition function, where P(s, a, s′) is the
probability of observing state s′ after applying action a in s
(for deterministic domains P(s, a, s′) ∈ {0, 1}, ∀〈s, a, s′〉). R
is the reward function, and γ, 0 ≤ γ < 1, is the discount
factor, which represents the relative importance of future and
present rewards. A decision maker (agent) takes actions at
each decision step. At first, the agent observes the current
state s, then it can choose an action a among the applicable
ones. The chosen action causes a state transition s′← P(s, a)
and the agent can observe a reward signal r ← R(s, a, s′).
After that, this cycle is repeated until a termination condition
is achieved, and the agent must infer a policy π to choose an
action for each state through observing those decision-making
cycles. An optimal policy π∗ is the solution of an MDP, i.e., a
policy that chooses the actions that maximize the discounted
reward signal for every state. In this work we are interested
in learning problems (i.e., P and R are unknown to the agent)
that can be solved through interactions with the environment.
The Q-Learning algorithm [22] is widely used to solve such
learning problems. Q-Learning iteratively learns a Q-table, i.e.,
a function that estimates the long-term quality of each action
when applied to each state: Q : S × A → R. Q-Learning
eventually converges to the optimal Q function1

Q∗(s, a) = E

[
∞∑
i=0

γiri

]
, (1)

where ri is the reward received after i steps from using action
a on state s and following the optimal policy on all subsequent
steps. An optimal policy can be extracted from Q∗ as π∗(s) =
arg maxa Q∗(s, a). Notice that the standard MDP only models
one agent in the environment; although an MDP can be used

1The proof requires that: (i) all state-action pairs are infinitely visited; (ii)
the rewards are bounded; and (iii) a proper learning rate is chosen [22].

to solve a MAS problem by ignoring all other agents, some
kind of coordination is usually desired [23].

A. Multiagent MDPs

A Stochastic Game (SG) [16], [24], [25] is an extension
of MDP to MAS. As multiple agents are now present in the
environment, in SGs the state and action sets are defined as
the Cartesian product of local states and actions for all agents.
The transition function now depends on the joint action, rather
than one single individual action. A SG is described by the
tuple 〈S, A1...m,T, R1...m, γ〉, where m is the number of agents
in the environment. The set of states S is composed of local
states from each agent: S = S1 × S2 × · · · × Sm, thus,the local
states of all agents must be observed.

Several equilibrium-based MARL algorithms have been
proposed to learn an equilibrium joint policy in such domains
[26], [27]. These algorithms balance the reward of all agents
through an equilibrium metric, instead of considering only
individual rewards. However, these algorithms do not scale
well as the number of agents increases, because the equi-
librium computation becomes complex. On the other hand,
Distributed Q-Learning [28] can be used to learn an optimal
joint policy for cooperative scenarios (also called Multiagent
MDPs [28], in which R1 = · · · = Rm [29]), with only little
computational complexity at each step. Distributed Q-Learning
without knowledge of actions performed by other agents and
stores only Q-values for the best possible joint action.

B. Object-Oriented MDP

The Object-Oriented MDP (OO-MDP) is a relational MDP
extension intended to facilitate generalization in RL problems
[30].We here make use of the Goldmine [30] domain to
exemplify the object-oriented concepts applied to RL. Figure
1 illustrates the Goldmine domain. A team of miners aims at
collecting as much gold pieces as possible. However, there
are impassable walls in the environment to hamper miner
movements. At each decision step, all miners may move or
collect gold pieces that are close enough. Whenever any miner
collects a gold piece, all miners receive a positive reward,
hence miners always benefit from acting cooperatively.

An OO-MDP is composed of 〈C,O, A,T,D, R, γ〉. C =

{C1, . . . ,Cc} is the set of classes. Each class Ci ∈ C is
composed of a set of attributes, Att(Ci) = {Ci .b1, . . . ,Ci .bb},
and each attribute bj is restricted by a domain Dom(Ci .bj)

specifying the set of possible values for that attribute. A
possible object-oriented description of the Goldmine do-
main is defining three classes: Miner, Gold, and Wall, i.e.,
C = {Miner,Gold,Wall}. All these classes have x and y

attributes, and walls also have a position attribute pos to
indicate the position of the wall in respect to the grid cell:
Att(Miner) = Att(Gold) = {x, y}, Att(Wall) = {x, y, pos},
Dom(Miner .x) = Dom(Miner .y) = Dom(Gold.x) =
Dom(Gold.y) = Dom(Wall .x) = Dom(Wall .y) =

{0, 1, 2, 3, 4} (in a 5 × 5 grid), and Dom(Wall .pos) =
{South,West, East, North}. As noticed in the example, the
definition of classes and attributes must describe all types of
objects in the environment and their relevant features.
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O = {o1, . . . , oo} is the set of objects that exist in the task
of interest. Each object is an instance of one class, so that
oi ∈ Cj with C(oi) = Cj and, for each decision step, the object
state is given by the current value of all attributes. The object
uniqueness is given by an additional identification. For exam-
ple, in the Gridworld domain, miners are distinguished by a
“name", which is used to define the miner to be moved when
actions are executed. Therefore, the object state is defined by
the Cartesian product oi .state =

(∏
b∈Att(C(oi ))

oi .b
)
× oi .id,

where oi .id is the object identification.
Figure 1b presents an example of object-oriented state,

where all objects in the environment are described by their
attribute values and id. In an OO-MDP, the state of the under-
lying MDP is the union of all object states s =

⋃
o∈O o.state.

The set A consists of actions that may or may not be param-
eterized. Parameterized actions affect any object belonging to
a given set of classes in the same way, hence, parameterized
actions are abstract and need to be grounded to be applied.
Suppose an external agent controls all miners and can use the
parameterized action North(Miner). This action moves a miner
towards North, however, a single miner must be specified in
the action parameter in order to apply the action. For example,
in the state described in Figure 1b, the action North(miner1)
would move miner1 to cell (0,2).

T is a set of terms, which are boolean functions related to the
state transition dynamics in an OO-MDP. Each term is either
a relation between objects or an optional designer-specified
function to describe domain knowledge. An example of a
relation in the Goldmine domain is the term on(Miner,Gold),
which defines if (and which) miners are in the same position
as gold pieces. An example of function to describe domain
knowledge (not used in our experiments, though) is the
function noGold(), which returns a true value only when
all gold pieces in the environment were collected. D is a
set of rules d, defined as tuples of 〈condition, effect, prob〉.
A condition is a conjunction of terms of T and an effect f
is an operation that changes with probability prob attribute

(a)

Object id Attributes

miner1 x = 0, y = 1
miner2 x = 1, y = 3
miner3 x = 4, y = 1
gold1 x = 1, y = 0

...
gold6 x = 4, y = 2
wall1 x = 1, y = 1,

pos = South
...

wall24 x = 4, y = 4,
pos = East

(b)

Fig. 1. The Goldmine domain (illustration adapted from [30]). Miners aim
to gather all gold pieces in the environment. Thick walls are impassable. (a)
Graphical representation. (b) Object representation.

values of an object, f : Dom(Ci .bj) → Dom(Ci .bj). As an
example of rule, consider dN = 〈condN, fN, probN 〉 related
to action North(Miner z). condN (z) verifies if the miner z has
a clear path in the north direction and will be able to move
in the desired direction, thus condN (z) = ¬touchN (z,Wall),
where the relation touchN returns a true value if the agent
sees a wall in the north direction, which makes sure that fN
is only triggered when the miner’s movement is not hampered
by walls. fN (z) = z.y ← z.y + 1 changes the position of z
towards the desired direction. As North is an action with a
single deterministic effect, probN = 1.

Finally, R and γ are, respectively, a reward function and
a discount factor equivalent to the standard MDP ones. The
conditions of terms, D, and R are not known by the agent in
learning problems, which has to learn how to actuate through
samples of interactions in the environment.

The transition dynamics in an OO-MDP is interpreted as
follows. First, at each step k, the current state sk is observed,
and the agent applies one action ak . Second, all terms are
evaluated to be true or f alse at that step. And third, all
rules associated to ak are evaluated, and for all conditions
that are matched, an effect is triggered. After all effects
have been processed, the new object states characterize the
state transition, and this cycle is repeated until a termination
condition is achieved. An OO-MDP corresponds to a regular
MDP, but the agent can use the extra information to generalize
the learning space. Note that SGs and OO-MDP tackle specific
scalability issues. In the next section, we propose to combine
both methods to benefit from their advantages.

III. MULTIAGENT OBJECT-ORIENTED REPRESENTATION

We now present a formal definition for an MOO-MDP, a
relational MDP extension to MAS. MOO-MDP supposes that
each agent can observe the other objects in the environment.
We are interested in a distributed control, in which agents
cannot tell other agent’s actions. The main differences between
OO-MDPs and MOO-MDPs are the same as the ones between
MDPs and SGs, that is:

1) multiple agents are simultaneously affecting the environ-
ment. Now, the state transition depends on joint actions,
instead of local agent actions;

2) each agent may have a slightly different observation of
the world, resulting in similar but possibly different local
states; and

3) each agent has its private reward function, which means
that each agent might have different goals.

Although we focus here on cooperative domains, MOO-MDP
is a general model that can be used for general-sum MAS.

An MOO-MDP is described by 〈C,O,U,T,D, Rm, γ〉. m is
the number of agents and C is again the set of classes. We
define the set of Agent Classes Ag = {Z1, . . . , Zg}, Ag ⊆ C,
meaning that each object belonging to a class Zi ∈ Ag
represents an autonomous agent. Note that g ≤ m, because
more than one autonomous agent may belong to the same
class. Γ ⊆ C is the set of abstracted classes. This set is
domain-specific and designer-specified. Including one class
in this set means that all the objects of these classes will
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be distinguishable only by their attribute values (the ids
become invisible to the observing agent), hence each object are
observed through an abstract state o.state =

∏
b∈Att(C(o)) o.b.

The set of objects O is divided as O = E ∪ G, where
E is the set of environment objects (not related to agents),
∀e ∈ E : C(e) < Ag, and G is the set of agent objects,
∀z ∈ G : C(z) ∈ Ag. Concrete states are now defined
over the union of states from both environment and agent
objects s =

⋃
o∈O o.state = (

⋃
e∈E e.state) ∪

(⋃
z∈G z.state

)
.

Consequently, if the state of some agents cannot be directly
observed in the environment, these states must be received
through communication in all decision steps. An abstract
state s̃ is defined according to s̃ =

(⋃
o∈O,C(o)∈Γ o.state

)
∪(⋃

o∈O,C(o)<Γ o.state
)
, which means that objects belonging to

abstracted classes are identified by their abstract states, while
the other objects keep their concrete state in the point of view
of the agent. Hence, s̃ is a set of concrete states (s̃ ⊆ S).
The function κ translates a concrete state s: s̃z = κ(s, z)
to an abstract one for an agent z by suppressing the id of
objects belonging to abstract classes Ci ∈ Γ. Note that the
definition of abstract states enables knowledge generalization.
Figure 2 illustrates how the abstraction works in a 2 × 2
Goldmine domain. Note that multiple concrete states are
compressed into a single abstracted one. U is the set of joint
actions for all agents. Joint actions are composed by a list of
individual actions, which belong to an agent action set Az ,
U = A1 × · · · × Am. Individual actions can be parameterized
or not, thus MOO-MDPs also allow action space abstraction.
Moreover, individual action sets can be different.T and D
have the same definition as in OO-MDPs, but they are now
dependent on joint actions. Rm = {R1, . . . , Rm} is the set of
reward functions for all agents, which now is dependent on
joint actions, instead of individual actions. While Az is known
by the agent, T, D, Rm, and U are unknown in a learning task.

The transition dynamics are illustrated in Figure 3. In each
step k, each agent applies one action az

k
∈ Az in its local

abstract state s̃z
k
. All terms are evaluated according to sk

(defined from Ok) and the joint action uk triggers all effects
related to matched conditions in the rules d ∈ D. Finally, a
state transition is caused by the triggered effects, and the agent
observes its reward rz

k
. Note that state transitions depend on

both term values (defined over concrete states) and the joint
action. The conditions governing transitions are unknown to
the agent for learning problems. Therefore, reasoning over
only abstract observations of the environment helps the agent
to avoid considering all possible grounding of terms. In the
next section, we present a model-free algorithm to solve deter-
ministic cooperative MOO-MDPs with homogeneous agents.

IV. LEARNING IN DETERMINISTIC COOPERATIVE
MOO-MDPS

We present here a solution for Deterministic Distributed
Cooperative MOO-MDPs, a specific class of the general
MOO-MDP framework presented in Section III. All agents
aim at maximizing a single reward function in such domains,
thus, R1 = · · · = Rm. We also assume that it is infeasible to
build a central controller, and each agent takes actions without

observing other agents’ actions. We here propose to use a
model-free algorithm based on Distributed Q-Learning [28]
to solve such problems. In our algorithm, thereafter called
Distributed Object-Oriented Q-Learning (DOO-Q), each agent
learns a local policy in a distributed and generalized manner.
Each agent z stores a local Q-table (Qz) containing abstract
states (s̃z

k
) and its own actions. We leave the action space

abstraction for further works and assume that all actions are
concrete (i.e., grounded in case of abstract actions). An agent
z using DOO-Q learns a local policy that converges to an
optimal joint policy2 (under certain conditions, when all agents
are using DOO-Q), even when unaware of other agent actions,
through iteratively updating its Q-table using the equation
proposed for Distributed Q-Learning over abstract states and
concrete actions [28]:

Qz
k+1(s̃

z
k
, az

k
) ← max{Qz

k
(s̃z

k
, az

k
), rk + γ max

az ∈Az

Qz
k
(s̃z

k+1, a
z)}.

(2)
Lauer and Riedmiller [28] proved that, when using only

concrete states, this update-rule allows agents to learn a
projection of the joint Q-table in a distributed manner. We
apply Equation (2) with abstract states in order to learn an
optimal joint policy while storing only a local Q-table, which
can be done because it corresponds to the joint Q-table as

Qz
k
(s̃z

k
, az

k
) ≥ max

u∈U,uz=az
k
,s∈s̃z

k

Qk(s, u), (3)

where Qz
k

is the local Q-table of agent z at step k, Qk is the
joint Q-table for all agents, where agent z chose action az

k
(uz = az), and s ∈ s̃z

k
. Local Q-values are defined for a given

abstract state s̃z
k

and an agent action az
k
∈ Az , while joint Q-

values are defined for concrete states s and joint actions u ∈ U,
composed of actions of all agents. During the learning process,
a single value of the local Q-table can be greater than the joint
Q-table values, because another concrete state s′ ∈ s̃z

k
may

have been visited before, a situation in which generalization
causes a faster convergence. We prove that Equation (3) holds
for MOO-MDPs under certain constraints.

Proposition 1. Equation (3) holds for every step k, agent
z ∈ Ag, state s ∈ S, and action az ∈ Az , in any MOO-MDP
where the following assumptions hold:

1) The concrete state transition and reward functions are
deterministic (i.e., for a given state sk and joint action uk
only one next state sk+1 and reward rk can be achieved).

2) For all s ∈ S, u ∈ U and az ∈ Az : Q0(s, u) =
Qz

0(κ(s, z), a
z) = 0, and r(s, u) ≥ 0.

3) The MOO-MDP is cooperative (i.e., all agents receive
the same reward rk at every step k).

4) For all s ∈ S, z ∈ G, and u ∈ U, κ(s, z) returns only
one abstract state s̃z

k
= κ(s, z). Also, the same reward rk

and next state s̃z
k+1 are observed when applying u in any

concrete state covered by s̃z
k
.

5) All state-action pairs are infinitely visited3.

2Notice that, as we are here dealing with Cooperative MOO-MDPs, the
optimal policy maximizes a single reward function for all agents, rather than
reaching an equilibrium, as when the agents have different reward functions.

3For this, all states must be reachable and all agents apply an exploration
strategy with a non-zero probability of choosing each action in each state.
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(a)

s1 = {miner = {0, 1}, gold1 = {1, 1},
gold2 = {1, 0}}

s2 = {miner = {0, 1}, gold1 = {1, 0},
gold2 = {1, 1}}

s̃ = {miner = {0, 1}, gold = {1, 0},
gold = {1, 1}}

s̃ = {s1, s2}

(b)

Fig. 2. (a) Graphical representation (illustrations adapted from [30]) and (b) textual representation of the state space abstraction. s1 and s2 represent two
concrete states (ids on top of gold pieces) that are described by a single abstract state s̃ in the right side when Gold ∈ Γ.

Each agent z

observes state

s̃z
k

and applies
action az

k

T is verified, and
all terms are set

to true or f alse

An effect will
occur for all

matched condition

associated to uk =

[a1
k
. . . am

k
]T

Environment is
changed by effects

and the current
state changes

Environment
returns [r z

k
s̃z
k+1]

for each agent

Fig. 3. Transition dynamics in an MOO-MDP.

Proof. For all agents z ∈ G:

• k = 0: Equation (3) is ensured by Assumption 2.
• k ; k + 1: Assumptions 1 and 3 ensure that the same

experience 〈sk, uk, sk+1, rk〉 is valid for all agents in k,
which together with Assumption 4 guarantees that each
agent always observes the same s̃z

k
whenever sk is visited.

Thus, the following Q-value update is performed either in
distributed or in joint control, respectively:

Qz
k+1(s̃

z
k
, az

k
) ← max{Qz

k
(s̃z

k
, az

k
), rk + γ max

az ∈Az

Qz
k
(s̃z

k+1, a
z)},

Qk+1(sk, uk) ← max{Qk(sk, uk), rk + γ max
u∈U

Qk(sk+1, u)}.

For any experience, this update can lead to two possibilities:

1) Qz
k
(s̃z

k
, az

k
) < rk + γ maxaz ∈Az Qz

k
(s̃z

k+1, a
z): Because

Equation (3) holds for k, both Qz
k
(s̃z

k
, az

k
) and Qk(s, uk )

are updated, thus after the update: Qz
k+1(s̃

z
k
, az

k
) ≥

Qk+1(sk, uk ).
2) Otherwise: No Q-value is updated on the dis-

tributed Q-table. As Equation (3) holds for k:
Qk(sk, uk ) ≤ Qz

k
(s̃z

k
, az

k
) and maxu∈U,s∈s̃z

k+1
Qk(s, u) ≤

maxaz ∈Az Qz
k
(s̃z

k+1, a
z). This means that, after the update

in k, the following relation is valid: Qk+1(sk, uk) ≤

Qz
k+1(s̃

z
k
, az

k
).

Since in both situations Qk+1(sk, uk) and Qz
k+1(s̃

z
k
, az

k
) are

the only Q-table entries that may be updated and the latter
is always greater or equal than the former, Equation (3) also
holds for k + 1.

Assumptions 1, 3,4, and 5 also ensure that at convergence
time, all trajectories starting from a given concrete state s are
already known, resulting in the following equation for any
z ∈ G, s ∈ S, and az ∈ Az :

Qz∗(κ(s, z), az) = max
u∈U,uz=az

Q∗(s, u), (4)

where Qz∗ and Q∗ are, respectively, the distributed Q-table of
agent z and the joint Q-table at convergence time.

�

However, the greedy policy applied to local Q-tables is
not guaranteed to result in an optimal joint policy because
some miss-coordination issues may arise depending on how
each agent breaks ties in its value functions. This means that
agents need an additional coordination method for optimal
actuation. Thus, each agent only updates its policy when a
new action results in an improvement over all other actions
previously applied in the current state. This update-rule solves
coordination issues since all agent policies will repeat the first
joint action that received the optimal discounted reward and
is described by

πz
k+1(s̃

z
k
) ←

{
πz
k
(s̃z

k
) if max

az ∈Az

Qz
k
(s̃z

k
, az) = max

az ∈Az

Qz
k+1(s̃

z
k
, az)

az
k

otherwise
.

(5)
As a greedy policy applied to a joint Q-table in cooperative

scenarios leads to an optimal actuation, a distributed policy is
optimal if it is greedy with respect to the joint Q-table. We
can prove that Equation (5) has this property:

Proposition 2. Let πz be a decentralized policy learned by
agent z on a cooperative MOO-MDP using Equation (5).
Assume that Equation (3) holds and Equation (2) is used for
Q-value updates. Let s̃z

k
= κ(sk, z), then for every state s ∈ S,

πz is greedy with respect to the corresponding joint Q-table
at convergence time, i.e.

∀s ∈ S : [π1(s̃1) . . . πm(s̃m)]T = arg max
u∈U

Q∗(s, u). (6)

Proof. For all agents z ∈ G, let πz0 be arbitrarily initialized.
Because Equation (2) is used for Q-value updates, Qz

k
is a

monotonically increasing function; that is, ∀s ∈ S, az ∈ Az :
Qz

k
(s, az) ≤ Qz

k+1(s, a
z). However, according to Equation (5),

the policy is only updated in step k when there exists only
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one action for which the Q-value related to the current state
was modified:

∃!az ∈ Az : Qz
k
(s̃z

k
, az) < Qz

k+1(s̃
z
k
, az).

In this case, we know that: πz
k+1(s̃

z
k
) ← az

k
. As we are

dealing with cooperative MOO-MDPs, this holds for all agents
in k, corresponding to a joint policy update as follows

πk+1(sk) =


π1
k+1(s̃

1
k
)

...
πm
k+1(s̃

m
k
)

 =


arg max
a1∈A1

Q1
k+1(s̃

1
k
, a1)

...
arg max
am ∈Am

Qm
k+1(s̃

m
k
, am)


(7)

When all state-action pairs have been explored, all Q-tables
will have converged to Q∗. Hence, Equation (7) leads to:

∀s ∈ S : π∗(s) =


arg max

a1∈A1

Q1∗(s̃1, a1)

...
arg max
am ∈Am

Qm∗(s̃m, am)


. (8)

Combining Equations (4) and (8) results in

∀s ∈ S : π∗(s) =


arg max

a1∈A1
max

u∈U,u1=a1
Q∗(s, u)

...
arg max

am ∈Am

max
u∈U,um=am

Q∗(s, u)


. (9)

Due to the update rule in Equation (5) and the cooperative
nature of the MOO-MDP, we can say that agents coordinate
by breaking ties in arg max

az ∈Ai

Qi
k+1(s̃

i, az) according to the

order in which experiences occurred, which means that agents
coordinate even when multiple optimal joint policies exist.
Thus Equation (9) is equivalent to

∀s ∈ S : π∗(s) = arg max
u∈U

Q∗(s, u). (10)

Hence, a joint policy implied by decentralized policies
updated as in Equation (5) eventually converges to the optimal
joint policy, provided that Proposition 1 holds. �

DOO-Q solves MOO-MDPs allying the distributed Q-table
update of Equation (2) with the policy update of Equation
(5). DOO-Q is fully described in Algorithm 1. At first, all
local Q-tables are initialized with zero values (according to
Assumption 2 of Proposition 1). Then, for each decision step,
each agent observes its current abstract state s̃z

k
according to

the state of all objects and applies an action az
k

following an
exploration strategy E xpStr . Any function that has a non-zero
probability of executing all applicable actions can be used as
E xpStr (as required by Proposition 2), for example, the ε-
greedy strategy. The E xpStr arguments are s̃z

k
, to know which

actions are applicable, and the current policy πz
k
. After all

actions are applied and the state transition is processed, each
agent observes the next state and reward. Finally, all local Q-
tables and policies πz

k
are updated, ending the current learning

step. Notice that the observation of abstract states enables state
generalization, in the sense that an agent may see all objects of

a class as equivalent, and only differentiate them by attribute
values. Note also, that here the environment returns a single
reward rk to all agents.

Algorithm 1 Learning for a DOO-Q agent z
Require: exploration strategy E xpStr , discount rate γ, ab-

straction function κ, state space S, and action space Az .
1: Qz

0(κ(s, z), a) ← 0, ∀s ∈ S, a ∈ Az .
2: Initiate πz0 as a greedy policy.
3: Observe current abstract state s̃z0 .
4: for Each learning step k ≥ 0 do
5: Apply action az

k
= E xpStr(s̃z

k
, πz

k
)

6: Observe reward rk and new state s̃z
k+1.

7: Update Qz
k
(s̃z

k
, az

k
) (Equation 2).

8: Update policy πz
k
(s̃z

k
) (Equation 5).

9: s̃z
k
← s̃z

k+1.
10: end for

V. EXPERIMENTAL EVALUATION

We evaluate DOO-Q in three domains. The first one is
designed to represent situations where the object-oriented
representation benefits from domain characteristics, while all
the assumptions of our theoretical proofs hold. The second
one is designed to be a simple domain with small state space,
in which the task is easy to solve without abstraction. While
the performance of algorithms that reason over concrete states
should be maintained, our proposal has better memory require-
ments in such domains. The third one is a domain with partial
observability and a non-deterministic environment in which
some of the assumptions of our theoretical proof for learning
an optimal policy are violated. This last domain provides
experimental evidence of the robustness of our proposal under
conditions not covered by our theoretical analysis.

For all domains, unless otherwise stated, the performance
of the following algorithms was compared:
• Single-agent Q-Learning (SAQL): We adapt the single-

agent Q-Learning [22] to MAS. A central controller
is designated to control all agents in the environ-
ment. A joint state-action space is used to build the
Q-table. Here, the Q-table update is computed as:
Qk+1(sk, uk ) ← Qk(sk, uk ) + α(rk + γmaxu∈U Q(sk, u)
−Qk(sk, uk )), where α is a learning rate. The Object-
Oriented representation is used to define the state space.

• Multiagent Q-Learning (MAQL): Each miner is an
autonomous agent in this algorithm. Agents cannot com-
municate, but they are able to observe each others actions
in all steps. Thus, each agent stores a Q-table that has
an entry for all states and joint actions, and every agent
actuates believing that all other agents will choose the
individual action which has the maximum Q-value.

• Distributed Q-Learning (DQL): The standard Dis-
tributed Q-Learning [28] is similar to our proposal, but
without using the Object-Oriented representation (i.e., it
does not allow state abstraction).

• DOO-Q: In our proposal, each agent is autonomous and
selects a local action based on local abstract states.
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For all algorithms, we use the ε-greedy exploration strategy
with ε = 0.1. The experiments of Sections V-A and V-B were
implemented and carried out in BURLAP [19] and graphs
were printed using MATLAB [31]. The experiment described
in Section V-C was implemented in Python4. In the following,
we describe each of the evaluation domains.

A. Goldmine

A slightly modified version of the Goldmine is our first do-
main. Goldmine was firstly described in [30]. This domain was
chosen because it has interesting multiagent qualities, since
various agents must gather all gold pieces in an environment,
and they benefit from cooperation (because all agents receive
the same reward when any miner picks up a gold piece). This
domain was originally solved through a centralized controller
that moves a single miner per decision step. This controller is
not directly related to objects in the environment and is rather
an external agent that can control all miners, which do not
perform autonomous actions. Also, there was no penalization
in reward for agent collisions.

In our version of the Goldmine domain, at each decision
step, all miners may move one position to North, South, East
or West and, whenever a miner occupies the same cell as a
gold piece, the action GetGold can be used to collect the gold
piece. Episodes end when all gold pieces are collected.

As described in Section II, the Goldmine domain is
described by three classes: Miner, Gold, and Wall, where
miner objects are agents, i.e. C = {Miner,Gold,Wall},
Ag = {Miner}, and Att(Miner) = Att(Gold) = {x, y},
Att(Wall) = {x, y, pos}. In the example state illustrated
in Figure 1, E = {gold1, . . . , gold6,wall1, . . . ,wall24},
G = {miner1,miner2,miner3} and Az =

{North(z), South(z), East(z), West(z),GetGold(z)}. The
following relations are defined: touchN (Miner,Wall),
touchS(Miner,Wall), touchW (Miner,Wall),
touchE (Miner,Wall), and on(Miner,Gold), which define
whether a wall is on North, South, East or West of a miner
cell, or if a miner is occupying the same cell as a gold piece.
The actions, conditions and deterministic effects are defined
in Table I. Note that, if a miner tries to move towards a wall,
the action condition is not fulfilled and the miner does not
move from the current position.

For a given triple 〈sk, uk, sk+1〉, we define the reward
function as

r(sk, uk ) = gold × ngold × γ(2nminer+1.5nwall ), (11)

4Implementations available at https://github.com/ f-leno/DOO-Q_extension

TABLE I
Goldmine DOMAIN DYNAMICS. IF THE CONDITION FOR THE APPLIED
ACTION IS NOT TRUE IN THE CURRENT STATE, NO EFFECT OCCURS.

Action Condition Effects
North(Miner m) ¬touchN (m,Wall) m.y ← m.y + 1
South(Miner m) ¬touchS (m,Wall) m.y ← m.y − 1
East(Miner m) ¬touchE (m,Wall) m.x ← m.x + 1
West(Miner m) ¬touchW (m,Wall) m.x ← m.x − 1

GetGold(Miner m) on(Miner m,Gold g) g.x ← ∅, g.y ← ∅

where gold is the value of each gold piece collection, γ
is the discount rate, ngold is the number of collected gold
pieces as a result of applying the joint action uk , nwall is
the number of miners colliding with wall in k, and nminer is
the number of miner pairs occupying the same grid cell in
sk+1, and gold = +100. This reward function was designed to
penalize collisions while avoiding negative rewards5, which
would invalidate Assumption 2 of Proposition 1.

In our experiments, we randomly generated 70 initial states
in a 5 × 5 grid with 3 miners and 6 gold pieces (Figure 1 is
an example of such states) and used them to compare the per-
formance achieved by each of the algorithms. The experiment
was designed in a way that every algorithm experiences the
same initial states in the same order, and the next initial state is
defined by swapping the position of objects of the same class
after each episode. For each of the states, algorithms explore
using an exploration strategy and, after every interval of 100
episodes, a single episode is assessed using the greedy policy
to extract the number of steps required to reach a terminal
state and the received accumulated discounted reward. The
algorithms were configured as follows:

1) SAQL: This algorithm was used in the original Goldmine
modeling, where an external agent sees each miner as a
simple environment object (and not as an autonomous
agent). A single miner can be moved at each step and
all decisions are made by the external agent, which
means miners do not perform actions by themselves.
The Q-Learning algorithm was used to solve the task,
with the parameters α = 0.2, γ = 0.9. Here, Γ =
{Gold,Wall}. We used the default implementation avail-
able in BURLAP.

2) MAQL: The following parameters were set: α = 0.2,
γ = 0.9, and Γ = {Miner,Gold,Wall}. The BURLAP
default implementation was used.

3) DQL: This algorithm is implemented with a factored state
description and γ = 0.9.

4) DOO-Q: For our proposal, γ = 0.9 and Γ =

{Miner,Gold,Wall}.
A time limit was set for the experiment, in which an

algorithm is interrupted if it takes too long to conclude a
predefined number of learning episodes. In this case, the
results achieved so far were still stored.

The object-oriented representation is expected to excel in
Goldmine, as gold pieces, walls, and other agents can be
abstracted, greatly reducing the state space. Hence, we also
included an evaluation in a simple Gridworld in which the
object-oriented representation is not expected to achieve better
results than a factored representation, and is described in the
next Section.

B. Gridworld

In our Gridworld domain, three agents must navigate in
a shared environment aiming to reach the desired position.
Figure 4 illustrates the initial state for our experiments. Each
agent (circle) has a different destination (square), in which

5The weights for collisions were set to prioritize avoiding miner collisions,
but small changes in those weights do not result in big changes when learning.
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they want to be while avoiding collisions with other agents
or walls. Episodes always begin in the aforementioned initial
state and end when all agents reach their destination. Agents
which achieved their goal cannot move anymore and must wait
until all other agents arrive in their final location.

Fig. 4. Graphical representation of the Gridworld domain. Three agents
(circles in the image) need to reach their destinations (squares with the same
color as the agents) while avoiding collisions with other agents and walls.
Thick walls are impassable.

The domain is described by the classes
C = {Agent,Goal,Wall}, which have the attributes
Att(Agent) = {x, y, agentID}, Att(Goal) = {x, y, goalID},
and Att(Wall) = {x, y, pos}. Agents can move in
the four cardinal directions or do not move, i.e.
Az = {North(z), South(z), East(z),West(z), NoOp(z)},
where NoOp means that the agent does not move and stays
in the same position. An agent can execute any action until
reaching its destination (i.e., a Goal object g and an Agent
object z with g.goalID = z.agentID), after which only the
NoOp action is available until the episode ends.

When agents collide (more than one agent tries to enter
the same cell), one random agent gets to the position and
the other does not move. The reward function returns +1 to
all agents when any agent arrives at its destination and 0 for
all other time steps. Hence, agents benefit from coordination,
since helping other agent results in positive rewards for every
agent in the system. For all algorithms, α = 0.5 and γ = 0.9.
Only the Multiagent approaches were evaluated in this domain
(MAQL, DQL, and DOO-Q). For both DOO-Q and MAQL,
we chose Γ = {Agent,Goal,Wall}. The discounted cumu-
lative reward achieved through exploiting the current learned
policy was evaluated after every two episodes of learning, until
800 learning episodes were completed. The whole experiment
was repeated 50 times to achieve statistical significance.

The object-oriented representation is not expected to learn
faster in this domain, as the state space is very small, which
renders the state abstraction unnecessary. Our last evaluation
domain is described in the next Section.

C. Predator-Prey

Our last evaluation is performed in a Predator-Prey do-
main [23]. All the predators in the environment collab-
oratively aim at capturing randomly-moving preys in a
10 × 10 grid, as depicted in Figure 5a. At each step, all
preys and predators can apply one of four actions Az =

{North(z), South(z), East(z),West(z)}. Predators’ actions are
defined by autonomous agents controlled by the aforemen-
tioned algorithms, while a random action is chosen for preys.

Predators can freely move in the grid, and in case of wall
collisions, the agent position is not modified. We generated
100 evaluation states where three predators and two preys
were placed in random initial positions. An episode ends when
all preys are captured (one predator is in the same position
as the prey). When a prey is captured, a reward of +1 is
given to all agents, while a reward of 0 is given otherwise.
We train all algorithms for 1000 learning episodes, in which
the performance is evaluated by trying to solve all evaluation
episodes after every 5 learning episodes.

(a) (b)

Fig. 5. An illustration of the Predator-Prey task. A group of predators aims at
capturing a randomly-moving prey in a 10×10 grid. An episode ends when all
preys in the environment are captured. (a) An example of a complete state. (b)
The visual field of one of the predators (the reasoning predator is in green).

In this domain, the predators cannot observe the whole grid,
and their visual field is limited by a parameterized visual
depth. Figure 5b illustrates the point of view of one agent
configured with depth = 3. The agent can observe the relative
position of predators and preys inside its visual field. For
example, the agent state depicted in Figure 5b is observed as:
{Prey: (-1,2), Predator: (1,1), Predator: (2,2)}. The object-
oriented representation is defined as: C = {Prey, Predator}
and Att(Prey) = Att(Predator) = {x, y}. Agents may occupy
the same cell without penalization. Notice that, because of the
random movements executed by the prey, the state transition
function is non-deterministic, which means that Assumption 1
and 4 of Proposition 1 do not hold for this domain. However,
although the convergence to an optimal policy is not guaran-
teed, we provide empirical evidence that our proposal learns
how to solve the task. Here, SAQL can move all agents at
each time step, which means that each Q-table entry contains
the observations of all agents and a joint action. Furthermore,
we chose Γ = {Prey, Predator}, γ = 0.9 and α = 0.1 for
all algorithms. We show the results of a task with 3 predators
configured with depth = 3 trying to catch 2 preys.

VI. RESULTS AND DISCUSSION

The algorithms are compared based on Q-table size and
learning speed. The number of Q-table entries for an algorithm
depends on the size of the state and action spaces, |Q | = |S | ×
|A|.

However, some of the states might be very rarely observed,
which means that, in practice, the agent does not need to
allocate all possible Q-table entries in memory. Therefore, for
all domains, we present both a theoretical definition of the
maximum number of Q-table entries that may be necessary for
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each algorithm and the number of actually used Q-table entries
during the experiments. We compare performances through
the cumulative reward achieved in the evaluation episodes for
both the Goldmine and Gridworld domains and through the
average number of steps to solve evaluation episodes for the
Predator-Prey domain.

In the next sections, we present the achieved results.

A. Goldmine

We first present the number of Q-table entries for each
algorithm. Let m be the number of miners, p be the number of
gold pieces, q be the number of individual actions affecting a
single miner state, and w be the number of possible cells inside
the grid. In order to simplify calculations, we assume that Q-
table entries are created even if actions are not applicable in
a given state.
• SAQL: One agent controls all miners, but only moves one

single miner per step, so we get the size of the action
space |A| = q m. The state space is defined over all
possible grid cells that each miner and each gold piece
can occupy (gold pieces can also be in collected state).
As Gold is an abstracted class, the number of ways that
gold pieces can be dispersed in the grid is calculated as a
permutation with repetitions, leading to |S | = wm (p+w)!

p!w! .

The memory requirement is then O
(
wm (p+w)!

p!w! q m
)
.

• MAQL: There is one agent for each miner, which move
simultaneously in every step, thus all possible combina-
tions of joint actions determine the size of the action
space |A| = qm. As Miner and Gold are abstracted
classes, only the agent is distinguishable by the id, re-
sulting in |S | = w

(m+w−2)!
(m−1)!(w−1)!

(p+w)!
p!w! . The memory require-

ment for this algorithm is O
(
w
(m+w−2)!
(m−1)!(w−1)!

(p+w)!
p!w! qm

)
.

• DQL: Here, each agent only considers its actions leading
to |A| = q. However, no abstraction is used, leading to
|S | = wm(w + 1)p . Thus, the memory requirement for
DQL is O (wm(w + 1)pq).

• DOO-Q: The state space is the same as in MAQL and the
action space is the same as in DQL. Thus, the memory
requirement for DOO-Q is O

(
w
(m+w−2)!
(m−1)!(w−1)!

(p+w)!
p!w! q

)
.

For example, in a 5 × 5 environment with three miners, six
gold pieces and fixed walls (as in our experiment), the number
of Q-table entries per agent for each algorithm is roughly (i)
SAQL: 1.7×1011, (ii) MAQL: 7.4×1011, (iii) DQL 2.4×1013,
(iv) DOO-Q 2.9 × 1010.

Figure 6 depicts the results of the Goldmine experiment
described in Section V in terms of discounted cumulative
reward, and Figure 7 shows the number of steps taken until a
terminal state is reached. Figure 6 shows that DOO-Q learns
an effective policy much faster and achieves higher rewards
than all other algorithms since the beginning, maintaining
better results until the end of the experiment. MAQL started
with a performance comparable to SAQL, however, the high
memory usage made MAQL slower to process and the time
limit was exceeded after only 700 learning episodes. When
compared to the object-oriented algorithms, DQL presented
a very slow learning process until the end of training. As

Fig. 6. Observed discounted cumulative reward in the Goldmine domain.
The horizontal axis is the number of executed episodes using the ε -greedy
policy. The vertical axis represents the metric evaluated every 100 episodes of
exploration. The shaded area represents the 95% confidence interval observed
in 70 repetitions.

Fig. 7. Observed number of steps to complete one episode in the Goldmine
domain. The horizontal axis is the number of executed episodes using the ε -
greedy policy. The vertical axis represents the metric evaluated every 100
episodes of exploration. The shaded area represents the 95% confidence
interval observed in 70 repetitions.

the only difference between DOO-Q and DQL is the object-
oriented representation, the results clearly reflect the advantage
of MOO-MDPs in environments similar to Goldmine. Figure 7
shows that the introduction of multiple agents simultaneously
exploring the environment greatly improved the number of
steps to complete the task. MAS approaches (DOO-Q, MAQL,
and DQL) completed the task with fewer steps in the beginning
of the training, and DOO-Q was never worse than SAQL
during the whole training. DOO-Q learned how to complete
the task with very few steps after 1300 learning episodes and
SAQL surpassed DQL after around 2000 episodes because
DQL presented a very slow learning. MAQL would probably
present better results than SAQL in steps for task completion
but it was unable to scale to this problem size because of
computational limitations. Figure 8 gives better insights on
why MAQL was unable to scale. Although the maximum
number of Q-table entries is higher for DQL, observing new
state-action pairs is much more frequent when |A| is big, hence
MAQL uses a high number of entries since the beginning.
DQL has a less effective exploration, which makes the Q-
table increase in size in a slower pace, but as a consequence,
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the performance also rises very slowly. DOO-Q in its turn
uses less memory than the other algorithms, as predicted by
the theoretical analysis. After 5000 training episodes, DOO-
Q uses roughly 5.0 × 105 entries, while SAQL and DQL use
1.8 × 106 and 3.3 × 106 respectively.

The results in this domain show that, when applicable,
abstraction greatly accelerates the learning speed, as DOO-
Q achieved much better results than DQL. Also, compared to
SAQL, MAS algorithms were able to learn how to improve
performance faster, which indicates that dividing the workload
helps to solve some problems.

Thus, DOO-Q achieved the best performance of the evalu-
ated algorithms by using the least space for the Q-table and
by learning a good policy for a higher discounted cumulative
reward much faster in the Goldmine domain.

B. Gridworld

Let m be the number of agents, w be the number of possible
positions, and q be the number of actions. For a Gridworld
with fixed goals and walls, the following memory requirements
are demanded by each algorithm in the worst case:
• MAQL: A Q-table entry is created for all possible

combinations of joint actions, hence the size of the action
space is |A| = qm. As Agent is an abstracted class, and
only one agent can be at a given position at a time step,
the state space size is |S | = w

(w−1)!
(w−m)!(m−1)! . The memory

requirement for this algorithm is O
(
w

(w−1)!
(w−m)!(m−1)! qm

)
.

• DQL: Each agent only considers its actions leading to
|A| = q. However, agents are not abstracted, leading to
|S | = w!

(w−m)! . Thus, the memory requirement for DQL is

O

(
w!

(w−m)! q
)
.

• DOO-Q: The state space is the same as in MAQL,
however each agent only considers its actions leading to
|A| = q. In this case, the memory requirement for DOO-Q
is O

(
w

(w−1)!
(w−m)!(m−1)! q

)
.

For example, in a 4×3 grid with three agents, the number of
Q-table entries per algorithm is roughly (i) MAQL: 8.25×104,
(ii) DQL 6.6 × 103, (iii) DOO-Q 3.3 × 103.

Figure 9 shows the difference between the achieved dis-
counted cumulative rewards for each algorithm. At first, all

Fig. 8. The average observed number of used Q-table entries during the
experiments in the Goldmine domain.

algorithms improve their policy at roughly the same speed.
However, after approximately 25 episodes M AQL gets stuck
in a suboptimal actuation, while DOO-Q and DQL reach
a better performance faster. Finally, after 800 episodes, all
algorithms have the same performance (the difference is not
statistically significant). MAQL takes longer to improve its
policy after episode 25 because of its large Q-table size, which
renders the exploration less effective and slower to converge.

Figure 10 shows that the actual number of used Q-table
entries is roughly the same for DOO-Q and DQL, while MAQL
has a much higher memory requirement since the beginning
of training. The average number of entries after 800 episodes
was roughly 1600 for DOO-Q and DQL and 3.2 × 104 for
MAQL. As expected, the difference between DOO-Q and DQL
in terms of accumulated reward is not statistically significant.
While the memory requirements for DOO-Q were the same as
DQL in our experiments, in theory, DOO-Q may have lower
memory requirements for different settings of this domain.

Fig. 9. Observed discounted cumulative reward in the Gridworld domain. The
horizontal axis is the number of executed episodes using the ε -greedy policy.
The vertical axis represents the distributed accumulated reward evaluated
every two episodes of exploration. The shaded area represents the 95%
confidence interval observed in 50 repetitions.

Fig. 10. The average observed number of used Q-table entries during the
experiments in the Gridworld domain.

C. Predator-Prey

Let p be the number of preys in the environment, a be the
number of predators, q be the number of possible actions, and
w = (2 depth + 1)2 be the number of possible positions that
the agent can observe (see Figure 5b). The maximum number
of Q-table entries for each algorithm is calculated as follows:
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• SAQL: Here the controller processes all the observation
at the same time, thus, the state space is defined by all
possible positions of the objects in the environment (preys
and predators) that can be observed by each agent: |S | =
(a+w)!
a!w!

(p+w)!
p!w! a. As |A| = qa for this domain, the memory

requirement for SAQL is O
(
(a+w)!
a!w!

(p+w)!
p!w! a qa

)
.

• MAQL: The calculation here is similar, but
each agent processes its own observations, hence
|S | = (a−1+w)!

(a−1)!w!
(p+w)!
p!w! and the memory requirement is

O

(
(a−1+w)!
(a−1)!w!

(p+w)!
p!w! qa

)
.

• DQL: Here, each agent only considers its actions leading
to |A| = q. However, without the object-oriented repre-
sentation the state space is defined as |S | = (w+ 1)p+a−1.
Therefore, the memory requirement is O

(
(w + 1)p+a−1q

)
.

• DOO-Q: For our proposal, the state space is the same as
in MAQL and the action space is the same as in DQL.
Hence, the memory requirement is O

(
(a−1+w)!
(a−1)!w!

(p+w)!
p!w! q

)
.

In a task with depth = 3, p = 2, and a = 3, the number of
Q-table entries per agent is roughly (i) SAQL: 9.3 × 107, (ii)
MAQL: 1.1×108, (iii) DQL 2.7×107, (iv) DOO-Q 7.0×106.

Figure 11 shows the achieved performance for all algo-
rithms. After 200 learning episodes DOO-Q solves the task
with 80 steps on average, while DQL, MAQL, and SAQL
solve the same task in 90, 92, and 85 steps, which means
that DOO-Q learns how to solve the task more efficiently
than the other algorithms. For the rest of the training process,
the performance achieved by DOO-Q is still better than the
other algorithms. While SAQL has a good performance at
the beginning of training, after 200 episodes it improves its
performance very slowly, which makes DQL become faster
after roughly 600 learning episodes. MAQL is slower than
all other algorithms since the start, and all algorithms are
improving their policies only very slowly after 1500 learning
steps. DOO-Q is significantly better than all other algorithms
according to the Wilcoxon signed rank test with 99% of
confidence since 200 learning episodes.

Fig. 11. Observed average number of steps to capture all preys in evaluation
episodes. The horizontal axis is the number of executed episodes using the
ε -greedy policy. The shaded area represents the 99% confidence interval
observed in 250 repetitions. The performance achieved by a random agent
is included as a baseline.

In addition to presenting a better performance, DOO-Q
(together with DQL) uses much less memory than the other
algorithms, as shown in Figure 12. While DOO-Q and DQL

Fig. 12. Observed Q-table size in the Predator-Prey domain. The horizontal
axis is the number of executed episodes using the ε -greedy policy. The vertical
axis represents the average Q-table size at that step.

Fig. 13. Depicting differences between DQL and DOO-Q in Figure 12.

used less than 2.0 × 104 Q-table entries, SAQL and MAQL
used roughly, respectively, 7.6×104 and 2.9×104 entries. The
difference of memory usage between DOO-Q and DQL can
be better visualized in Figure 13. While DQL used on average
1.6 × 104 Q-table entries, DOO-Q used 1.2 × 104.

In summary, our experiments show that DOO-Q achieves
the best performance among the evaluated algorithms. While
in the most favorable cases DOO-Q learned faster than the
other algorithms with fewer memory requirements, in the
most unfavorable case the performance was equivalent to the
best algorithm (DQL) whereas the advantage of the reduced
memory requirements remained steady.

VII. CONCLUSION AND FURTHER WORKS

We here introduced a Multiagent Object-Oriented MDP
(MOO-MDP) formalism and presented a model-free algo-
rithm to solve deterministic distributed MOO-MDPs, called
Distributed Object-Oriented Q-Learning (DOO-Q). We also
proved that DOO-Q learns an optimal policy while abstracting
states and storing only local actions in each local Q-table
(Proposition 2), and experimentally compared our proposal
in three domains with other model-free algorithms. In the
Goldmine domain, in which object-oriented approaches are
expected to perform better, DOO-Q achieved a better perfor-
mance both in learning speed and memory requirements. In a
simple Gridworld domain, in which the domain allowed little
state abstraction, DOO-Q achieved a learning performance
equivalent to Distributed Q-Learning, while demanding less
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memory. We also evaluated DOO-Q in partially observable
domains with non-deterministic reward and state transition
functions, in which the convergence proof does not hold.

Further works will focus on developing algorithms for
MOO-MDPs for which DOO-Q is not applicable, such as
general-sum games and continuous domains (such as Robot
Soccer Simulations [32]). These algorithms can also explore
exploration strategies that cannot be applied with DOO-Q,
such as optimistic exploration [7]. MOO-MDPs could also
be extended to model Partially Observable domains [33],
[34], which would allow developing distributed approaches
where agents reason over observations in a more robust way
than taking the current observation as a state. The use of
abstract policies, which achieved promising results in single-
agent RMDP approaches [6] still needs to be investigated in
MOO-MDPs. For complex and large problems, besides using
generalization and distributed computation, state space approx-
imation can also be explored [35]. Furthermore, the Object-
Oriented representation provides generalization opportunities
that could be exploited for Transfer Learning [36] proposals.
Comparing the Object-Oriented description of tasks could be
a promising way to compute similarity metrics for Transfer
Learning frameworks as the described in [37].
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