
2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 1

Big Data Based Security Analytics for Protecting
Virtualized Infrastructures in Cloud Computing

Thu Yein Win, Member, IEEE, Huaglory Tianfield, and Quentin Mair, Member, IEEE

Abstract—Virtualized infrastructure in cloud computing has become an attractive target for cyberattackers to launch advanced attacks.
This paper proposes a novel big data based security analytics approach to detecting advanced attacks in virtualized infrastructures.
Network logs as well as user application logs collected periodically from the guest virtual machines (VMs) are stored in the Hadoop
Distributed File System (HDFS). Then, extraction of attack features is performed through graph-based event correlation and
MapReduce parser based identification of potential attack paths. Next, determination of attack presence is performed through two-step
machine learning, namley logistic regression is applied to calculate attack’s conditional probabilities with respect to the attributes, and
belief propagation is applied to calculate the belief in existence of an attack based on them. Experiments are conducted to evaluate the
proposed approach using well-known malware as well as in comparison with existing security techniques for virtualized infrastructure.
The results show that our proposed approach is effective in detecting attacks with minimal performance overhead.

Index Terms—Virtualized infrastructure, virtualization security, cloud security, malware detection, rootkit detection, security analytics,
event correlation, logistic regression, belief propagation

F

1 INTRODUCTION

A virtualized infrastructure consists of virtual machines
(VMs) that rely upon the software-defined multi-instance
resources of the hosting hardware. The virtual machine
monitor, also called hypervisor, sustains, regulates and man-
ages the software-defined multi-instance architecture. The
ability to pool different computing resources as well as en-
able on-demand resource scaling has led to the widespread
deployment of virtualized infrastructures as an important
provisioning to cloud computing services.

This has made virtualized infrastructures become an
attractive target for cyberattackers to launch attacks for
illegal access. Exploiting the software vulnerabilities within
the hypervisor source code, sophisticated attacks such as
VENOM (Virtualized Environment Neglected Operations
Manipulation) [1] have been performed which allow an at-
tacker to break out of a guest VM and access the underlying
hypervisor. In addition, attacks such as Heartbleed [2] and
Shellshock [3] which exploit the vulnerabilities within the
operating system can also be used against the virtualized
infrastructure to obtain login details of the guest VMs and
perform attacks ranging from privilege escalation to Dis-
tributed Denial of Service (DDoS).

• Thu Yein Win is with the Faculty of Business, Computing & Applied
Sciences, University of Gloucestershire, Cheltenham GL50 2RH, United
Kingdom.
E-mail: twin@glos.ac.uk

• Huaglory Tianfield is with the Department of Computer, Communications
and Interactive Systems, Glasgow Caledonian University, Glasgow G4
0BA, United Kingdom.
E-mail:h.tianfield@gcu.ac.uk

• Quentin Mair is with the Department of Computer, Communications and
Interactive Systems, Glasgow Caledonian University, Glasgow G4 0BA,
United Kingdom.
E-mail:q.mair@gcu.ac.uk

Existing security approaches to protecting virtualized in-
frastructures generally include two types, namely malware
detection and security analytics. Malware detection usually
involves two steps, first, monitoring hooks are placed at
different points within the virtualized infrastructure, then
a regularly-updated attack signature database is used to
determine attack presence. While this allows for a real-
time detection of attacks, the use of a dedicated signature
database makes it vulnerable to zero-day attacks for which
it has no attack signatures.

Security analytics applies analytics on the various logs
which are obtained at different points within the network to
determine attack presence. By leveraging the huge amounts
of logs generated by various security systems (e.g., intrusion
detection systems (IDS), security information and event
management (SIEM), etc.), applying big data analytics will
be able to detect attacks which are not discovered through
signature- or rule-based detection methods. While security
analytics removes the need for signature database by using
event correlation to detect previously undiscovered attacks,
this is often not carried out in real-time and current imple-
mentations are intrinsically nonscalable.

To overcome these limitations, in this paper we propose
a novel big data based security analytics (BDSA) approach
to protecting virtualized infrastructures against advanced
attacks. By making use of the network logs as well as the
user application logs collected from the guest VMs which
are stored in a Hadoop Distributed File System (HDFS),
our BDSA approach first extracts attack features through
graph-based event correlation, a MapReduce parser based
identification of potential attack paths and then ascertains
attack presence through two-step machine learning, namley
logistic regression and belief propagation.

The remainder of the paper is arranged as follows.
Section 2 presents a review upon the existing security ap-
proaches. Section 3 proposes our big data based security

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 2

analytics (BDSA) approach. Experimental evaluations are
presented in Section 4, while Section 5 discusses our BDSA
approach in contrast with the related work. Section 6 draws
the conclusion.

2 LITERATURE REVIEW

2.1 Malware detection in virtualised infrastructure
Malware refers to any executable which is designed to
compromise the integrity of the system on which it is run.
There are two prominent approaches to malware detection
in cloud computing, namely in-VM and outside-VM inter-
working approach and hypervisor-assisted malware detec-
tion.

In-VM and outside-VM interworking approach to mal-
ware detection
In-VM and outside-VM interworking detection consists of
an in-VM agent running within the guest VM, and a remote
scrutiny server monitoring the VM’s behaviour. When a
potential malware execution is detected the in-VM agent
sends the suspicious executable to the scrutiny server, which
then uses the signature database to verify malware presence
or otherwise and then informs the in-VM agent of the
results.

CloudAV, a cloud-based malware detection system fea-
turing multiple antivirus engines, employs in-VM and
outside-VM interworking approach to protect the guest
VMs against attacks [4]. Apparently the effectiveness of
this scheme depends on the frequency at which the virus
signatures are updated by the antivirus vendors.

The in-VM and outside-VM interworking approach is
also used by CuckooDroid, to detect mobile malware pres-
ence on Android devices [5]. It consists of an in-device agent
which scans executables on the device and sends any sus-
picious executable to a remote scrunity server which runs
a hybrid of anomaly-based and signature-based malware
detectors. The scheme first extracts malware features by
using static as well as dynamic analysis on malware apps.
The obtained features are then used to train a one-class
SVM (Support Vector Machine) classifier for anomaly-based
detection. Implemented on an emulated Android platform,
CuckooDroid achieved a detection accuracy of 98.84 %.

Hypervisor-assisted malware detection
Hypervisor-assisted malware detection, on the other hand,
uses the underlying hypervisor to detect malware within
the guest VMs.

A hypervisor-assisted malware detection scheme is de-
signed in [6] to detect botnet activity within the guest VMs.
The scheme installs a network sniffer on the hypervisor to
monitor external traffic as well as inter-VM traffic. Imple-
mented on Xen, it is able to detect the presence of the Zeus
botnet on the guest VMs.

A hypervisor-assisted detection scheme is proposed in
[7] using guest application and network flow characteris-
tics. This scheme first uses LibVMI to extract key process
features from the processes running within VMs and then
uses tcpdump together with the CoralReef network packet
analysis tool from CAIDA (Center for Applied Internet Data

Analysis) to extract network flow features. The obtained
features are then used to train one-class SVM classifiers to
detect malware presence within guest VMs. Implemented
on KVM, the scheme is able to detect well-known DDoS
(Distributed Denial of Service) and botnet attacks such as
LOIC (Low Orbit Ion Cannon) and Zeus.

The hypervisor-assisted detection is also used in Access-
Miner [8]. Implemented as a custom hypervisor, Access-
Miner monitors normal user behavior within the system and
creates access activity models which are used for anomaly-
based malware detection. To ensure that the underlying
hardware is protected, it intercepts the guest system call
requests and uses a policy checker module to determine if it
should access the system resource.

2.2 Security Analytics
Security Analytics refers to the application of analytics in
the context of cybersecurity [9]. Based on a variety of data
collected from different points within an enterprise network,
security analytics aims to detect previously undiscovered
threats by use of analytic techniques.

Common techniques of security analytics include clus-
tering and graph-based event correlation.

Clustering for security analytics
Clustering organises data items in an unlabeled dataset into
groups based on their feature similarities [10]. For security
analytics, clustering finds a pattern which generalises the
characteristics of data items, ensuring that it is well gen-
eralized to detect unknown attacks. Examples of cluster-
based classifiers include K-means clustering and k-nearest
neighbors, which are used in both intrusion detection and
malware detection.

Clustering is used for security analytics for industrial
control systems [11] in an NCI (networked critical infrastruc-
ture) environment. First, data outputs from various network
sensors are arranged as vectors and K-means clustering
is applied to group the vectors into clusters. The MapRe-
duce model is then applied to the grouped clusters to find
groupings of possible attack behaviour, thus allowing the
detection to be carried out efficiently.

In [12] an “attack pyramid” -based scheme is proposed
to detect APTs (advanced persistent threats) in a large enter-
prise network environment. Based on threat tree modeling,
different planes (namely hardware, user, network, applica-
tion) to which an attack may be launched are placed hierar-
chically with the end goal placed at the top. First, outputs
from all available sensors in the network (e.g., network
logs, execution traces, etc) are put into contexts. Then, in
terms of the contexts various suspicious activities detected
at each attack plane are correlated in a MapReduce model,
which takes in all the sensor outputs and generates an
event set describing potential APTs. Finally, an alert system
determines attack presence by calculating the confidence
levels of each correlated event.

SINBAPT (Security Intelligence techNology for Blocking
APT) [13] uses big data processing such as HDFS and
MapReduce together to detect the presence of APTs in an
enterprise network environment. Used for anomaly-based
detection, the scheme collects log data from different sources

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 3

(e.g., Netflow, application logs, etc) and applies a MapRe-
duce model for feature extraction. Once organized into
clusters, the data is then used to determine attack presence
according to pre-defined rules.

Graph-based event correlation
While clustering determines attack presence through group-
ing common attack characteristics, it is limited in establish-
ing an accurate correlation which may exist between events.
This makes it difficult to accurately identify the sequences
of events leading to the presence of an attack within the
network, as well as the entry point of the attack.

Graph-based event correlation overcomes this limitation
by representing the events from the logs obtained as se-
quences in a graph. Given a collection of logs from different
points within the network (e.g., firewall logs, web server
logs, etc.), these events are correlated in a graph with the
event features (e.g., timestamp, source and destination IP,
etc.) represented as vertices and their correlations as edges.
This enables the accurate identification of the entry point
which an attack enters, as well as the sequences of events
which the attack undertakes.

Graphs-based event correlation is used in BotCloud, a
botnet detection system for large enterprise environments
[14]. Based on the Netflow data which describe the various
network traffic flows between clients, the scheme represents
the network flow between clients in the form of a depen-
dency graph. The graph is then input into a MapReduce
model to identify network IP associations using PageRank
algorithm.

Graphs-based event correlation is presented in the se-
curity framework designed to detect attacks within critical
infrastructures [15]. The scheme collects events from differ-
ent sources within the network, and generates a temporal
graph model to derive different event correlations for threat
detection.

Relationships between files are represented as a graph to
detect malware presence [16]. The scheme first collects from
the clients the file lists which describe their mutual rela-
tionships, and determines if there are potentially malicious
relationships. The file associations are then used to generate
an undirected weighted file relationship graph, and based
on the graph a belief propagation classifier is trained. On
the dataset from the Comodo Cloud Security Center, the
scheme achieved a detection accuracy of 95.81%.

2.3 Limitations of existing approaches
Existing approaches to detecting attack presence are limited
in terms of their ability to detect threats in real-time as well
as to scale across multiple hosts.

One of the limitations of existing security approaches
stems from the use of a dedicated signature database for
threat detection. This applies to approaches that feature a
regularly updated attack signature database for threat detec-
tion. Typically in the in-VM and outside-VM interworking
approach, an in-VM agent detects and passes any suspicious
file to the remote scrunity server, which uses the signature
database to determine if it is a malware. The dependence
on a regularly-updated signature database makes it limited
in detecting zero-day attacks. While BareCloud [17] and

CloudAV [4] attempt to get around this limitation by using
multiple antivirus engines for threat detection, they are still
limited in detecting previously undiscovered attacks due
to the post factum data in updating the signature database.
This is further exacerbated by an increased number of false
positives reported by the different antivirus engines.

Security analytics removes the need for signature
database by correlating events from the collected logs, but
they still suffer from the post factum data in training for
threat detection. Typically BotCloud [14] and Nazca [18]
collect data over long periods of time (usually over a 24
hour period) and apply analytics for threat detection. While
a long period of time allows for a rich collection of data, that
entails a tendency in detecting threats which have already
taken place over a breadth of time within the network. This
makes it difficult, if not impossible, to focus on immediate
events and take immediate actions against a compromised
point within the network.

Another limitation of existing security approaches is
the centralized execution process. For instance, SINBAPT
[13] runs on a single host, collecting data from various
points within the network and analysing them as a single
centralized process. While centralized execution process is
feasible in network environments in which there is a single
centralized server responsible for monitoring all network
components, it is infeasible for large network environments
in which multiple guest VMs are hosted on different hosts
and attack presence has to be communicated to other hosts
in near real-time.

3 PROPOSED APPROACH

3.1 Overall Framework
The basic idea of our proposed approach is to detect in real-
time any malware and rookit attacks via holistic efficient
use of all possible information obtained from the virtualized
infrastructure, e.g., various network and user application
logs. Our proposed approach is a big data problem for the
following characteristics of the network and user applica-
tion logs collected from a virtualized infrastructure:

• Volume: Depending on the number of guest VMs and
the size of the network, the amount of the network
and user application logs to be collected can range
from approximately 500 MB to 1 GB an hour;

• Velocity: The network and user application logs are
collected in real-time, in order to detect the pres-
ence of malware and rootkit attacks, accordingly the
collected data containing its behavior needs to be
processed as soon as possible;

• Veracity: Due to the “low and slow” approach that
malware and rootkit take in hiding their presence
within the guest VMs, data analysis has to rely upon
event correlation and advanced analytics.

The design principles, which are integral in the devel-
opment of our BDSA approach to protecting virtualized
infrastructures, can be elaborated as follows.

• Design Principle # 1 - Unsupervised classification:
The attack detection system should be able to classify
potential attack presence based on the data collected
from the virtualized infrastructure over time.

fei
Highlight

fei
Highlight



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 4

• Design Principle # 2 - Holistic prediction: The attack
detection system should be able to identify potential
attacks by correlating events on the data collected
from multiple sources in the virtualized infrastruc-
ture.

• Design Principle # 3 - Real-time: The attack detection
system should be able to ascertain attack presence
as immediately as possible so as for the appropriate
countermeasures to be taken immediately.

• Design Principle # 4 - Efficiency: The attack detection
system should be able to detect attack presence at
a high computational efficiency, i.e., with as little
performance overhead as possible.

• Design Principle # 5 - Deployability: The attack de-
tection system should be readily deployable in pro-
duction environment with minimal change required
to common production environments.

Figure 1 illustrates the overall conceptual framework of
our proposed big data based security analytics (BDSA) ap-
proach, with the different components highlighted in blue.
Our BDSA approach consists of two main phases, namely

• Extraction of attack features through graph-based
event correlation and MapReduce parser based iden-
tification of potential attack paths, and

• Determination of attack presence via two-step ma-
chine learning, namely logistic regression and belief
propagation.

Fig. 1: Conceptual framework of the proposed big data
based security analytics (BDSA) approach

Prior to the online detection of attacks, there is actu-
ally a system initialization, in which offline training of
the logistic regression classifiers is carried out, that is, the
stored features are loaded from the Cassandra database to
train the logistic regression classifiers. Specifically, well-
known malicious as well as benign port numbers are loaded
to train a logistic regression classifier to determine if the
incoming/outgoing connections are indicative of an attack
presence. Likewise, well-known malware and legitimate
applications together with their associated ports are loaded
to train a logistic regression classifier to determine if the
behavior of an application running within the guest VM

is indicative of an attack presence. These trained logistic
regression classifiers are ready for online use, upon the ex-
traction of new attack features, to determine if the potential
attack paths are indicative of attack presence.

In the Extraction of Attack Features phase, first, it carries
out Graph-Based Event Correlation. Periodically collected
from the guest VMs, network and user application logs are
stored in the HDFS. By assembling the information con-
tained in these two logs, the Correlation Graph Assembler
(CGA) forms correlation graphs.

Then, it carries out the Identification of Potential Attack
Paths. A MapReduce model is used to parse the correlation
graphs and identify the potential attack paths i.e., the most
frequently occurring graph paths in terms of the guest
VMs’ IP addresses. This is based on the observation that a
compromised guest VM tends to generate more traffic flows
as it tries to establish communication with an attacker.

In the Determination of Attack Presence phase, two-step
machine learning is employed, namely logistic regression
and belief propagation are used. While the former is used
to calculate attack’s conditional probabilities with respect to
individual attributes, the latter is used to calculate the belief
of an attack presence given these conditional attributes.

From the potential attack paths, the monitored features
are sorted out and passed into their logistic regression
classifiers to calculate attack’s conditional probabilities with
respect to individual attributes. The conditional probabil-
ities with respect to individual attributes are passed into
belief propagation to calculate the belief of attack presence.

Once attack presence is ascertained, the administrator is
alarmed of the attack. Furthermore, the Cassandra database
is updated with the newly-identified attack features versus
the class ascertained (i.e., attack or benign), which are then
used to retrain the logistic regression classifiers.

3.2 Extraction of Attack Features

3.2.1 Graph-Based Event Correlation

The IP addresses of the guest VMs are used to obtain the
memory process lists on the VMs as well as the ports to
which the processes are listening.

TShark is used to obtain the network logs containing
the traffic flows of the guest VMs. Specifically it collects
the source and the destination IP addresses along with
their respective port numbers. It also undertakes the remote
execution of the netstat command to obtain the guest
VMs’ memory process lists.

The network logs contain connection entries describing
the guest VMs’ internal as well as external network con-
nections, namely the source and destination IP addresses
(i.e., IPsource and IPdestination) as well as the port numbers
(i.e., Portsource and Portdestination) used. Each entry in the
network logs is of the format as below.

net log := 〈IPsource, Portsource, IPdestination,
Portdestination〉

(1)

The user application logs, on the other hand, contain
process entries detailing the applications running within the
guest VMs and the port numbers on which the applications

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 5

are listening for connections. Each entry in the application
logs is of the format as below,

app log := 〈IPguest, Appguest, UserIDApp,

PortApp〉
(2)

where IPguest refers to the guest VM’s IP address,
Appguest refers to the application running on the VM,
UserIDApp refers to the user ID to which the user appli-
cation is running, and PortApp refers to the port opened by
the application.

Once obtained, the log entries are used to form a correla-
tion graph based on the following observations. The first ob-
servation is that a compromised guest VM tends to commu-
nicate more frequently with other guest VMs, resulting in
an increase in the network traffic containing its IP address.
The second observation is that the communication means of
the malware running on the compromised VM is through
its execution on it and listening for external connections. In
the light of these two observations a correlation graph is
formed which best describes the guest VMs’ behavior by
assembling the information obtained of the network and
user application logs.

Before it proceeds to form the correlation graph, first
only those entries with the guest VMs’ IP addresses either as
the source or the destination are filtered out of the network
logs. This eliminates the routine traffic flows which period-
ically check the status of the host HPC (high performance
cluster) by applications such as Apache Hadoop.

The filtered network log entries are then assembled with
the user application logs according to the guest VMs’ IPs
and the port numbers which are opened by the user appli-
cations. A path is grown with the monitored features as ver-
tices and their correlations as edges of the form 〈IPsource,
Portsource,IPdestination,Portdestination, Appguest, PortApp,
UserIDApp〉. As a result a correlation graph is formed an
example of which is shown in Figure 2.

Fig. 2: Correlation graph assembled from network and user
logs

The formed correlation graph, consisting of multiple
paths is then stored in the HDFS on the HPC node as a
new entry, called correlated log, of the format as below.

correlated log := 〈IPsource, Portsource, IPdestination,
Portdestination, Appguest,

UserIDApp〉
(3)

3.2.2 MapReduce Parser for the identification of potential
attack paths
Identification of potential attack paths is carried out by
parsing the correlation graph with a MapReduce model.
MapReduce is a distributed programming model which
consists of two processes namely Map and Reduce.

In the Map process, key-value pairs of the form (ki, vi)
are sorted from the correlation graph, where ki denotes the
monitored traffic flow while vi is the count of occurrence of
the traffic flow in the graph. Taking the correlation graph
in Figure 2 as an example, the Map process represents each
path in the graph as a key ki and its occurrence as a value
vi as shown in Snippet 1.

Snippet 1: (path, count) pairs of correlation graph sorted in
Map process
( <1 9 2 . 1 6 8 . 1 0 0 . 1 0 , 6666 , 1 9 2 . 1 6 8 . 1 0 0 . 1 1 ,

164 , backdoor , 1000> , 1 )

( <1 9 2 . 1 6 8 . 1 0 0 . 1 0 , 6666 , 5 8 . 2 5 1 . 7 6 . 1 1 2 ,
10036 , c l i e n t , 1000> , 1 )

( <1 9 2 . 1 6 8 . 1 0 0 . 1 0 , 80 , 1 7 3 . 1 9 4 . 4 5 . 4 7 ,
12150 , f i r e f o x , 1000> , 1 )

In the Reduce process, the key-value pairs obtained dur-
ing the Map process are unified. With the same example
the Reduce process analyzes the intermediate key-value pairs
generated from the Map process, and unifies all those key-
value pairs, aggregating their occurrence counts, if their
source IPs as well as source ports are the same regardless
of the other elements on the path. This generates a set of
new-variant key-value pairs (k′i, v

′
i), where k′i represents the

unified path for a distinctive source IP and port, while v′i is
the total occurrence counts within the graph. For the exam-
ple correlation graph above, the (unified path, aggregated
counts) pairs are shown in Snippet 2.

Snippet 2: (unified path, aggregated counts) pairs from
Reduce process
( <1 9 2 . 1 6 8 . 1 0 0 . 1 0 , 6666 , . . ,

. . , . . , . . > , 2 )

( <1 9 2 . 1 6 8 . 1 0 0 . 1 0 , 80 , 1 7 3 . 1 9 4 . 4 5 . 4 7 ,
12150 , f i r e f o x , 1000> , 1 )

Flagged up by the MapReduce parser’s output, any graph
paths with an occurrence count greater than one are po-
tential attack paths and are thus picked up and passed
onto the determination of attack presence phase. For the
example correlation graph above, the potential attack paths
are identified (marked in red) as shown in Figure 3.

3.3 Determination of attack presence
The potential attack paths identified of the correlation graph
as flagged up by the MapReduce parser can be readily
retrieved into the different attack features. We refer to the
stripping process as attack feature Sorter out of attack paths.
For the determination of attack presence two-step machine
learning is used, namely logistic regression and belief prop-
agation.

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 6

Fig. 3: Potential attack paths in the correlation graph as
flagged up by MapReduce parser

Logistic regression provides a quick means of ascertain-
ing whether a given test data projects to one of the two
pre-defined classes, as well as supporting the quick training
of a classifier given a training set, (X ∼ Y ), which denotes
a series of features versus classes. This makes it suitable
for calculating attack’s conditional probabilities with respect
to (wrt) individual attributes. Furthermore, whenever an
attack presence has been ascertained, the logistic regression
classifiers can be quickly retrained in real-time using the
newly-identified attack features for future attack detection.

Belief propagation takes into account the conditional
probabilities in order to calculate the belief of attack pres-
ence within the virtualized environment. This allows for
a holistic approach to attack detection, ensuring that the
calculated belief accurately reflects the probability contri-
butions from the individual attributes.

The determination of attack presence consists of two
phases, i.e.,

• Training and retraining of logistic regression classi-
fiers

• Attack classification using belief propagation

Conditional probabilities with respect to the attributes
are calculated based on the features observed from the logs
using the trained logistic regression classifiers. Using any of
the obtained conditional probabilities with respect to indi-
vidual attributes alone is not enough to obtain a complete
perspective of the attack probability. Therefore, observations
of all attributes should be taken advantage of to ascertain
attack presence. Belief propagation is used to calculate the
belief of an attack by taking into consideration attack’s
conditional probabilities with respect to all the attributes.

3.3.1 Training and retraining of logistic regression classi-
fiers
Used in binary classification problems, logistic regression
provides a quick means of training a classifier which is used
to determine if a particular test data projects to one of the
two pre-defined classes.

Logistic regression operates as follows. Let C be a
set of two pre-defined classes, i.e., {c, c̄} or {0, 1} (e.g.,
{attack, benign}). Suppose there are n independent features
and a feature data series is of the form χ = [χ1, χ2, ..., χn]T .
Let X = {χ(1), χ(2), ..χ(N)} be the series of N obtained
data of feature data series χ, where χj denotes the jth

sampled data of χ. Let Y = {y(1), y(2), ...., y(N)} be the
corresponding class set specifying which one of the two pre-
defined classes c and c̄ each feature χ projects to.

Four attributes are defined to characterize a po-
tential attack, namely incoming network connections
(in connect), outgoing network connections(out connect), un-
known binary executions (unknown exect) and opened ports
(port change). While the monitored features refer to the
sensor data out of the computer system being monitored,
attributes are defined to characterize the situation where
an attack may present. The first two attributes are used
to determine attack presence based on their source and
destination port numbers, while the latter two attributes are
used to determine attack presence based on the applications
running within the guest VMs as well as the ports opened
by the applications.

In order to determine the presence of the attack with
respect to the attributes, logistic regression classifiers are
trained for analyzing the source and destination ports as
well as the applications and the ports which are opened in
the guest VMs.

Logistic regression calculates the probability P of attack
at which a feature χ projects to one of the two pre-defined
classes using the logit function as below.

P (y = c|χ) =
1

1 + e−ξ
(4)

where ω0, ω1, ω2, .., ωn are the weighting coefficients,
and

ξ = ω0 + ω1χ1 + ω2χ2 + ..+ ωnχn (5)

In the context of our BDSA approach, we set two logistic
regression classifiers LRapp and LRport using Eq. 4. Once
trained, beforehand in a batch, and retrained with newly-
identified attack features, the conditional probabilities with
respect to individual attributes are calculated using the
respective logit functions.

To train a logistic classifier for port analysis we have
gathered a set of 300 port numbers used by different mal-
ware applications as well as another set of 300 ports used by
legitimate applications (e.g., SSH) to be the training data set.
While the malware port numbers are obtained from SANS
[21], the port numbers used by legitimate applications are
obtained from IANA (Internet Assigned Numbers Author-
ity) [22].

In order to train the logistic regression classifier, the
obtained ports are first categorized into two groups, namely
sys port containing the legitimate port numbers, and
malware port containing the malware port numbers. Each
of the port categories is then encoded with a numer-
ical value, with sys port assigned a value of 1 while
malware port a value of 2, so that they can be represented
as feature vectors χport during the training of the logistic
regression classifier.

The port numbers are treated as numerical values, in
order to cater for the port numbers which do not deviate
significantly from those in the training set and thus belong
to the same port category. For example the nginx web
server listens for connections on port 80 when deployed
in a guest VM without any web server running on it prior
to its deployment. When deployed on a guest VM which
already has another web server (e.g., Apache) running on
it, however, it needs to update its default port to another

fei
Highlight

fei
Highlight



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 7

value (e.g., 82) since the Apache web server also listens
for connections on port 80 to avoid causing access conflicts.
Therefore, by treating the port numbers as numerical values
in the feature set, it allows minor port changes such as
this to be classified as legitimate port numbers without
misclassification. During the experiments, we find that the
trained port logistic regression classifier is able to identify
a port number as belonging to the same port category if it
does not deviate from the training set port beyond 2 (i.e.,
port 82 is classified as a legitimate port due to its close
proximity to port 80).

Table 1 shows the port numbers together with their en-
coded port category values and their classifications, with 0
representing a legitimate port and 1 representing a malware
port.

TABLE 1: Examples of Training set: Ports versus classes

Port number Port category Port category Class
(χ1) value (χ2) (y)
22 sys port 1 0
80 sys port 1 0
8080 sys port 1 0
6666 malware port 2 1
1090 malware port 2 1
7777 malware port 2 1

Using the representation as shown in Table 1, a training
set (Xport ∼ Yport) are created. Xport consists of a series of
feature vectors χport each of which is of the form χport =
[χport number, χport category value]

T , and Yport contains the
corresponding class which each χport projects to. Using
the first entry in Table 1 as an example, its feature vector
χsys port is represented as [22, 1]T while its corresponding
class vector ysys port is represented as 0.

The obtained training set Xport = {χ(1), χ(2), ..., χ(i)}
together with its corresponding class vector Yport =
{y(1), y(2), ..., y(i)} are then used to train a logistic regression
classifier using scikit-learn which uses Eq. 6 to train the
classifier. The training set (Xport ∼ Yport) are stored in the
Cassandra distributed database.

P (Attack|χport) =
1

1 + e−ξport
(6)

where,

ξport = ω0 + ω1χ1 + ω2χ2 + ..+ ωnχn (7)

Similarly, to train a logistic regression classifier for
application analysis we have identified benign internet-
interfacing user applications (e.g., firefox for web brows-
ing, nginx for web server) as well as those applications
that are frequently used by malware and botnet programs
(e.g., netcat). The identified applications are categorized into
three categories: web app, sys util, and unknown depending
on their usages. Each of the application category is then
encoded with a numerical value with web app assigned a
value of 1, sys util a value of 2, and unknown a value of 3.
Similarly each of the user ID is encoded with a numerical
value, with user ID 0 (i.e., root user) assigned a value
of 0 and user ID 1000 (i.e., non-root user) assigned a
value of 1. Table 2 shows the application categories and the
user IDs together with their respective category values and

classifications, with 0 representing a legitimate application
and 1 representing a possible malware application.

Once the features are encoded with numerical val-
ues, a training data set (Xapp ∼ Yapp) then is
formed , Xapp the series of feature data series χapp
= [χapp category value, χuser id value, χport]

T together with
Yapp containing the corresponding class which each χapp
projects to. Using the first entry in Table 2 as an example, its
feature vector χweb app is represented as [1, 1, 80]T and its
corresponding class vector yweb app is represented as 0.

The training setXapp = {χ(1), χ(2), ..., χ(i)} together with
its corresponding class vector Yapp = {y(1), y(2), ..., y(i)} are
then used to train a logistic regression classifier using scikit-
learn which uses Eq. 8 to train the classifier. The training
set (Xapp ∼ Yapp) are stored in the Cassandra distributed
database as separate column tables.

P (Attack|χapp) =
1

1 + e−ξapp
(8)

where,

ξapp = ω0 + ω1χ1 + ω2χ2 + ..+ ωnχn (9)

TABLE 2: Training set: Applications versus classes

Application Application User User Port Class
category category ID ID number

value (χ1) value (χ2) (χ3) (y)
web app 1 1000 1 80 0
web app 1 0 0 81 0
sys util 2 0 0 5353 0
unknown 3 0 0 164 1
unknown 3 1000 1 7777 1

It should be noted that for each logistic regression clas-
sifier, it should have its own weighting coefficients, corre-
sponding the respective feature vector. During the training
of the logisitc regression classifers for our proposed BDSA
approach, the scikit-learn machine learning package
uses the Coordinate Descent [20] algorithm to automatically
calculate the weights ω0, ω1, ω2, .., ωj for a given training set
(X ∼ Y ).

Unknown ports and application are ascertained using
the trained logistic classifiers. The column tables of the
respective features in the Cassandra database are then up-
dated and used to retrain the logistic classifiers for future
classification. The trained port and application logistic re-
gression classifiers are used to calculate the conditional
probabilities which are input into belief propagation, as
inputs their respective feature vectors.

3.3.2 Attack classification using belief propagation
Presence of attack is determined by analyzing four at-
tributes, namely incoming network connections (in connect),
outgoing network connections (out connect), unknown
binary executions (unknown exect) and opened ports
(port change). This is based on the observation that the
presence of an attack tends to result in changes in these
attributes, as the infected guest VM attempts to establish
external connections with the remote attacker. With each at-
tribute represented by a node, they form a Bayesian network
as illustrated in Figure 4(a).



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 8

Used in graphical models such as Bayesian networks
and Markov Random Fields (MRF), belief propagation is
used calculate the probability distribution (i.e., belief) of
a target node’s state using message passing [23]. Given a
node v in a Bayesian network, the belief BEL(v) of its
state is calculated using the marginal probabilities from its
neighbouring nodes. Belief propagation takes into account
the neighbouring nodes’ individual influence in calculating
the belief of v’s state, and is therefore used in our BDSA
approach for determining attack presence.

Given feature vectors (i.e., χin connect, χout connect,χport change,
χunknown exect) which are of the following form,

χin connect = [χport number, χport category value]
T

χout connect = [χport number, χport category value]
T

χport change = [χapp category value, χuser id value, χport]
T

χunknown exect = [χapp category value, χuser id value, χport]
T

(10)
the port and application logistic regression classifiers

(i.e., LRport and LRapp, respectively) which are trained using
scikit-learn produce as outputs their respective condi-
tional probabilities which calculate the probabilities of each
feature belonging to each of the two pre-defined classes (i.e.,
Attack and Benign) which are of the form as below.

P port change(Attack|χport change) =[P
port change
Attack ,

P
port change
Benign ]

P unknown exect(Attack|χunknown exect) =[P unknown exect
Attack ,

P unknown exect
Benign ]

P in connect(Attack|χin connect
port ) =[P in connect

Attack ,

P in connect
Benign ]

P out connect(Attack|χout connect
port ) =[P out connect

Attack ,

P out connect
Benign ]

(11)

PAttack represents the conditional probability with respect
to an attribute being indicative of an attack, and PBenign
being the conditional probability with respect to an attribute
being indicative of a benign. Intuitively if a given attribute
projects to an attack, then its attack probability (i.e., PAttack)
would be much higher than its benign probability (i.e.,
PBenign) and the reverse would be true if it were benign.

The training set for χin connect and χout connect corresponds
to the entries as shown in Table 1, and the training set
for χport change and χunknown exect corresponds to the entries as
shown in Table 2.

While the trained port and application logistic regression
classifiers provide the conditional probabilities with respect
to individual attributes, each of them on its own is not
able to provide a complete picture of attacks within the
virtualized environment. Therefore, belief propagation is
applied to calculate the belief in the presence of attack given
these conditional probabilities.

To apply belief propagation, the monitored features are
first represented as nodes in a Bayesian network as shown in
Figure 4(a). The Bayesian network provides a representation
of the relationship between different features in determining

attack presence. Each node consists of a Conditional Prob-
ability Table (CPT) containing the marginal probabilities of
each possible state (i.e., attack or benign) with respect to the
attribute. The initialized CPTs of each of the nodes in the
Bayesian network are shown in Tables 3a, 3b, 3c, 3d, and
3e. The initialised values in the CPTs of each node act as
placeholders to ensure consistency prior to the execution of
our BDSA approach.

During the execution of the approach, however, the CPTs
of the monitored features are updated with the respective
attack and benign probabilities (i.e., PAttack and PBenign)
which are calculated by the trained port and application
logistic regression classifiers.

TABLE 3: CPTs

(a) unknown exect

Attack Benign
0.5 0.5

(b) in connect

Attack Benign
0.5 0.5

(c) out connect

Attack Benign
0.5 0.5

(d) port change

Attack Benign
0.5 0.5

(e) Attack

Attack Benign
0.5 0.5

After the marginal probabilities are represented as
CPTs, the belief (BELAttack) of the Attack node’s state is
then calculated using message-passing. This involves pass-
ing the marginal probabilities with respect to individual
attributes (i.e., port change, unknown exect, in connect,
and out connect) into the Attack node in the identified
Bayesian network. Their attack probabilities (i.e., [PAttack])
are then aggregated in the Attack node before calculating
BELAttack as below.

BELAttack = P port change(Attack|χport change)

×P unknown exect(Attack|χunknown exect)

×P in connect(Attack|χin connect
port )

×P out connect(Attack|χout connect
port )

(12)

However one of the limitations of this approach is the
size of the CPT table for the Attack node. Given the number
of nodes involved, the Attack node has to maintain 32
entries (25 = 32) containing the conditional probability
distributions of each of the four nodes within the Bayesian
network as well as its own attack probabilities obtained
through applying Eq. 12. In addition it also makes it difficult
to update the CPT entries within the Attack node efficiently
to reflect the updated CPT values of the individual nodes,
as they are updated during the execution of our BDSA ap-
proach. The individual CPTs of the attributes as well as the
joint conditional probabilities between them are therefore
represented as a factor graph [24].

Used in factor graphs to represent the structure of a
factorization, factor graphs in a Bayesian network encode
the individual as well as joint Conditional Probability Tables
(CPTs) among the nodes in the Bayesian network [24]. Given



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 9

belief propagation’s message-passing formula to calculat-
ing marginal probabilities, representing the CPTs as factor
graphs allows the changes in the local CPTs to be tracked
more efficiently during the execution of the algorithm.

In the updated Bayesian network identified in Figure
4(b), the factor graphs are illustrated by red square boxes
together. Factor graphs Fexe, Fin, Fout, and Fport represent
the CPTs of the individual attributes, Fattack represent the
joint CPT between unknown exect, in connect, and Attack
which is of the following form as shown in Table 4.

TABLE 4: Joint CPT between unknown exect, in connect, and
Attack

nodeunknown exect nodein connect nodeAttack

Attack Attack Attack
Attack Benign Attack
Benign Attack Attack
Benign Benign Attack
Attack Attack Benign
Attack Benign Benign
Benign Attack Benign
Benign Benign Benign

The use of factor graphs reduces the number of entries in
the joint conditional probability distributions for the Attack
node (denoted by Fattack) since it only needs to track 8
entries representing the conditional probabilities between 3
nodes (i.e., unknown exect, in connect, and Attack) as shown
in Table 4. This makes it easier to update its conditional
probability values during the execution of our BDSA ap-
proach.

(a) (b)

Fig. 4: (a) Bayesian network of attributes, (b) Bayesian
network with factor graphs

The process of belief propagation can further be ex-
plained, with an example of the potential attack paths as
shown in Figure 2.

Given a potential attack path as shown in Snippet 3, the
logistic regression classifiers for unknown exect as well as
in connect determine if the application and the incoming
connection, respectively, are indicative of a malware
attack presence. First, the application details (i.e.,backdoor,
unknown, 1000, 164) and the incoming connection details
(i.e., 192.168.100.10, 6666) are extracted from the attack
path. They are then represented as feature vectors and
put as test data to their respective classifiers. Similarly,
for the logistic regression classifiers for out connect and
change port, the outgoing connection (i.e., 192.168.100.11,
164) and application port details (164, malware port)
are extracted and then put as test data to their respective
logistic regression classifiers.

Snippet 3: Example of potential attack path
( <1 9 2 . 1 6 8 . 1 0 0 . 1 0 , 6666 , 1 9 2 . 1 6 8 . 1 0 0 . 1 1 ,

164 , backdoor , 1000> , 1 )

Using the updated Bayesian network with factor graphs,
the message-passing approach of belief propagation works
as follows. Upon receiving the marginal probabilities from
their respective logistic regression classifiers, each of the
nodes in the updated Bayesian network calculates a mes-
sage µ which represents the probability of their respective
attributes being an attack (Attack) or benign (Benign). The
messages µ are passed into the Attack node to calculate be-
lief BELAttack of its state and is calculated as below, where
each Ω corresponds to each of the nodes in the Bayesian
network (i.e., Ω1 = unknown exect, Ω2 = in connect,
Ω3 = out connect, and Ω4 = port change).

µexe→Attack(Attack) =
∑

exe∈Ω1

F (exe, attack)

µin→Attack(Attack) =
∑
in∈Ω2

F (in, attack)

µout→Attack(Attack) =
∑

out∈Ω3

F (out, attack)

µport→Attack(Attack) =
∑

port∈Ω4

F (port, attack)

(13)

While the messages from the out connect and port change
(i.e., µout and µport, respectively) directly go into the Attack
node for calculation, the messages from unknown exect and
in connect (i.e., µexe and µin, respectively) are passed into
factor node Fattack to calculate their joint conditional prob-
ability distribution which reflects their mutual relationship.
This is done by multiplying each entry in Fattack with µexe
and µin, before summing over all possible states (i.e., Attack
and Benign) of the unknown exect and in connect nodes. This
results in the generation of a message µFattack

which is
calculated as below, and passed into the Attack node.

µattack =
∑

unknown exect

∑
in connect

Fattack(unknown exect,

in connect)× µexe × µin
(14)

Using the probability values calculated by the
out connect and change port nodes(i.e., µout and µport
respectively), the belief BELAttack is calculated as below.

BELAttack = µport × µFattack
× µout (15)

Algorithm 1 provides the pesucode of the belief propa-
gation algorithm which is used in our BDSA approach.

At the initialization phase, the prior probabilities with
respect to individual attributes are assigned values based on
the initial observations obtained offline. During the lifetime
of the execution of the BDSA approach, the probabilities
contained in the factor nodes are updated based on the
updated logistic classifiers values.



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 10

Algorithm 1 Belief propagation for BDSA

Input: P port change, P unknown exect, P in connect, and P out connect

1: Initialize: Create the Bayesian network of attack fea-
tures using factor graphs as shown in Figure 4(b)

2: Set the factor graphs Fexe, Fin, Fout, and Fport with the
placeholder CPTs as shown in Tables 3a ∼ 3e.

3: while True do
4: Update the factor graphs Fexe, Fin, Fout, and Fport

with the respective conditional probabilities PAttack and
PBenign.

5: Calculate µexe→Attack, µin→Attack, µout→Attack, and
µport→Attack

6: For unknown exect and in connect, calculate
Fattack using Eq. 14.

7: Calculate BELAttack using Eq. 15.
8: if BELAttack < lower belief then
9: Alarm “attack presence”.

10: Update the tables in Cassandra DB with newly-
identified attack features.

11: End do
12: End

Fig. 5: Information flows in our BDSA approach

3.4 Overall algorithm of BDSA
Our BDSA approach can be formulated in pseudocodes as
shown in Algorithm 2. The overall information flows of our
BDSA approach can be illustrated as in Figure 5.

The execution of the proposed BDSA approach begins
by loading all well-known malicious as well as benign port
numbers from the distributed Cassandra database. Both of
these port types are then used to train a classifier using
using logistic regression. This allows the proposed approach
to determine on-the-fly the probability of an unknown port
being malicious, before passing it to the belief propagation
framework for final aggregation.

A trained logistic classifier is used to determine if any of
the attributes are malicious or benign, before passing their
respective probabilities to the belief propagation process
for final probability aggregation. Belief propagation process
takes attack’s conditional probabilities with respect to indi-
vidual attributes to calculate the belief of attack presence,
taking into account each conditional probability values to
ensure that the value obtained is not influenced only by any

conditional probability alone.

Algorithm 2 Security analytics in BDSA

1: Initialize: Obtain benign and malicious parameters of
the attack features from Cassandra DB.

2: Train classifiers for monitored features using Logistic
Regression.

3: while True do
4: Collect network and user application logs from guest

VMs.
5: Filter network log entries using the guest VMs’ IP

addresses.
6: Form correlated log.
7: Use correlated log to form a correlation graph G.
8: Input G into MapReduce parser to identify potential

attack paths {attack paths}, which is a sub-set of all
graph paths as shown in Figure 3.

9: for each attack path in {attack paths} do
10: i← 0.
11: for each monitored feature tfeature in attack path

do
12: Calculate P port change, P unknown exect, P in connect,

and P out connect

13: Pass P port change, P unknown exect, P in connect, and
P out connect into Step. 4 of Algorithm 1.

14: End do
15: End do
16: End

4 EXPERIMENTAL EVALUATION

4.1 Testbed setup

The proposed big data based security analytics (BDSA)
was implemented using Python. For experiments, BDSA
is run on the HPC server nodes running Ubuntu 14.04 in
the on-campus VOTER (Virtualiszation Open Technology
Research) network. Figure 6 illustrates the testbed setup
in prototyping the proposed BDSA approach, while the
software stack on each HPC node is illustrated in Figure
7. Each of these servers consists of an Intel Xeon quad-
core processor at 2.66 GHz along with 12 GBs of memory,
with Linux kernel version 3.18.18 (64-bit) running on it.
A virtualization environment is first set up using Kernel-
based Virtual Machine (KVM) on each of the HPC nodes to
enable multiple guest VMs to be run on them, as well as
support their migration across the nodes. Apache Hadoop
is then installed on the server nodes to support distributed
log storage, and Apache Spark is installed to provide real-
time data collection and MapReduce parsing. Cassandra
columnar database system is installed on top of it to support
distributed storage of identified malicious applications and
ports, as well as the real-time re-training of the logistic
regression classifiers. Finally the scikit-learn Python machine
learning package is then installed on the nodes to enable
the creation of logistic regression classifiers for the BDSA
approach.

Based on our experiments, an attack path is considered
malicious if the belief BELAttack calculated from belief
propagation is below the threshold lower belief = 0.2.

fei
Highlight



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 11

Fig. 6: Testbed system topology

The BDSA approach is evaluated by creating a guest
VM running CentOS 6.5 as well as another two guest VMs
running Ubuntu 14.04 (64-bit) on one of the aforementioned
HPC server nodes. Aspects for evaluation include the ability
to detect both userspace malware as well as kernel-level
rootkit attacks and the time taken to detect the presence of
attacks within the guest VMs.

Fig. 7: Software stack on HPC node

4.2 Detection of userspace malware and kernel-level
rootkits

The ability of the BDSA approach to detect different mal-
ware attacks is evaluated by executing the two userspace
malware programs as well as the two kernel-level rootkits
on the guest VMs. The malware and rootkits are taken from
PacketStorm [25] as shown in Table 5. They were selected
due to the availability of their source code, which enables
the severity of their attacks to be modified and tested against
our BDSA approach.

Detection of userspace malware
Also known as application-level malware, userspace malware
runs at the application-level of the guest operating system
alongside other legitimate applications. The ability of our

TABLE 5: Malware and rootkits tested

Malware/Rootkit Category Execution space Characteristics
on guest VM

Reverse Malware User space Establishing an
shellcode external

reverse shell
connection

C & C botnet Malware User space Creating a
master-slave
botnet
connection

XingYiQuan Rootkit Kernel space Executing in
the guest VM’s
kernel
and
establishing
an
external
connection

Azazel Rootkit Kernel space Executing in
the guest VM’s
kernel
and
establishing
an external
connection

BDSA approach to detect userspace malware is evaluated
by executing the aforementioned userspace malware on the
guest VMs.

In order to run the userspace malware, a test scenario
is set up, that is, one guest VM acts as an attacker while
another guest acts as an attack victim. The attacker VM is
then made to listen to different non-standard port numbers
using netcat, and then runs the reverse shellcode on the
victim VM. The same test scenario is used for creating a C
& C (Command & Control) botnet, by running the server
component of the botnet on the attacker VM and its client
component on the guest VM. In both of the test scenarios,
the userspace malware is executed as is with only the
hard-coded destination IP addresses and the port numbers
modified.

Both userspace malware programs are executed 5 times
with up to three guest VMs. In all cases, our BDSA approach
is able to detect them through monitoring the communi-
cation flows between them as well as the ports which are
opened on the guest VMs.

Detection of kernel-level rootkits
While userspace malware runs at the application-level
alongside other legitimate applications, kernel-level rootkits
run within the kernel of the operating system. Rootkit nor-
mally proceeds in two steps. First, rootkit makes attempts
to gain privileged level (root) access into the operating
system. Then, it installs itself into the operating system
kernel as a Loadable Kernel Module (LKM). Because it is
the privileged level at which they are executed, rootkits are
difficult to be detected using traditional application-level
malware detection approaches.

The ability of our BDSA approach to detect kernel-
level rootkits is evaluated by executing the XingYiQuan
and Azazel rootkits on the guest VMs. These rootkits take
control of the guest VM by modifying the underlying system
call table (sys_call_table) entries and establishing exter-
nal network connections using the Netfilter kernel module,



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 12

which thus makes it difficult for application-level firewalls
to detect the communication flows. However, while Xingy-
iQuan is not persistent across reboots Azazel is persistent in
the guest VM’s kernel across boots.

As in the case for user-level malware in order to run
rootkits, a client-server test scenario is set up, that is, one
guest VM acts as an attacker while another VM acts as
an attack victim. The rootkits are then run on the client,
with the attacker VM made to listen for connections using
netcat.

Both rootkits are executed 5 times with up to three guest
VMs. In all cases, our BDSA approach is able to detect them.
By remotely executing the netstat command at the root
level, our BDSA approach is able to detect the applications
as well as the ports which are being opened by the rootkits.

4.3 Measurement of the average detection time

In order to measure the amount of time taken for our BDSA
approach to detect attack presence in the guest VMs, the two
userspace malware programs as well as the two kernel-level
rootkits taken from PacketStorm [25] as shown in Table 5
are executed on the guest VMs. The tests are carried out in 3
cases, namely with 1 guest VM, with 2 guest VMs, and with
3 guest VMs, respectively.

In each test first the malware programs and rootkits are
executed in their respective execution spaces on the guest
VMs, with the BDSA approach running on the HPC host.
The malware programs and rootkits are executed on the
guest VMs, and the detection time for each attack execution
is recorded accordingly. The detection time D of one test is
the summation of the recorded times after the execution of
the malware and rootkits, that is,

D = Tmalware1 + Tmalware2 + Trootkit1 + Trootkit2.

After the execution of each of the malware or rootkit in
each test an interval of wait for approximately two minutes
is taken before the test is repeated for the next time. Given
the different execution space in which the tested malware
and rookits operate on the guest VM, this inter-test waiting
helps to prevent the detection time from being affected by
caching, typically employed by the guest OS to store fre-
quently triggered instructions to facilitate faster execution.

The tests are repeated 10 times consecutively, with an
interval of wait between the two tests. The 10 times of the
consecutively repeated tests are set as one round. For each
case of 1, 2, and 3 VMs 5 rounds of tests are carried out. After
each round of tests, a cease of attacks for approximately
two minutes is taken to remove the collected logs from the
HDFS; then, it resumes a new round. The detection times
are averaged across the 5 rounds to eliminate potential
inconsistency of measurements. That is, in the jth test for
the ith case, the detection time Dij is as below.

Dij = (

5∑
k=1

Dk
ij)/5 (16)

where k is the index for the rounds of tests (i.e., k = 1,...,
5); i is the index for the cases of VMs (i.e., i =1,2,3); and j is
the index for the consecutively repeated tests (i.e., j=1,..,10),
Dij is the bundled time of detecting all the 4 malware

programs and rootkits in Table 5 after being launched as
a pack of attacks on to the guest VMs.

Therefore, in each case of the 1, 2 and 3 VMs there are
50 measurements of the detection time which are averaged
across the 5 rounds of tests for consistency purpose. The
resulting 10 detection times Dij are then illustrated in
boxplots as shown in Figure 8.

●

●

●

●

●

●

●

One VM Two VMs Three VMs

0.
06

0.
08

0.
10

0.
12

 D
et

ec
tio

n 
tim

e 
(m

s)

Fig. 8: Detection times of our BDSA

As expected, there is only a slight increase in the de-
tection time as the number of guest VMs increases. When
tested with a single VM, the median detection time in the
boxplot is approximately 0.06 ms which increases to 0.07 ms
with the introduction of a second VM. The slight increase
in median detection time is because the two guest VMs
run different operating systems, with one running Ubuntu
14.04 and the other running CentOS 6.5. This results in a
delay time in obtaining the guest process lists from the
VMs, due to the difference in processing remote command
executions (netstat) by the guest OSes. While both guest
OSes are able to process the same remote command execu-
tions, the CentOS guest OS uses as its access control module
the stricter SeLinux (Secure Linux) instead of the relatively
more flexible AppArmor access control module used in the
Ubuntu guest OS. This meant that the SeLinux conducts
more rigorous checks on the remote command execution
before allowing it to be executed on the guest VM, causing
an increase in delay as a result.

In addition, the two outlier detection times in the case
of two guest VMs stems from the tendency of the guest
SSH server to reset itself periodically after a certain number
of connections (1000 in this case) as a built-in mechanism
to prevent against DDoS (Distributed Denial of Service)
attacks.

With the introduction of a third guest VM running
Ubuntu 14.04, the median detection time increased slightly
up to 0.066 ms which is relatively consistent with previous



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 13

case with two guest VMs. This is due to two of the guest
OSes running the more flexible AppArmor access control
module, which enables the remote commmand executions
to be executed on the guest VMs and the results to be
obtained quicker. However the number of outlier detection
times also increased from two in the previous case to four,
reflecting the guest SSH server running in the third guest
VM to periodically reset itself to prevent against DDoS
attacks.

4.4 Comparisons with existing security approach

In order to evaluate comparatively the performance of our
BDSA approach, we have also implemented the VMI-based
Livewire virtualization security approach based on the work
by Garfinkel et.al [26].

The reason of choice behind this is that Livewire is similar
approach to threat detection in using external monitoring
of guest VM behaviour. Specifically, Livewire periodically
polls the guest VM behavior through executing remote
commands such as ps as well as obtaining the hardware-
level information to infer the guest VM’s behavior. Due
to the similarity in this regard to our BDSA approach in
monitoring threat in guest VMs, Livewire is used for the
comparative evaluation.

The comparative evaluation scenario is carried out as
follows. First a guest VM running Ubuntu 14.04 (64-bit) on
both the Livewire host and the host on which our BDSA
approach was deployed. With the polling period being set
to 1 second for both approaches, the botnet code as well as
the malware code from PacketStorm [25] is then executed on
the guest VM. The tests are run for 5 times for consistency
of measurements and the average detection times for both
approaches are obtained, and plotted in Figure 9.

●●
●●●

●

●●●

●

Livewire Proposed approach

0.
06

0.
08

0.
10

0.
12

 D
et

ec
tio

n 
tim

e 
(m

s)

Fig. 9: Performance comparison between Livewire and our
BDSA approach

At a first glance, Livewire is able to detect attack presence
faster than our BDSA approach by approximately 0.04 ms.
The reason behind this is due to the ability of Livewire to
take advantage of the principle of locality for threat detection.
Given that Livewire runs on the same host on which the
guest VM is located, it is able to traverse the host physical
memory faster. This is evidenced by the 28 outlier detection
times in the Livewire boxplot, and can be attributed to the
delays caused by the software interrupts issued by the KVM
hypervisor.

Given the remote process taken by our BDSA approach
in detecting attack presence in guest VM, it requires estab-
lishing remote SSH connections to the guest VM to obtain
its application logs. This is evidenced by the single outlier
detection time of approximately 0.12 ms, which is attributed
to the periodic resetting of the SSH connection from the
guest VM.

In addition, the detection time in our BDSA approach
also comprises the time taken by the master HPC head
node as shown in Figure 6 in distributing the MapReduce
processing of the logs to the different HPC nodes over the
network, and obtaining the correlation graphs from them for
threat detection. As a result of these two factors our BDSA
approach incurs a slightly higher detection time than the
Livewire approach.

However, it is also observed that in this best case scenario
as can be seen in the boxplot, our BDSA approach provides
a faster detection time of approximately 0.02 ms against 0.04
ms of Livewire. In respect of scalability over the number of
VMs, we have also shown that the overall detection times
are fairly consistent with the increase in the number of guest
VMs whereas Livewire has to be deployed duplicately in
each VM. With all considerations put together, apparently
our proposed BDSA approach provides an overall competi-
tive performance even compared to Livewire.

5 DISCUSSIONS IN CONTRAST TO RELATED WORK

The use of data mining to mine attack patterns in network
logs is used in Beehive security approach [27]. Basically,
Beehive detects attacks through correlating logs obtained
from different points within the enterprise network. First
it collects logs from different points (e.g., web server logs,
user logs, IDS logs, etc) within the enterprise network are
collected over a two-week period. The logs are then parsed
using known network configuration details to extract 15
features for each host based on the IP addresses of web-
sites accessed, details of the application used, violation of
network policy, and changes in network flow characteristics
caused by the accesses. Next, the extracted features are rep-
resented as a vector, with dimension reduction carried out
by principal component analysis (PCA), and finally cluster-
ing is undertaken on the feature vectors to determine attack
presence. Beehive is able to detect attacks from large amounts
(approximately 1 TB) of log data. However, it is limited in
providing prompt threat quarantine and elimination due to
its post-factum nature. Our BDSA approach has overcome
this limitation by detecting attacks in real-time, including
formation of correlation graph by assembling network and
user application logs stored in HDFS, identification of po-
tential attack paths using the MapReduce model in Apache



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 14

Spark, and determination of attack presence by using belief
propagation to calculate the belief of attack presence and to
retrain classifiers.

Graph-based analysis is used in BotCloud [14] to detect
botnet attacks. It involves two steps. First Netflow traffic logs
obtained over a 48 hour period are represented as a network
graph. Then, MapReduce model together with PageRank
algorithm is used to identify subgraphs consisting of com-
mon source/destination traffic flows. BotCloud does not sup-
port real-time threat mitigation/quarantine due to its post-
factum length of data. Our BDSA approach has overcome
this limitation by obtaining traffic and application logs in
real-time, allowing for detection of attacks in real-time and
an immediate response to attack presence.

Big data analytics together with machine learning using
Netflow traffic logs is used to detect P2P (Peer-to-Peer) botnet
[28]. The approach involves three steps. First well-known
botnet code is executed on the testbed and the network
traffic over a 48 hour period is collected, and important
packet features (e.g., time delay between packet transmis-
sions, packet header length, etc) are extracted and stored
in an Apache Hive database. With the extracted values,
a MapReduce model is used to cluster common features.
Finally a Random Forest classifier is trained on the clustered
features using Apache Mahout. This detection scheme is
limited in detecting sophisticated attacks which can adapt
their communication behaviour to trick the system by mim-
icking normal communication flow. The logistic regression
together with belief propagation in our BDSA approach is
able to detect such attacks since attack presence can be
dynamically determined based on changes in any of the
attributes. Our BDSA approach is more insightful as it
takes into account the changes both in the characteristics
of the applications running within the guest VMs and in the
network traffic flow.

Table 6 provides a summary of their features as well as
their strengths and limitations.

6 CONCLUSION

In this paper, we have put forward a novel big data based
security analytics (BDSA) approach to protecting virtualized
infrastructures in cloud computing against advanced at-
tacks. Our BDSA approach constitutes a three phase frame-
work for detecting advanced attacks in real-time. First, the
guest VMs’s network logs as well as user application logs
are periodically collected from the guest VMs and stored
in the HDFS. Then, attack features are extracted through
correlation graph and MapReduce parser. Finally, two-step
machine learning is utilized to ascertain attack presence.
Logistic regression is applied to calculate attack’s condi-
tional probabilities with respect to individual attributes.
Furthermore, belief propagation is applied to calculate the
overall belief of an attack presence. From the second phase
to the third, the extraction of attack features is further
strengthened towards the determination of attack presence
by the two-step machine learning.

The use of logistic regression enables the fast calculation
of attack’s conditional probabilities. More importantly, logis-
tic regression also enables the retraining of the individual
logistic regression classifiers using the new attack features

TABLE 6: Comparison of security approaches

Approach Working Characteristics Strengths Limitations Improve-
ments
by our
BDSA
approach

Beehive Use of PCA Identifying Post-factum Real-time
[27] and clustering previously threat threat

for attack detection. unknown detection. detection.
Clustering-based attacks.
correlation.

BotCloud Use of PageRank Identifying Limited Wide
[14] algorithm botnets monitoring monitoring

for C & C botnet and their scope scope
detection. connections. (i.e., network (i.e., network
Graph-based logs). logs and
correlation. application

logs).
Large-scale Use of Detecting Limited Detecting
botnet common packet well known against mimicry/
detection characteristics. botnet mimicry/hidden hidden
[28] Clustering-based attacks. attacks. attacks.

correlation. Wide
protection
scope.

Our BDSA External monitoring Detecting both Occasional Real-time
approach of guest VM botnets and latency increase threat

behavior. in-VM due to detection.
Graph-based malware. SSH server Detecting
correlation. Real-time reset by mimicry/
Use of logistic automated guest VMs. hidden
regression with retraining of attacks.
belief classifiers. Wide
propagation, monitoring
i.e., classifiers at scope.
individual and
aggregate levels, for
determination
of attack presence.

as they are obtained from attack detection. The use of belief
propagation calculates the aggregate belief of an attack
presence by taking into account the conditional probabilities
with respect to individual attributes, which thereby achieves
a holistic view of the guest VM’s behavior.

The effectiveness of our BDSA approach is evaluated by
testing it against well-known malware and rookit attacks. In
all cases, it has been shown that our BDSA approach is able
to detect them while maintaining a consistent performance
overhead with increasing number of guest VMs at an aver-
age detection time of approximately 0.06 ms. Tested against
Livewire, our BDSA approach incurs less performance over-
head in attack detection through monitoring the guest VM’s
behavior.

Our BDSA approach has taken advantage of the dis-
tributed processing of HDFS and real-time ability of MapRe-
duce model in Spark to address the velocity and volume
challenges in security analytics. To tackle the veracity issue
posed in zero-day attacks, our BDSA approach addresses
this challenge by enforcing the on-the-fly mechanism for the
retraining of logistic regression classifiers.

REFERENCES

[1] D. Fisher, “’venom’ flaw in virtualization software could lead
to vm escapes, data theft,” https://threatpost.com/venom-
flaw-in-virtualization-software-could-lead-to-vm-escapes-data-
theft/112772/, 2015, accessed: 2015-05-20.

[2] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer et al., “The matter
of heartbleed,” in Proceedings of the 2014 Conference on Internet
Measurement Conference. Vancouver, BC, Canada: ACM, 2014, pp.
475–488.

[3] K. Cabaj, K. Grochowski, and P. Gawkowski, “Practical problems
of internet threats analyses,” in Theory and Engineering of Complex
Systems and Dependability. Springer, 2015, pp. 87–96.

[4] J. Oberheide, E. Cooke, and F. Jahanian, “Cloudav: N-version
antivirus in the network cloud.” in USENIX Security Symposium,
San Jose, California, USA, 2008, pp. 91–106.



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2715335, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 15

[5] X. Wang, Y. Yang, and Y. Zeng, “Accurate mobile malware detec-
tion and classification in the cloud,” SpringerPlus, vol. 4, no. 1, pp.
1–23, 2015.

[6] P. K. Chouhan, M. Hagan, G. McWilliams, and S. Sezer, “Network
based malware detection within virtualised environments,” in
Euro-Par 2014: Parallel Processing Workshops. Porto, Portugal:
Springer, 2014, pp. 335–346.

[7] M. Watson, A. Marnerides, A. Mauthe, D. Hutchison et al., “Mal-
ware detection in cloud computing infrastructures,” IEEE Transac-
tions on Dependable and Secure Computing, pp. 192 –205, 2015.

[8] A. Fattori, A. Lanzi, D. Balzarotti, and E. Kirda, “Hypervisor-
based malware protection with accessminer,” Computers & Secu-
rity, vol. 52, pp. 33–50, 2015.

[9] T. Mahmood and U. Afzal, “Security analytics: big data analyt-
ics for cybersecurity: a review of trends, techniques and tools,”
in Information assurance (ncia), 2013 2nd national conference on.
Rawalpindi, Pakistan: IEEE, 2013, pp. 129–134.

[10] C.-T. Lu, A. P. Boedihardjo, and P. Manalwar, “Exploiting efficient
data mining techniques to enhance intrusion detection systems,”
in Information Reuse and Integration, Conf, 2005. IRI-2005 IEEE
International Conference on. Las Vegas, Nevada, USA: IEEE, 2005,
pp. 512–517.

[11] I. Kiss, B. Genge, P. Haller, and G. Sebestyen, “Data clustering-
based anomaly detection in industrial control systems,” in Intel-
ligent Computer Communication and Processing (ICCP), 2014 IEEE
International Conference on. Cluj-Napoca, Romania: IEEE, 2014,
pp. 275–281.

[12] P. Giura and W. Wang, “Using large scale distributed computing
to unveil advanced persistent threats,” Science J, vol. 1, no. 3, pp.
93–105, 2012.

[13] H. Kim, I. Kim, and T.-M. Chung, “Abnormal behavior detection
technique based on big data,” in Frontier and Innovation in Future
Computing and Communications. Springer, 2014, pp. 553–563.

[14] J. Francois, S. Wang, W. Bronzi, R. State, and T. Engel, “Botcloud:
detecting botnets using mapreduce,” in Information Forensics and
Security (WIFS), 2011 IEEE International Workshop on. Foz do
Iguacu, Brazil: IEEE, 2011, pp. 1–6.

[15] L. Aniello, A. Bondavalli, A. Ceccarelli, C. Ciccotelli, M. Cinque,
F. Frattini, A. Guzzo, A. Pecchia, A. Pugliese, L. Querzoni et al.,
“Big data in critical infrastructures security monitoring: Chal-
lenges and opportunities,” arXiv preprint arXiv:1405.0325, 2014.

[16] L. Chen, T. Li, M. Abdulhayoglu, and Y. Ye, “Intelligent malware
detection based on file relation graphs,” in Semantic Computing
(ICSC), 2015 IEEE International Conference on. Anaheim, California,
USA: IEEE, 2015, pp. 85–92.

[17] D. Kirat, G. Vigna, and C. Kruegel, “Barecloud: bare-metal
analysis-based evasive malware detection,” in 23rd USENIX Secu-
rity Symposium (USENIX Security 14), San Diego, California, USA,
2014, pp. 287–301.

[18] L. Invernizzi, S. Miskovic, R. Torres, S. Saha, S. Lee, M. Mellia,
C. Kruegel, and G. Vigna, “Nazca: Detecting malware distribution
in large-scale networks,” in Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), San Diego, California,
USA, 2014, pp. 23–26.

[19] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[20] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths
for generalized linear models via coordinate descent,” Journal of
statistical software, vol. 33, no. 1, p. 1, 2010.

[21] SANS, “Intrusion detection faq: What port numbers do well-
known trojan horses use?” https://www.sans.org/security-
resources/idfaq/oddports.php, 2001, accessed: 2015-09-30.

[22] IANA, “Service name and transport protocol port number
registry,” http://www.iana.org/assignments/service-names-
port-numbers/service-names-port-numbers.xhtml, 2015,
accessed: 2015-09-30.

[23] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 2014.

[24] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs
and the sum-product algorithm,” Information Theory, IEEE Transac-
tions on, vol. 47, no. 2, pp. 498–519, 2001.

[25] PacketStorm, “Packetstorm security,”
http://tinyurl.com/qhygrsu, 2013, accessed: 29-10-2014.

[26] T. Garfinkel, M. Rosenblum et al., “A virtual machine introspection
based architecture for intrusion detection,” in Proceedings of the

Network and Distributed System Security Symposium (NDSS), vol. 3,
San Diego, California, USA, 2003, pp. 191–206.

[27] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson,
A. Juels, and E. Kirda, “Beehive: Large-scale log analysis for de-
tecting suspicious activity in enterprise networks,” in Proceedings
of the 29th Annual Computer Security Applications Conference. New
Orleans, Lousiana, USA: ACM, 2013, pp. 199–208.

[28] K. Singh, S. C. Guntuku, A. Thakur, and C. Hota, “Big data ana-
lytics framework for peer-to-peer botnet detection using random
forests,” Information Sciences, vol. 278, pp. 488–497, 2014.

Thu Yein Win is a lecturer in Computing in Fac-
ulty of Business, Computing & Applied Sciences
at the University of Gloucestershire, United King-
dom. He specializes in virtualisation security and
big data-based security analytics. His work ex-
amines the security issues in virtualisation, with
the aim of developing a security system which
protects the virtualisation environment against
security attacks. He obtained his Master degrees
from the University of Bedfordshire and Asian
Institute of Technology. His research interests

encompass a wide range of topics in security including virtualisation se-
curity, big data-based security analytics, cloud computing and informa-
tion security as well as operating systems security. He is a professional
member of the British Computing Society (BCS) as well as a member of
the IEEE.

Huaglory Tianfield is a Professor of Comput-
ing at Glasgow Caledonian University, Scotland,
United Kingdom. since March 2001. Prof Tian-
field is extensively involved in professional ac-
tivities. He is Chair of IEEE Systems, Man, and
Cybernetics Society Technical Committee on
Cyber-Physical Cloud Systems, Editor-in-Chief
of Multiagent and Grid Systems - An Interna-
tional Journal, and Associate Editor of IEEE
Transactions on Systems, Man, and Cybernet-
ics: Systems. Prof Tianfield is Director of Cloud

& Data Lab. His research areas include cloud computing, cyber security,
big data analytics and Internet of Things. He has (co-)authored over 180
research articles published in refereed journals and conferences, and is
a frequent invited speaker at conferences and institutions all over the
world. He earned his B Eng (Hon.), M Eng (research) and PhD Eng
degrees all in Electronic Engineering.

Quentin Mair is a Senior Lecturer at Glas-
gow Caledonian University, Scotland, United
Kingdom. He was a Research Assistant at
the University of Stirling from 1986 to 1990
where he developed software tools for the Es-
pirit DESCARTES project (formal specification
of real-time systems). Since 1991 he has been
a member of academic staff in the Division of
Computing at Glasgow Caledonian University
where his interests cover programming, operat-
ing systems and distributed systems. Between

1997 and 2003 he contributed to the Framework 4 VISCOUNT and
Framework 5 DIECoM. projects. His current interests include cloud and
high-performance computing.


