
IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 4, NOVEMBER 2004 459

Teaching Data Structures Using Competitive Games
Ramon Lawrence, Member, IEEE

Abstract—A motivated student is more likely to be a successful
learner. Interesting assignments encourage student learning by
actively engaging them in the material. Active student learning
is especially important in an introductory data structures course
where students learn the fundamentals of programming. In this
paper, the author describes a project for a data structures course
based on the idea of competitive programming. Competitive
programming motivates student learning by allowing students to
evaluate and improve their programs throughout an assignment
by competing their code against instructor-defined code and the
code of other students in a tournament environment. Pedagog-
ical results indicate that the combination of game development
and friendly student competition is a significant motivator for
increased student performance.

Index Terms—Active learning, competition, competitive pro-
gramming, data structures, educational games, motivation,
strategy.

I. INTRODUCTION

MOTIVATING student interest is a challenging task. In-
structors want assignments that allow students the op-

portunity to enhance their knowledge while being interesting
enough for them to complete. In computer science courses, such
as introductory data structures, students must learn the funda-
mental concepts and the necessary programming skills to apply
them effectively. Thus, assignments must be designed that en-
courage the repetition of programming skills and discourage
student procrastination.

This paper describes a project for data structure courses based
on the concept of competitive programming. In a competitive
programming project, students develop and improve their
code throughout an assignment by competing in a tournament
against instructor-defined code and the code of other students.
The ability for students to evaluate their code against others
encourages them to spend more effort in its development. In the
project described in this paper, students write code that is the
“artificial intelligence” for the computer to play a game. The
student code is then uploaded to a server that allows students to
challenge each other’s code. The introduction of a competitive
aspect to the assignment greatly increases student motivation
and provides a useful form of evaluation.

The contributions of this work are as follows:

• a learning method called competitive programming that
uses competition during an assignment to increase student
motivation;

Manuscript received June 13, 2003; revised October 4, 2003.
The author is with the Department of Computer Science, University of Iowa,

Iowa City, IA 52242-1419 USA (e-mail: ramon-lawrence@uiowa.edu).
Digital Object Identifier 10.1109/TE.2004.825053

• a detailed description of a project for an introductory data
structures course that combines competitive programming
with game development;

• a supporting architecture for the game project based on
open standards and software that is deployable in other
courses (the supporting architecture allows for reduced
grading time);

• a pedagogical evaluation of using a competitive program-
ming project in an introductory data structures class.

The discussion begins with background information and a de-
scription of competitive programming. Then, detailed informa-
tion is provided in Section III on a competitive programming
project involving game development for a data structures course.
Section IV covers the pedagogical results of using the project in
the course, and the paper ends with some conclusions.

II. BACKGROUND

One of the foundation courses for computer science and
engineering students is introductory data structures, which is
typically taken in the second year. In this course, students
are exposed to fundamental programming constructs, such as
lists, stacks, queues, and trees. There has been extensive work
on creating tools for visualizing data structures to promote
learning [1], and many such resources [2] are available on the
Internet. At this time, students begin to solve larger program-
ming assignments and gain valuable programming experience.
One of the common reasons why students fail to complete
the data structures course is that they do not complete the
programming assignments or complete them in a substandard
fashion. Since it is critical to the students’ success that they
successfully complete the assignments, instructors are chal-
lenged to developed interesting assignments that students want
to finish.

The use of games to promote student learning has been well
documented. Games capture student interest because they are
fun and exciting, and students tend to learn more when actively
engaged by the subject. Developing games as assignments has
been used [3], [4] in introductory data structures and program-
ming courses. The motivation for introducing games as projects
is simple: most students have intimate contact with computer
games before their formal computer education begins, and
computer games are often what attracts and motivates them
to learn more about programming and computers in general.
Although arcade-style computer games attract most student
interest, strategy games such as checkers, chess, and Go nor-
mally have more pedagogical benefit. Game projects [5] can
be modified to satisfy the needs of larger introductory courses
and small advanced group projects. Games have also been
used in the instruction of interprocess communication [6] and
operating systems [7].

0018-9359/04$20.00 © 2004 IEEE

460 IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 4, NOVEMBER 2004

The unique contribution of this paper is a project that com-
bines the implementation of strategy games with a real-time,
competitive tournament environment. Although some of the
previous work [3], [5], [6] discussed using tournaments, the
tournaments were performed after the project was completed.
In this paper, an architecture was developed for automated stu-
dent competition during the assignment and used to motivate
student success. An open-source project called CodeWars [8]
allows development of competing artificial intelligence (AI)
code in a game environment, but this project is thought to be
the first pedagogical evaluation of using competitive gaming in
an educational setting.

The project described in this paper is a particular implemen-
tation of the more general notion of competitive programming.
Competitions are common in many areas such as AI, robotics,
and programming. However, they are rarely used in the class-
room setting to encourage learning. Competitive programming
allows students to improve and evaluate their programming
skills during an assignment by competing their code against
instructor-defined code and the code of other students. The
introduction of the competitive tournament increases student
motivation and reduces procrastination, a common cause for
students failing to complete assignments. Motivated learners
[9] generally have greater success.

The competition aspect also increases student interaction,
which involves students of different learning styles [10].
However, the effectiveness of competitive programming may
differ by gender. Female students tend to value cooperation
over competition and have different educational needs in a
computer science program [11]. To this end, specialized games
have been developed for girls [12], [13]. An evaluation of how
introducing competition to assignments affects female learning
is an interesting subject that is not the focus of this paper.

The project described in the next section combines competi-
tive programming with game development. Thus, there are two
motivational factors in this project. First, developing games is
interesting to students. Second, the ability to compete against
other students’ code in a tournament creates another interesting
challenge. A competitive programming project does not always
have to involve writing code for games. As long as some
method for comparing and ranking the effectiveness of code
exists, using competition during the assignment is possible.

III. PROJECT OVERVIEW

This project is a capstone project at the end of the data struc-
tures course. The students have approximately three weeks to
complete it. The project involves writing code to implement the
game intelligence functionality for a board game. The game it-
self is called Critical Mass and was chosen because it has the
beneficial feature of not allowing a draw (the game always has
a winner). However, the project is general, and other games
are substituted for variation. Students write their code to de-
termine the moves that their computer program, called a “bot,”
will make. The student code is evaluated based on whether their
code plays the game correctly and how well it plays against pre-
defined “bots.”

Writing code for game intelligence [14] requires writing a
board evaluator, a move generator, and a game tree. Creating
a board evaluator requires manipulation of a two-dimensional
array and devising cost functions based on piece locations. Al-
though the amount of code for a board evaluation function is typ-
ically small, writing a good function requires significant effort
in understanding how to play the game. A move generator re-
quires the student to write code that determines the valid moves
that can be made given a board position. For many games, this
requirement is straightforward but may require a decent amount
of logic if the piece movement characteristics are not uniform
(e.g., chess). Developing code for a game tree is an excellent
test of a student’s understanding of the fundamental concepts
of recursion and trees. Recursion and game trees are covered in
the lecture, and sample code is given for the game of tic-tac-toe.
Advanced topics such as alpha–beta pruning are also covered.
Although some general discussion on board evaluation is given,
the students are left to determine their own board evaluator and
move generator for Critical Mass. The students are given a de-
scription of the Critical Mass rules as described hereafter.

Critical Mass uses a 5 6 board of squares. The object of the
game is to remove completely all of the opponent’s pieces from
the game board. Each cell may contain zero or more pieces. The
pieces are of two different colors, one belonging to each player.
All pieces in a cell are always of the same color. The two players
alternate moves. To make a move, a player must place a piece of
his or her own color into any cell, which does not contain a piece
of the opponent’s color. If the number of pieces in a cell becomes
greater than or equal to the number of adjacent cells, then that
cell explodes. When a cell explodes, the pieces in that cell are
removed, one additional piece is added to each adjacent cell, and
all pieces in adjacent cells become the color of the player whose
move caused the explosion. Explosions may cause subsequent
explosions. If an explosion causes additional explosions, then
the new explosions happen simultaneously, not by means of a
wavelike chain reaction. The game ends when, after any move
except the first, all pieces on the board are the same color. The
player corresponding to that color wins.

A. Pedagogical Constraint

The project has students develop in C++, which is the
language of instruction for the data structures course at the
University of Iowa. The students develop using gcc on Linux
machines. One of the weaknesses of this environment is the
difficulty in developing graphical applications. An instructor
whose focus is on teaching data structures does not have the
class time to teach students how to use the complex graphics
libraries available. Thus, most development is performed using
command-line compiling and text-based interaction.

The use of text-based assignments has less appeal to students
than graphical assignments, especially when developing games.
One of the contributions of this project is an architecture for
combining C++ programs with Java user interfaces for game
development. Previous attempts at the project used Java to code
a graphical front end that communicated with C++ code using
Java Native Interface (JNI). This technique worked well and
allowed students to develop stand-alone games with graphical

LAWRENCE: TEACHING DATA STRUCTURES USING COMPETITIVE GAMES 461

Fig. 1. Critical Mass board class in file CM.h.

Fig. 2. Critical Mass game class in file student.h.

front ends. However, JNI cannot be used in applets on web pages
and, thus, cannot be used for developing a competition website.

Although the implemented architecture satisfies the ped-
agogical constraint of allowing students to code their game
intelligence in C++ and visualize the game in Java, this con-
tribution is secondary to the fact that the architecture allows
competition during the assignment period. The use of compe-
tition during the assignment is beneficial and independent of
the course and development environment. Thus, this architec-
ture has wide applicability to any course project that can be
structured as a competition.

B. Student Requirements

The students are given a listing of the game rules for Critical
Mass and rules for the competition. C++ code files are provided
as a template that the students must follow. The students are re-
quired to follow the code template to ensure that their code is
compatible with others when the competition is performed. The
template files consist of CM.h which contains code for a Crit-
ical Mass board class and related functions, and student.h,
which contains an empty game class with methods that the stu-
dent must write. Abbreviated class headers for these files are
given in Figs. 1 and 2, respectively. The student is also given

the file CMconsole.cxx, which allows them to play against
their code on the console in human versus computer mode for
debugging. The code presented here is specific to the game Crit-
ical Mass, although it is straightforward to generalize the code
for any game.

Given these initial code files, the student starts writing the
methods that select the move to make. The two public methods
that the student must write are makeMove, which passes in a
current game board and asks them to return the row and column
where they want to move, and insertBomb, a method that,
given a row and column, makes the move and produces the re-
sulting game board. Students can write any other methods that
they want in the class CMGame.

The hardest part of any major project for students is knowing
where to start. The sample code compiles without any modifica-
tion. The instructor then encourages the students to write a very
simple makeMove method that generates random moves. This
method allows students to get going quickly without feeling
totally overwhelmed. Then, students iteratively improves their
code.

Using namespaces in the student code file (student.h)
is critical to the success of the project. The students were in-
structed to rename the file and the namespace in the code to
their unique user id. This renaming allows each student’s code

462 IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 4, NOVEMBER 2004

Fig. 3. Student main screen on competition server.

to be individually referenced and will be discussed more in Sec-
tion III-D.

C. Evaluation and Competition

The major unique feature of this project is that students do
not develop their code in isolation. Rather, once a student has
his/her code working, he/she uploads it to a web server that hosts
a competition between all students in the class. This competition
site ranks the student based on the performance of his/her code.
A student can then challenge other students’ code to improve
his/her ranking.

Students are evaluated on the project based on whether they
can get their code to work properly and then on the success of
their implemented code in the competition. The basic evaluation
was as follows:

• 25 marks—if code successfully compiled on competition
server and could play one game (regardless of outcome);

• 35 marks—if code could beat randomMove, a bot that
performed random moves;

• 45 marks—if code could beat noLook, a bot with a board
evaluator but no game tree;

• 50 marks—if code could beat heithoff, a bot with
a board evaluator and game tree with four levels of
look-ahead;

• 60 marks—if code could beat rlawrenc, a bot with a
very strong board evaluator and game tree with four levels
of look-ahead;

• Bonus marks awarded for the top 10 ranked students.
The goal of the evaluation criteria is to provide a mechanism

for efficiently and effectively evaluating student code. In prac-
tice, determining whether game tree code is working correctly
with no errors is extremely difficult; therefore, the idea was to
assign grades based on results. Presumably, code with major er-
rors in game tree logic would not be able to beat some of the ad-
vanced bots, although this initial assumption is discussed further
in Section IV. Pregenerated bots of increasing levels of difficulty
were created by the instructor and placed in the competition. The
base assignment is out of 50 marks, although students could get
bonus marks by being top in the competition or beating the best
bot (rlawrenc).

D. Website Architecture

The competition website was developed by the instructor and
an undergraduate honors student who had previously completed
the course. One of the major design goals was that the architec-
ture use only open-source software. Thus, the operating system
was Red Hat Linux 7.3, the web server Apache 1.3, the data-
base MySQL 3.23, and PHP (hypertext preprocessor), Java, and
HTML were used for web scripting, database access, and web
page development.

LAWRENCE: TEACHING DATA STRUCTURES USING COMPETITIVE GAMES 463

Fig. 4. Student viewing game result using Java applet.

For each student, the database contains login information, a
link to the code file, and a record of the student’s performance.
It also contains a list of all games played, and for each game
played, there is a game string that encodes in textual form all
the moves made in the game.

When a student is satisfied with how his/her game code is
working, he/she logs on to the competition server and uploads
his/her code. During the code upload, the student’s code is com-
piled with a C++ game controller that validated that the stu-
dent’s code had the proper format and could make reasonable
moves. On a successful upload, the student is assigned a rank
one less than the current lowest rank in the competition. Thus,
students who uploaded their code first have an advantage by get-
ting a higher initial rank.

At this point, the student has the ability to challenge other
students. Typically, a student will want to challenge another
student who has a ranking higher than his/her own. The simple
challenge system devised is that a student could only challenge
another student every minute, and if the challenger wins, he/she
gets the rank of the student challenged. Further, a student could
only challenge other students within five ranks (plus or minus)
of his/her current position. Students could also re-upload an
improved version of their code at any time and maintain their
rank, view games that were previously played, and play a
graphical game human versus human in order to understand
the game more fully. The main user screen is shown in Fig. 3.

To allow students to play each other’s code, the server must
maintain the code of all students and, when a challenge is made,
dynamically build a program that will play the game. The solu-
tion exploited the use of C++ namespaces. When a challenge
was made by clicking on a student link, the PHP code ensures
that the students do not currently have a game running and that
the challenge is valid. Then, the PHP code issues SQL (struc-
tured query language) statements to the database to find the code
of both students on the web server. The code for each student
is in a header file with his/her login id as the file name and
with his/her own namespace. Thus, a student with id Beth will
have namespace Beth and file name Beth.h storing her code.
Header files for both students are combined with a game con-
troller template file. This C++ code creates a game board and
alternates between asking each student’s code to make a move.
The game controller template file is copied to another file, the
place holders for student names (PLAYER1, PLAYER2) are re-
placed with the actual student names, and the file is compiled
and run. Once the game is completed, the game controller saves
the result and game string to the database. The outcome of the
challenge is then presented to the user, who can then replay the
game result using a Java applet (Fig. 4). The game controller
code is presented in Fig. 5.

For example, if student Beth has uploaded her code and
is currently in tenth position, she can challenge students from

464 IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 4, NOVEMBER 2004

Fig. 5. Game controller code.

the fifth position to the fifteenth position. Typically, she will
challenge a student in thefifth position. If Steve is in the fifth
position, Beth challenges Steve by clicking on his link in
the rank list. Clicking the link executes a PHP script that takes
the two students Beth and Steve as parameters. This script
retrieves both student records from the database. If the challenge
is valid, the PHP script (which runs on the server), copies the
game controller code to a file called BethSteve.cxx. A
string replacement function is run on the new file to replace all
instances of PLAYER1 with Beth and instances of PLAYER2
with Steve. The player’s code is kept in a separate directory
on the server that can only be accessed by the PHP code.
BethSteve.cxx is compiled, and then the executable is
run. When the game is complete, the C++ executable saves
the game string to the database and assigns the game a unique
number. An example game string would be “00 01 00”. This
game string results in a win for player 1 and corresponds
to moves (P1, 0, 0), (P2, 0, 1), and (P1, 0, 0). During the
time the game is running, the PHP script is displaying a wait
message and then displays the final result when the game is
completed. The student can then go back to the main screen
to view the game. Clicking on the game number in the main
screen executes PHP code which uses the game number to
retrieve the game string from the database and create a new
page with a Java applet that takes the game string in as a
parameter and shows the moves made. The student can speed
up or slow down the replay of the game.

IV. PEDAGOGICAL RESULTS

The game competition project was tested on a data structures
class consisting of 55 students. Unlike normal introductory data
structures classes, this offering consisted of a larger percentage
of senior (53%) and junior (25%) students than would normally
be expected for a sophomore class. This student distribution
is partly a result of the course being the second offering in
the year (spring semester), and most computer science majors
would have taken it in the fall. Thus, the class consisted of
a much larger percentage of students who are taking data
structures as a required part of a noncomputer science degree,
such as mathematics and computer and electrical engineering.
In addition, a significant number of students in the course
had just previously failed or dropped the fall offering of the
course.

About 85% of the students registered in the course at least
got their code to compile on the server. Common complaints
among students were that there was not adequate time to com-
plete the project, especially with respect to other courses late
in the semester. Eighty percent of the students beat random-
Move; 65% beat noLook; 50% beat heithoff; and 7% beat
rlawrenc. During the assignment period, over 5000 games
were played, and some students in the course played over 500
games. The “stickiness” of the website was demonstrated by a
user survey that found that more than 40% of the surveyed stu-
dents logged onto the game site more than 20 times, and 88%
logged on at least six times.

LAWRENCE: TEACHING DATA STRUCTURES USING COMPETITIVE GAMES 465

The marking for the project was very efficient since it was
based on student performance. Simple database queries were
written that returned the students who beat each predesigned bot
and allowed initial marks to be assigned. Then, each student’s
code was evaluated electronically by having the student’s code
challenge the four test bots. For this particular game, random
moves sometimes beat even the best bots so some marks were
adjusted by manually examining the code to detect students who
did not build a board evaluator and game tree. Marking the en-
tire project took less than five hours for the professor. Interesting
future work would be to automate this process and to run algo-
rithms to detect any sharing of code among students.

The student satisfaction with the project was very high. Stu-
dents were asked to fill out an anonymous survey on the project
after they completed it but before marks were assigned. In the
survey, students were presented with statements and asked to re-
spond if they strongly agreed, agreed, were neutral, disagreed,
or strongly disagreed. The survey had 42 responses of the 55
registered students. All 42 respondents either strongly agreed
(60%) or agreed (40%) that the assignment was interesting, and
all but one strongly agreed (74%) or agreed (24%) that it was
challenging. When asked their impressions of the game project
with respect to other assignments, 78% either strongly agreed
(47%) or agreed (31%) that it was the best assignment in the
class. Even more telling, 81% either strongly agreed (50%) or
agreed (31%) that “the Critical Mass assignment was one of the
best assignments so far in any computer science course.”

Further, the percentage of students that either strongly agreed
or agreed that the assignment increased interest in the course
was 88%, that the game project made the course more inter-
esting was 88%, that the project helped them become a better
programmer was 86%, that the project helped them learn game
trees better than just the lecture notes was 72%, and that the as-
signment helped them learn the challenges in building games
was 88%.

The major unique factor of this project was that the tourna-
ment was run during the assignment in order to increase student
participation and motivation in the project. The benefit of this
approach was surveyed by asking the students to agree or dis-
agree with two statements with the following results:

• “The tournament feature of the assignment motivated
more effort into doing the assignment.” Eighty-nine
percent of the students either strongly agreed (60%) or
agreed (29%) with this statement.

• “The tournament feature of the assignment is more in-
teresting than developing a stand-alone game with no
student competitions.” Ninety percent of the students
either strongly agreed (64%) or agreed (26%) with this
statement.

In the survey, the students had the opportunity to have
general anonymous comments about the assignment. Although
there were some negative comments about the amount of work,
system problems with the competition server, and issues on
ranking, the comments were overwhelmingly positive. One
comment was especially appropriate and encompasses many of
the statements echoed by the students:

I’d just like to say that this is the most innovative method
used for an assignment so far in any computer science
course that I’ve taken. Placing students in direct competi-
tion in this way and having them build something that they
can truly have fun with makes this project a much better
learning experience than if we were told to simply make a
game tree and turn it in. The motivation behind seeing how
well my code stands in contrast to others really forced me
to work harder than I otherwise would have on this project.

Although these survey results do not determine whether the
students were more successful in learning game tree intelli-
gence, obviously the students worked harder, wrote more code,
and were motivated to complete the assignment. Since moti-
vated students generally are more successful learners [9], the
assignment probably met its instructional goals.

A. Architecture Improvements

The competition server architecture worked well considering
the technical challenges involved. The technique exploiting
namespaces to differentiate student code submissions is a useful
trick that instructors can use for other projects. The author has
made all source code and project materials available on the web
(http://idealab.cs.uiowa.edu/teaching). Although there is an
appropriate amount of setup required [15] to configure the data-
base and web server, deploying this project is not beyond the
abilities of most instructors. The template code can be modified
to support different games and assignments, and construction
of the website is a good senior undergraduate project.

The current competition server implementation is not very
robust. During the competition, some students would upload
code that would either contain a segmentation fault or an
infinite loop. If the code caused a segmentation fault, the game
controller would never complete and no result for the game
would be recorded. In addition, the feedback to the student
about the error was poor because the site was not intended
for debugging. An even more serious problem was when a
student’s code contained an infinite loop. In this case, the game
would never complete and would consume valuable server
resources. Further, both students involved in the game could
not continue to participate in the competition (since they could
compete in only one game at a time). Thus, the site required
active system administration, especially during the opening of
the competition.

Future work involves handling the problems with infinite
loops and segmentation faults by using interprocess communi-
cation (IPC) and a client–server architecture. Since student code
was compiled into the same process as the game controller, any
problems with the student code affected the game controller. By
having the student code communicate with the game controller
through IPC as separate processes on the server, most of the
problems can be resolved. One problem with this approach is
that the student code becomes more complex than just using
header files and namespaces (two concepts already taught in
the course), and the students have more difficulty debugging
code without being on the server.

The other major improvement that did not get implemented
is displaying the game as it is being played. The architecture

466 IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 4, NOVEMBER 2004

could allow the game to be shown in Java as it is being played
by having the Java applet query the database for the moves while
the C++ game controller is generating them. However, the au-
thors ran out of time for implementing this feature.

One factor that must be considered in deploying such a project
is security. Uploading and executing C++ code is an inherent se-
curity risk. Thus, a dedicated machine was used for the project,
and although possible security holes exist, they had no effect on
the competition.

V. CONCLUSION

Making introductory data structures courses interesting and
challenging requires projects that motivate students to enhance
their programming abilities using the new data structures.
This paper has discussed how a project involving competitive
gaming motivates students to learn advanced game intelligence
programming and improves their opinion of the course overall.
The use of competition during an assignment can be used in
any course where a suitable project can be developed. The
competition server architecture can be used to enable the com-
petitive environment. The major contribution is that interactive
competition during the assignment increases student effort and
satisfaction compared with projects where the competition
comes after the assignment is completed.

ACKNOWLEDGMENT

The author would like to thank E. Heithoff for her work on
the competition website as well as the class of introductory data
structures in spring 2003 for their participation.

REFERENCES

[1] J. Stasko, J. Domingue, M. Brown, and B. Price, Software Visualiza-
tion. Cambridge, MA: MIT Press, 1998.

[2] P. Brummund. (2003) Complete Collection of Algorithm Anima-
tions (CCAA). [Online]. Available: http://www.cs.hope.edu/alganim/
ccaa/index.html

[3] J. Adams, “Chance-it: An object-oriented capstone project for CS-1,” in
Proc. 29th ACM Special Interest Group on Computer Science Educa-
tion (SIGCSE) Technical Symp. Computer Science Education, 1998, pp.
10–14.

[4] K. Becker, “Teaching with games: The minesweeper and asteroids ex-
perience,” J. Computing Small Colleges, vol. 17, no. 2, pp. 23–33, 2001.

[5] T. Huang, “Strategy game programming projects,” in Proc. 6th Annu.
Consortium for Computing Sciences in Colleges (CCSC) Northeastern
Conf. Computing Small Colleges, 2001, pp. 205–213.

[6] D. Reese, “Using multiplayer games to teach interprocess communica-
tion mechanisms,” in ACM Special Interest Group on Computer Science
Education (SIGCSE) Bull., vol. 32, 2000, pp. 45–47.

[7] J. Hill, C. Ray, J. Blair, and C. Carver, “Puzzles and games: Addressing
different learning styles in teaching operating systems concepts,” in
Proc. 34th ACM Special Interest Group on Computer Science Education
(SIGCSE) Technical Symp. Computer Science Education, 2003, pp.
182–186.

[8] (2003). CodeWars, CodeWars Open Source Project. [Online]. Avail-
able: http://codewars.sourceforge.net

[9] S. Fallows and K. Ahmet, Inspiring Students: Case Studies in Motivating
the Learner. London, U.K.: Kogan Page, Ltd., 1999.

[10] R. Felder and L. Silverman, “Learning and teaching styles in engineering
education,” Engineering Education, vol. 78, no. 7, pp. 674–681, 1988.

[11] J. Margolis and A. Fisher, Unlocking the Clubhouse: Women in Com-
puting. Cambridge, MA: MIT Press, 2002.

[12] C. Gorriz and C. Medina, “Engaging girls with computers through soft-
ware games,” Commun. ACM, vol. 43, no. 1, pp. 42–49, 2000.

[13] M. Klawe, M. Westrom, K. Davidson, and S. Super, “Phoenix quest:
Lessons in developing an educational computer game for girls. . . and
boys,” in Proc. Conf. Multimedia Technology Management, 1996, pp.
264–274.

[14] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2002.

[15] E. Heithoff, “The construction of a C++ teaching aide (honors thesis),”,
Department of Computer Science, University of Iowa, Iowa City, IA,
2003.

Ramon Lawrence (M’02) received the B.C.Sc. (Hons.) and Ph.D. degrees
from the University of Manitoba, Winnipeg, MB, Canada, in 1996 and 2001,
respectively.

He is currently an Assistant Professor at the University of Iowa, Iowa
City, with teaching interests in data structures and database systems, and the
Director of the Iowa Database and Emerging Applications (IDEA) Laboratory
(http://idealab.cs.uiowa.edu). He is an active supporter of undergraduate honors
research and projects. His current research area is database integration and
querying.

	toc
	Teaching Data Structures Using Competitive Games
	Ramon Lawrence, Member, IEEE
	I. I NTRODUCTION
	II. B ACKGROUND
	III. P ROJECT O VERVIEW
	A. Pedagogical Constraint

	Fig.€1. Critical Mass board class in file CM.h .
	Fig.€2. Critical Mass game class in file student.h .
	B. Student Requirements

	Fig.€3. Student main screen on competition server.
	C. Evaluation and Competition
	D. Website Architecture

	Fig.€4. Student viewing game result using Java applet.
	Fig.€5. Game controller code.
	IV. P EDAGOGICAL R ESULTS
	A. Architecture Improvements

	V. C ONCLUSION
	J. Stasko, J. Domingue, M. Brown, and B. Price, Software Visuali
	P. Brummund . (2003) Complete Collection of Algorithm Animations
	J. Adams, Chance-it: An object-oriented capstone project for CS-
	K. Becker, Teaching with games: The minesweeper and asteroids ex
	T. Huang, Strategy game programming projects, in Proc. 6th Annu.
	D. Reese, Using multiplayer games to teach interprocess communic
	J. Hill, C. Ray, J. Blair, and C. Carver, Puzzles and games: Add
	(2003). CodeWars, CodeWars Open Source Project. [Online] . Avail
	S. Fallows and K. Ahmet, Inspiring Students: Case Studies in Mot
	R. Felder and L. Silverman, Learning and teaching styles in engi
	J. Margolis and A. Fisher, Unlocking the Clubhouse: Women in Com
	C. Gorriz and C. Medina, Engaging girls with computers through s
	M. Klawe, M. Westrom, K. Davidson, and S. Super, Phoenix quest:
	S. Russell and P. Norvig, Artificial Intelligence: A Modern Appr
	E. Heithoff, The construction of a C++ teaching aide (honors the

