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Graph-Theoretic Analysis of Power Systems
Takayuki Ishizaki, Member, Aranya Chakrabortty, Senior Member, Jun-ichi Imura, Member

Abstract—We present an overview of the applications of graph
theory in power system modeling, dynamics, coherency, and
control. We first study synchronization of generator dynamics
using both nonlinear and small-signal representations of classical
structure-preserving models of power systems in light of their
network structure and the weights associated with the nodes
and edges of the network graph. We overview important nec-
essary and sufficient conditions for both phase and frequency
synchronization. We highlight the role of graph structure in
coherency properties, and introduce the idea of generator and
bus aggregation whereby dynamic equivalent models of large
power grids can be developed while retaining the concept of a
‘bus’ in the network graph of the equivalent model. We also
discuss several new results on graph sparsification for designing
distributed controllers for power flow oscillation damping.

Index Terms—Power systems, graph theory, topology, stability,
modeling, structured control

I. INTRODUCTION

Over the past decade power systems in different parts of
the world have encountered a series of cascading failures and
blackouts, starting from the major blackout in the Northeastern
USA in 2003 to Hurricane Katrina in New Orleans in 2005,
the European blackouts of 2006, the southwest blackout in
San Diego and Tijuana in 2011, the recent natural disasters in
Texas and Puerto Rico, and many other similar calamities and
power outages in other corners of the globe. These blackouts
have forced power system researchers to look beyond the
traditional approach of analyzing power system functionalities
in steady-state, and instead pay serious attention to their
dynamic characteristics, and that too in a global and structural
sense [1]. At the fundamental level, a power system is an
interconnected network of electrical generators, loads, and
their associated control elements. Each of these components
may be thought of as nodes of a graph, while the transmission
lines connecting them physically can be regarded as the
edges of the graph. The nodes are modeled by physical laws
that typically lead to a set of differential equations. These
differential equations are coupled to each other by so called
power balance across the tie-lines or the edges. One primary
question that has been of interest to power engineers over
many years is how does the graph-theoretic properties of
these types of electrical networks impact the stability, dynamic
performance, controllability, observability, identifiability, and
other system-theoretic properties of the grid model [2]. These
questions have been partly addressed in a handful of papers
in the literature. For example, notions of structure-preserving
models were laid out in the early 1980s in [3], followed by
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graph-theoretic analysis of transient stability using Lyapunov
stability theory [4], [5]. But a systematic understanding of how
graph theory can serve as a tool for deeper understanding of
power system dynamics, stability, and control, is still a large
open question.

These topics have emerged with renewed interest in recent
years, mainly owing to the expansion of transmission network
in the United States [6], Asia [7], and Europe [8], and also
due to intrusion of renewable energy sources [9]. In [10],
for example, it was shown that if injected beyond a certain
upper limit, and if not controlled accurately, wind power can
easily cause transient instability in a conventional power grid.
Both the amount of wind power and the precise location of
injection matter. From a graph-theoretic perspective this means
that synchronization of a homogeneous network of nonlinear
oscillators can easily be perturbed and destabilized if any
heterogeneous dynamics is injected into this network at the
wrong node, and in the wrong amount. Similar structural
implications have also been made for system identification
of reduced-order models [11], optimal power flow [12], [13],
voltage stability [14], and bifurcations [15]. Power engineers
are currently seeking various ways to gain insight about the
structural properties of their systems, which, in turn, can help
in better synchronization and stability [16], observability [17],
sensor placement [18], and control [19], [20].

Motivated by this gap, in this tutorial we present several
existing and new results on the applications of graph theory in
power systems. Our results cover modeling, stability analysis,
and control, highlighting the implications of the structure and
the parameters associated with the underlying network graph.
To keep the article compact, we mostly focus on angle stability
and frequency stability, where graph theory plays a significant
role. Discussion on voltage stability is skipped for brevity. The
interested reader is referred to [21], [22] for a review of voltage
stability, and its connection with network cutsets. We start with
a brief primer on hypothetical mass-spring-damper models,
which represent swing dynamics or Newton’s second law of
motion in the models of synchronous generators. We show
how the state-space representations of these models are explicit
functions of the network topology. Thereafter, we extend the
discussion to more realistic grid models consisting of both
generator and non-generator buses, and derive the notion of
Kron reduction by which the differential-algebraic model of
the grid can be represented as an ordinary differential equation
model with certain compromises in the underlying network
structure. We discuss the impacts of this reduction on the
existence of power system equilibrium and its stability. We
also derive small-signal linearization of this nonlinear model,
and show that the synchronization properties of the generator
states are strongly dependent on the symmetry properties of
the underlying graph. We use this observation to define the
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concept of generator and bus aggregation, the latter being
a new result that has not been studied so far in the power
system literature. We illustrate the idea of aggregation for
various symmetries and the asymmetries of the network graph
using simulations. Finally, we show how structured distributed
controllers can be designed for power oscillation damping in
grid models using ideas from graph sparsification.

Notation: We denote the set of real values by R, the set
of nonnegative real values by R≥0, the unit circle by S, the
n-dimensional identity matrix by In, the ith column of In by
ei, the diagonal or block diagonal matrix whose ith diagonal
entry is di by diag(di)i∈{1,...,n}, the n-dimensional all-ones
vector by 1n, the image of a matrix A by imA, the Hadamard
product (i.e., the element-wise product) of vectors v and u by
v ◦ u, the Kronecker product of matrices A and B by A⊗B,
the cardinality of a set S by |S|. For a matrix A ∈ Rn×m,

diag(A) := diag(eTi A)i∈{1,...,n}∈ Rn×nm,

where eTi A corresponds to the ith row of A. For a vector
θ ∈ Sn, the trigonometric functions sin θ and cos θ are defined
in the element-wise sense. Every complex-valued matrix or
vector is denoted by a bold face symbol like V . The imaginary
unit
√
−1 is denoted by i. A symmetric matrix A = AT is

said to be positive definite (respectively, positive semidefinite)
if all eigenvalues of A are positive (nonnegative). A symmetric
matrix A = AT ∈ Rn×n is said to be a weighted graph
Laplacian if its off-diagonal elements are all nonpositive and
A1n = 0.

II. MASS-SPRINGER DAMPER MODELS OF POWER
SYSTEMS

The first step of understanding power system dynamics is to
understand the dynamics of the electro-mechanical behavior of
synchronous machines, which is really nothing but a study of
how a group of nonlinear pendula would oscillate with respect
to each other when they are connected over a given connection
topology. In other words, how a set of mass-spring-damper
systems, each of which has its own individual local frequencies
of oscillations, would start oscillating against each other, and
define a global oscillatory behavior when connected together
in some combinations. The actual model of a synchronous
machine is, of course, much more complex [23], but the mass-
spring-damper model is the simplest example for describing
its electro-mechanical dynamics. The mass here is analogous
to a synchronous generator with a non-zero inertia. The
spring is analogous to a transmission line that connects one
generator to another. The damper is analogous to the internal
damping mechanisms of a synchronous generator that ensures
asymptotic stability of its state responses after a disturbance.
The only difference, of course, is that unlike a mass-spring-
damper system where the masses exhibit mechanical motion,
the motion of a synchronous generator pertains to electrical
motion, not mechanical. A comparison between mass-springer-
systems and power systems is shown in Fig. 1 using a 2-mass
and a 2-generator example.

The starting point in deriving these mass-spring-damper
models is the so-called swing equation of a synchronous
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(a) Mass spring damper

(b) Two interconnected synchronous machines

Fig. 1. Mass spring damper models of synchronous machines

(a) 3 generators in radial connection

(b) 3 generators in loop connection

(c) System with 10 generators

Fig. 2. Examples of mass-spring-damper representations of power systems

generator. Consider the total number of generators to be n that
are connected to each other in some given topology. Examples
of systems with n = 3, connected in both radial and loop
topology, and n = 10 following this kind of an idealistic model
are shown in Fig. 2. The rotor of the generator is rotated by
a prime mover, which in this case is a steam turbine. For
i = 1, . . . , n, Newton’s second law of motion (mass times
acceleration equals net force) in angular coordinates results in
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the swing equations [23]

δ̇i(t) = ω̃i(t)− ωs
Mi

˙̃ωi(t) = Pmi(t)− Pgi(t)
(1)

where
• the state variable δi is the phase angle of the rotor of the
ith generator,

• the state variable ω̃i is the velocity of the rotor of the
ith generator with respect to a fixed reference frame.
Following the theory of electric machines, the reference
for measuring δi, for example, can be taken to be the
a-phase axis in the three-phase representation of the
classical model of the synchronous generator circuit.

• ωs is the synchronous frequency whose value is 120π =
377 radian/sec for a 60-Hz system,

• Pgi is the active power produced by the ith generator,
• Mi is the ith inertia constant, and
• Pmi is the mechanical power input from the ith turbine.

All quantities are normalized following the per unit repre-
sentation of power system models [23]. If the generator has
a non-zero damping factor di > 0, then the model can be
written as

δ̇i(t) = ω̃i(t)− ωs
Mi

˙̃ωi(t) = Pmi(t)− di
(
ω̃i(t)− ωs

)
− Pgi(t),

(2)

which is referred to as the “swing equations” of the ith

generator. The turbine power Pmi can either be set to a
constant value, or used as a control input to regulate the
generator dynamics, for example in Automatic Generation
Control (AGC) [23]. Denoting ωi(t) = ω̃i(t) − ωs, a more
compact form of the swing equation can be written as

δ̇i(t) = ωi(t)
Mi ω̇i(t) = Pmi(t)− di ωi(t)− Pgi(t).

(3)

To generate a state-space model for the system out of the
individual generator model (3), we next apply Ohm’s law and
Kirchoff’s law to relate the active power Pgi to the rest of the
grid. For simplicity we drop the time argument t. By definition,
Pgi can be written as

Pgi = Re(EiI
∗
i ) (4)

where Ii ∈ C is the total current in the complex phasor
form produced by the ith generator, ∗ indicates the complex
conjugate, and Ei ∈ C is the voltage phasor of generator i,
denoted by

Ei = Ei(cos δi + i sin δi).

The magnitude Ei is considered to be a constant following the
assumption about classical models. Let the set of generators
to which the ith generator is connected be denoted as Ni. We
then rewrite (4) as

Pgi =
∑
j∈Ni

Re(EiI
∗
ij), (5)

where Iij ∈ C is the current phasor flowing from Generator i
to Generator j. After a few calculations, this simply reduces
to

Pgi =
∑
j∈Ni

kij sin(δi − δj), (6)

where kij := EiEj/χij is a scalar weight given by χij being
the reactance (per unit) of the transmission line connecting
Generators i and j, neglecting the resistance of the line. The
simplest state-space form of the swing equations of the ith

generator can then be written as

δ̇i = ωi

Mi ω̇i = Pmi − di ωi −
∑
j∈Ni

kij sin(δi − δj) (7)

for i = 1, . . . , n. Note that the right-hand side of (7) captures
the topology of the network, i.e., which generator is connected
to which other generators. Depending on the topology, i.e.,
both the combinatorial structure of Ni, and the weights kij ,
the corresponding dynamics of different grid models will be
different. Also note that for deriving (7), we assumed the
power to be flowing from Generator i to Generator j. This
means that the ith synchronous machine in this case is acting
like a generator while the jth machine is acting like a motor.
This assumption is not necessary, and can be easily foregone
by defining the following sign convention.
• If power is flowing out of the ith machine and into the
jth machine, then this power will have a negative sign
in the right-hand side of the swing equation of the ith

machine, and positive sign in that of the jth machine. In
this case, the ith machine will be in ‘generation’ mode
and the jth machine will be in ‘motor’ mode in terms of
this power flow.

• Similarly, if power is flowing into the ith machine and out
of the jth machine, then this power will have a negative
sign in the right-hand side of the swing equation of the
jth machine and positive sign in that of the ith machine.
In this case, the jth machine will be in ‘generation’ mode
and the ith machine will be in ‘motor’ mode in terms of
this power flow.

This sign convention easily leads to the following observa-
tions:
O1: The effective sign of δi on the right-hand side of the ith

swing equation is always negative. The word ‘effective’
here accommodates for the fact that sin is an odd func-
tion.

O2: Swing equations are direction independent.
O3: Only the neighbors of the ith generator appear in the

right-hand side of its swing equation.
We cite an example to make these observations clearer.

Consider a system with five generators, as shown in Fig. 3.
Consider two different sets of directions for the power flows,
as shown in Figs. 3(a) and 3(b). Following the sign convention,
the swing equation for Generator 1 in Fig. 3(a), ignoring
damping, can be written as

M1δ̈1 = Pm1 − k12 sin(δ1 − δ2)
−k13 sin(δ1 − δ3)− k14 sin(δ1 − δ4).

(8a)

Following the same sign convention, the swing equation for
gen 1 in Fig. 3(b) can be written as

M1δ̈1 = Pm1 − k21 sin(δ2 − δ1)
−k31 sin(δ3 − δ1)− k14 sin(δ1 − δ4).

(8b)
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(a) System with five generators, power flow set 1

(b) System with five generators, power flow set 2

Fig. 3. 5-machine power system with different power flow directions

However, since kij = kji, and sin is an odd function, we
see that (8b) is exactly the same as (8a). Similarly, the swing
equation for Generator 2 in Fig. 3(a) can be written as

M2δ̈2 = Pm2 + k12 sin(δ1 − δ2) (9a)

while that for Generator 2 in Fig. 3(b) can be written as

M2δ̈2 = Pm2 − k21 sin(δ2 − δ1). (9b)

Again, (9a) and (9b) are identical. This justifies Observa-
tion O2, indicating that swing equations are independent of
the directions of power flow. Observation O1 is also quite
clear from the right-hand side of (8). The equation (8), for
example, is the swing equation for Generator 1, and the
effective signs of the angle of Generator 1, i.e., δ1, in every
term on the right-hand side of this equation are negative.
Similarly, (9) is the swing equation for Generator 2, and the
effective signs of the angle of Generator 2, i.e., δ2, in every
term on the right-hand side of this equation are also negative.
All of these observations will become useful when we derive
the small-signal model of (7) shortly. As mentioned before,
some of the synchronous machines in this system are serving
as generators or power-producers while some are serving as
motors or power-consumers. These motors model the loads in
the system. The total power thus remains conserved within
the system, shuffling from one machine to another. This
motion manifests itself in the form of second-order nonlinear
oscillations in the phase and frequency of the generators.

For example, for the 10-generator model in Fig. 2(c), we
assume χ1j = 0.1 pu for all j = 2, 3, 4, 5, χ6k = 0.2 pu for
all k = 7, 8, 9, 10, and χ16 = 5. This results in a two-area
system where Oscillators 1 through 5 belong to one area with
small transmission line reactances, and Oscillators 6 through
10 belong to another area, also with small line reactances,
while the reactance between the central nodes, i.e., Nodes
1 and 6, is significantly larger indicating that the two areas

are physically distant from each other. Simulating this model,
we get the solutions of the frequencies in the two areas as
in Figs. 4(a) and 4(b). It is clear that the local groups of
generators in each area synchronize with each other over time.
The average motion of the frequencies in Area 1 is compared
with that in Area 2 in Fig. 4(c). This figure shows that the
two areas by themselves are oscillating against each other. A
similar behavior is shown for the average of the phase angles,
as shown in Fig. 4(d). A somewhat bimodal behavior is visible
in the average frequency oscillations. This behavior actually
arises from the fact that the reactance between Generators 1
and 6 is larger than the reactances between the local generators
inside each area. This is a well-known phenomena in power
systems, known as coherency which arises predominantly
because of the underlying graph-theoretic properties of the
network. We will discuss this property in more details in
Section V. Fig. 5 shows the coherency behavior for a 48-
machine 140-bus power system model, also popularly known
as the Northeastern Power Coordinating Council (NPCC)
model [24]. This model very closely represents the power
grid of the Northeastern United States. It is divided into nine
coherent areas as shown in Fig. 5(a). Fig. 5(b) shows the
frequencies of all generators in Area 1 and Area 6, while Fig.
5(c) shows those for all generators in Area 4 and Area 8.
The out-of-phase behavior is noticeable in both figures. Fig.
5(d) shows the average motions of the frequencies in Areas 1
and 6, while Fig. 5(e) shows those for areas 4 and 8. Again,
from these figures one can see that the respective areas are
oscillating against each other.

III. NONLINEAR ELECTRICAL MODELS OF POWER
SYSTEMS

A. Differential-Algebraic Equation Model

In practice, generators in a power grid are not always
directly connected to each other as in the mass-spring-damper
model of Section III. They are instead connected through ad-
ditional electrical points or buses, where no dynamic element
may be present and only algebraic power balance holds. An
example of this architecture is shown in Fig. 6 for a power
system with four generators and six buses. As a result of
this structure, the swing equations can no longer be written
directly as ordinary differential equations, but rather have to
be expressed in the form of differential-algebraic equations
(DAEs).

Fortunately, the DAE can be reduced to an equivalent dif-
ferential equation albeit at the cost of changing the equivalent
topology of the network. In this section we will explain the
construction of the DAE model from physical principles using
observations from this simple example. It will be found that
a weighted graph Laplacian structure naturally arises in the
algebraic equation as reflecting Kirchhoff’s current law. We
assume the transmission lines to be lossless. We also assume
that the model does not have any extraneous load, which
in this case means that some of the synchronous machines
are operating as generators while the rest are operating as
motors or loads. If the model contains additional loads such
as constant power/impedance/current loads then the rows of
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Fig. 4. Angle and frequency responses of 10-machine nonlinear swing model

the network admittance matrix will no longer sum to zero
[23].

Let G and G respectively denote the label sets for generator
and non-generator buses. Let the numbers of generator and
non-generator buses be denoted by n := |G| and n := |G|,
respectively. Furthermore, let E denotes the edge set of the
network. This set is undirected, i.e., if (i, j) ∈ E , then (j, i) ∈
E , and vice versa. For the example in Fig. 6, we see that
G = {1, 2, 3, 4}, G = {5, 6}, n = 4, n = 2, and

E =

{
(1, 5),
(5, 1),

(2, 5),
(5, 2),

(3, 6),
(6, 3),

(4, 6),
(6, 4),

(5, 6)
(6, 5)

}
For each i ∈ G ∪ G, let V i ∈ C denote the complex voltage
phasor of the ith bus. For i ∈ G, let Ei ∈ C denote the
complex voltage phasor of the ith generator (the magnitude
of which is assumed to be constant following the classical
model assumption made in Section III), and let Ii ∈ C denote
the complex current phasor flowing from the internal circuit of
the ith generator to the ith generator bus. Then the generator
current and generator bus voltage phasors are related as

Ii =
1

iχi
(Ei − V i) , i ∈ G (10a)

where χi > 0 denotes the internal reactance of the ith

generator. Similarly, the current phasor Iij ∈ C flowing from
the ith bus to the jth bus can be written as

Iij =
1

iχij
(V i − V j) , (i, j) ∈ E (10b)

where χij = χji > 0 denotes the reactance between the ith

and jth buses. See the arrows in Fig. 6 for the depiction of
current flows.

Let Ni denote the label set of the neighboring buses of the
ith bus, i.e., Ni := {j : (i, j) ∈ E}. From Kirchhoff’s current
law it follows that

Ii +
∑
j∈Ni

Iji = 0, i ∈ G (11a)

for the ith generator bus, and∑
j∈Ni

Iji = 0, i ∈ G (11b)

for the ith non-generator bus. For example, at Bus 1 in Fig. 6,
we have I1 + I51 = 0, where I51 = −I15, and at Bus 5, we
have I15 + I25 + I65 = 0, where I65 = −I56.



IEEE TRANSACTION ON XXX, VOL. X, NO. X, ... 20XX 6

13
1415

16
17
2019

18

33

31

21

22

32
37

42 47

44

12
11

23 26

30 28
29

7
6

4
3 5

8

1 2

9

10

24 25

27

3435

36

38

39

40

41

43

45
46

48

No. 4

No. 1

No. 2

No. 3

No. 5

No. 6

No. 7
No. 8

No. 9

(a) The NPCC power system with 9 coherent clusters

(b) Frequencies of generators in Area 1 and Area 6

0 10 20 30 40 50 60

Time (s)

-1.5

-1

-0.5

0

0.5

1

F
re

qu
en

cy
 d

ev
ia

tio
n 

(r
ad

/s
)

10-3

Gens in Area 8

Gens in Area 4

(c) Frequencies of generators in Area 8 and Area 4

0 10 20 30 40 50 60

Time (s)

-0.03

-0.02

-0.01

0

0.01

0.02

F
re

qu
en

cy
 d

ev
ia

tio
n 

(r
ad

/s
)

Average frequency of Area 1
Average frequency of Area 6

(d) Average frequencies of Areas 1 and 6

0 10 20 30 40 50 60

Time (s)

-6

-4

-2

0

2

4

F
re

qu
en

cy
 d

ev
ia

tio
n 

(r
ad

/s
)

10-3

Average frequency ofArea 8
Average frequency of Area 4

(e) Average angles of Areas 4 and 8

Fig. 5. Small-signal frequency responses of 9-area NPCC power system



IEEE TRANSACTION ON XXX, VOL. X, NO. X, ... 20XX 7

Area 1 Area 2

Bus 1

Bus 2

Bus 3

Bus 4Bus 5 Bus 6

Fig. 6. Example of a power network with four generators and two non-generator buses. The generator buses, i.e., Buses 1 to 4, are denoted by the black
bars, and non-generator buses, i.e., Buses 5 and 6, are denoted by the blue bars. The intention behind the area partitioning will be made clear in Section V.

Area 1 Area 2

Fig. 7. The Kron-reduced model of the power network example in Fig. 6. All
non-generator buses are eliminated to derive an equivalent topology where all
generators are connected directly to each other.

Next, we represent the equalities (10) and (11) in a compact
matrix form. To this end, we define the following stacked
vectors:

EG := (Ei)i∈G , V G := (V i)i∈G , V G := (V i)i∈G .

Then, substituting Ii and Iij in (10) into (11), we have the
complex-valued algebraic equation[

LD + L11 L12

LT
12 L22

] [
V G
V G

]
=

[
LDEG

0

]
(12)

where LD := diag(1/χi)i∈G and

L :=

[
L11 L12

LT
12 L22

]
. (13)

Note that the reciprocals of the imaginary units in (10) are
cancelled out by division. Furthermore, L is a weighted graph
Laplacian associated with the bus network, the (i, j)-element
of which is given as

Lij =


∑
k∈Ni

1/χik, i = j
−1/χij , j ∈ Ni

0, otherwise.

The weighted graph Laplacian for network in Fig. 6 is shown
in (14). As seen from this example, L11 is a positive diagonal

matrix when every generator bus is indirectly connected to
other generator buses.

We next write the complex voltage phasors Ei and V i in
the polar form as

Ei := Ei(cos δi + i sin δi), V i := Vi(cos θi + i sin θi),

where Ei ∈ R≥0, Vi ∈ R≥0, δi ∈ S, and θi ∈ S. Then,
following (7) the dynamics of the ith generator can be written
as

Miδ̈i + diδ̇i = Pmi − EiVi

χi
sin(δi − θi), i ∈ G. (15)

Defining stacked variables

E := (Ei)i∈G ,

δ := (δi)i∈G ,

VG := (Vi)i∈G ,

θG := (θi)i∈G ,

VG := (Vi)i∈G ,

θG := (θi)i∈G ,

and the stacked constants

Pm := (Pmi)i∈G , M := diag(Mi)i∈G , D := diag(di)i∈G ,

we obtain the system of the differential equations

Mδ̈ +Dδ̇ = Pm − LDE ◦ VG ◦ sin (δ − θG), (16a)

and the real-valued algebraic equations[
LD + L11 L12

LT
12 L22

][
VG ◦ cos θG
VG ◦ cos θG

]
=

[
LDE ◦ cos δ

0

]
,[

LD + L11 L12

LT
12 L22

][
VG ◦ sin θG
VG ◦ sin θG

]
=

[
LDE ◦ sin δ

0

]
.

(16b)

The two equations in (16b) correspond to the real and imag-
inary parts of (12). In fact, (16) represents the DAE form of
the swing equations. In the next subsection we derive how this
DAE model can be converted into an equivalent differential
equation model by a process referred to as the Kron reduction
[25].

B. Kron Reduction

It can be seen from (16b) that the voltage magnitude and
angle (VG , θG) at the non-generator buses can be represented
as the function of (VG , θG) at the generator buses as

VG ◦ cos θG = −L−1
22 L

T
12 (VG ◦ cos θG) ,

VG ◦ sin θG = −L−1
22 L

T
12 (VG ◦ sin θG) .

(17a)
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L =


1/χ15 0 0 0 −1/χ15 0

0 1/χ25 0 0 −1/χ25 0
0 0 1/χ36 0 0 −1/χ36

0 0 0 1/χ46 0 −1/χ46

−1/χ15 −1/χ25 0 0 1/χ15 + 1/χ25 + 1/χ56 −1/χ56

0 0 −1/χ36 −1/χ46 −1/χ56 1/χ36 + 1/χ46 + 1/χ56

 (14)

Fig. 8. Example of a power network with six generators and two non-generator buses. Generator 5 is directly connected to Generator 1, and Generator 6 is
directly connected to Generator 4.

Fig. 9. The Kron-reduced model of the power network example in Fig. 8.
All non-generator buses are eliminated by Kron reduction. The connection
topology for generator pairs (1,5) and (4,6) remain unchanged.

Note that L22 is nonsingular because every principal submatrix
of a weighted graph Laplacian, which is a singular M-matrix,
is a nonsingular M-matrix (see Fact 4.11.12 (vi) in [26]).

In a similar way, (VG , θG) can be represented as the function
of the generator angle δ as

VG ◦ cos θG = X (E ◦ cos δ) ,
VG ◦ sin θG = X (E ◦ sin δ) (17b)

where X is a square matrix defined by

X := (LD + L11 − L12L
−1
22 L

T
12)−1LD. (18)

Using the trigonometric identity

sin (δ − θG) = sin δ ◦ cos θG − cos δ ◦ sin θG

together with (17b), the last term in (16a) can be written as

LDE ◦ VG ◦ sin (δ − θG)
= E ◦ sin δ ◦

(
Γ (E ◦ cos δ)

)
−E ◦ cos δ ◦

(
Γ (E ◦ sin δ)

) (19)

where Γ is the positive definite matrix defined by

Γ := LD(LD + L11 − L12L
−1
22 L

T
12)−1LD. (20)

Then, applying the identity

sin δi cos δj − cos δi sin δj = sin(δi − δj)

to each element of (19), the Kron-reduced model of (16) is
obtained as

Miδ̈i + diδ̇i = Pmi −
n∑
j=1

EiEj

γij
sin(δi − δj), i ∈ G (21)

where γij , which is equal to γji, denotes the inverse of the
(i, j)-element of Γ . This equation is similar to the swing
equation (7), but there is an important distinction between
the two; Both X in (18) and Γ in (20) are positive dense
matrices, i.e., every element of X and Γ are positive. This
will always be true if the weighted graph Laplacian L defined
in (13) is irreducible, i.e., if the power network is connected.
This is proven as follows. From the formula of the inverse of
partitioned matrices (see Fact 2.17.3 in [26]), we see that

X =
[
In 0

] [ LD + L11 L12

LT
12 L22

]−1 [
LD

0

]
, Γ = LDX.

Note that the partitioned matrix to be inverted is irreducible
and positive definite. As shown in Theorem 5.12 of [27],
every element of the inverse of an irreducible nonsingular
M-matrix is positive. Thus, both X and Γ are shown to
be positive dense matrices, because LD is a diagonal matrix
having positive diagonal elements. This fact implies that in the
Kron-reduced model (21) every generator will be connected
to every other generator, and thereby the original network
structure will typically be lost.

For example, the original network structure in Fig. 6 is
sparse, but its Kron-reduced model as shown in Fig. 7 becomes
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dense. The two models (16) and (21) are, however, equivalent
to each other in the sense that the dynamical behavior of
the generator states δ(t) and ω(t) in both will be identical.
From (16) and (21), it is also straightforward to derive that
if the original network did have some generator pairs that
are directly connected to each other without any intermediate
bus junctions, then the topology between these pairs will
remain intact in the Kron-reduced model. In other words, these
generators will not be connected to every other generator, but
only to the ones that they were directly connected to. This
scenario is shown in Figs. 8 and 9.

C. Frequency Synchronized Solution and Its Stability

We next review several results on frequency synchronization
and phase cohesiveness of the Kron-reduced model (21),
which have been reported in [16], [28], [29] to analyze a
synchronization property of coupled oscillators evolving over
a network. The review presented in the rest of this section can
be understood as the equilibrium (steardy-state) analysis of the
DAE model (16), giving a foundation for linearization analysis
in Section IV and transient-state analysis in Section V.

Let δ? be an equilibrium of (21), and (V ?G , θ
?
G) and (V ?G , θ

?
G)

be the corresponding equilibria of the bus voltage variables.
The latter are uniquely determined such that

V ?G ◦ cos θ
?
G = −L−1

22 L
T
12

(
V ?G ◦ cos θ?G

)
,

V ?G ◦ sin θ
?
G = −L−1

22 L
T
12 (VG ◦ sin θG) ,

(22a)

which follows from (17a), and

V ?G ◦ cos θ?G = X (E ◦ cos δ?) ,
V ?G ◦ sin θ?G = X (E ◦ sin δ?) , (22b)

which follows from (17b). A comprehensive survey on syn-
chronization of coupled oscillators is given in [16]. Syn-
chronization, in fact, is an extremely important topic for
power system stability analysis, especially when the grid is
subjected to large-signal disturbances from various causes.
This is commonly referred to as transient stability in the power
system literature [23]. To understand the impact of network
topology on synchronization, we will show that the Jacobian
of the nonlinear vector field of the Kron-reduced model (21)
is related to the weighted graph Laplacian of its underlying
complete graph.

Following the terminology in [16], we say that a solution
δ : R≥0 → Sn to the differential equation in (21) achieves
frequency synchronization if the frequency δ̇(t) converges to
ωsync1n for a constant frequency ωsync as t → ∞. If a
frequency synchronized solution exists, the synchronization
frequency is given as

ωsync =

∑n
i=1 Pmi∑n
i=1 di

.

This can be verified by substituting δ̈i = 0 and δ̇i = ωsync in
(21), and by summing the resulting equalities. In this case, a
frequency synchronized solution to (21) is written as

δi(t) = δ?i + ωsynct, i ∈ G (23)

for some constant δ?i ∈ S, corresponding to the ith element
of δ? in (22b). This means that every generator angle rotates

with the identical constant frequency. Transforming the system
coordinate to a rotating frame with the frequency ωsync and
replacing Pmi with Pmi − ωsync, we can always assume that
ωsync = 0, or equivalently Pm ∈ im1⊥n with ⊥ indicating the
orthogonal subspace, i.e.,

Pm1 + · · ·+ Pmn = 0,

without loss of generality. This conclusion is consistent with
the observation made in Section III where we implied how
some of the synchronous machines in the mass-spring-damper
model must serve as generators while the others serve as
motors so that the total power in the system is conserved.

Following [16], we say that the frequency synchronized so-
lution (23) is a phase cohesive solution to (21) if |δ?i −δ?j | < π

2
for every pair (i, j) ∈ G × G. For a compact representation,
we represent the phase cohesiveness as δ? ∈ ∆(π2 ), where

∆(π2 ) :=
{
δ ∈ Sn : |δi − δj | < π

2 , ∀(i, j) ∈ G × G
}

represents the domain of phase cohesive solutions.
The Kron-reduced model (21) can be viewed as an analog

of a coupled first-order oscillator model of the form

δ̇i = Pmi −
n∑
j=1

EiEj

γij
sin(δi − δj), i ∈ G, (24)

which corresponds to a generalized version of the Kuramoto
model [30] where the oscillators are non-uniformly coupled.
As stated in [28], [29], the synchronization properties of (21)
and (24) are shown to be equivalent in a reasonable sense.
Therefore, we can analyze the frequency synchronization
properties of the Kron-reduced model (21) using the first-
order oscillator model (24) instead. Loosely speaking, for a
constant Pm ∈ im 1⊥n , there exists a locally exponentially
stable equilibrium δ? ∈ ∆(π2 ) of (21) if and only if there exists
a locally exponentially stable equilibrium δ? ∈ ∆(π2 ) of (24).
In particular, if there exists an equilibrium δ? then it must
necessarily be located on an equilibrium manifold stemming
from the rotational symmetry of the coupling terms. The
equilibrium manifold is defined as the following equivalence
class [16]:

[δ?] :=
{(

rots(δ
?
1), . . . , rots(δ

?
n)
)
∈ Sn : s ∈ [0, 2π]

}
(25)

where rots(δ) ∈ S denotes the rotation of δ counter-clockwise
by the angle s. This is clearly seen from the fact that, for some
δ? such that

Ψ(δ?) = 0 (26)

where Ψ : Sn → Rn denotes the function composed of the
right-hand sides of (24) for i ∈ G, i.e., the ith component of
Ψ(δ) is given by

Ψi(δ) = Pmi −
n∑
j=1

EiEj

γij
sin(δi − δj), i ∈ G, (27)

it follows for any s ∈ [0, 2π] that

Ψ
(
rots(δ

?
1), . . . , rots(δ

?
n)
)

= 0.
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Next, we discuss the stability of the equilibrium manifold
[δ?]. For Ψ in (27), the Jacobian ∂Ψ

∂δ : Sn → Rn×n is given
by

∂Ψj

∂δi
(δ) =

{
−
∑n
k=1,k 6=i

EiEk

γik
cos(δi − δk), i = j

EiEj

γij
cos(δi − δj), i 6= j.

(28)

where ∂Ψj

∂δi
denotes the (i, j)-element of ∂Ψ

∂δ . Because −∂Ψ
∂δ (δ)

is a weighted graph Laplacian for all δ ∈ ∆(π2 ), the Jacobian
evaluated at any equilibrium δ? ∈ ∆(π2 ) is negative semidefi-
nite, and its kernel is im1n. Therefore, under a given constant
Pm ∈ im 1⊥n , if an equilibrium δ? ∈ ∆(π2 ) exists for (24), or
equivalently, if it exists for (21), then the equilibrium manifold
[δ?] in (25) is locally exponentially stable. Furthermore, this
equilibrium manifold can be uniquely determined in ∆(π2 )
(see Lemma 2 in [29] for a proof).

D. Existence of Phase Cohesive Solutions

As seen above, the equilibrium manifold [δ?] of phase
cohesive solutions is unique in ∆(π2 ), and it is locally ex-
ponentially stable if a compatible equilibrium δ? ∈ ∆(π2 )
exists. A natural next step, therefore, is to overview results
on the existence of equilibria, i.e., the solvability of the
nonlinear equation in (26). Generally, both frequency and
phase synchronism are related to the graph-theoretic properties
of the underlying network such as coupling strength and
network homogeneity. In particular, as explained in [16], a
weakly coupled and strongly heterogeneous network does not
display any coherent behavior, whereas a strongly coupled and
sufficiently homogeneous network displays coherent behavior.

The simplest case is when Pm = 0. In fact, as shown in
Theorem 5.1 of [16], there exists a phase synchronized solution
to (21) or (24), i.e.,

δ?i = δ?j , ∀(i, j) ∈ G × G, (29)

if and only if Pm = 0. This result does not depend on
the magnitude and homogeneity of the coupling strength
EiEj/γij . However, in a practical power system, generators
(motors) will always be driven by (driving) a mechanical shaft,
thereby absorbing (producing) mechanical power. Hence, this
scenario, although of theoretical interest, does not hold in
practice. A phase synchronized solution can thus be viewed
as an extreme case of phase cohesive solutions.

For a general value of Pm ∈ im 1⊥n , it is not simple to
characterize the existence of an equilibrium manifold. One
sufficient condition is

λ2(Γ0) >
1

2

√√√√ n∑
i,j=1

(Pmi − Pmj)2 (30)

where λ2(Γ0) denotes the second smallest eigenvalue of the
weighted graph Laplacian Γ0 = −∂Ψ

∂δ (0) for the Jacobian
given by ∂Ψ

∂δ in (28) (see Theorem 7.1 in [16] for a proof). The
magnitude of λ2(Γ0), called algebraic connectivity in graph
theory [31], represents how well-connected the oscillators are.
It is also relevant to the convergence rate to the equilibrium
manifold [32], [33]. The sufficient condition in (30) basically
means that a phase cohesive solution exists, i.e., all frequencies

synchronize asymptotically, if the coupling strength among
oscillators is large enough compared to the degree of the
heterogeneity of the input power Pm. Note that Γ0 is a dense
matrix.

Another condition of practical interest is

ψ := Γ †0Pm, |ψi − ψj | < 1, ∀(i, j) ∈ G × G (31)

where ψi denotes the ith element of ψ and Γ †0 denotes the
Moore-Penrose pseudo-inverse of Γ0. Even though this may
not work for an arbitrary network, it can provide a sharp
condition for phase cohesiveness under particular settings; see
[29] for a collection of examples. One particular example
shown in Theorem 2 of [29] is that, for all Pm ∈ Γ0Ω ⊂ im1⊥n
where

Ω := {(ωi)i∈G : ωi = Ω1 or ωi = Ω2, ∀i ∈ G}

with some constants Ω1 and Ω2, there exists the equilibrium
manifold [δ?] ⊂ ∆(π2 ) for (21) or (24) if and only if (31)
holds. Furthermore, it follows for ω ∈ Ω that

|δ?i − δ?j | =
{

0, ωi = ωj
arcsin |Ω2 − Ω1|, ωi 6= ωj .

This result shows that the partial synchronization of the
power network model (16) can be achieved if Pm is given
in accordance with a bipolar distribution.

E. Section Summary

In Section III-A, we first derived an electrical model of a
power system in the form of a set of nonlinear differential-
algebraic equations (DAEs). We showed that the weighted
graph Laplacian of the underlying network naturally arises in
the algebraic equations via Kirchhoff’s current law. Thereafter,
in Section III-B, we derived an equivalent differential equation
model for this DAE using Kron reduction. We found that all
generators in the Kron-reduced model are directly connected
to each other through equivalent impedances if the original
network is connected. Furthermore, based on the fact that the
Kron-reduced model can be viewed as an analog to a first-
order coupled oscillator model, we have recollected several
existing results on the existence and stability of the equilibria
for this model in Sections III-C and III-D. The existence of
stable equilibria strongly depends on the algebraic connectivity
of a weighted graph Laplacian that follows from the Jacobian
of the sinusoidal coupling terms in the Kron-reduced model.

IV. LINEARIZATION OF POWER SYSTEM MODELS

A. Kron-Reduced Differential Equation Form

A power grid is always subjected to different types of
faults and disturbances causing small changes in its dynamics.
Power engineers are, therefore, often interested in analyzing
the small-signal behavior of the nonlinear Kron-reduced model
(21) in terms of both small-signal stability and performance. In
this section, we derive this model by linearizing (21), and show
that it represents second-order consensus dynamics owing to
the fact that the Jacobian of the sinusoidal coupling terms is
a weighted graph Laplacian.
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In the following, we assume that, for a given Pm ∈ im1⊥n ,
the equilibrium manifold [δ?] ⊂ ∆(π2 ) exists, or equivalently,
there exists an equilibrium δ? ∈ ∆(π2 ) such that (26) holds.
Linearizing (21) around this equilibrium, we have

Mẍ+Dẋ− ∂Ψ
∂δ (δ?)x = 0 (32)

where ∂Ψ
∂δ is the Jacobian defined as in (28), and x ∈ Rn rep-

resents the vector of small-signal deviations of the generator
phase angles from the equilibrium δ?. Note that

∂Ψ
∂δ (δ?) = ∂Ψ

∂δ

(
rots(δ

?
1), . . . , rots(δ

?
n)
)

holds for any s ∈ [0, 2π]. This means that we obtain the same
linearized Kron-reduced model (32) around any point on the
equilibrium manifold [δ?].

Because −∂Ψ
∂δ (δ?) is a weighted graph Laplacian, we see

that (32) represents a second-order consensus dynamics such
that ẋ(t) converges to zero and x(t) converges to xsync1n as
t→∞. The consensus value is calculated as

xsync =

∑n
i=1 dixi(0) +

∑n
i=1Miẋi(0)∑n

i=1 di
. (33)

This is derived as follows. The linearized Kron-reduced model
(32) can be written as the first-order form[

ẋ
ẍ

]
=

[
0 In

M−1 ∂Ψ
∂δ (δ?) −M−1D

] [
x
ẋ

]
.

Because 1T
n
∂Ψ
∂δ (δ?) = 0, we see that[

1T
nD 1T

nM
] [ ẋ

ẍ

]
= 0,

i.e., 1T
nDx+ 1T

nMẋ is constant. Therefore, we have

1T
nD1nxsync = 1T

nDx(0) + 1T
nMẋ(0),

which leads to (33); see [34] for convergence rate analysis for a
second-order consensus dynamics. This linearized differential
equation model can be used to investigate the synchroniza-
tion of generators for small-signal disturbances. However, the
behavior of bus voltage variables, i.e., (VG , θG) and (VG , θG),
is not easy to analyze by this model as the notion of a bus
by itself is lost through the Kron reduction. Therefore, in the
next subsection, we consider deriving a linearized differential-
algebraic equation model from (16) that explicitly contains the
network structure including all buses.

B. Differential-Algebraic Equation Form

Recall the DAE model (16) that consists of swing equations
as well as the algebraic power flow equations. For a stable
equilibrium δ? ∈ ∆(π2 ) such that (26) holds, let (V ?G , θ

?
G)

and (V ?G , θ
?
G) be the compatible equilibria for the bus voltage

variables such that (22) holds.
Let z1 ∈ R2n be the vector of small-signal deviations of

the bus voltage variables from (V ?G , θ
?
G), and z2 ∈ R2n be

the same from (V ?G , θ
?
G). We next linearize the nonlinear DAE

model (16) around these equilibria. Introducing the coefficient
vectors

q†i :=
[

cos θ?i −V ?i sin θ?i
]
,

q†i :=
[

sin θ?i V ?i cos θ?i
]
,

(34)

we obtain the system of the linear differential equations

Mẍ+Dẋ+Kx+ Fz1 = 0 (35a)

and the linear algebraic equations[
Q11 Q12

Q21 Q22

] [
z1

z2

]
=

[
B
0

]
x (35b)

where the system matrices are given by

K := LD diag
(
E ◦ V ?G ◦ cos (δ? − θ?G)

)
,

B :=

[
−LD diag (E ◦ sin δ?)
LD diag (E ◦ cos δ?)

]
,

F := LD diag
([
E◦sin (δ?−θ?G) −E◦V ?

G ◦cos (δ?−θ?G)
]) (36)

and the bus network structure is reflected in

Q11 :=

[
(LD + L11) diag(q†i )i∈G
(LD + L11) diag(q†i )i∈G

]
,

Q12 :=

[
L12 diag(q†i )i∈G
L12 diag(q†i )i∈G

]
,

Q21 :=

[
LT

12 diag(q†i )i∈G
LT

12 diag(q†i )i∈G

]
,

Q22 :=

[
L22 diag(q†i )i∈G
L22 diag(q†i )i∈G

]
.

In this linearized model, the generator angle equilibrium δ?

as well as the bus voltage equilibria (V ?G , θ
?
G) and (V ?G , θ

?
G)

are reflected as parameters. However, recall that the bus
voltage equilibria are implicit functions of the generator angle
equilibrium as shown in (22). This means that (V ?G , θ

?
G),

and (V ?G , θ
?
G) are not independent parameters. Thus, unless

one explicitly uses this relation between δ?, (V ?G , θ
?
G), and

(V ?G , θ
?
G), the linearized DAE model (35) cannot be identified

with the linearized Kron-reduced model (32) properly. In the
following, we show this identity introducing a particular basis
transformation, which makes it easier to utilize the relation in
(22).

C. Commutativity of Kron Reduction and Linearization

In this subsection, we show that a Kron-reduced version
of the linearized DAE model coincides with the linearized
version of the nonlinear Kron-reduced model, i.e., the Kron
reduction and the linearization are commutative. This commu-
tative property has not been reported in the literature, to the
best of the authors’ knowledge. To this end, we first consider
transforming the linearized DAE model (35) into a tractable
form, because (35) involves the equilibria of generator states
and bus voltage variables in a complicated fashion. Let us
denote the Moore-Penrose pseudo-inverses of the coefficient
vectors in (34) by

qi :=

[
cos θ?i

− 1
V ?
i

sin θ?i

]
, qi :=

[
sin θ?i

1
V ?
i

cos θ?i

]
.

Note that these vectors satisfy qiq
†
i + qiq

†
i = I2. Then, with

the transformation matrices

HG =
[

diag(qi)i∈G diag(qi)i∈G
]
,

HG =
[

diag(qi)i∈G diag(qi)i∈G
]
,
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we consider the basis transformation

z1 = HGζ1, z2 = HGζ2 (37)

where ζ1 ∈ R2n and ζ2 ∈ R2n denote the bus voltage
variables in the transformed coordinates. Owing to this basis
transformation, the algebraic equation in (35) can also be
simplified. For example

Q11z1 =
(
I2 ⊗ (LD + L11)

)
ζ1,

where the right-hand side is composed only of LD and L11.
Furthermore, we see that FHG = −BT, which simplifies the
system representation in the sense that FHG is dependent on
all equilibria δ?, (V ?G , θ

?
G), and (V ?G , θ

?
G), while B is dependent

on only δ?.
Based on this basis transformation, the linear differential

equation (35a) can be written as

Mẍ+Dẋ+Kx−BTζ1 = 0 (38a)

and the linear algebraic equation (35b) is written as[
I2 ⊗ (LD + L11) I2 ⊗ L12

I2 ⊗ LT
12 I2 ⊗ L22

] [
ζ1
ζ2

]
=

[
B
0

]
x. (38b)

In this representation, we see that K is dependent on the
equilibria δ? and (V ?G , θ

?
G), B is dependent on just δ?, while

the other matrices are independent of them. Furthermore,
the equilibrium of non-generator bus voltage variables i.e.,
(V ?G , θ

?
G), no longer appears in the model.

We next apply the Kron reduction to this system by solving
the algebraic equations in (38). Note that the realization of
the static (algebraic) system in (38) is made symmetric owing
to the basis transformation in (37). This enables systematic
analysis of its Kron-reduced model as follows. Using

T :=

[
−diag(E ◦ sin δ?)
diag(E ◦ cos δ?)

]
,

we have the Kron-reduced model

Mẍ+Dẋ+ (K −G)x = 0 (39)

where G is a positive definite matrix given by

G := TT

(
I2 ⊗

[
LD 0

][ LD+L11 L12

LT
12 L22

]−1 [
LD

0

])
T. (40)

Note that the positive definiteness of G is made clear owing to
the symmetric realization of the static system in (38). Loosely
speaking, we can say from this formula that the feedback effect
of the static system, composed of the bus network structure,
works to decrease the positive definiteness of the coupling
matrix among generators. Furthermore, to identify (39) with
(32), it suffices to show the identity

−∂Φ
∂δ (δ?) = K(δ?)−G(δ?), (41)

where K and G are regarded as functions of δ?. In fact, we can
verify this identity using the relation of (22b), which works to
rewrite the term

V ?G ◦cos (δ?−θ?G) = cos δ?◦V ?G ◦cos θ?G+sin δ?◦V ?G ◦sin θ?G

involved in K of (36). The weighted graph Laplacian given
as the Jacobian ∂Φ

∂δ in (28) can be now represented as the
difference of the positive diagonal matrix K and the positive
definite matrix G. This can be understood as the commutative
property of the Kron reduction and the linearization.

D. Section Summary

In Section IV-A, we derived a linearized differential equa-
tion model by linearizing the Kron-reduced model in Sec-
tion III-B. The linearized Kron-reduced model has a second-
order consensus dynamics whose coupling matrix is given as
the Jacobian in Section III-C with a weighted graph Laplacian
structure. In Section IV-B we applied linearization directly
to the DAE model from Section III-A that contains the bus
network structure. The resulting model involves the equilibria
of generator states and bus voltage variables in a complicated
fashion, which is then transformed into a tractable form in
Section IV-C. This transformation makes it easier to verify
that the Kron-reduced version of the linearized DAE model
coincides with the linearized version of the nonlinear Kron-
reduced model. In other words, the Kron reduction and the
linearization are commutative. Generalization of this result
to more complicated power network models such as models
involving excitation dynamics of the generators (see Section
VI) will be an interesting direction for future work.

V. DYNAMICAL PHASE SYNCHRONIZATION ANALYSIS

A. Dynamical Synchronism of Generators & Generator Buses

In this section, we analyze the dynamical behavior of the
nonlinear DAE model (16) based on its linearized DAE model
(38). In particular, characterizing its dynamic synchronism
based on the notion of graph symmetry, we develop an
aggregation method for (16) while preserving generator as
well as the bus network structures. To the best of the authors’
knowledge, this aggregation method has not yet been reported
in the literature.

In the following, we suppose that Ei = 1 for all i ∈ G and
the steady state of (16) achieves the phase synchronization
of δ? = 0, which implies Pm = 0. These assumptions are
only made hypothetically to simply the derivations; neither of
them is essential in the subsequent discussion. For small-signal
models Pm = 0 is a standard assumption [23]. Based on this
premise, we can further simplify the linearized DAE model
(38) as

Mẍ+Dẋ+Kx− LDξ1 = 0 (42a)

with the simplified algebraic equation[
LD + L11 L12

LT
12 L22

] [
ξ1
ξ2

]
=

[
LD

0

]
x. (42b)

This simplification is made possible because the upper and
lower half components of B in (36) become 0 and LD,
respectively, which implies that the bus voltage variables
ξ1 ∈ Rn and ξ2 ∈ Rn coincide with the lower half components
of ζ1 ∈ R2n and ζ2 ∈ R2n, and their upper half components
are identically zero. Furthermore, because G in (40) is reduced
to Γ in (20) and K − G is a weighted graph Laplacian, we
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Fig. 10. Initial value response of the simplified linear model (42). The system parameters are set as χ1 = χ2 = 0.1, χ3 = 0.1, χ4 = 0.05, χ15 = χ25 = 0.2,
χ36 = 1, χ46 = 0.1, χ56 = 0.5, M1 = M2 = 1, d1 = d2 = 0.2, M3 = 2, M4 = 3, d3 = 0.1, and d4 = 0.2. The initial condition is set as
x(0) = (−0.06, 0.19, 0.06, 0.25) and ẋ(0) = 0.

see that K = diag(Γ1n). Thus the Kron-reduced model of
(42) is written as

Mẍ+Dẋ+
(
diag(Γ1n)− Γ

)
x = 0. (43)

As discussed in Section IV-A, the generator state x(t) con-
verges to xsync1n as t → ∞ for xsync in (33). In addition,
the generator bus voltage variable ξ1(t) also converges to the
same value because of

ξ1(t) = Xx(t), ∀t ≥ 0 (44)

where X in (18) satisfies X1n = 1n. This property of X is
proven by

(LD + L11 − L12L
−1
22 L

T
12)1n = LD1n,

which comes from the fact that the Schur complement of the
weighted graph Laplacian L in (13) is again a weighted graph
Laplacian. In particular, because L1n+n = 0 is equivalent to

L111n + L121n = 0, LT
121n + L221n = 0,

we can see that (L11 − L12L
−1
22 L

T
12)1n = 0.

To numerically observe the behavior of the simplified linear
DAE model (42), we revisit the power network example in
Fig. 6. In particular, we consider a situation where Generators
1 and 2 in Area 1 have the same physical parameters, i.e.,
M1 = M2 and d1 = d2. A similar symmetry is supposed
to be inherent in the bus network of Area 1, i.e., χ1 = χ2

and χ15 = χ25. In this situation, Generators 1 and 2 as
well as Buses 1 and 2 show some dynamically cohesive
and synchronized behavior as can be anticipated from the
symmetry (homogeneity) of interaction and the similarity of
their physical parameters. In fact, as shown in Fig 10, which
shows an initial value response of (42), the disagreement
between x1 and x2 and that between ξ11 and ξ12, denoting
the first and second elements of ξ1, decrease as time goes to

infinity, while the disagreement between x3 and x4 and that
between ξ13 and ξ14 do not. Furthermore, their trajectories syn-
chronize even when the system still shows transient behavior.
In the following, we analyze this dynamical synchronization
of generator states and generator bus voltage variables from a
viewpoint of graph symmetry.

B. Analysis Based on Graph Symmetry

Let us denote the subspace of the synchronism between the
ith and jth elements of the small-signal state vector x(t) by

Xij := {x ∈ Rn : xi = xj}. (45)

Then, for the simplified linear DAE model (42), we say that
the ith and jth generators are dynamically synchronized if

x(t) ∈ Xij , ∀t ≥ 0 (46)

for any initial conditions x(0) ∈ Xij and ẋ(0) ∈ Xij . Note
that (45) is equivalent to

xi(t) = xj(t), ∀t ≥ 0.

In a similar manner, we say that the ith and jth generator
buses are dynamically synchronized if

ξ1(t) ∈ Xij , ∀t ≥ 0 (47)

for any x(0) ∈ Xij and ẋ(0) ∈ Xij . Note that the initial condi-
tion ξ1(0) of the bus voltage variables is uniquely determined
by the generator state initial condition x(0) due to the relation
in (44).

To characterize this dynamical synchronism in an algebraic
manner, we define a set of symmetrical matrices with respect
to the permutation of the ith and jth columns and rows by

Sij := {A ∈ Rn×n : AΠij = ΠijA} (48)
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where Πij denotes the permutation matrix exchanging the ith

and jth elements. Note that Sij is not the set of usual sym-
metric (Hermitian) matrices; the condition in (48) represents
the invariance with respect to the permutation of the ith and
jth columns and rows, i.e., Π T

ijAΠij = A. For example, we
see that the weighted graph Laplacian L in (14) of the bus
network in Fig. 6 belongs to S12 if and only if χ15 = χ25,
which corresponds to the symmetry of Buses 1 and 2. This
type of graph symmetry is called graph automorphism in graph
theory [35], [36].

Let us first consider characterizing the dynamical synchro-
nism of generator states based on the Kron-reduced model
(43). When M ∈ Sij , meaning Mi = Mj , it follows that the
ith and jth generators are dynamically synchronized, i.e., (46)
holds, if and only if the damping matrix D belongs to Sij , i.e.,
di = dj , and the coupling matrix diag(Γ1n)−Γ also belongs
to Sij , i.e.,

γij = γji, γik = γjk, ∀k ∈ G \ {i, j}.

Note that the relation between the diagonal entries γii and
γjj cannot be deduced from this analysis of generator state
synchronism, but it can only be deduced from the analysis of
the synchronism for the bus voltage variables. In fact, using
the relation Γ = LDX and that in (44), it can be shown
that the ith and jth generators as well as the ith and jth bus
voltage variables are dynamically synchronized, i.e., both (46)
and (47) hold, if and only if Γ ∈ Sij . Furthermore, Γ ∈ Sij
is shown to be equivalent to

LD ∈ Sij , L11 − L12L
−1
22 L

T
12 ∈ Sij . (49)

Note that the right condition in (49), which represents the
symmetry of a bus network in which the non-generator buses
are Kron-reduced, is implied by L ∈ Sij for (i, j) ∈ G × G.
This represents the symmetry of the whole bus network with
respect to the ith and jth generator buses. In conclusion, we
see that the symmetry (graph automorphism) of bus networks
algebraically characterizes the dynamical synchronism of gen-
erator states and the generator bus voltage variables.

C. Application to Generator & Generator Bus Aggregation

Based on the foregoing analysis, we next address the topic
of aggregation in power systems. Aggregation, in fact, is a
very popular concept for power system models. Given the
large size and extraordinary complexity of any realistic power
system, deriving and simulating the dynamic model for an
entire network such as (42) becomes extremely challenging.
Constructing approximate, aggregated, reduced-order models
using simplifying assumptions, therefore, becomes almost
imperative in practice. The foundations of model aggregation
were laid in the late 1970’s by Chow and Kokotovic in [37],
resulting in algorithms of partitioning a power network into
dynamic aggregates, where each aggregate consists of a group
of strongly connected generators that synchronize over a fast
time-scale and, thereafter, act as a single entity, while the
aggregates themselves are weakly connected to each other,
and synchronize over a slower time-scale. Their approach was
complimented by alternative techniques such as in [38]–[40].

However, these conventional aggregation methods apply
aggregation directly on the Kron-reduced model. Very little
insights are available currently in understanding how not
only generators but also buses can be aggregated so that the
reduced-order model retains the concept of a bus. This, in
turn, may be necessary for designing shunt controllers that
are entirely dependent on the ‘bus’ concept [41].

In this section we address this problem by deriving a
dynamic equivalent model for (42) where aggregation is per-
formed on both generator states and the generator bus voltage
variables. In particular, we take an approach based on network
clustering. Several clustering algorithms have been reported
in recent papers such as [42]- [44]. The results presented
here follow the clustering-based model reduction methods
developed in, e.g., [45]–[48], which are based on similarity
of state trajectories, almost equitable partition of graphs, and
passivity of subsystems.

We introduce the notion of network clustering as follows.
Let Ĝ := {1, . . . , n̂} denote an index set such that n̂ ≤ n. A
family of index sets, denoted by {Il}l∈Ĝ , is called a cluster
set if each element Il, called a cluster, is a disjoint subset
of Ĝ and it satisfies

⋃
l∈Ĝ

Il = G. Furthermore, an aggregation

matrix compatible with {Il}l∈L is defined by

P :=
[
eI11|I1| · · · eIn̂1|In̂|

]
∈ Rn×n̂. (50)

For example, when we consider aggregating the generators
and their buses in Area 1 of Fig. 6, the cluster set is constructed
as

I1 = {1, 2}, I2 = {3}, I3 = {4}, (51a)

for which Ĝ = {1, 2, 3}. In a similar way, when aggregating
the generators in both Areas 1 and 2, it is constructed as

I1 = {1, 2}, I2 = {3, 4}, (51b)

for which Ĝ = {1, 2}. The corresponding aggregation matrices
are given as

P =


1 0 0
1 0 0
0 1 0
0 0 1

 , P =


1 0
1 0
0 1
0 1


for (51a) and (51b), respectively.

As seen from the structure of P in (50), the aggregation
and the average of a vector v ∈ Rn can be represented,
respectively, as the n̂-dimensional vectors of

v̂ := PTv, ave(v) := P †v,

where P † denotes the Moore-Penrose pseudo-inverse of P .
Note that the lth element of v̂ is given as

∑
i∈Il vi. Further-

more, the lth element of of ave(v) is given as
∑
i∈Il vi/|Il|.

This is because

P † = (PTP )−1PT, PTP = diag(|Il|)l∈Ĝ .

Based on these relations, we introduce the aggregated coeffi-
cient matrices

M̂ := PTMP, D̂ := PTDP, K̂ := PTKP
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Fig. 11. (a) Aggregated model of the power network example in Fig. 6, compatible with the cluster set in (51a). The impedances satisfy 1/χ̂1 = 1/χ1+1/χ2,
1/χ̂12 = 1/χ15 + 1/χ25, 1/χ̂46 = 1/χ56, 1/χ̂25 = 1/χ36, 1/χ̂35 = 1/χ46, 1/χ̂2 = 1/χ3, and 1/χ̂3 = 1/χ4. (b) Aggregated model of the power
network example, compatible the cluster set in (51b). The impedances satisfy 1/χ̂1 = 1/χ1 + 1/χ2, 1/χ̂12 = 1/χ15 + 1/χ25, 1/χ̂46 = 1/χ56,
1/χ̂24 = 1/χ36 + 1/χ46, and 1/χ̂2 = 1/χ3 + 1/χ4.

and the aggregated reactance matrices

L̂D := PTLDP,

[
L̂11 L̂12

L̂T
12 L̂22

]
:=

[
PTL11P PTL12

LT
12P L22

]
.

Using these matrices we define an aggregated DAE model of
(42) by the n̂-dimensional differential equation

M̂ ¨̂x+ D̂ ˙̂x+ K̂x̂− L̂Dξ̂1 = 0, (52a)

and the (n̂+ n)-dimensional algebraic equation[
L̂D + L̂11 L̂12

L̂T
12 L̂22

] [
ξ̂1
ξ̂2

]
=

[
L̂D

0

]
x̂ (52b)

whose initial condition is given as

x̂(0) = ave
(
x(0)

)
, ˙̂x(0) = ave

(
ẋ(0)

)
,

i.e., the average of the original initial condition. This initial
condition satisfies x(0) = Px̂(0) and ẋ(0) = P ˙̂x(0) if and
only if x(0) and ẋ(0) lie in the image of P .

Note that the aggregated network (with buses) is represented
by the matrix

L̂ =

[
L̂11 L̂12

L̂T
12 L̂22

]
,

which is shown to be a weighted graph Laplacian owing to
1n = P1n̂. A similar projection-based approach for preserv-
ing the Laplacian-structure of matrices was recently shown in

[49]. Furthermore, L̂D and L̂11 are, again, positive diagonal
matrices. The preservation of these particular structures can be
interpreted as the preservation of physical properties stemming
from Kirchhoff’s current law as shown in Section III-A. In
fact, the aggregated DAE model (52) can be identified with
a linearized and simplified model of the aggregated nonlinear
DAE model defined as

M̂
¨̂
δ + D̂

˙̂
δ = P̂m − L̂DÊ ◦ V̂Ĝ ◦ sin (δ̂ − θ̂Ĝ) (53a)

with the aggregated algebraic equation

[
L̂D + L̂11 L̂12

L̂T
12 L̂22

][
V̂Ĝ ◦ cos θ̂Ĝ
V̂G ◦ cos θ̂G

]
=

[
L̂DÊ ◦ cos δ̂

0

]
,[

L̂D + L̂11 L̂12

L̂T
12 L̂22

][
V̂Ĝ ◦ sin θ̂Ĝ
V̂G ◦ sin θ̂G

]
=

[
L̂DÊ ◦ sin δ̂

0

]
,

(53b)

where δ̂ denotes the aggregated generator state, (V̂Ĝ , θ̂Ĝ) and
(V̂G , θ̂G) denote the aggregated generator and the aggregated
non-generator bus voltage variables, and P̂m and Ê are given
as PTPm and ave(E), respectively. The aggregated DAE
model of the power network example in Fig. 6 is depicted
in Fig. 11, where the subfigures (a) and (b) correspond to the
cluster sets in (51a) and (51b), respectively.
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Fig. 12. Initial value responses of the simplified linear model (42) and its aggregated model (52) compatible with the cluster set in (51a). The system
parameters and initial condition are the same as those in Fig. 10.
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Fig. 13. Left: Generator and aggregated generator states in the case of the same parameters as those in Fig. 10 and Fig. 12, i.e., M3 6= M4 and d3 6= d4.
Right: Generator and aggregated generator states in the case of M3 =M4 = 2 and d3 = d4 = 0.1.

To discuss the dynamical behavior of the aggregated DAE
model, let us next define the subspace of synchronism for
clusters as

Xcl :=
⋂
l∈Ĝ

⋂
(i,j)∈Il×Il

Xij , (54)

where Xij is defined as in (45). Note that Xcl is identical to
im P . Furthermore, we define a set of symmetrical matrices
corresponding to Xcl as

Scl :=
⋂
l∈Ĝ

⋂
(i,j)∈Il×Il

Sij . (55)

If all the generators are identical, i.e.,

M ∈ Scl, D ∈ Scl, (56)

meaning that Mi = Mj and di = dj for all (i, j) ∈ Il × Il
and l ∈ Ĝ, and if

LD ∈ Scl, L11 − L12L
−1
22 L

T
12 ∈ Scl, (57)

which represents network symmetry compatible with (49),
then the simplified linear DAE model (42) and its aggregated
DAE model (52) satisfy

x(t) = Px̂(t), ξ1(t) = P ξ̂1(t), ∀t ≥ 0 (58a)

for any initial conditions x(0) ∈ Xcl and ẋ(0) ∈ Xcl and, at
the same time, they satisfy

x̂(t) = ave
(
x(t)

)
, ξ̂1(t) = ave

(
ξ1(t)

)
, ∀t ≥ 0 (58b)
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for any x(0) ∈ Rn and ẋ(0) ∈ Rn. In particular, (57) is
equivalent to (58) provided that |Il| ≤ 2 for all l ∈ Ĝ.
A similar result for systems defined by ordinary differential
equations is shown in Theorem 4 of [50].

We numerically verify the behavior of the aggregated DAE
model (52), and compare it with the behavior of the simplified
linear DAE model (42). Fig. 12 shows the initial value
responses of (42) and (52) when we construct the cluster
set as in (51a) following the network structure shown in
Fig. 11(a). Because the system parameters (listed in the caption
of Fig. 10) actually satisfy the conditions (56) and (57), the
behavior of the generator states and generator bus voltage
variables of the aggregated DAE model can properly capture
the average behavior of those for the original model.

Next, we show the behavior of (52) when we construct
the cluster set as in (51b) following the network structure
shown in Fig. 11(b). The initial value response is plotted
in the left subfigure of Fig. 13. Only the generator state
trajectories are plotted because a similar trend can be observed
for the generator bus voltage variables. From this figure, we
see that not only the generator state trajectories of Area 2,
but also those of Area 1 are not properly captured by their
aggregated state trajectories. This is because, even though the
generator states of Area 1 can be aggregated by virtue of their
symmetry, they are dynamically affected by the feedback effect
of aggregation error from Area 2. It can also be seen that a
steady-state error is caused for the generator states in both
areas. The reason of this steady-state error can be seen as
follows. The steady-state (consensus) value of the aggregated
DAE model, denoted by x̂0, can be calculated similar to (33).
Therefore, x0 = x̂0 holds for any x(0) and ẋ(0) if and only if
(56) holds. In this case, however, the system parameters listed
in the caption of Fig. 10 do not satisfy (56) for the cluster
set in (51b) because M3 6= M4 and d3 6= d4. As shown in
the right subfigure of Fig. 13, the steady-state error vanishes
if M3 = M4 and d3 = d4. However, the transient-state error
still remains due to the asymmetry of the bus network of Area
2.

As observed from this example, it is crucial to carefully
select a cluster set to reduce transient error between the states
of the original and aggregated DAE models. Furthermore, it is
worthwhile to investigate a quantitative relation between the
degree of asymmetry in the network graph and the amount
of resultant transient-state error. A possible approach to such
quantitative error analysis is provided in [45], [46] from the
perspective of control theory.

D. Section Summary

In Section V-A we verified via simulations that the lin-
earized swing model shows dynamically cohesive and syn-
chronized behavior in both generator states and generator bus
voltage variables if a certain symmetry is inherent in the
network structure and physical parameters of the original DAE
model. This can be seen as generalization of results in [50] for
ordinary differential equations to those for DAEs describing a
linearized power system model, which has not been reported
in the literature. In Section V-B we characterized this dynamic

synchronism using the notion of graph symmetry defined as
graph automorphism. In Section V-C we applied this charac-
terization to the aggregation of generator states as well as the
bus voltage variabless based on network clustering. It is seen
that the resultant aggregated DAE model is also characterized
by a weighted graph Laplacian structure associated with an
aggregated bus network. The preservation of this structure
enables us to interpret the aggregated DAE model as an
equivalent power system where the network variables obey
Kirchhoff’s laws. This aggregation method with preservation
of a bus network structure is a novel contribution, though
several model reduction methods based on network clustering
have been developed [42]- [48].

VI. STRUCTURE-BASED POWER SYSTEM CONTROL

Not only for modeling and stability analysis, graph theory
has also recently emerged as an enabling tool for design-
ing closed-loop controllers for power systems. While simple
second-order models such as (7) suffice for analysis, more
detailed models of generators must be considered for control
design. A commonly used model for this purpose is the flux-
decay model whose dynamics can be written as [23]

δ̇ = ω (59)

Mω̇ = Pm − dω −
|V |E
x′d

sin(δ − ∠V )

+
|V |2

2

(
1

x′d
− 1

xq

)
sin(2δ − 2∠V ) (60)

τdoĖ = −xd

x′d
E +

(
xd

x′d
− 1

)
|V | cos(δ − ∠V )

+Vfd (61)

P + iQ =
E|V |
x′d

sin(δ − ∠V )

−|V |
2

2

(
1

x′d
− 1

xq

)
sin(2δ − 2∠V )

+i

(
E|V |
x′d

cos(δ − ∠V )

−|V |2
(

sin2(δ − ∠V )

xq
+

cos2(δ − ∠V )

x′d

))
where the first two state equations represent the swing dy-
namics, the third state equation represents electro-magnetic
dynamics of the generator voltage, P and Q are the active
and reactive power outputs, V is the voltage phasor at the
generator bus, Vfd is the excitor voltage, and the remaining
constants denote various model parameters whose definitions
can be found in any standard textbook such as [23]. The
generator model is coupled with the model of an exciter
consisting of an Automatic Voltage Regulator (AVR) and a
Power System Stabilizer (PSS) whose combined dynamics can
be written as

τeV̇fd = −Vfd + V ?fd +Ka(|V | − |V |? − v + u)

ζ̇ = Apssζ +Bpssω, v = Cpssζ +Dpssω.

where the superscript ? means setpoint. Again, the interested
reader is referred to [23] for definitions of the state vari-
ables and model parameters. The variable u in the combined
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AVR/PSS model serves as a control input. Typically this input
is designed using local feedback from the generator speed
ω, and passing it through a lead-lag controller for enhancing
damping of the oscillations in δ and ω. Traditional PSSs,
however, are most effective in adding damping to the fast
oscillation modes in the system, and perform poorly in adding
damping to the slow or inter-area oscillation modes [51]. If left
undamped inter-area modes can result in transient instability,
as was the case for the 1996 blackout in the US west coast grid
[52]. Therefore, power engineers currently are very interested
in designing supplementary controllers on top of a nominal u
by using state-feedback from either all or selected sets of other
generators spread across the grid. These types of controller
are referred to as wide-area controllers [53]- [54]. The use
of structure for designing these controllers is explained as
follows.

Let Y ∈ CN×N denote the admittance matrix of the
network, where N is the total number of generator and load
buses. The power balance across the transmission lines follows
from Kirchoff’s laws as

0 = (Y V )∗ ◦ V − (P + iQ), (62)

where V , P , and Q are the stacked representations of Vk, Pk
and Qk for k ∈ {1, . . . , N}. From (62), V is determined for
a given P and Q. The overall dynamics of the power system
can be described by the combination of every generator model
(with AVR and PSS) as described above, load model, and
power balance (62). Let the linearized model be denoted as

ẋ = Ax+Bu (63)

where x is the vector of all small-signal generator states, u is
the control input vector whose kth element uk represents the
kth AVR input whose output then excites the corresponding
PSS. For simplicity, x is assumed to be measurable (although
several wide-area control designs can also be extended to
output feedback). For the linearized model (63), several papers
such as [55], [56] have posed the wide-area control problem
as a sparse optimal control problem of the form: design

u = Kx, K ∈ S, (64)

where S is a set of admissible controllers encapsulating the
structured distributed nature of the controller, to minimize

J :=

∫ ∞
0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt, (65)

for a given positive semidefinite martix Q and positive definite
matrix R, subject to (63)1.

The goal of (64)-(65) is to promote sparsity in K for
minimizing the density of the underlying communication
network without sacrificing closed-loop performance much.
The design in [55], [59], for example, has sparsified K by
penalizing its l1-norm. Papers such as [60], [61] have proposed

1The choice of the objective function J depends on the goal for wide-
area control. For power oscillation damping, this function is often simply just
chosen as (65), for wide-area voltage control it can be chosen as the setpoint
regulation error for the voltages at desired buses [57], while for wide-area
protection it can be chosen as the total amount of time taken to trigger relays
[58]

various projection and decomposition-based control designs
by which a significant portion of the communication network
admits a broadcast-type architecture instead of peer-to-peer
connectivity, thereby saving on the number of links. The
design in [56], on the other hand, has proposed structured
sparsity in light of the following general rule. Let NG be the
set of generator indices. For a natural number L ≤ |NG|,
consider a set of groups {Gl}l∈{1,...,L} such that Gl is a subset
of NG and

⋃
l∈{1,...,L} Gl = {1, . . . , |NG|}. Note that the

groups are not necessarily disjoint, namely, there may exist
a pair (l, l′) such that Gl ∩ Gl′ 6= ∅. Let Kij denote the (i, j)-
block matrix of K, and let S be the set of all K such that
Kij = 0 if (i, j) /∈ Gl×Gl for all l ∈ {1, . . . , L}. The problem
then is to find a wide-area controller described as (64) with
this S. The (sub)optimal set of groups {Gl}l∈{1,...,L} and the
structured feedback gain K can be constructed in different
ways depending on the exact objective of the controller. For the
purpose of inter-area oscillation damping [56] has proposed
the following construction. Modeling the fault as an impulse
input, let the impulse response of the small-signal frequency
of the kth generator be written as

ωk(t) =

κ∑
i=1

(αki exp(λit) +α∗ki exp(λ∗i t))︸ ︷︷ ︸
inter-area modes

+

|NG|∑
i=κ+1

(βki exp(ρit) + β∗ki exp(ρ∗i t))︸ ︷︷ ︸
local modes

. (66)

Assuming that the local modes are sufficiently damped by
PSSs as a result of which their effect dies down quickly,
the goal is to add damping to only the inter-area oscillation
modes. The dominance of the inter-area modes is defined
based on the magnitude of the modal coefficients αki. For ex-
ample, consider a power system with four generators (namely
|NG| = 4), with three inter-area modes (namely κ = 3). Let
the residues α11, α21, α31, α32, α42 be classified as dominant
residues because they satisfy |αki| ≥ µ, where µ is a pre-
specified threshold. In other words, it is assumed that the inter-
area modes λ1, λ2 are substantially excited by the incoming
disturbance while the third inter-area mode has much poorer
participation in the states. From the indices of the dominant
modes, one can construct the two sets

G1 = {1, 2, 3}, G2 = {3, 4}, (67)

indicating that the generators in the first group participate
dominantly in λ1, and those in the second group participate
dominantly in λ2. This grouping information is then used to
decide the topology of communication, resulting in the control
input as

u1

u2

u3

u4

 =


K11 K12 K13 0
K21 K22 K23 0
K31 K32 K33 K34

0 0 K43 K44



x1

x2

x3

x4

 (68)

where the nonzero gain matrices Kij are chosen to guarantee
closed-loop stability, and a desired sub-optimal performance.
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TABLE I
SPARSITY OF WIDE-AREA CONTROL VERSUS PERFORMANCE TRADE-OFF

Block sparsity T ξ
K1 32.7% 0.42 1.05%
K2 72.7% 1.33 7.37%
K3 92.7% 2.68 9.74%

In general, the rule is that the generators inside the lth

group should communicate with each other for suppressing
the amplitude of oscillations excited by the lth mode λl.
The third mode λ3 for the above example is poorly excited,
and therefore, is ignored in the control design. Following this
procedure the construction of S can be easily generalized to
any n-generator system.

This design method was verified in [56] using the New
England 39-bus, 10-generator power system model with a total
of 130 states. The nonlinear power system model was excited
by a three-phase fault on the line connecting Buses 3 and 4,
cleared after 0.1 seconds at Bus 3, and after 0.15 seconds
at Bus 4. Based on the modal residues, the sparse structure
of the controller was decided. Three different values of µ
were chosen to design three controllers K1, K2 and K3 with
different levels of sparsity. Table I summarizes the results of
the design, where T refers to the computation time required to
solve for K, and ξ refers to the ratio of the closed-loop cost
J in (65) with the sparse controller to that with the ideal LQR
controller. The results show that as high as 93% sparsity can
be achieved if one is willing to sacrifice 10% of the closed-
loop performance. Note that since the initial condition x(0)
will change from one disturbance event to another, so will
the group set {Gl}l∈{1,...,L}. Detailed instructions on how this
change can be executed in real-time following a fault, and how
the sets {Gl}l∈{1,...,L} (and, therefore the wide-area controller)
can vary drastically depending on the type and location of
faults, are described in [56].

VII. CONCLUDING REMARKS

This tutorial overviewed a list of graph-theoretic results
for modeling, stability analysis and control of power sys-
tems. Although our discussion in the paper is mostly fo-
cused on transmission-level models, similar concepts can also
be applied for analyzing dynamic and algebraic models of
distribution-level power grids. Recent results in [62], for
example, have shown that Kuramoto oscillator theory can also
be applied for modeling of power electronic converters that are
found in abundance in distribution grids. Therefore, a relevant
future work will be to extend the synchronization results and
their graph-theoretic implications overviewed in Sections III
and IV to such converter-interfaced power system models.
Studying the impact of renewable penetration on the spectral
properties of the graphs underlying the Kron-reduced model
for both linear and nonlinear dynamics, and on coherency and
aggregation properties of the network also constitute many
open directions for future research.
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