
IEEE TRANSACTIONS ON CLOUD COMPUTING, SPECIAL ISSUE ON MOBILE CLOUDS 1

Optimal Joint Scheduling and Cloud Offloading
for Mobile Applications

S. Eman Mahmoodi, Student Member, IEEE, R. N. Uma, Member, IEEE,
Member, ACM, and K. P. Subbalakshmi, Senior Member, IEEE

Abstract

Cloud offloading is an indispensable solution to supporting computationally demanding applications
on resource constrained mobile devices. In this paper, we introduce the concept of wireless aware joint
scheduling and computation offloading (JSCO) for multi-component applications, where an optimal decision
is made on which components need to be offloaded as well as the scheduling order of these components.
The JSCO approach allows for more degrees of freedom in the solution by moving away from a compiler
pre-determined scheduling order for the components towards a more wireless aware scheduling order. For
some component dependency graph structure, the proposed algorithm can shorten execution times by
parallel processing appropriate components in the mobile and cloud. We define a net utility that trades-
off the energy saved by the mobile, subject to constraints on the communication delay, overall application
execution time, and component precedence ordering. The linear optimization problem is solved using real
data measurements obtained from running multi-component applications on an HTC smartphone and
the Amazon EC2, using WiFi for cloud offloading. The performance is further analyzed using various
component dependency graph topologies and sizes. Results show that the energy saved increases with
longer application runtime deadline, higher wireless rates, and smaller offload data sizes.

Index Terms

Joint scheduling–offloading, mobile cloud computing, computation offloading, scheduling.

✦

1 INTRODUCTION

C
LOUD offloading has become a recognized solution for delivering computationally inten-

sive applications (e.g., video-intensive games, computer vision-based applications [1], and

real-time visual information reporting) on resource-constrained mobile devices [2], [3]. Typically,

energy and time (or delay) constraints have played a strong role in determining offloading

policies. Recently, we argued that the burden placed on the wireless networks supporting this

offloading must also be taken into consideration [4] when developing offloading strategies.

In [4], we proposed an optimal offloading policy for applications with sequential component

• S.E. Mahmoodi and K.P. Subbalakshmi are with the Department of Electrical and Computer Engineering, Stevens Institute of Technology,
Hoboken, NJ, 07030.
E-mails: {smahmood, ksubbala}@stevens.edu

• R.N. Uma is with the Department of Mathematics and Physics, North Carolina Central University, Durham, NC, 27707.
Email: ruma@nccu.edu

dependency graphs and multi-radio enabled mobile devices, that minimizes the energy con-

sumed by the mobile device such that overall execution time of the application will be below

a given threshold while simultaneously determining optimal percentage of data (associated

with computation offloading) to be transferred via each of the multiple wireless interfaces. In

this paper, we address the problem of cloud offloading for mobile applications with arbitrary

dependency graphs rather than sequential dependencies or pre-determined compiler generated

schedule order. To this end, we must consider wireless-aware scheduling of the application

components jointly with the offloading strategy. We optimally maximize a net utility function,

which trades-off the energy saved at the resource constrained device with the time and energy

costs involved in offloading while meeting the precedence constraints and execution deadline of

the application in single radio enabled mobile devices. To the best of our knowledge, this is the first

work that proposes joint scheduling–offloading for mobile applications. By optimizing the scheduling of the

individual components along with cloud offloading decisions, taking into account the wireless parameters,

allows for an overall better solution compared to optimizing only the offloading decisions using a pre-

determined compiler-generated schedule order of execution for the individual components. Besides, using

the general dependency graphs (without imposing a sequential ordering for processing) and an optimal

joint scheduling–offloading scheme can potentially allow for parallel scheduling of components in the

mobile and cloud at the same time, thus reducing time to completion for the application.

Cloud offloading can be interpreted as data flow offloading in networking applications [5] or

offloading computationally intense tasks to the cloud [6] or cloudlet [7], which is a self-managing

data center in the layer of network infrastructure [8]. In this paper, we refer to computation

offloading to the cloud. Existing work on computation offloading to cloud resources can be

classified into three types: (i) ones that offload all of the application to a cloud [9], [10]; (ii) those

in which “all or nothing offloading” is applied where either the entire application is offloaded

to the cloud or executed locally, typically depending upon which is more energy efficient for the

mobile device [11]; and (iii) partial offloading strategies where some of the component tasks are

offloaded while the others are executed locally [4], [12], [13], [14], [15]. In partial offloading, the

application can be coarsely partitioned into components [4], [12], [16], [17] or a more fine-grained

offloading can be achieved [18] by using method-level partitioning as in MAUI [13], ThinkAir

[14] and CloneCloud [19].

2

Compared to the related work in Section 3, this paper has several contributions. This is the

first work, to the best of our knowledge, that combines offloading and scheduling decisions

in the presence of arbitrary component dependencies (precedence constraints of components).

To enable capturing this multi-dimensional decision aspect of this problem, a mathematical

formulation is best suited. Hence a key technical contribution of this paper is the mathematical

formulation of the component offloading problem that arises in real mobile applications as an op-

timization problem using integer linear programming formulations. The resulting mathematical

formulation is non-trivial. Specifically first, we model the required joint offloading–scheduling

decision variables, latencies and the energy saved by cloud offloading. Then, we provide a

mathematical analysis for the optimization problem for joint wireless-aware scheduling of the

mobile application and cloud offloading. Note that the optimization problem is linearized in

order to take benefit of linear programming (LP) for obtaining the optimal solution. Third,

real data are measured from an HTC smartphone using real and random generated mobile

applications, WiFi radio interface for computation offloading, and Amazon Elastic Compute

Cloud (EC2) for remote execution. We identify the optimal solution under these real data mea-

surements using IBM CPLEX optimizer [20]. Finally, we derive a comprehensive performance

analysis of this work compared with upper and lower bounds for dependencies of applications,

the number of application components, topology of application component dependency graphs

(CDGs), application runtime, and wireless parameters such as rates, latencies, and data sizes.

The rest of this paper is organized as follows. The CDGs of mobile applications and related

work are respectively expressed as two important backgrounds of the paper in Sections 2

and 3. Then, we model the Joint Scheduling and Computation Offloading (JSCO) scheme and

formulate the optimization problem regarding to the constraints for scheduling, delay, runtime

and completion deadlines in Section 4. In Section 5, we present experiments and simulations

to evaluate the performance of the proposed optimal strategy. Finally, Section 6 presents the

conclusion and future work of the paper.

2 BACKGROUND : COMPONENT DEPENDENCY GRAPHS

All of the prior work discussed above on partial cloud offloading consider mobile applications

with sequential component dependencies or component scheduling order that is predetermined

3

by a compiler. In general, components in a real life application can have arbitrary dependency

graphs and potentially, an overall better solution can be obtained by designing a joint scheduling–

offloading policy for the components where the scheduling order of the components is also

cognizant of the wireless network supporting the offloading.

Component dependency graphs (CDGs) of mobile applications must satisfy these general

properties: (i) each component should have at least in-degree of one (except the first component,

which has in-degree of zero); (ii) components should have at least out-degree of one (except the

last component N , which has out-degree of zero); (iii) all of the components should have at

least one direct or indirect path from component 1 so that they are dependent on the common

starting point of the application (typically executed on the mobile); (iv) all of the components

should have at least one direct or indirect path to component N (the last component) and (v)

in the adjacency matrix (M) of the CDG, all the diagonal elements are zero, because there is no

self-dependency.

Fig. 1 presents different types of CDGs for an N -component application (N=14): (i) sequential

dependency graphs where all the components are sequentially dependent (Fig. 1a); (ii) parallel

dependency graph where only component 1 must be executed before components 2 to N − 1.

In addition, these components are only required to transfer their output data to component N

(Fig. 1d); (iii) random Layer-by-Layer graph (Figures 1b, 1e); and (iv) random Fan-in/Fan-out

graph (Figures 1c, 1f) [21]. In Layer-by-Layer CDGs, a random number of nodes is generated for

each of the layers and edges are added with a probability p going from a node in an earlier layer

to a node in one of the successive layers. In Fan-in/Fan-out CDGs, the Fan-in/Fan-out ratio of

each node is constrained to the given threshold. Since usually mobile-initiated applications must

start on the mobile device and have an output display on the mobile device, the first and last

components are processed in the mobile device. Note that the parallel and sequential dependency

graphs show the lowest and highest dependencies between components respectively and can be

used to obtain the lower and upper ranges for the cost of offloading on applications exhibiting

these extremes of CDGs.

4

3 RELATED WORK

Time scheduling of the application components is studied in eTime [9] and [22] in which a pre-

determined compiler-generated order of execution for the application components is considered

and all the component tasks are offloaded for remote execution. eTime explores an energy-delay

trade-off in scheduling the required data transmissions for offloading (entire computations of

application) such that the queue stability of the wireless interface is satisfied and offloading

is done when the wireless connectivity is sufficiently good. A scheduling policy for partially

offloading the sequence of fine-grained tasks with serial CDG (as in Fig. 1a) is proposed in

[15] such that the application execution time is guaranteed. While these works that use fine-

grained method partitioning for partial offloading are limited in input/environmental conditions

in the offline pre-processing and need to be bootstrapped for every new application, our work,

which uses component scheduling, does not involve this problem. Existing component-based

mobile cloud offloading strategies, such as DOA [17] and MACS [23], are not designed for

parallel processing simultaneously via the mobile device and cloud because they use a pre-

determined order of traversal of the application CDG. Our proposed scheme has this flexibility.

Another scheduling scheme to minimize the total energy consumption in a multi-user network

is studied in [24] where a centralized broker partially offloads sequential tasks to the cloud.

Thus, a centralized strategy is required to perform a two-hop offloading where the broker is

an intermediary between the mobile user and the cloud. However, using scheduling strategies

based on arbitrary CDGs extends the number of applications to be used for partial cloud

offloading. In [16], sequential scheduling of the computational tasks is considered in both single-

channel and multi-channel communications. The objective is to minimize the energy consumed

while simultaneously meeting the delay constraints of the application. However, wireless-aware

scheduling of the application components provides higher energy and spectrum efficiencies in

cloud offloading strategies.

4 PROPOSED SCHEDULING MODEL FOR MOBILE CLOUD OFFLOADING

In the mobile cloud offloading model considered in this work, the mobile device has access to

a cloud server for computation offloading, and the cloud server is endowed with parallel pro-

cessing capabilities. We additionally make the following assumptions: (i) the multi-component

5

mobile application that is utilized by the mobile user is also installed on the cloud server;

and (ii) mobile broadband connectivity does not change during the application processing time

while the wireless interface may provide different rate and delay values. Note that in the

second assumption, we consider that application processing time is not large, and most of the

related works have also assumed this condition [13], [14], [16], [17], [24], [23]. Following these

assumptions, we show a mobile cloud offloading model example of a 14-component application

in Fig. 2b. Note that this 14-component topology is the same as one of the applications we used

in the performance analysis section.

4.1 Multi-Component Application Example for the Scheduling– Offloading Model

Here we used a video navigation application, which involves graphics [25], face detection [26],

camera preview, and video processing [27], running on an HTC Vivid smartphone. Fig. 2a

shows the dependency graph for 14 components of the application. The link connection between

components i and j shows that the output data from component i is required as input by

component j, and dij represents the required data size for transferring from i to j. We observe

that this dependency could be either sequential (like the dependencies between components

1-2-3-5-14) or parallel (like the conditions of component dependencies between 1-11-14, 1-12-14,

and 1-13-14). In Fig. 2b, an example of joint scheduling–offloading of the components based on

time, place of processing, and dependency among the components is illustrated. If a component

is scheduled for offloading to the cloud, the energy consumption for processing will be saved

by remote execution. In addition, the time for processing the component decreases significantly

by remote execution (compare the times taken to process components by the mobile device and

the cloud in Fig. 2b). Moreover, some components can be processed in parallel by the cloud

(components 2, 6 and components 3, 10). However, the cost of cloud offloading should also be

considered in the scheduling–offloading decisions: (i) the costs of delay and energy consumed

by offloading as a function of data size for transferring (e.g., component 11 has very large data

for transferring so it takes a longer time for communication); and (ii) the cost of the idle state

as the mobile waits to receive the required output data from the cloud (between components 4

and 7). Thus, a smart scheduling strategy for mobile offloading based on energy-time trade-off is

required.

6

Suba
Cross-Out

4.2 Proposed Optimal Joint Scheduling & Computation Offloadin g Scheme (JSCO)

In this section, we present the formulation of our problem as an integer linear program. For

each time period (t− 1, t] denoted by time slot index t, we define decision variable, xljt, which

indicates whether component j completes processing at time slot t on the mobile (l = 0) or

on the cloud (l = 1). This decision variable captures the multi-objective requirement of mobile

communication applications to provide ”anywhere, anything, anytime” service.

The processing indicators in the mobile and cloud are respectively given by mj =
T∑
t=1

x0jt,

cj =
T∑
t=1

x1jt, ∀j, where T is the number of time periods to complete processing the application.

Also τ cmij denotes the time (the number of time slots) to transfer data from component i to j

when i ≺ j, and j is processed on the mobile and i is processed on the cloud. τ cmij includes

the product mjci where i is processed on the cloud and j is processed on the mobile. In order

to make the optimization problem linear, this quadratic term of two binary decision variables

is replaced by a new variable zji where zji is the component transferring indicator. zji gets 1

if the output data of component j (component j is executed in the mobile) is offloaded from

the mobile device to the cloud where component i (i ≺ j) will be executed. Otherwise, it gets

0. This parameter must satisfy the following four constraints [28]: zji ≤ mj , zji ≥ 0, zji ≤ ci,

zji ≥ ci− (1−mj), ∀i, j. Thus, the quadratic term of two decision variables is converted to a new

decision variable so that the optimization problem still remains linear. Similarly, τmc
ij denotes the

time (the number of time slots) to transfer data from i to j when i is processed on the mobile

device and j is processed on the cloud and includes micj which is denoted by the variable

zij . Now the times for transferring from mobile to cloud and cloud to mobile are respectively

given as τ cmij = αijzji
dij

Rd

, τmc
ij = αijzij

dij

Ru
, ∀i, j, where αij is the dependency indicator, and gets

1 if component i must be processed before j and 0 otherwise. dij is the size of data required

by component j from component i, and Ru (Rd) is the average uplink (downlink) rate of the

wireless radio interface. Note that τ cmij , τmc
ij will be zero if i = j, or if i does not precede j, or if i

and j are both processed on the cloud, or both processed on the mobile device. In addition, the

energy consumed for communication due to cloud offloading the components is modeled by

Ecom = PTx

N∑

i=1

N∑

j=1

τmc
ij + PRx

N∑

i=1

N∑

j=1

τ cmij . (1)

7

The objective function in the optimization problem over decision variables (xljt, zij , l ∈ {0, 1},

i, j = 1, . . . , N , t = 1, . . . , T) for the mobile cloud offloading scheme is mathematically formulated

as

max{
N∑

j=1

Paccjq
m
j − Ecom}. (2)

Eqn. (2) shows the maximization of the energy saved through remote execution. This energy

saved is essentially the energy cost if the offloaded components had been executed locally minus

the cost of communication energy.

Besides the constraints for quadratic parameter, the following constraints should be satisfied

in the optimization problem with the objective function given by Eqn. (2):

Runtime deadline constraint: The multi-component application has a time deadline, which should

be satisfied. This constraint is given by 0 <
T∑
t=1

tx0Nt ≤ T , ∀t, where
T∑
t=1

t.x0Nt denotes the

completion time slot for processing the last component (N) on the mobile (l = 0). This time

slot should be equal or less than T .

Each component be processed only once: Each component is processed either in the mobile or cloud,

which can be written as

mj + cj = 1 ∀j. (3)

Precedence constraint: This constraint shows that component k is required to begin processing no

earlier than the completion time of component j where j ≺ k. The constraint is expressed as

1∑

l=0

t+νk+τcm
jk

+τmc

jk∑

s=1

xlks ≤
1∑

l=0

t∑

s=1

xljs,

if j ≺ k, t = νj, . . . , T − νk − τ cmjk − τmc
jk ,

(4)

where νk is the time to process component k either on the mobile or cloud, and is given by

νk = mkq
m
k + ckq

c
k. Based on Eqn. (3), νk will include either the cloud processing time slots

for component k or the mobile processing time slots for component k, but not both. Here in

constraint (4), in order for k to be completed after the time t plus the time for possible data

transferring from j to k (τ cmjk + τmc
jk), plus the time for processing component k (νk), component

j must be completed by time t, ∀t.

8

Serial computation at the mobile device: The processed components in the mobile are required to

be executed in serial. Thus, for each time interval [t− 1, t) we can have at most one component

for processing in the mobile, which can be written as
N∑
j=1

min{t+νj−1,T}∑
s=t

x0js ≤ 1, ∀t.

Completion deadline: Each component k must be completed only after the completion of each of

its precedent components like j, plus the time (slots) to process component k itself, and the

time slots to transfer required data to the execution site of k if j is not on that same site. This

constraint is given by
1∑

l=0

T∑
t=1

txljt+τ cmjk +τmc
jk +νk ≤

1∑
l=0

T∑
t=1

txlkt, if j ≺ k, k = 1, . . . , N . Also, decision

variables should be 0− 1, xljt ∈ {0, 1}, l ∈ {0, 1}, ∀j, t, and get zero values while the coordinated

component has not been processed yet, which is written as xljt = 0, l ∈ {0, 1}, ∀j, t = 1, . . . , νj−1.

4.3 Scheduling Overhead

Since we have a linear optimization problem, the number of constraints plays the important

role in scheduling overhead because number of constraints affects memory usage more than the

number of variables [29]. In this work, the number of constraints is (6 + T)N2 + 4N + T + 2,

which is a function of application runtime and number of components (order of complexity is

O(TN2)). Also, the number of variables is N2 + 2TN (order of complexity is O(TN). However,

we do not experience schedule overhead in the offloading scenario because (i) the strategy will

be executed in the cloud server where the RAM is high enough, and (ii) JSCO is not required

for a real-time scenario while we assume fix wireless parameters.

5 PERFORMANCE ANALYSIS

In this section, we first discuss the performance of the proposed JSCO scheme in comparison

with the related works using an application in [30], and also based on a real application for

which we made real data measurements. This is the 14-component application whose CDG was

presented in Fig. 2a. To further the understanding of our model’s adaptability and scalability,

we considered some randomly generated CDGs whose layered structure and Fan-in/Fan-out

ratio could be controlled.

5.1 Real Data Measurements and Simulation Setup

An HTC Vivid smartphone with a 1.2GHz dual-core processor and WiFi radio interface were

used to gather real data. To test the performance of the proposed optimal scheme, a multi-

9

component video navigation application was used where video processing, face detection, graph-

ics, and clustering were the main features. In all, 14 components were used, four of which

are related to the graphics feature, three are for the face detection feature, six are for video

processing, and one is for clustering. Note that the first and last components are executed locally

so that the input-output of the application is accessed by the mobile user. In addition, graphics

library tools from the OpenGL mobile Android applications were used [25]; face detection was

taken from [26]; and all the video processing features were obtained from [27]. The CDG of

this application is illustrated in Fig. 2a. The execution times of the components in the HTC

phone and the cloud, uplink and downlink rates, delay at the WiFi interface were measured.

The Amazon Elastic Compute Cloud (Amazon EC2) was used as the cloud computing server.

The average transmission and reception power levels of the mobile device for WiFi service were

257.83 and 123.74mW, respectively. The active and idle power levels of the phone were 644.9 and

22mW, respectively. The power consumption of the last component in the mobile device was

55mW. These power measurements were obtained using the “CurrentWidget: Battery monitor”

application [31]. The average wireless service rates for WiFi, obtained using the TCPdump

tool, were 0.80Mbps for the uplink transmission and 1.76Mbps for the downlink transmission,

respectively. The local execution time for the 14 components were measured as [30 340 345 125

30 80 70 30 185 125 650 571 904 56] ms. Because processing of the components in the mobile

device is performed in serial, application runtime in the local execution equals the sum of the

processing times for the 14 components (3541ms). Also note that here each time period (t− 1, t],

∀t, is set to 1ms.

The obtained real data measurements were used in the linear programming proposed in

Section 4.2 with the objective function as shown in Eqn. (2) subject to the expressed constraints.

We used the IBM CPLEX optimizer [20] to solve the integer linear problem, which is known to

be NP hard. Also, the JSCO strategy is scheduled at the cloud server.

5.2 Comparison of JSCO with State of Art

We compare our proposed optimal work (JSCO) to (1) no offload (local) execution where all the

components are executed locally; (2) all offload (remote) execution where all the components

are offloaded to the cloud; (3) the dynamic offloading algorithm (DOA) in [17], which uses

10

an energy efficient partial offloading strategy; (4) HELVM algorithm from [32], which provides

runtime offloading services; and (5) a heuristic algorithm that is the revised HEFT [33] for joint

scheduling (RHJS) tasks on multiple cores used in [34]. In the simulations for this subsection, a

face recognition application with 10 sequential components was utilized [30]. The wireless net-

work parameters in [35] are used such that exactly the same parameters used for the simulation

of DOA in [17] were used for all the other schemes.

In Fig. 3, we compare the total energy consumption of the proposed scheme (JSCO) with

the 5 schemes. This comparison is normalized to the scheme with local execution of all the

components. It is observed that JSCO consumes 54%, 37%, 16%, 30%, and 11% less energy in

comparison to the schemes using local execution, remote execution, DOA, HELVM, and RHJS,

respectively.

Fig. 4 shows the time to run the application [30] for the 6 schemes. This comparison is also

normalized to the scheme with local execution of all the components. We see that by using the

optimal JSCO scheme, the application will be executed 25%, 49%, 32%, 19%, and 5% faster in

comparison to the schemes using local execution, remote execution, DOA, HELVM, and RHJS,

respectively. Thus, JSCO is a joint energy and time efficient scheme in comparison to the other

5 schemes.

5.3 Simulations for the Real Mobile Application

In this subsection, we analyze the performance of the proposed JSCO scheme using the real

14-component application (referred to as “applied CDG”) w.r.t the critical parameters of rate,

time, and data size. We compare and contrast the performance of our strategy on the real 14-

component application with arbitrary dependencies (Fig. 2) against a 14-component application

with fully parallel dependencies (Fig. 1d) and a 14-component application with fully sequential

dependencies (Fig. 1a). Since the parallel and sequential dependency graphs show, respectively,

the lowest and highest dependencies between components, lower and upper bounds for the cost

of offloading could be obtained for the applied CDG.

5.3.1 Rate Plots

Fig. 5 shows the total energy values for several uplink and downlink rates of the WiFi interface

provided for cloud offloading. Fig. 5a presents the total energy saved through remote execution

11

(the objective function in Eqn. (2)) versus wireless rates. We see that while rates increase, more

energy is saved by the mobile device with cloud offloading. This is expected, because with higher

rates, data communication is no longer a bottleneck and it is more energy efficient to offload

as many components as possible to the cloud. More energy is saved in the parallel dependency

graph, while less energy is saved in the sequential dependency graph. We observe that in the

sequential dependency graph, no energy can be saved by cloud offloading for lower ranges of

rates, and the application cannot be processed with these low rates in three seconds (the time

for local execution is 3541ms). However, in the higher ranges of rates (uplink (downlink) rate=

9200 (20240Kbps)), most of the components are offloaded to the cloud for computations in all

three CDGs. Thus, the performances of these three are closer to each other when the wireless

rates increase. In Fig. 5b, the total energy consumed by the mobile device (summation of active

energy while the mobile device is executing components locally, communication energy, and

idle energy while the mobile’s processor is not executing any component) is plotted. We see

that less total energy is consumed by the mobile device when WiFi rates increase. Moreover,

Fig. 5c illustrates the energy consumed by communication, Ecom (given in Eqn. (1)), versus

wireless rates. It is observed that the energy consumed by communication decreases with an

increase in rates for the sequential and parallel dependency graphs. Although this is true for

the applied CDG in higher rate ranges, more energy is consumed by offloading while rates

increase in the lower ranges. The reason is that more computations are offloaded when rates

increase so more energy is required for offloading, while in the higher ranges of rates, the time

to offload decreases thereby decreasing the communication energy. Note that the application

with sequential dependency cannot be executed until rates reach 1440/3168Kbps. In the lower

rate ranges, wireless delay is high, and offloading is not preferred. On the other hand, local

execution takes 3541ms when the application deadline, T , is set to 3000ms in the simulations

for this figure. Therefore, the scheme using sequential dependency graph is not plotted at lower

rates because the application cannot be executed in T = 3000ms.

Figures 6 and 7 depict the offloaded data size and the time span for communication versus

uplink and downlink rates for the applied CDG. It is observed in Fig. 6 that while rates increase,

more data is transferred for cloud offloading. More components for offloading leads to the

consumption of more energy and time for offloading, as shown in Figures 5c and 7, respectively.

12

For rates higher than 1600Kbps uplink and 3520Kbps downlink in Fig. 6, we observe that the

data size for offloading does not change much; however, the time for offloading decreases. This

results in a corresponding decrease in the energy consumed for communication.

5.3.2 Time Plots

Figures 8a, 8b, and 8c respectively plot the total energy saved, total energy consumption, and

the energy consumed by communication versus execution time of the application for the three

different CDGs considered–sequential, applied and parallel. When more time is allotted for the

execution of the application, cloud offloading is preferred and leads to a decrease in energy

expenditure by the mobile device.

Figures 5 and 8 show that using the JSCO scheme (the scenario where the applied CDG is

used) works better than using an optimal offloading scheme that uses a compiler pre-determined

sequential traversal of an arbitrary CDG (the scenario where the sequential dependency is used).

Examples of sequential traversals of arbitrary CDGs include [13], [36]. Specifically, we see from

Fig. 8 that the processing of an application with sequential traversal CDG can be completed in

no less than 3300ms, while the application with applied CDG can be processed in 2400ms and

the application with parallel CDG can be processed in 2000ms (rates are set to 800/1760Kbps).

In addition, the application with sequential dependency cannot be executed until rates reach

1440/3168Kbps, whereas the applied CDG is processed at much lower rates, 640/1408Kbps, while

T is set to 3000ms (Fig. 5).

We consider another metric, the number of transitions, where a transition is a data transfer

between the mobile device and the cloud. In Fig. 9, the number of transitions between the

mobile device and the cloud is plotted against the execution time for the applied CDG. We see

that for the simulations where T ≥ 2900ms, the number of transitions between the mobile and

cloud decreases from six to four. Moreover, Fig. 10 illustrates that the size of offloaded data de-

creases while the application execution time increases. These two figures show that computation

offloading decreases while the execution time increases. Therefore, the communication energy

decreases while the execution time increases, as shown in Fig. 8c for the applied CDG.

13

5.3.3 The Data Plot

We next look at the impact on energy consumption and savings when the amount of data to be

transferred increases. Here the required data transfer for face detection components is increased

from 21.4KB to 2.2MB to consider the performance of total energy as a function of the data size

required for transition. In Fig. 11, we see that, as expected, while the data size for transferring

increases, more energy is consumed for communication, less energy is saved, and more energy

is consumed by the mobile device.

5.4 Simulations for Variety of Component Dependencies

So far, the system performance was analyzed based on the fixed CDG from the 14-component

video navigation application shown in Fig. 2, as well as the two extreme cases of fully sequential

CDG and fully parallel CDG. In this section, we consider the performance of the proposed system

based on two different categories of random CDGs: (i) Layer-by-Layer, and (ii) Fan-in/Fan-out,

as explained in Section 2. Since we use random CDGs in this subsection, the simulations for

each data point are run over three CDGs and the average of these three values is plotted. Each

CDG that we generate is constrained to have only 14 components for comparison purposes.

Figures 12 and 13 show the performance of the proposed JSCO scheme for randomly generated

Layer-by-Layer CDGs. In Fig. 12, the average total energy saved through remote execution, the

average total energy consumed by the mobile and the average total energy for communication

are plotted against the size of data transferred. These bar graphs are compared as a function of

the probability of edge connections (p). When this probability increases, more components are

dependent on each other, and the density of the CDG increases. Therefore, the energy consumed

by cloud offloading increases (Fig. 12c), and the energy saved through remote execution decreases

(Fig. 12a). Moreover, it can be observed that when data size for transferring the components

increases, the total energy consumed by the mobile device and the energy consumed for commu-

nication increase (Figures 12b, 12c), and the energy saved through remote execution decreases

(Fig. 12a). Also note that for high values of p and size of data transfer, the energy costs of

offloading are so high that the energy saved through remote execution gets closer to zero (as

shown in Fig. 12a).

In Fig. 13, the average total energy saved through remote execution, the average total energy

14

consumed by the mobile, and the average total energy for communication are plotted against

uplink and downlink rates. These bar graphs are also compared as a function of the probability

of edge connections. We can observe that while the wireless rates increase, the energy con-

sumed by offloading decreases (Fig. 13c), the energy saved through cloud offloading increases

(Fig. 13a), and the total energy consumption decreases (Fig. 13b). Moreover, we see that while

the probability and rates increase, the energy saved through remote execution decreases.

Figures 14 and 15 show the performance of the proposed JSCO scheme for randomly generated

Fan-in/Fan-out CDGs. In Fig. 14, energy saved, energy consumed by the mobile, and energy

consumed for communication are respectively plotted versus the average data size for each

transfer. Our results indicate that the performance of the JSCO scheme is independent of the

Fan-in/Fan-out ratio of these graphs but dependent on the total Fan-in plus Fan-out degrees.

When the in+out degree increases, the dependency and offloading costs increase such that the

energy saved through cloud offloading decreases and the energy consumed by the mobile

device increases (Figures 14a, 14b). Also when the data size for transferring increases, the

energy consumed by the mobile increases (Fig. 14c). Fig. 15 presents the energy as a function

of the uplink/downlink rates. While rates increase and the in+out degree decreases, the energy

consumed for communication decreases (Fig. 15c). Therefore, the energy saved through remote

execution increases (Fig. 15a), and the energy consumed by the mobile decreases (Fig. 15c).

5.5 Scalability of the JSCO Scheme

In this subsection, we discuss the scalability of our JSCO scheme. Specifically, we want to address

the largest application that the JSCO scheme can handle in terms of the number of components

and total execution time. In our discussions so far, we have used only a 14-component application

(either real or randomly generated). In order to maintain the same probability distribution of our

measurements when scaling up the application, we calculate the histogram of the current real

data measurements (qmk , qck, Pac ∀k) from the 14-component video navigation application. Using

the obtained distribution, we generate the new data for applications with a greater number of

components (25, 45, 65, 85, and 105 components). Increasing the number of components requires a

corresponding increase in the runtime deadline (T); for example, for a 25-component application

T = 6500ms; for N = 45, T = 13500ms; for N = 65, T = 14250ms; for N = 85, T = 17100ms; and

for N = 105, T = 21000ms.

15

Table 2 shows the program runtimes using the proposed scheme for the two types of ran-

domly generated CDGs– Layer-by-Layer and Fan-in/Fan-out. In this table, we consider the

total execution time in accordance with the number of components (N). We see that while the

number of components and total execution time increase, the runtime of the proposed scheme

increases. The JSCO scheme is capable of handling over 100 components with a mobile-only

execution time of 28 seconds. Our simulations were done on a single server machine with an

Intel Xeon(R) E7340 processor @ 2.5GHz CPU and 60GB of RAM. Although the runtime to solve

the associated integer linear program increases with the number of components to over 2hours,

this time can be reduced through parallel implementation using more powerful processors.

Three scenarios are considered in this part: (A) the scenario where the average data size to

transfer is fixed at 1220KB and the uplink/downlink rate is fixed at 1.28/2.816Mbps; (B) the

scenario where the average data size to transfer is fixed at 1220KB (the same as A) and the

uplink/downlink rate is fixed at 4.96/10.912 Mbps (more than A); and (C) the scenario where

the average data size to transfer is fixed at 2196KB (more than A) and the uplink/downlink rate

is fixed at 1.28/2.816Mbps (the same as A). In Fig. 16, the Layer-by-Layer CDG with a larger

number of components is considered. In this figure, the energy saved, total energy consumed,

and energy consumed for communication are respectively shown as a function of the number of

application components for the three scenarios, A, B, C. Note that here, p = 0.2 and s = 5 (which is

the number of layers). When the number of application components increases, the edges between

components increase and therefore the costs of offloading increase. Thus, all the energy values

increase. We can see that while the rates increase in Scenario B in comparison to Scenario A, the

energy saved through remote execution increases, energy consumed for offloading decreases, and

the total energy consumed by the mobile device decreases. On the other hand, while the data size

increases in Scenario C in comparison to Scenario A, the energy saved decreases, communication

energy increases, and the total energy consumed by the mobile device also increases, which is

all as expected.

Fig. 17 plots the energy values in accordance with the number of application components for

the applications with Fan-in/Fan-out CDGs in the three scenarios, A, B, C. Here maximum in-

degree is set to 3 and the maximum out-degree is set to 2 for the corresponding CDGs. Similar

observations as in Fig. 16 are made here as well.

16

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed an energy-efficient JSCO scheme for mobile devices using applications

with arbitrary component dependency graphs. Most of the prior work in this regard considered a

fully sequential or an a priori order of components (for e.g., through a topological ordering). Ours

is the first work which computes the ordering of the components in addition to the decision of

which component to offload. We proposed a linear optimization problem for the time scheduling

of application components where the objective function trades-off the energy savings on the

mobile device with the energy and time costs for offloading the application to a remote cloud.

This integer linear program was solved using IBM CPLEX optimizer [20] with the measurements

for relevant parameters taken from an HTC smartphone running applications with general CDGs.

The results illustrated that the energy saved increases with longer application runtime deadline,

higher rates of wireless radio interface, and smaller offload data size. One drawback of our

scheme is the runtime required by CPLEX to compute a solution because we are solving an

integer linear program which is an NP-hard problem. To minimize the time taken by our scheme

to compute a solution, in future work, we will solve the associated linear program (that is 0 ≤

xljt ≤ 1) using CPLEX, which can be done in polynomial time. We will then design polynomial-

time heuristics based off of this linear programming solution.

REFERENCES

[1] J. Kephart and D. Chess, “The vision of autonomic computing,” Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[2] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can offloading computation save energy?” Computer, vol. 43,

pp. 51–56, Apr. 2010.

[3] N. Vallina-Rodriguez and J. Crowcroft, “Energy management techniques in modern mobile handsets,” IEEE Communications

Surveys Tutorials, vol. 15, no. 1, pp. 179–198, First 2013.

[4] S. E. Mahmoodi, K. P. Subbalakshmi, and V. Sagar, “Cloud offloading for multi-radio enabled mobile devices,” in IEEE

International Communication Conference (ICC), Jun. 2015, pp. 1–6.

[5] X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chen, “Energy-efficiency oriented traffic offloading in wireless networks: A brief

survey and a learning approach for heterogeneous cellular networks,” IEEE Journal on Selected Areas in Communications,

vol. 33, no. 4, pp. 627–640, Apr. 2015.

[6] X. Ma, Y. Zhao, L. Zhang, H. Wang, and L. Peng, “When mobile terminals meet the cloud: computation offloading as the

bridge,” IEEE Magazine on Network, vol. 27, no. 5, pp. 28–33, Sep. 2013.

[7] B. Zhou, A. Dastjerdi, R. Calheiros, S. Srirama, and R. Buyya, “A context sensitive offloading scheme for mobile cloud

computing service,” in IEEE International Conference on Cloud Computing (CLOUD), Jun. 2015, pp. 869–876.

17

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for VM-Based cloudlets in mobile computing,” IEEE

Pervasive Computing, vol. 8, no. 4, pp. 14–23, Oct. 2009.

[9] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, and Y. Qu, “eTime: Energy-efficient transmission between cloud and mobile devices,”

in IEEE Conference on Computer Communications (INFOCOM), Apr. 2013, pp. 195–199.

[10] Y.-D. Lin, E.-H. Chu, Y.-C. Lai, and T.-J. Huang, “Time-and-Energy-Aware computation offloading in handheld devices to

coprocessors and clouds,” IEEE Systems Journal, vol. 9, no. 2, pp. 393–405, Jun. 2015.

[11] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. Wu, “Energy-optimal mobile cloud computing under stochastic

wireless channel,” IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp. 4569–4581, Sep. 2013.

[12] H. Wu, Q. Wang, and K. Wolter, “Trade-off between performance improvement and energy saving in mobile cloud offloading

systems,” in IEEE International Conference on Communications Workshops (ICC), Jun. 2013, pp. 728–732.

[13] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl, “MAUI: Making smartphones

last longer with code offload,” in Proceedings of the International Conference on Mobile Systems, Applications, and Services, ser.

MobiSys. ACM, 2010, pp. 49–62.

[14] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dynamic resource allocation and parallel execution in

the cloud for mobile code offloading,” in IEEE proceedings of INFOCOM, 2012, pp. 945–953.

[15] W. Zhang, Y. Wen, and D. Wu, “Collaborative task execution in mobile cloud computing under a stochastic wireless

channel,” IEEE Transactions on Wireless Communications, vol. 14, no. 1, pp. 81–93, Jan. 2015.

[16] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Computation offloading for mobile cloud computing based on wide cross-

layer optimization,” in Future Network and Mobile Summit (FutureNetworkSummit), Jul. 2013, pp. 1–10.

[17] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for mobile computing,” IEEE Transactions on Wireless

Communications, vol. 11, no. 6, pp. 1991–1995, Jun. 2012.

[18] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya, “Mobile code offloading: from concept to practice and

beyond,” IEEE Communications Magazine, vol. 53, no. 3, pp. 80–88, Mar. 2015.

[19] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic execution between mobile device and cloud,”

in Proceedings of the conference on Computer systems, 2011, pp. 301–314.

[20] [Online]. Available: http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

[21] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and F. Wagner, “Random graph generation for scheduling

simulations,” in Proceedings of the International ICST Conference on Simulation Tools and Techniques, 2010, pp. 60:1–60:10.

[22] P. Balakrishnan and C. K. Tham, “Energy-efficient mapping and scheduling of task interaction graphs for code offloading

in mobile cloud computing,” in IEEE/ACM International Conference on Utility and Cloud Computing (UCC), Dec. 2013, pp.

34–41.

[23] D. Kovachev, T. Yu, and R. Klamma, “Adaptive computation offloading from mobile devices into the cloud,” in IEEE

International Symposium on Parallel and Distributed Processing with Applications, Apr. 2012, pp. 784–791.

[24] M. Nir, A. Matrawy, and M. St-Hilaire, “An energy optimizing scheduler for mobile cloud computing environments,” in

IEEE Conference on Computer Communications Workshops (INFOCOM workshops), Apr. 2014, pp. 404–409.

[25] [Online]. Available: http://www.opengl.org/.

[26] [Online]. Available: http://www.developer.com/ws/android/programming/face-detection-with-android-apis.html.

[27] [Online]. Available: http://opencv.org/.

[28] P. Rubin. [Online]. Available: http://orinanobworld.blogspot.de/2010/10/binary-variables-and-quadratic-terms.html.

[29] [Online]. Available: http://www-01.ibm.com/support/docview.wss?uid=swg21399933.

18

[30] [Online]. Available: http://darnok.org/programming/face-recognition/.

[31] [Online]. Available: http://code.google.com/p/currentwidget/.

[32] S. Ou, K. Yang, and J. Zhang, “An effective offloading middleware for pervasive services on mobile devices,” Pervasive and

Mobile Computing, vol. 3, no. 4, pp. 362 – 385, Aug. 2007.

[33] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-complexity task scheduling for heterogeneous

computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260–274, Mar. 2002.

[34] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with dynamic voltage and frequency scaling for energy

minimization in the mobile cloud computing environment,” IEEE Transactions on Services Computing, vol. 8, no. 2, pp.

175–186, Mar. 2015.

[35] [Online]. Available: http://www.3gpp.org/ftp/tsg-ran/wg4-radio/.

[36] U. Kremer, J. Hicks, and J. M. Rehg, “Compiler-directed remote task execution for power management,” in Workshop on

Compilers and Operating Systems for Low Power, Oct. 2000.

S. Eman Mahmoodi is currently pursuing his PhD degree at the Department of Electrical and Computer

Engineering, Stevens Institute of Technology. He received the BS and MS degree in Electrical Engineering from

Iran University of Science and Technology, respectively in 2009 and 2012. He has been working on Mobile

Cloud Computing, Optimization and Applied Modeling, Cognitive Networks, and Wireless Communications.

Mahmoodi is a Stevens Innovation and Entrepreneurship Doctoral Fellow.

R. N. Uma ’s research interests include data science, scheduling and resource allocation with applications

to cloud computing, robotics, wireless sensor networks, multimedia networking, and large logistics problems.

She received her BSc degree in Mathematics from the University of Madras, Chennai, India, the ME degree

in Computer Science from the Indian Institute of Science, Bangalore, India, and the PhD degree in Computer

Science from the NYU Tandon School of Engineering (formerly, Polytechnic University) New York. She is

an associate professor in the Department of Mathematics and Physics at North Carolina Central University,

Durham. She is a member of the IEEE and the ACM.

19

K. P. (Suba) Subbalakshmi is a Professor at Stevens Institute of Technology. Her research interests span:

Cognitive radio networks, Cognitive Mobile Cloud Computing, Social Media Analytics and Wireless security.

She is a Jefferson Science Fellow, 2016. She is a Founding Associate Editor of the IEEE Transactions on

Cognitive Communications and Networking and an Associate Editor of the IEEE Transactions on Vehicular

Technology. She is the Founding Chair of the Security Special Interest Group of the IEEE Technical Committee

on Cognitive Networks. She is also a recipient of the NJIHOF Innovator award.

1

2

3

4

5

6 7 8 9

10

11

12

13

14

1
(a) Sequential dependency graph.

1

2 3 45

6 78 910

11 1213

14

(b) Layer-by-Layer CDG where p =

0.3 and s = 5.

1

2

3

4 5

87

6

9

1011

12

13

14

(c) Fan-in/Fan-out CDG where max-
imum in-degree and out-degree are 3
and 2.

1

2

3

4

5 6 7 8 9 10

11

12

13

14

(d) Parallel dependency graph.

1

3 2 54

7 109 86

12 1311

14

(e) Layer-by-Layer CDG where p =

0.7 and s = 5.

1

2

3
4

5

8

76

910

11

12

13

14

(f) Fan-in/Fan-out CDG where max-
imum in-degree and out-degree both
are both 6.

Fig. 1: Examples of various CDGs for the mobile applications (N = 14).

20

TABLE 1: Parameter Definitions.

Parameters Definitions
N number of components in the appli-

cation.
T number of time periods to complete

processing the application.
t time index for period (t-1,t].
mj mobile execution indicator for com-

ponent j.
cj cloud execution indicator for compo-

nent j.
xljt a binary indicator which equals to 1

if component j completes processing
at time t on processing system l and
otherwise equals to 0.

αij dependency indicator: 1 if compo-
nent i must be processed before j and
0 otherwise.

zij component transferring indicator,
which equals to micj .

dij size of data required by component j
from component i.

qmj (qcj) time to process component j in the
mobile (cloud).

τmc
ij time required to transmit data from

component i executing in the mo-
bile to component j executing in the
cloud.

τ cmij time required to receive data from
component i executing in the cloud
to component j executing in the mo-
bile.

νk time to process component k either
on mobile or cloud.

Ecom the total energy consumed by the
mobile device for communication.

Pac active power of the mobile while pro-
cessing a component.

PTx (PRx) power consumption of the mobile to
transmit (receive) required data.

Ru (Rd) average uplink (downlink) rate of the
wireless radio interface.

21

TABLE 2: Program runtimes of the CPLEX optimizer for the proposed LP using Layer-by-Layer and Fan-in/Fan-out CDGs.

N mobile-
only
execution
time [ms]

T
[ms]

runtime
for Layer-
by-Layer
[s]

runtime
for Fan-
in/Fan-
out [s]

25 7714 6500 561 439
45 16230 13500 924 834
65 17412 14250 1764 1649
85 27877 17100 2862 2700
105 28098 21000 7654 8647

Cloud Offload

Manager

1

2 3

4

5

6

7

14

8 9

10

11

12

13

Graphics

Video

Processing

Face

Detection

Clustering

& Output

component
Input

component

(a) CDG of the application.

t=0

2

idle

t=T

4 7 12 14

3

6 10

11

9

time to process

component 1

time to

process 2

Processed component in the mobile

Processed component in the cloud

 output

from 1 to

cloud
output

from 6 to

mobile

output from

10,11,13 to

mobile

output

from 8 to

cloud

output

from 9 to

mobile

Execution in the mobile

Execution in the cloud

output

from 2,3

to mobile

1 8 5

13

(b) Scheduling–Offloading model.

Fig. 2: Scheduling model for cloud offloading in a 14-component mobile application with a general CDG.

22

0

20

40

60

80

100

120

Local

Execution

Remote

Execution

DOA JSCO HELVM RHJS

T
o
ta

l
E

n
er

g
y

 C
o

n
su

m
p

ti
o

n
 [

%
]

Fig. 3: Total energy consumed by the mobile device for the proposed and classical schemes, normalized to the energy consumed
by local execution (using the face recognition application in [30]).

0

20

40

60

80

100

120

140

Local

Execution

Remote

Execution

DOA JSCO HELVM RHJS

E
x

ec
u

ti
o

n
 T

im
e

o
f

th
e

A
p

p
li

ca
ti

o
n

 [
%

]

Fig. 4: Total execution time of the application for the proposed and classical schemes, normalized to the execution time by
local execution (using the face recognition application in [30]).

0

200

400

600

800

1000

1200

1400

1600

1800

640 800 960 1120 1280 1440 1600 1760 2560 4960 8000 9200

1408 1760 2112 2464 2816 3168 3520 3872 5632 10912 17600 20240

T
o

t
a
l

E
n

e
r
g

y
 S

a
v

e
d

 [
m

J
]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

Parallel Dependency

Applied CDG

Sequential Dependency

(a) Total energy saved.

0

500

1000

1500

2000

2500

640 800 960 1120 1280 1440 1600 1760 2560 4960 8000 9200

1408 1760 2112 2464 2816 3168 3520 3872 5632 10912 17600 20240

T
o

ta
l

E
n

e
r
g

y
 C

o
n

s
u

m
p

ti
o

n
 [

m
J
]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

Parallel Dependency

applied CDG

Sequential Dependency

(b) Total energy consumption.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

640 800 960 1120 1280 1440 1600 1760 2560 4960 8000 9200

1408 1760 2112 2464 2816 3168 3520 3872 5632 109121760020240

T
o

ta
l

C
o

m
m

u
n

ic
a
ti

o
n

 E
n

e
r
g

y
 [

m
J
]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

Parallel Dependency

Applied CDG

Sequential Dependency

(c) Total communication energy.

Fig. 5: Total energy for the 14-Component application versus uplink and downlink rates in WiFi while T=3 s, PTx=257.83
mW, PRx=123.74 mW.

23

0

200

400

600

800

1000

1200

1400

480 640 800 960 1120 1280 1440 1600 1760 2560 4960 8000 9200 10000

1056 1408 1760 2112 2464 2816 3168 3520 3872 5632 10912176002024022000

O
f
f
lo

a
d
e
d
 D

a
ta

 S
iz

e
 [

K
B

]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

Fig. 6: Offloaded data size of the application components versus rates of the WiFi link while T=3 s, PTx=257.83 mW, PRx=123.74
mW.

0

200

400

600

800

1000

1200

1400

480 640 800 960 1120 1280 1440 1600 1760 2560 4960 8000 9200 10000

1056 1408 1760 2112 2464 2816 3168 3520 3872 5632 10912176002024022000

T
i
m

e

c
o

n
s
u

m
e
d

f
o

r

O

f
f
l
o

a
d

i
n

g

[
m

s
]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

Fig. 7: Time consumed for offloading versus rates of the WiFi link while T=3 s, PTx=257.83 mW, PRx=123.74 mW.

0

100

200

300

400

500

600

700

800

2000 2200 2400 2600 2800 3000 3200 3300 3500 3600 3900

T
o

ta
l

E
n

e
r
g

y
 S

a
v

e
d

 [
m

J
]

Execution Time [ms]

Parallel Dependency

Applied CDG

Sequential Dependency

(a) Total energy saved.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2000 2200 2400 2600 2800 3000 3200 3300 3500 3600 3900

T
o

ta
l

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 [

m
J
]

Execution Time [ms]

Parallel Dependency

Applied CDG

Sequential Dependency

(b) Total energy consumption.

0

200

400

600

800

1000

1200

2000 2200 2400 2600 2800 3000 3200 3300 3500 3600 3900

T
o

ta
l

C
o

m
m

u
n

ic
a
ti

o
n

 E
n

e
r
g

y
 [

m
J
]

Execution Time [ms]

Parallel Dependency

Applied CDG

Sequential Dependency

(c) Total communication energy.

Fig. 8: Total energy versus execution time (T) while Ru=0.8 Mbps and Rd=1.76 Mbps.

24

0

1

2

3

4

5

6

7

N
u

m
b

e
r

o
f

T
ra

n
s
it

io
n

s
 b

e
tw

e
e
n

M
o

b
il

e
 a

n
d

 C
lo

u
d

Execution Time [ms]

Fig. 9: Number of transitions between the mobile and cloud for offloading in correspondence with execution time (T) while
Ru=0.8 Mbps and Rd=1.76 Mbps.

0

200

400

600

800

1000

1200

O
ff

lo
a
d
e
d
 D

a
ta

 S
iz

e
 [

K
B

]

Execution Time [ms]

Fig. 10: Allocated data size for cloud offloading in correspondence with execution time (T) while Ru=0.8 Mbps and Rd=1.76
Mbps.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
ot

al
 E

ne
rg

y
[m

J]

Data Size required for transition [KB]

Communication Energy

Saved Energy

Energy Consumption

Fig. 11: Total energy versus required data size for transition of components while T=3 s, Ru=0.8 Mbps and Rd=1.76 Mbps
using the applied CDG.

25

0

200

400

600

800

1000

1200

1400

1600

10 40 70 100 130

A
v

e
ra

g
e
 T

o
ta

l
 E

n
e
rg

y
 S

a
v

e
d

 [
m

J]

Data Size for Each Transfer [KB]

p=0.3

p=0.5

p=0.7

p=0.9

(a) Average total energy saved.

0

1000

2000

3000

4000

5000

6000

7000

10 40 70 100 130

A
v

e
ra

g
e
 T

o
ta

l
E

n
e
rg

y
 C

o
n

su
m

p
ti

o
n

[m
J]

Data Size for Each Transfer [KB]

p=0.3

p=0.5

p=0.7

p=0.9

(b) Average total energy consumption.

0

1000

2000

3000

4000

5000

6000

10 40 70 100 130

A
v

er
ag

e
T

o
ta

l
C

o
m

m
u
n
ic

at
io

n

E
n

er
g

y
 [

m
J]

Data Size for Each Transfer [KB]

p=0.3

p=0.5

p=0.7

p=0.9

(c) Average total communication energy.

Fig. 12: Average total energy versus required data size for transferring each component in the apps with Layer-by-Layer CDG
(s = 5) and 14 components while T=3 s, PTx=257.83 mW, PRx=123.74 mW.

0

200

400

600

800

1000

1200

1400

1600

1800

800 1120 1440 1760 4960

1760 1264 3168 3872 10912

A
v

er
ag

e
T

o
ta

l
E

n
er

g
y
 S

av
ed

[m
J]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

p=0.3

p=0.5

p=0.7

p=0.9

(a) Average total energy saved.

0

500

1000

1500

2000

2500

800 1120 1440 1760 4960

1760 1264 3168 3872 10912

A
v

er
ag

e
T

o
ta

l
E

n
er

g
y

C
o

n
su

m
p

ti
o

n
 [

m
J]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

p=0.3

p=0.5

p=0.7

p=0.9

(b) Average total energy consumption.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

800 1120 1440 1760 4960

1760 1264 3168 3872 10912

A
v

e
ra

g
e
 T

o
ta

l
C

o
m

m
u
n
ic

a
ti

o
n

E
n

e
rg

y
 [

m
J]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

p=0.3

p=0.5

p=0.7

p=0.9

(c) Average total communication energy.

Fig. 13: Average total energy versus uplink and downlink rates in WiFi for the apps with Layer-by-Layer CDG (s = 5) and
14 components while T=3 s, PTx=257.83 mW, PRx=123.74 mW.

0

500

1000

1500

2000

2500

10 40 70 100 130

A
v

er
ag

e
T

o
ta

l
E

n
er

g
y
 S

av
ed

 [
m

J]

Data Size for Each Transfer [KB]

in/out=3/2

in/out=4/5

in/out=6/6

in/out=8/8

(a) Average Total energy saved.

0

500

1000

1500

2000

2500

3000

10 40 70 100 130

A
v

er
ag

e
T

o
ta

l
E

n
er

g
y

C
o

n
su

m
p

ti
o

n
 [

m
J]

Data Size for Each Transfer [KB]

in/out=3/2

in/out=4/5

in/out=6/6

in/out=8/8

(b) Average total energy consumption.

0

500

1000

1500

2000

2500

3000

10 40 70 100 130

A
v

er
ag

e
T

o
ta

l
C

o
m

m
u
n
ic

at
io

n

E
n

er
g

y
 [

m
J]

Data Size for Each Transfer [KB]

in/out=3/2

in/out=4/5

in/out=6/6

in/out=8/8

(c) Average total communication energy.

Fig. 14: Average total energy versus required data size for transferring each component in the apps with Fan-in/Fan-out
CDGs and 14 components while T=3 s, PTx=257.83 mW, PRx=123.74 mW.

26

0

500

1000

1500

2000

2500

800 1120 1440 1760 4960

1760 1264 3168 3872 10912

A
v

er
ag

e
T

o
ta

l
E

n
er

g
y
 S

av
ed

 [
m

J]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

in/out=3/2

in/out=4/5

in/out=6/6

in/out=8/8

(a) Average Total energy saved.

0

200

400

600

800

1000

1200

1400

1600

1800

800 1120 1440 1760 4960

1760 1264 3168 3872 10912

A
v

er
ag

e
T

o
ta

l
E

n
er

g
y

C
o

n
su

m
p

ti
o

n
 [

m
J]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

in/out=3/2

in/out=4/5

in/out=6/6

in/out=8/8

(b) Average total energy consumption.

0

200

400

600

800

1000

1200

800 1120 1440 1760 4960

1760 1264 3168 3872 10912

A
v

er
ag

e
T

o
ta

l
C

o
m

m
u
n
ic

at
io

n

E
n

er
g

y
 [

m
J]

Uplink Rate [Kbps]

Downlink Rate [Kbps]

in/out=3/2

in/out=4/5

in/out=6/6

in/out=8/8

(c) Average total communication energy.

Fig. 15: Average total energy versus uplink and downlink rates in WiFi for the apps with Fan-in/Fan-out CDGs and 14
components while T=3 s, PTx=257.83 mW, PRx=123.74 mW.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

25 45 65 85 105

T
o

ta
l

E
n

e
rg

y
 S

a
v

e
d

 [
m

J]

Number of Application Components

Scenario A

Scenario B

Scenario C

(a) Total energy saved.

0

2000

4000

6000

8000

10000

12000

14000

25 45 65 85 105

T
o

ta
l

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 [
m

J]

Number of Application Components

Scenario A

Scenario B

Scenario C

(b) Total energy consumption.

0

2000

4000

6000

8000

10000

12000

14000

25 45 65 85 105

T
o

ta
l

C
o

m
m

u
n

ic
a
ti

o
n

 E
n

e
rg

y
 [

m
J]

Number of Application Components

Scenario A

Scenario B

Scenario C

(c) Total communication energy.

Fig. 16: Total energy versus the number of application components with Layer-by-Layer CDG (p=0.2 and s = 5), presented
in Scenarios A, B, and C.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

25 45 65 85 105

T
o

ta
l

E
n

e
rg

y
 S

a
v

e
d

 [
m

J]

Number of Application Components

Scenario A

Scenario B

Scenario C

(a) Total energy saved.

0

1000

2000

3000

4000

5000

6000

25 45 65 85 105

T
o

ta
l

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 [
m

J]

Number of Application Components

Scenario A

Scenario B

Scenario C

(b) Total energy consumption.

0

500

1000

1500

2000

2500

3000

25 45 65 85 105

T
o

ta
l

C
o

m
m

u
n

ic
a
ti

o
n

 E
n

e
rg

y
 [

m
J]

Number of Application Components

Scenario A

Scenario B

Scenario C

(c) Total communication energy.

Fig. 17: Total energy versus the number of application components with Fan-in/Fan-out CDGs (maximum in-degree is 3 and
maximum out-degree is 2), presented in Scenarios A, B, and C.

27

