
IEEE TRANSACTIONS ON IMAGE PROCESSING, TO APPEAR 1

Fast Search for Best Representations in Multitree
Dictionaries.

Yan Huang Ilya Pollak* Minh N. Do Charles A. Bouman

Abstract— We address the best basis problem—or, more gener-
ally, the best representation problem: given a signal, a dictionary
of representations, and an additive cost function, the aim is to
select the representation from the dictionary which minimizes
the cost for the given signal. We develop a new framework of
multitree dictionaries which includes some previously proposed
dictionaries as special cases. We show how to efficiently find the
best representation in a multitree dictionary using a recursive
tree pruning algorithm. We illustrate our framework through
several examples, including a novel block image coder which
significantly outperforms both the standard JPEG and quadtree-
based methods, and is comparable to embedded coders such as
JPEG2000 and SPIHT.

I. I NTRODUCTION.

A number of research efforts have recently concentrated
on developing adaptive algorithms for representing and ap-
proximating signals in overcomplete dictionaries. This paper
addresses thebest basis problem—or, more generally, the
best representation problem: given a signal, a dictionary of
representations, and an additive cost function, the aim is to
select the representation from the dictionary which minimizes
the cost for the given signal. This paradigm has been suc-
cessfully used for problems in compression [23], [24], [37],
[49], estimation [11]–[13], [19], [20], [25], [29], [33], [51],
and time-frequency (or space-frequency) analysis [7], [14]–
[17], [46], [48], [52].

The original papers on best basis search [8], [9] considered
the wavelet packet bases [8] and bases of local cosines [10],
[26], [27], [38] on dyadic intervals. In each of these two
cases, all the bases in the dictionary can be organized using a
single tree: a binary tree in 1-D and a quadtree in 2-D. This
organization was exploited in [8], [9] to devise a fast recursive
tree pruning algorithm to find the best basis for any additive
cost function.

Since then, a number of efforts have sought to lift the
restrictions that a fixed binary/quadtree structure imposes on
the underlying dictionary. Search methods for various dic-
tionaries that correspond to different sets of possible time-
frequency or space-frequency tilings have been proposed, such

This work was supported in part by a National Science Foundation
(NSF) CAREER award CCR-0093105, an NSF grant IIS-0329156, a Purdue
Research Foundation grant, and an NSF CAREER award CCR-0237633.

Y. Huang, I. Pollak*, and C.A. Bouman are with the School of Electrical
and Computer Engineering, Purdue University, 1285 EE Building, West
Lafayette, IN 47907, phone 765-494-3465, 5916, and 0340, fax 765-494-
3358, e-mail yanh,ipollak,bouman@ecn.purdue.edu. M.N. Do is with the De-
partment of Electrical and Computer Engineering, Coordinated Science Lab,
and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana,
IL 61801, phone 217-244-4782, fax 217-244-1642, e-mail minhdo@uiuc.edu.
Corresponding author’s e-mail:ipollak@ecn.purdue.edu .

as the double-tree algorithm [14], time-frequency trees [46],
[52], space-frequency trees [15], adaptive Haar-Walsh tilings
[24], anisotropic wavelet packets [2], [11], anisotropic cosine
packets [2], and mixed isotropic/anisotropic packets [2].

The main contributions of the present paper are:

• a new framework of multitree dictionaries which includes
some previously proposed dictionaries as special cases;

• a fast recursive algorithm to find the best representation
of data in a multitree dictionary;

• several application examples, including a novel image
coder, which typically reduces the bit rate by about 25-
40% compared to JPEG and by about 10-20% compared
to the quadtree-based approach of [37], and whose rate-
distortion performance is comparable to that of embedded
wavelet coders such as JPEG2000 and SPIHT.

We start our discussion in Section II with a simple example
of an optimal rectangular tiling algorithm. A simple modifica-
tion of this algorithm leads to a best wedgelet algorithm for
arbitrary rectangular tilings which we present in Section III.
Two further extensions of our basic tiling algorithm are
described in Section IV. Section V applies our algorithm to the
problem of image compression. In Section VI, we introduce
the general framework of multitree dictionaries, and argue that
the algorithms of Sections II, III, and IV are special cases
of a general recursive algorithm for finding the best object
in a multitree dictionary. In Section VII, we then discuss
relationships of our framework and algorithms to previously
proposed best basis algorithms, and to other application areas.

II. EXAMPLE 1: OPTIMAL RECTANGULAR TILINGS.

A. A Fast Recursive Tiling Algorithm.

We consider all images supported on a discrete rectangular
domainQ ⊂ Z

2. Suppose we are given an imagef and would
like to segment it into rectangular tilesP1, P2, . . . , Pd so as
to minimize a cost which is equal to the sum of the costs of
the individual tiles:

d∑
i=1

e(Pi), (1)

wheree is a cost function which is application specific and
which depends on the imagef .

We restrict our choice of tilings, and only consider those
tilings that can be obtained through the following recursive
binary splitting process:

• start with a tiling which consists of a single tile—namely,
the whole image domain;

2 IEEE TRANSACTIONS ON IMAGE PROCESSING, TO APPEAR

(a) An admissible tiling. (b) An inadmissible tiling.

(c) A tree of splits. (d) Another tree of splits.

Fig. 1. An illustration of tilings and trees of splits. (a) An admissible
tiling—i.e., a tiling that can be obtained via recursive binary splitting. (b)
An inadmissible tiling. (c) A tree of splits that leads to the tiling in (a). (d)
Another tree of splits that leads to the tiling in (a).

• for every tile in the tiling which consists of more than
one pixel,

either keep it and do not split it ever again,
or split it into two smaller rectangular tiles;

• continue until all the tiles in the tiling either consist of
one pixel or are labeled “never split again”.

A rectangular tiling which can be obtained through this
procedure is called anadmissible tiling. An admissible tiling
is illustrated in Fig. 1(a). The rectangular tiling depicted in
Fig. 1(b) cannot be obtained through the binary splitting
process described above, even though every tile in the tiling
is a rectangle. This tiling is therefore not an admissible tiling.

The binary splitting process is conveniently visualized as a
tree, with every node of the tree corresponding to a unique
rectangular region of the image, as shown in Fig. 1(c).1 We
therefore use the termsnode and rectangular regioninter-
changeably. In particular, the entire image domain corresponds
to the root of the tree. The yield of the binary tree—i.e., the
set of all leaves—is then a tiling of the image. We therefore
use the termsleaf nodeand tile interchangeably. The set of
all such trees will give us the set of all admissible tilings
(however, several different trees may correspond to the same
tiling, as shown in Fig. 1(c,d)).

To efficiently solve our optimal tiling problem, we assign
the cost given in Eq. (1) to every treet whose yield is an
admissible tiling{P1, . . . , Pd}:

COST0(t) =
∑

P∈yield(t)

e(P). (2)

We then search over all trees to find one of the trees with the
smallest cost. The optimal tiling is then the yield of this tree.
Since our search space consists of multiple trees, we call it
a multitree dictionary. Our efficient search algorithm exploits

1In the figure, a short vertical (horizontal) line through a node signifies a
vertical (horizontal) split.

(C∗
P , s∗P)← bestsplit v0(P) {

if C∗
P has been computed
get C∗

P ands∗P from the global data structure TABLE;
else{

s∗P ← ∅; //Initialize best left childs∗P
C∗

P ← e(P); //Initialize best costC∗
P

for (P ′, P ′′) = a partition ofP into two rectangles{
(C∗

P ′ , s∗P ′)← bestsplit v0(P ′);
(C∗

P ′′ , s∗P ′′)← bestsplit v0(P ′′);
if C∗

P ′ + C∗
P ′′ < C∗

P {
s∗P ← P ′; //Updates∗P
C∗

P ← C∗
P ′ + C∗

P ′′ ; //UpdateC∗
P

}
}
recordC∗

P ands∗P in the global data structure TABLE;
}
returnC∗

P ands∗P ;
}
(a) Recursive calculation of the optimal splits and corresponding costs.

B∗P ← besttiling v0(P) {
get s∗P from the global data structure TABLE;
if s∗P is the empty set
B∗P ← {P};

else
B∗P ← besttiling v0(s∗P) ∪ besttiling v0(P\s∗P);

returnB∗P ;
}

(b) Recursive generation of the best tiling.

Fig. 2. Pseudocode specification of a fast recursive search for the best
rectangular tiling: (a) the recursive calculation of the optimal left children
s∗P and the corresponding costsC∗

P ; (b) the recursive generation of the best
tiling. It is assumed that both routines have access to the same global data
structure TABLE. The optimal tilingB∗Q of an image domainQ is obtained
with (C∗

Q, s∗Q)← bestsplit v0(Q), followed byB∗Q ← besttiling v0(Q).

the fact that although the number of possible trees and tilings
is very large (see [25], [53] and Appendix), the number of
rectangular tiles is much smaller and manageable.

To describe our search algorithm, letC∗
P be the cost of

the optimal tiling for a rectangleP . In particular, C∗
Q =

min
t

COST0(t) is the optimal cost for the entire image domain
Q. Our algorithm makes the following recursive call, starting
with P = Q:

C∗
P = min{e(P), min(C∗

P ′ + C∗
P ′′)}, (3)

where the inner minimization is done over all ordered pairs of
rectangles(P ′, P ′′) which partition the rectangleP :

P = P ′ ∪ P ′′ andP ′ ∩ P ′′ = ∅.

We always assume that, if the split is horizontal, thenP ′ is
on top ofP ′′, and if the split is vertical, thenP ′ is to the left
of P ′′.

The recursive call (3) terminates at the pixels:

if P is a pixel, thenC∗
P = e(P). (4)

To avoid repetitive calculation, we store the optimal cost
and the optimal split for each rectangle in a table. Before
making a recursive call for any rectangleP , the table is

HUANG ET AL.:FAST SEARCH FOR BEST REPRESENTATIONS IN MULTITREE DICTIONARIES 3

consulted to make sure thatP has not been visited before.
If the original image domain isN1 × N2, it has O(N2

1 N2
2)

different subrectangles, and therefore maintaining the table
requiresO(N2

1 N2
2) memory. With this table, we only need

to make one recursive call per rectangle. Since each recursive
call involves O(N1 + N2) comparisons to calculateC∗

P via
Eq. (3)—corresponding toN1−1 horizontal splits andN2−1
vertical splits—the computational complexity of the search
algorithm is O(N2

1 N2
2 (N1 + N2)) which is O(N2.5) for a

square image2 with N pixels, N1 = N2 =
√

N .
The pseudocode for the search algorithm is shown in Fig. 2.

The optimal left child ofP is denoted bys∗P , and the optimal
overall tiling by B∗

P . Fig. 2(a) shows the pseudocode for the
recursive calculation of the optimal splits and corresponding
costs which are stored in a global data structure TABLE. Once
this piece of pseudocode is executed, the optimal tiling is
constructed using the routine in Fig. 2(b) which is assumed
to have access to the same global data structure TABLE.
Specifically, the optimal tilingB∗

Q of an image domainQ is
obtained with the following two commands:

(C∗
Q, s∗Q) ← bestsplit v0(Q),
B∗

Q ← besttiling v0(Q),

which call the two routines in Fig. 2.

B. A Simple Cost Function.

The preceding discussion supposes that the individual costs
e(P) have been precomputed for every rectangleP . We
analyze this computation using the following simple cost:

e(P) =
∑

(n1,n2)∈P

(f(n1, n2)− fP)2 + w, (5)

which results in the following overall cost of a tiling
{P1, . . . , Pd}:

d∑
i=1

∑
(n1,n2)∈Pi

(f(n1, n2)− fPi
)2 + wd, (6)

where
f(n1, n2) is the pixel value at the location(n1, n2);
fPi

is the average of the imagef over the rectanglePi;
d is the number of tiles in the tiling;
w is an application-specific penalty on the number of
tiles (such as, e.g., the average coding complexity in a
compression application).

For this particular cost function (5), computinge(P) for
every rectangleP can be done very efficiently by defining the
following two variables:

ρ1(f, P) =
∑

(n1,n2)∈P

f(n1, n2) = |P |fP

ρ2(f, P) =
∑

(n1,n2)∈P

f(n1, n2)2,

2For aN1×N2× . . .×ND D-dimensional hyperrectangle, it is similarly
shown that the complexity of the search isO(N2

1 . . . N2
D(N1 + . . .+ND)),

which is O(DN2+1/D) for a D-dimensional hypercube withN voxels,
N1 = . . . = ND = N1/D .

and noticing that, if we know these two variables for a pair
of rectangles(P ′, P ′′) which partition a rectangleP , we can
calculatee(P) in O(1) time as follows:

ρ1(f, P) = ρ1(f, P ′) + ρ1(f, P ′′)
ρ2(f, P) = ρ2(f, P ′) + ρ2(f, P ′′)

e(P) = ρ2(f, P)− ρ2
1(f, P)/|P |+ w.

This is used to compute all the costs in a bottom-up fashion,
with both time and space complexityO(N2

1 N2
2).

C. Reducing the Computational Complexity.

The overall time complexity of the optimal tiling algorithm
with the cost (5)—i.e., the computation of the costs and
the recursive search combined—isO(N2

1 N2
2 (N1 + N2)). The

overall space complexity isO(N2
1 N2

2).
Note that reducing the number of admissible rectangular

tilings may result in a lower computational complexity of the
algorithm. For example, we can restrict the search space if we
only allow a rectangle to be split into two congruent rectangles,
as was done in, e.g., [11]. In other words, we can impose
that during our recursive binary splitting process, ann1 ×
n2 rectangle may only be split either into twon1/2 × n2

rectangles, or into twon1 × n2/2 rectangles. This “dyadic
tiling” scenario is called “dyadic CART” in [11] and is similar
to the anisotropic wavelet packets [2], [11].3 It can be shown
that in this case, the total number of possible rectangular tiles
is O(N1N2), and therefore the computation of the costs has
time and space complexityO(N1N2). The minimization in
Eq. (3) is O(1) since it now involves choosing one of no
more than three options: horizontal split or vertical split or
no split. Therefore, both the time and space complexity of the
search isO(N1N2), which is also the overall complexity of the
algorithm—i.e., the computation of the costs and the recursive
search combined. In this case, the complexity is linear in the
number of pixels.

Another way of reducing the computation time and memory
requirements is restricting the split locations to only occur at
multiples of some integerM > 1. In this case, the elementary
cells in the resulting tilings will beM ×M rectangles rather
than single pixels. Our rectangular tiling algorithms, withM =
16, are illustrated in Fig. 3: Fig. 3(b) shows the result of the
dyadic search, and Fig. 3(c) shows the result of the search for
arbitrary split locations.

We also note that for any set of admissible tilings, a further
reduction in computational complexity can be achieved by
sacrificing optimality and using a suboptimal, greedy search
method proposed in, e.g., [30], [31].

The problems addressed in the remainder of the paper exem-
plify many situations where the computation of the costs may
be more complex thanO(1) per pixel and in fact may dominate
the computational complexity of the overall algorithm.

3The scenario which is similar to the classical wavelet packets results from
imposing that, furthermore, any horizontal split must be followed by a vertical
one, and vice versa. In other words, if ann1 × n2 rectangle resulted from a
horizontal split, it is only allowed to be split into twon1 ×n2/2 rectangles;
and if it resulted from a vertical split, it is only allowed to be split into two
n1/2× n2 rectangles.

4 IEEE TRANSACTIONS ON IMAGE PROCESSING, TO APPEAR

(a) Cameraman image.

(b) Best dyadic tiling, cost 0.57

(c) Best arbitrary tiling, cost 0.44

Fig. 3. A 256 × 256 cameraman image and its best rectangular tilings
with the smallest cell size16× 16: (b) best dyadic tiling, cost 0.57; (c) best
arbitrary tiling, cost 0.44.

III. E XAMPLE 2: OPTIMAL WEDGELET TILINGS.

A. Algorithm Extension 1: State Variables.

In the best wedgelet algorithm [12], each tile can be rep-
resented using one of several wedgelets. In our image coding
algorithm in Section V, we will allow the choice of several
quantizers for encoding each tile. To model these choices,
we introduce the concept of astate variable. To every tile
P , we associate a state variablexP taking values in some
finite set which, without loss of generality, we assume to be
{1, 2, . . . , X} whereX is some fixed integer. Each term of the
cost function is now allowed to depend on the corresponding
state variable—in other words, we replace the cost given in

region P’
intensity

intensity
region P’’

µ’

µ’’

∆

Fig. 4. A wedgelet.

Eq. (2) with the following:

COST1(t) =
∑

P∈yield(t)

c(P, xP). (7)

Note that if we lete(P) = min
xP

c(P, xP), this cost becomes

the same asCOST0 in Eq. (2). Therefore, the search for the
best tree and the best tiling now consists of two steps: finding
the best state for each tileP via minimizing c(P, xP) with
respect toxP , and then applying our recursive algorithm of
Fig. 2(a).

B. Wedgelet Experiments.

A wedgelet [12] is an image defined on a rectangular
domain and consisting of two constant pieces which are joined
together along a straight line, as illustrated in Fig. 4. We
can represent a wedgelet on a domainP as a quadruple
xP = (P ′, P ′′, µ′, µ′′) whereP ′ andP ′′ are the two regions
that the straight line partitionsP into, and µ′ and µ′′ are
the respective image intensities. Alternatively,P ′ andP ′′ can
be specified by the two endpoints of the line. It is typically
assumed that the endpoints are restricted to a grid with some
small step∆, as shown in Fig. 4.

Given an imagef , we can approximate the image val-
ues over a rectangular domainP with a wedgeletxP =
(P ′, P ′′, fP ′ , fP ′′) where fP ′ and fP ′′ are the average in-
tensities off over the regionsP ′ and P ′′, respectively. We
penalize any such approximation using the following simple
cost function which is similar to Eq. (5):

c(P, xP) =
∑

(n1,n2)∈P ′
(f(n1, n2)− fP ′)2

+
∑

(n1,n2)∈P ′′
(f(n1, n2)− fP ′′)2 + 2w.

In addition, we still allow approximating an image tile with a
constant, and still use the cost in Eq. (5) in this case.

Our fast search algorithm can then find the optimal wedgelet
tiling. Fig. 5 depicts some examples for a binary image.
Fig. 5(a) shows the best quadtree wedgelet tiling. This strategy
was proposed in the original wedgelet paper [12]. Allowing
more possibilities for split locations leads to more compact and
more precise wedgelet tilings. The best dyadic wedgelet tiling
is shown in Fig. 5(b) and allows each rectangle to be split into
two congruent rectangles either horizontally or vertically.

We assumed the following simple approximation for the
number of bits required to encode our wedgelet tilings:

HUANG ET AL.:FAST SEARCH FOR BEST REPRESENTATIONS IN MULTITREE DICTIONARIES 5

10 12 14 16 18 20 22 24
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

Best Quadtree Wedgelets

Best Dyadic Wedgelets

(a) Quadtree wedgelets. (b) Dyadic wedgelets. (c) Rate-distortion curves.

Fig. 5. Two best wedgelet tiling examples for an128× 128 binary image: (a) Quadtree wedgelets, SNR=17.1 dB, rate = 0.0062 bits per pixel; (b) Dyadic
wedgelets, SNR = 17.8 dB at 0.0055 bits per pixel. Panel (c) shows the rate-distortion curves for this image, for the quadtree wedgelets (dashed) and the
dyadic wedgelets (solid).

• one bit per node to encode whether it is an internal node
or a leaf;

• one bit per leaf node to encode whether it is a constant
tile or a wedgelet;

• one bit per leaf node to encode the intensity (this is
a reasonable approximation, since our input image is
binary);

• log2(((M +N)/∆)2) bits per wedgelet leaf node of size
M ×N , to encode the position of the wedgelet partition;

• in addition, for dyadic wedgelet tilings, we spend one bit
per internal node to encode whether it is split horizontally
or vertically.

With these assumptions, the quadtree tiling of Fig. 5(a)
produces SNR of 17.1 dB and rate 0.0062 bits per pixel,
whereas Fig. 5(b) has both a higher SNR of 17.8 dB and a
lower rate of 0.0055 bits per pixel. Note also that the quadtree
tiling has 16 tiles whereas the dyadic tiling has only eight tiles.
Dyadic tilings outperform quadtree tilings, achieving lower
rates at the same SNR’s and higher SNR’s at the same rates
for this image, as shown in Fig. 5(c). The curves in Fig. 5(c)
were obtained by varying the split penaltyw.

IV. FURTHER EXTENSIONS OF THEOPTIMAL TILING

ALGORITHM.

A. Algorithm Extension 2: Incorporating Internal Nodes into
the Cost.

Recall that in previous sections, the trees played an auxiliary
role since the cost only depended on the yield of the tree—i.e.,
the leaf nodes—but was independent of the internal nodes of
the tree. However, in some applications the internal structure of
the tree matters. For example, in the wedgelet experiments of
the previous section as well as in the compression experiments
which will be discussed in Section V, the structure of the tree
must be encoded, and the encoding costs may be different for
two different trees which correspond to the same tiling. We
would like to be able to include these costs in the cost function
optimized by our algorithm. To model this and a variety of
other such situations where the internal structure of the tree is
important, we now equip every nodeP with a statexP , and

use a cost function̄c to penalize the split of a nodeP with
a statexP into nodesP ′ and P ′′ with statesxP ′ and xP ′′ ,
respectively. Our new cost for any treet is:

COST2(t) =
∑

P∈internal-nodes(t)

c̄


 (P ′, xP ′) (P ′′, xP ′′)

(P, xP)



+
∑

P∈yield(t)

c(P, xP), (8)

where

in the first summation, the nodesP ′ and P ′′ are the
children of the nodeP on the treet;
xP , xP ′ , andxP ′′ are the state variables associated with
the nodesP , P ′, andP ′′, respectively;
c and c̄ are application-specific cost functions.

Note that this cost is a generalization ofCOST1(t) in Eq. (7).
Indeed, if we set̄c ≡ 0, thenCOST2(t) = COST1(t). Note also
that, in the cost (5,6) which we used in our tiling experiments,
the penaltyw can be interpreted as a split cost functionc̄ which
assigns a constant penaltyw to each split.

We let C̄∗
P,x be the cost of the optimal tree for a rectangle

P , given xP = x, and we letC̄∗
P be the cost of the overall

optimal tree forP , i.e., C̄∗
P = min

x
C̄∗

P,x. The optimal tree is
found using the recursion in Eq. (9). This recursion is similar
to Eqs. (3,4) and can therefore be implemented using the
pseudocode in Figs. 6 and 7 which are extensions of Figs. 2(a)
and 2(b), respectively.

B. Algorithm Extension 3: Dynamic Programming Over a
Sequence of Blocks.

If an image is partitioned intoK blocksQ1, Q2, . . . , QK—
as in, for example, JPEG and [37]—our algorithm can be used
to find the optimal tiling within each block. In [37], it was
assumed that each block is handled independently. However,
as argued in [5], [40], it is sometimes advantageous to assume
that pairs of consecutive blocks are interdependent. In order to

6 IEEE TRANSACTIONS ON IMAGE PROCESSING, TO APPEAR

C̄∗
P,x =

8>>><
>>>:

c(P, x), if P is an elementary cell,

min

8>><
>>:

c(P, x), min
P ′,P ′′,x′,x′′

2
664c̄

0
BB@

(P ′, x′) (P ′′, x′′)

(P, x)
1
CCA + C̄∗

P ′,x′ + C̄∗
P ′′,x′′

3
775

9>>=
>>;

, otherwise.
(9)

(C̄∗
P,x, s̄∗P,x)← bestsplit v2(P, x) {
if C̄∗

P,x has been computed
get C̄∗

P,x and s̄∗P,x from the global data structure TABLE;
else{

// Initialize
s̄∗P,x ← ((∅, 0), (∅, 0));

C̄∗
P,x ← c(P, x);

for x′ = 1 : X, x′′ = 1 : X, (P ′, P ′′) = a partition ofP {
(C̄∗

P ′,x′ , s̄∗P ′,x′)← bestsplit v2(P ′, x′);
(C̄∗

P ′′,x′′ , s̄∗P ′′,x′′)← bestsplit v2(P ′′, x′′);

if C̄∗
P ′,x′ + C̄∗

P ′′,x′′ + c̄

0
BBBB@ (P ′, x′) (P ′′, x′′)

(P, x)
1
CCCCA

< C̄∗
P,x {

// Update
s̄∗P,x ← ((P ′, x′), (P ′′, x′′));

C̄∗
P,x ← C̄∗

P ′,x′ + C̄∗
P ′′,x′′ + c̄

0
BBBB@ (P ′, x′) (P ′′, x′′)

(P, x)
1
CCCCA

;

}
}
recordC̄∗

P,x and s̄∗P,x in the global data structure TABLE;
}
return C̄∗

P,x and s̄∗P,x;
}

Fig. 6. Pseudocode for the recursive calculation of the optimal splits and
states and the corresponding costs forCOST2 of Section IV-A.

t∗P,x ← besttreev2(P, x) {
get s̄∗P,x ≡ ((P ′, x′), (P ′′, x′′)) from the global TABLE;
if P ′ is the empty set

t∗P,x ← [(P, x)];
else

t∗P,x ←

2
66664 besttreev2(P ′, x′) besttreev2(P ′′, x′′)

(P, x)
3
77775

;

return t∗P,x;
}

Fig. 7. Pseudocode for the recursive generation of the best tree for Section IV-
A.

model this new assumption, we lett1, . . . , tK be the trees cor-
responding to the blocksQ1, . . . , QK , respectively, and assign
the following cost to this collection of trees{t1, . . . , tK}:

COST-BLOCKS(t1, . . . , tK) =
K∑

k=2

¯̄c(Qk, xQk
, Qk−1, xQk−1)

+
K∑

k=1

COST2(tk). (10)

Let ¯̄C∗
1:i,x be the optimal cost fori blocks, given thatxQi

=

(t∗1, . . . , t∗K)← besttreesequence(Q1, . . . , QK) {
// Initialization
for x = 1 : X, P = Q1 : QK

(C̄∗
P,x, s̄∗P,x)← bestsplit v2(P, x);

for x = 1 : X {
¯̄C∗
1:1,x ← C̄∗

Q1,x;

optimal previousstate1:1,x ← 0;

}
// Forward sweep
for i = 2 : K

for x = 1 : X {
¯̄C∗
1:i,x ← min

x′ (¯̄c(Qi, x, Qi−1, x′) + C̄∗
Qi,x + ¯̄C∗

1:i−1,x′);

optimal previousstate1:i,x←arg min
x′ (¯̄c(Qi, x, Qi−1, x′)

+ C̄∗
Qi,x + ¯̄C∗

1:i−1,x′);
}

//Backtracking
x∗ = arg min

x

¯̄C∗
1:K,x;

for i = K : −1 : 1 {
t∗i ← besttreev2(Qi, x

∗);

x∗ ← optimal previousstate1:i,x∗ ;

}
return t∗1, . . . , t∗K ;
}

Fig. 8. Pseudocode for the dynamic programming over blocks, Section IV-B.

x. In other words,¯̄C∗
1:i,x is defined as the result of minimizing

COST-BLOCKS(t1, . . . , ti) subject toxQi
= x. Then we have

the following recursion for¯̄C∗
1:i,x:

¯̄C∗
1:i,x =

8><
>:

C̄∗
Q1,x for i = 1,

min
x′ (¯̄c(Qi, x, Qi−1, x

′) + C̄∗
Qi,x + ¯̄C∗

1:i−1,x′)

for i = 2, . . . , K,

(11)

where C̄∗
Qi,x

is computed through the recursion (9), using
the pseudocode in Fig. 6. The overall optimal cost, which we
denote ¯̄C∗

1:K , is found from:

¯̄C∗
1:K = min

x

¯̄C∗
1:K,x.

This recursive calculation is performed using the dynamic
programming algorithm of Fig. 8, similar to those used in
[5], [40].

V. EXAMPLE 3: MULTITREE IMAGE CODING ALGORITHM.

We fuse our rectangular tiling algorithm with several aspects
of the compression strategy in [37], to obtain an image coder
which finds the optimal tiling, and encodes every tile. The
input is partitioned into blocksQ1, . . . , QK , in the raster order.
Within each block, we find the optimal treet∗k and encode it
as follows:

• one bit per node is used to indicate whether the node is
an internal node or a leaf;

HUANG ET AL.:FAST SEARCH FOR BEST REPRESENTATIONS IN MULTITREE DICTIONARIES 7

• for each node with a statex ∈ {1, . . . , X}, we use
dlog2 Xe bits to encode the statex;

• dlog2 SPLITSP e bits are used to encode the split location
for every internal nodeP , where SPLITSP is the total
number of possible split locations for the nodeP .

To find the optimal tree, we optimize with respect to the
rate-distortion cost [37]D + λR, whereR is the number of
bits it takes to encode the image,D is the total distortion, and
λ is a parameter. We assume that the distortionD is additive
over the tiles and over the blocks. In our experiments, we
use the sum of squared differences as our distortion criterion.
For each tile, we follow a JPEG-like procedure which finds
the DCT coefficients, quantizes them, and entropy-codes the
AC coefficients and differential DC coefficients. The DC
coefficients are differentially coded in the following manner:

• the root DC coefficient for the first blockQ1 is encoded;
• the difference between the root DC coefficients for the

k-th block and the(k − 1)-st block is encoded, fork =
2, . . . , K;

• for every leaf nodeP of every treet∗k, the difference
between the DC coefficient forP and the root DC
coefficient is encoded.

Following [37], we assume that one of several quantizers can
be used for each tile, and optimize our choice of the quantizer
for each tile concurrently with the search for the optimal tiling.
The statexP corresponds to the quantizer used for the tileP .
In addition, we allow the choice of the same set of quantizers
to encode the root DC coefficient.

Because of the differential coding of the DC coefficients,
the bit rate within each block can be shown to have the form
of Eq. (8), and the overall bit rate is additive over pairs of
consecutive blocks and is therefore of the form (10). This,
combined with the additivity of the distortion, means that the
overall costD + λR is of the form (10). This means that, in
order to optimize it, we can use the algorithm of Section IV-B
and Fig. 8.

In order to minimize the distortion subject to a fixed
rate, or to minimize the rate subject to a fixed distortion,
our optimization algorithm can be used within an iterative
procedure similar to that of [37].

A. Compression Experiments.

We compare our multitree-JPEG compression algorithm
with standard JPEG and with the quadtree-based algorithm of
[37].4 We test the algorithms on four images: a512 × 512
image “barbara”, and three256 × 256 images “goldhill,”
“lenna,” and “cameraman”. The corresponding sets of rate-
distortion curves are shown in Fig. 9. In each figure, the rate
in bits per pixel is plotted against the peak signal-to-noise
ratio (PSNR). For each quadtree and multitree experiment, a
target distortion was fixed, and the rate was minimized. Note
that our multitree algorithm (solid) outperforms the standard

4The rate-distortion curves we obtain for the JPEG and quadtree algorithms
are different from those given in [37] since we use a somewhat different
implementation—for example, we use a different set of quantization matrices.
However, the relative improvement of the quadtree algorithm over JPEG that
we observe is similar to what is reported in [37].

JPEG (dash) by about 2-4 dB and the quadtree algorithm
(dashdot) by about 1-2 dB at a fixed bit rate. Equivalently, the
multitree algorithm represents compression savings of about
25-40% over the standard JPEG and 10-20% over the quadtree
algorithm, for a fixed PSNR.

In these experiments, we take the block size to be16× 16
and we take the smallest cell size to be4× 4—i.e., we allow
rectangular tiles with sides 4, 8, 12, and 16. This means that,
for each16×16 block, we search over 68480 distinct tilings—
this is in contrast to the quadtree method which only allows 17
distinct tilings, and the standard JPEG which only considers
one tiling. While the number of possible tilings for our method
is drastically larger, the number of distinct subrectangles
of each block—which is what determines the computational
complexity of our algorithm—is only 100, compared to 21 for
the quadtree method and 4 for the standard JPEG. Thus, we
are able to search over a much larger set with only a modest
increase in the computational burden. It is shown in Appendix
that the increase in the allowed number of tilings is exponential
as compared to the quadtree algorithm whereas the increase
in the computational burden is only polynomial.

The results for the “barbara” image at PSNR = 36.4 dB are
given in Fig. 10: the JPEG, quadtree, and multitree compres-
sion algorithms achieve 1.31, 1.00, and 0.83 bits per pixel,
respectively. Note that the images look basically the same;
however, the multitree algorithm gives compression savings
of 37% over JPEG and 17% over the quadtree algorithm.

Fig. 11 illustrates the results for the same image at the
bit rate 0.49 bits per pixel. (In this experiment, the bit rate
was fixed at 0.49, and the distortions for the quadtree and
multitree methods were minimized.) At this bit rate, the JPEG,
quadtree, and multitree algorithms achieve PSNR’s for the
overall image of 28.3 dB, 30.5 dB, and 31.9 dB, respectively.
A patch from the image and its three compressed versions is
shown in Fig. 11. In addition to a higher signal-to-noise ratio,
it is clear from the figure that the multitree algorithm results
in both less blocky renditions of homogeneous areas of the
image, sharper edges, and less ringing and blockiness in the
textured areas and around the edges.

In these experiments, our implementation of JPEG is a
baseline implementation which uses Huffman coding of the
coefficients. To make the comparisons fair, we use similar
Huffman coding strategies for the quadtree and multitree
algorithms.

Further experiments show that, if we replace Huffman cod-
ing with arithmetic coding, then our multitree coder becomes
competitive when compared to the state-of-the-art embedded
wavelet coders such as JPEG2000 [45] and SPIHT [39] which
both employ arithmetic coding.5 Fig. 12 shows the rate-
distortion curves for JPEG2000, SPIHT, and our multitree
coder with arithmetic coding. The right column of the figure
displays the bit rates as percentages of the multitree bit rate.

5The improvement in performance is due to the fact that the
baseline JPEG Huffman encoder, whose variant we use, is relatively
poor. It has been observed that the QM arithmetic coder speci-
fied in the JPEG standard typically produces 5-10% compression sav-
ings, as compared to the baseline Huffman coder, see, for example,
sylvana.net/jpeg-ari/uncompressed/READ.txt .

8 IEEE TRANSACTIONS ON IMAGE PROCESSING, TO APPEAR

26 28 30 32 34 36 38 40 42 44
0

0.5

1

1.5

2

2.5

3

3.5

4

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

JPEG CODER
QUADTREE CODER
MULTITREE CODER

25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

JPEG CODER
QUADTREE CODER
MULTITREE CODER

28 30 32 34 36 38 40 42 44 46
0

0.5

1

1.5

2

2.5

3

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

JPEG CODER
QUADTREE CODER
MULTITREE CODER

26 28 30 32 34 36 38 40 42 44 46
0

0.5

1

1.5

2

2.5

3

3.5

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

JPEG CODER
QUADTREE CODER
MULTITREE CODER

Fig. 9. Rate-distortion curves for “goldhill”(top left), “barbara” (top right), “lenna” (bottom left), and “cameraman” (bottom right).

For “goldhill” (top row) and “cameraman” (bottom row), our
algorithm clearly outperforms both JPEG2000 and SPIHT. It
also does better than SPIHT for “barbara” (second row) and
better than JPEG2000 for “lenna” (third row). At low and
high rates for “barbara,” our algorithm is outperformed by
JPEG2000; and at low rates for “lenna,” it is outperformed by
SPIHT. While the rate-distortion curves of the three algorithms
are similar, our algorithm is potentially more amenable to
implementations with much lower memory complexity, since,
unlike JPEG2000 and SPIHT, it is based on small image
blocks.

VI. M ULTITREE DICTIONARIES.

We now generalize our algorithms of Sections II, III, and IV-
A and show that they are all instances of one general algorithm
which is applicable to a wide variety of scenarios.

Tree models such as those of Sections II, III, and IV-A are
conveniently described using the formalism of grammars. We
define agrammarG = (A,S) to be a pair of the following
sets:

• a setA of symbols,6 and
• a setS of allowed splits, also calledproductions, of the

form a→ α wherea ∈ A, andα is a finite sequence of
elements ofA.

For example, in Section IV-A, the symbols are pairs(P, x)
whereP is a rectangular region andx ∈ {1, . . . , X}, and the
productions are all of the form(P, x) → (P ′, x′) (P ′′, x′′)
whereP ′ andP ′′ are two rectangles which partitionP .

By starting with a single element ofA, we can generate
various sequences of elements ofA via recursive splitting—
i.e., recursive application of productions. This process can
be visualized as a tree where each productiona → α is
depicted as a node labeleda whose children are labeled with
the elements ofα, left to right. We letT (G) be the set of all

6This is somewhat different from standard treatments of grammars [28]
which distinguish between thestart symbolwhich can only appear at the
root, thenonterminal symbolswhich can only appear at the nonroot internal
nodes, andterminal symbolswhich can only appear at the leaves. We, on
the other hand, assume that any symbol inA can appear at the root or any
internal nodes or leaf nodes.

HUANG ET AL.:FAST SEARCH FOR BEST REPRESENTATIONS IN MULTITREE DICTIONARIES 9

(a) Original image (b) JPEG, 1.31 bpp

(c) Quadtree compression, 1.00 bpp (d) Multitree compression, 0.83 bpp

Fig. 10. Compression results for the “barbara” image at PSNR = 36.4 dB: (a) original image, (b) JPEG (rate = 1.31 bits per pixel), (c) quadtree compression
(rate = 1.00 bits per pixel), and (d) multitree compression (rate = 0.83 bits per pixel).

trees that can be produced7 by the grammarG.
Note that in the previous sections, the splitting process was

binary and led to binary trees. Here, we allow splits into an
arbitrary finite number of symbols.

We let amultitree dictionaryTa(G) be the set of all trees
in T (G) whose root is labeleda. We say that a grammar
G = (A,S) is finite-depthif, for every a ∈ A, Ta(G) is a
finite set. This can be insured by only allowing a finite set of
symbols to be descendants ofa, and not allowinga to be its
own descendant.

Suppose that each symbolu ∈ A is assigned a costc(u), and

7We assume that each branch of our recursive tree generation process can
stop after any number of recursions. This is different from standard treatments
of grammars [28] where the stopping is handled via distinguishing between
nonterminal symbols which must have children, and terminal symbols which
never have children.

that each productionu → α ∈ S is assigned a cost̄c(u →
α). Suppose further that the costCOST(t) of any treet ∈
Ta(G) is the sum of the individual costs of all the productions
comprisingt, plus the sum of the costs of all its leaves:

COST(t) =
∑

u→α∈t

c̄(u→ α) +
∑

u∈yield(t)

c(u). (12)

We would like to find the best tree in the dictionaryTa(G)
i.e., the treet∗a whose cost is the smallest:

t∗a = arg min
t∈Ta(G)

COST(t).

We denote the corresponding cost byC∗
a , i.e., C∗

a = C(t∗a).
We letSa be the set of all allowed splits of a fixed symbola.
To illustrate our fast recursive algorithm for best tree search,
we first suppose thatSa = {a → b1 b2}. Then there is a

10 IEEE TRANSACTIONS ON IMAGE PROCESSING, TO APPEAR

(a) A patch of “barbara” (b) JPEG

(c) Quadtree (d) Multitree

Fig. 11. Compression results for the “barbara” image at the bit rate of 0.49 bits per pixel: (a) a patch of the original image, (b) JPEG (PSNR for the overall
image = 28.3 dB), (c) quadtree compression (PSNR = 30.5 dB), and (d) multitree compression (PSNR = 31.9 dB).

single tree inTa(G) which consists of one node labeleda
with COST([a]) = c(a). For any other treet ∈ Ta(G), its left
subtreetleft is in Tb1(G), and its right subtreetright is in
Tb2(G). Therefore, since the cost is additive,

COST(t) = c̄(a→ b1 b2) + COST(tleft) + COST(tright).

Consequently, the optimal tree is:

t∗a =

8>><
>>:

2
4

t∗b1 t∗b2

a 3
5 if c̄(a → b1 b2) + C∗

b1 + C∗
b2 < c(a)

[a] otherwise.

In other words, we find the best treest∗b1 and t∗b2 in the
dictionariesTb1(G) and Tb2(G), respectively, and compare
their total cost plus the cost of the root productiona→ b1 b2,
with the cost of the tree[a].

We have a similar recursion in the general case. We letR(a)
be the set of the right-hand sides of all the elements ofSa.

Then the possible candidates fort∗a are

2
664 t∗b1 . . . t∗b|α|

a
3
775 with cost c̄(a → α) +

|α|X
i=1

C∗
bi

,

for any α = (b1 b2 . . . b|α|) ∈ R(a),

and [a], with cost c(a).

To find the globally optimalt∗a, we recursively search over
these possibilities. The recursion terminates whenSa = ∅: in
this case,t∗a = [a]. The termination is guaranteed to happen
in a finite number of steps for a finite-depth grammar. To
avoid repetitive calculation, we store the optimal costs and
corresponding productions in a global data structure called
TABLE, as illustrated in the pseudocode of Fig. 13(a). Once
this recursive call is done, the best tree can be generated from
TABLE using the pseudocode in Fig. 13(b).

The most significant computational burden is in computing
and storing the best costs and productions. To analyze this
procedure, we letA(a) be the union of{a} and the set of

HUANG ET AL.:FAST SEARCH FOR BEST REPRESENTATIONS IN MULTITREE DICTIONARIES 11

26 28 30 32 34 36 38 40 42 44
0

0.5

1

1.5

2

2.5

3

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

MULTITREE (ARITHMETIC)
SPIHT
JPEG2000

26 28 30 32 34 36 38 40 42 44

100

102

104

106

108

110

112

114

R
A

T
E

 A
S

 A
 P

E
R

C
E

N
T

A
G

E
 O

F
 T

H
E

 M
U

LT
IT

R
E

E
 R

A
T

E

PSNR IN DB

MULTITREE (ARITHMETIC)=100%
SPIHT
JPEG2000

25 30 35 40 45
0

0.5

1

1.5

2

2.5

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

MULTITREE (ARITHMETIC)
SPIHT
JPEG2000

25 30 35 40 45

94

96

98

100

102

104

106

108

110

112

114

R
A

T
E

 A
S

 A
 P

E
R

C
E

N
T

A
G

E
 O

F
 T

H
E

 M
U

LT
IT

R
E

E
 R

A
T

E

PSNR IN DB

MULTITREE (ARITHMETIC)=100%
SPIHT
JPEG2000

28 30 32 34 36 38 40 42 44 46 48
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

MULTITREE (ARITHMETIC)
SPIHT
JPEG2000

28 30 32 34 36 38 40 42 44 46

96

98

100

102

104

106

108

R
A

T
E

 A
S

 A
 P

E
R

C
E

N
T

A
G

E
 O

F
 T

H
E

 M
U

LT
IT

R
E

E
 R

A
T

E

PSNR IN DB

MULTITREE (ARITHMETIC)=100%
SPIHT
JPEG2000

26 28 30 32 34 36 38 40 42 44 46
0

0.5

1

1.5

2

2.5

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

MULTITREE (ARITHMETIC)
SPIHT
JPEG2000

26 28 30 32 34 36 38 40 42 44 46

100

105

110

115

120

125

130

R
A

T
E

 A
S

 A
 P

E
R

C
E

N
T

A
G

E
 O

F
 T

H
E

 M
U

LT
IT

R
E

E
 R

A
T

E

PSNR IN DB

MULTITREE (ARITHMETIC)=100%
SPIHT
JPEG2000

Fig. 12. Rate-distortion curves for “goldhill” (top row), “barbara” (second row), “lenna” (third row), and “cameraman” (bottom row). The right column
shows bit rates as percentages of the bit rate for the multitree algorithm with arithmetic coding of the coefficients.

12 IEEE TRANSACTIONS ON IMAGE PROCESSING, TO APPEAR

(C∗
a , s∗a)← bestsplit(a) {

if C∗
a has been computed
get C∗

a ands∗a from the global data structure TABLE;
else{

s∗a ← ∅; //Initialize s∗a
C∗

a ← c(a); //Initialize C∗
a

for α ∈ R(a) {
for b ∈ α

(C∗
b , s∗b)← bestsplit(b);

if c̄(a→ α) +
X
b∈α

C∗
b < C∗

a {
s∗a ← α;
C∗

a ← c̄(a→ α) +
X
b∈α

C∗
b ;

}
}
recordC∗

a ands∗a in the global data structure TABLE;
}
returnC∗

a ands∗a;
}

t∗a ← besttree(a) {
get s∗a from the global data structure TABLE;
if s∗a is the empty set

t∗a ← [a];
else{

i← 0;
for b ∈ s∗a {

i← i + 1;
bi ← b;
t∗bi
← besttree(bi);

}

t∗a ←

2
6664 t∗b1 . . . t∗bi

a
3
7775 ;

}
return t∗a;

}

(a) Recursive calculation of best splits and costs. (b) Recursive generation of best tree.

Fig. 13. Pseudocode for the recursive calculation of the best splits and best costs, and for the recursive generation of the globally optimal tree.

all symbols which can be descendants ofa. We let SA(a) be
the set of all allowed splits of elements ofA(a). For each
symbol b ∈ A(a), there is exactly one recursive call to the
subroutine bestsplit of Fig. 13(a). During this call, the costs
of all possible splits ofb are compared. The number of such
comparisons is|Sb|. Therefore, the overall time complexity of
the algorithm isO(|SA(a)|). In applications where only the
yield of a tree is of interest, such as our rectangular tiling
example of Section II, there is some redundancy associated
with searching over multiple trees which have the same yield.
In some instances, such as in [16], [17], this redundancy is
very significant and may be eliminated, leading to a lower
time complexity.

The overall space complexity isO(|A(a)|) since we need
to store two numbers—the best cost and the best split—
for each symbol inA(a). The key to controlling the time
and space complexity is therefore keeping the sizes of the
setsSA(a) and A(a) low. In addition, as we have remarked
before, the computation of the costsc̄(a→ α) andc(a) could
actually dominate the time complexity of the overall algorithm,
and therefore another important guideline to a successful
application of our algorithm is to use tractable cost functions.

We note that the dynamic programming algorithm of Sec-
tion IV-B is easily generalized to the problem of finding the
optimal tree in each of a sequence of multitree dictionaries,
provided that the overall cost has additive structure, as in
Eq. (10).

VII. R ELATIONSHIPS WITH PRIOR WORK.

It can be easily shown that standard wavelet packet and
dyadic local cosine dictionaries [8], [9], as well as anisotropic
2-D wavelet packet dictionaries [2], [11], are all multitree
dictionaries. It is also easy to see that a specialization of
our algorithm of Fig. 13 to the wavelet packets and dyadic
local cosines is essentially a restatement of the best basis
algorithm of [8], [9], its specialization to anisotropic wavelet
and cosine packets is a restatement as the anisotropic best

basis algorithm of [2], [11], and its specialization to dyadic
tiling is a restatement of the dyadic CART algorithm of [11].

Our algorithm can also be used for a variety of other
dictionaries, such as, for example, any dictionary of block
or lapped bases in two or more dimensions. It is interesting
to point out that arbitrary block and lapped dictionaries in
1-D can be efficiently searched without exploiting their tree
structure, but rather using standard dynamic programming
techniques, as was shown in [16], [17].

It was pointed out in [11] that there is a close relationship
between the best basis algorithm of [8], [9] and pruning meth-
ods used in the design of classification and regression trees [4].
These methods have also been used for vector quantization and
other applications [6]. These and other methods such as, for
example, [3], [18], [22], [32], [41], [42], [44], [47], [49]–[51],
seek to optimally tile a multidimensional domain with dyadic
hyperrectangles. Our multitree algorithm can potentially be
applied to these problems, allowing one to lift the requirement
that the split locations be dyadic.

We now point out a close relationship between our algorithm
and procedures for estimating the maximum a posteriori prob-
ability parse of a string [1], [21], [28] or an image [34]–[36],
[43]. In these problems,−c̄(u→ α) of Eq. (12) stands for the
log-probability of the productionu → α, and the probability
of a treet is defined as the product of the probabilities of all
the productions int. The objective of these estimation tasks is
to find the most probable tree, i.e., to minimize with respect to
t the negative-log-probability of the treet,

∑
u→α∈t

c̄(u→ α).

But this is exactly what our algorithm of Fig. 13 does. Thus,
the estimation algorithms of [1], [21], [28], [34]–[36], [43]
represent special cases of our search algorithm for the best
tree in a multitree dictionary.

VIII. C ONCLUSIONS.

We presented a general framework of multitree dictionaries
and provided a recursive algorithm for finding the best repre-
sentation in a multitree dictionary. We illustrated our frame-
work and algorithm within the contexts of optimal rectangular

HUANG ET AL.:FAST SEARCH FOR BEST REPRESENTATIONS IN MULTITREE DICTIONARIES 13

and wedgelet tilings and image compression, and designed a
new block image coder. The key property that enables our
algorithm to be fast for any additive or multiplicative cost
is the fact that, while the number of possible trees can be
enormous, the number of possible symbols at tree nodes is
typically manageable. By storing the optimal cost and the
optimal set of children for each symbol in a global data
structure, the algorithm only needs to make one recursive call
per symbol.

In the future we plan to further explore the flexibility of
our framework and design various other multitree dictionaries
which allow a fast selection of the best representation in
applications such as time-frequency analysis, approximation,
embedded image compression, video compression, vector
quantization, and classification.

APPENDIX

THE TOTAL NUMBER OF TILINGS AND TIME COMPLEXITY

FOR MULTITREE VS QUADTREE DICTIONARIES.

Suppose we have a2L × 2L square image, withN = 22L

pixels. It is shown in Section II that for such an image, our
algorithm finds the optimal rectangular tiling in a multitree
dictionary with arbitrary split locations, inO(N2.5) time. The
search algorithm of [8], [9] which finds the best quadtree tiling,
is linear in N . The optimal multitree search in this case is
therefore a factor ofO(N1.5) slower than the optimal quadtree
search. On the other hand, we now show that the ratio of the
number of multitree tilings and the number of quadtree tilings
is exponential inN .

Proposition 1. Let µN and κN be the total number of
multitree and quadtree rectangular tilings, respectively, for a
2L × 2L square image withN = 22L pixels. Assume that the
multitree tilings allow arbitrary splits of a rectangle into two
other rectangles, and quadtree tilings may only partition each
square into four congruent squares. Then, forN ≥ 64, we
have:

µN

κN
> 1.5N . (13)

Proof. A careful enumeration forL = 2 (i.e., a4× 4 image)
yieldsµ16 = 68480. For L = 3, note that an8× 8 square can
be partitioned into four4 × 4 squares, and thus one way of
tiling an 8×8 square is to tile each4×4 square independently.
Therefore,µ64 > µ4

16. Proceeding by induction onL, we see
that, forN = 22L with L ≥ 3,

µN > µ4L−2

16 = 684804L/16 =
(
684801/16

)4L

> 24L

= 2N .

On the other hand, it is shown in Proposition 8.5 of [25] that

κN < 2
49
484L−1

,

which is smaller than1.2N . Therefore,

µN

κN
>

(
2

1.2

)N

> 1.5N ,

proving our assertion.

REFERENCES

[1] J. Baker. Trainable grammars for speech recognition. In D. Klatt and
J. Wolf, editors,Speech Communications Papers for the 97th Meeting
of the Acoustical Society of America, pages 547–550. June 1979.

[2] N. N. Bennett. Fast algorithm for best anisotropic walsh bases and
relatives. J. of Appl. and Comput. Harmonic Analysis, 8(1):86–103,
January 2000.

[3] G. Blanchard, C. Scḧafer, and Y. Rozenholc. Oracle bounds and
exact algorithm for dyadic classification trees. InProc. 17th. Conf. on
Learning Theory, volume 3120 ofSpringer Lecture Notes in Artificial
Intelligence, pages 378–392, 2004.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.Classification
and Regression Trees. Chapman & Hall, New York, 1984.

[5] H. Cheng and C. A. Bouman. Document compression using rate-
distortion optimized segmentation.Journal of Electronic Imaging,
10(2):460–474, April 2001.

[6] P. A. Chou, T. Lookabaugh, and R. M. Gray. Optimal pruning with
applications to tree-structured source coding and modeling.IEEE
Trans. Inf. Th., 35(2):299–315, March 1989.

[7] I. Cohen, S. Raz, and D. Malah. Orthonormal shift-invariant adaptive
local trigonometric decomposition.Sig. Proc., 57(1):43–64, February
1997.

[8] R. R. Coifman, Y. Meyer, and M. V. Wickerhauser. Wavelet analysis
and signal processing. In M. B. Ruskaiet al., editor,Wavelets and Their
Applications, pages 153–178. Jones and Bartlett, Boston, 1992.

[9] R. R. Coifman and M. V. Wickerhauser. Entropy based algorithms for
best basis selection.IEEE Trans. Inf. Th, 38(2):713–718, March 1992.

[10] R.R. Coifman and Y. Meyer. Remarques sur l’analyse de Fourierà
fenêtre. C. R. Acad. Sci. Paris Śer. I Math., 312(3):259–261, 1991.

[11] D. L. Donoho. CART and best-ortho-basis: A connection.Ann. Stat.,
25(5):1870–1911, October 1997.

[12] D. L. Donoho. Wedgelets: Nearly minimax estimation of edges.Ann.
Statist., 27(3):859–897, June 1999.

[13] D. L. Donoho and I. M. Johnstone. Ideal denoising in an orthonormal
basis chosen from a library of bases.Comptes Rendus Acad. Sci., Ser.
I, 319:1317–1322, 1994.

[14] C. Herley, J. Kovǎcevíc, K. Ramchandran, and M. Vetterli. Tilings of the
time-frequency plane: construction of arbitrary orthogonal bases and fast
tiling algorithms.IEEE Trans. Sig. Proc., 41(12):3341–3359, December
1993.

[15] C. Herley, Z. Xiong, K. Ramchandran, and M. T. Orchard. Joint space-
frequency segmentation using balanced wavelet packet tree for least-
cost image representation.IEEE Trans. Im. Proc., 6(9):1213–1230,
September 1997.

[16] Y. Huang, I. Pollak, C. A. Bouman, and M. N. Do. Best
basis search in lapped dictionaries. Technical Report TR-ECE-
04-08, School of ECE, Purdue University, West Lafayette, IN
47907, December 2004. To appear in IEEE Trans. Sig. Proc.
www.ece.purdue.edu/˜ipollak/local cosines.pdf .

[17] Y. Huang, I. Pollak, C. A. Bouman, and M. N. Do. New algorithms
for best local cosine basis search. InProc. ICASSP-2004, Montreal,
Quebec, May 17-21 2004.

[18] R. M. Figueras i Ventura, L. Granai, and P. Vendergheynst. R-D analysis
of adaptive edge representations. InProc. IEEE Workshop MMSP, pages
130–133, December 2002.

[19] H. Krim and J.-C. Pesquet. On the statistics of best bases criteria. In
A. Antoniadis, editor,Wavelets and statistics, Lecture Notes in Statistics,
pages 193–207. Springer-Verlag, 1995.

[20] H. Krim, D. Tucker, S. Mallat, and D. Donoho. On denoising and best
signal representation.IEEE Trans. Inf. Th., 45(7):2225–2238, November
1999.

[21] K. Lari and S. Young. The estimation of stochastic context-free
grammars using the inside-outside algorithm.Computer Speech and
Language, 4(1):35–56, January 1990.

[22] R. Leonardi and M. Kunt. Adaptive split-and-merge for image analysis
and coding. InProc. SPIE, volume 594, pages 2–9, December 1985.

[23] M. Lindberg. Two-Dimensional Adaptive Haar-Walsh Tilings. Licentiat
Thesis in Applied Mathematics,̊Abo Akademi University,Åbo, Finland,
October 1999.

[24] M. Lindberg and L. F. Villemoes. Image compression with adaptive
Haar-Walsh tilings. InWavelet Applications in Signal and Image
Processing VIII, Proc. SPIE 4119, 2000.

[25] S. G. Mallat. A Wavelet Tour of Signal Processing. Academic Press,
second edition, 1999.

[26] H. Malvar. Lapped transforms for efficient transform/subband coding.
IEEE Trans. ASSP, 38(6):969–978, June 1990.

14 IEEE TRANSACTIONS ON IMAGE PROCESSING, TO APPEAR

[27] H. Malvar. Signal Processing with Lapped Transforms. Artech House,
1992.

[28] C. Manning and H. Scḧutze. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, 1999.

[29] P. Moulin. Signal estimation using adapted tree-structured bases and
the MDL principle. InProc. IEEE-SP Int. Symp. TFTS, pages 141–143,
Paris, June 1996.

[30] U. Ndili. A coding theoretic approach to image segmentation. Master’s
thesis, Rice University, Houston, Texas, April 2001.

[31] U. Ndili, R. D. Nowak, and M. A. T. Figueiredo. Coding theoretic
approach to image segmentation. InProc. ICIP-2001, Thessaloniki,
Greece, October 2001.

[32] E. Le Pennec and S. G. Mallat. Sparse geometric image representations
with bandelets.IEEE Trans. Im. Proc., 14(4):423–438, April 2005.

[33] J.-C. Pesquet, H. Krim, D. Leporini, and E. Hamman. Bayesian approach
to best basis selection. InProc. ICASSP-96, pages 2634–2638, Atlanta,
USA, May 1996.

[34] I. Pollak, J. M. Siskind, M. P. Harper, and C. A. Bouman. Modeling
and estimation of spatial random trees with application to image
classification. InProc. ICASSP, Hong Kong, April 2003.

[35] I. Pollak, J. M. Siskind, M. P. Harper, and C. A. Bouman. Parameter
estimation for spatial random trees using the EM algorithm. In
Proc. ICIP, Barcelona, September 2003.

[36] I. Pollak, J. M. Siskind, M. P. Harper, and C. A. Bouman. Spatial
random trees and the center-surround algorithm. Technical Report
TR-ECE-03-03, Purdue University, School of ECE, January 2003.
www.ece.purdue.edu/˜ipollak/it03.pdf .

[37] K. Ramchandran and M. Vetterli. Best wavelet packet bases in a rate-
distortion sense.IEEE Trans. Im. Proc., 2(2):160–175, Apr. 1993.

[38] J. H. Rothweiler. Polyphase quadrature filters—a new subband coding
technique. InProc. ICASSP-83, pages 1280–1283, Boston, MA, March
1983.

[39] A. Said and W. A. Pearlman. A new, fast, and efficient image codec
based on set partitioning in hierarchical trees.IEEE Trans. Circ. Syst.
Vid. Tech., 6(3):243–250, June 1996.

[40] G. M. Schuster and A. K. Katsaggelos. A video compression scheme
with optimal bit allocation between displacement vector field and
displaced frame difference. InProc. ICASSP-96, pages 1967–1970,
Atlanta, GA, May 1996.

[41] C. Scott and R. D. Nowak. Minimax-optimal classification with dyadic
decision trees. Technical Report TREE0403, Rice University, 2004.
www.stat.rice.edu/˜cscott/pubs.html .

[42] R. Shukla, P. L. Dragotti, M. N. Do, and M. Vetterli. Rate-distortion
optimized tree structured compression algorithms for piecewise smooth
images.IEEE Trans. Im. Proc., 14(3):March, 343–359 2005.

[43] J. M. Siskind, J. Sherman, I. Pollak, M. P. Harper, and
C. A. Bouman. Spatial random tree grammars for modeling
hierarchal structure in images. Preprint, May 2004.
www.ece.purdue.edu/˜ipollak/draft2004 5 25.pdf .

[44] G. J. Sullivan and R. L. Baker. Efficient quadtree coding of images and
video. IEEE Trans. Im. Proc., 3(3):327–331, May 1994.

[45] D. Taubman. High performance scalable image compression with
EBCOT. IEEE Trans. Im. Proc., 9(7):1158–1170, July 2000.

[46] C. M. Thiele and L. F. Villemoes. A fast algorithm for adapted time-
frequency tilings.J. of Appl. and Comput. Harmonic Analysis, 3:91–99,
1996.

[47] J. Vaisey and A. Gersho. Image compression with variable block size
segmentation.IEEE Trans. Sig. Proc., 40(8):2040–2060, August 1992.

[48] L. F. Villemoes. Adapted bases of time-
frequency local cosines. Preprint, June 1999,
www.math.kth.se/old-home-pages/larsv/publ.html .

[49] M. B. Wakin, J. K. Romberg, H. Choi, and R. G. Baraniuk. Rate-
distortion optimized image compression using wedgelets. InProceedings
of ICIP-2002, Rochester, New York, September 2002.

[50] M. Wien. Variable block-size transforms for H.264/AVC.IEEE Trans.
Ckts. Syst. Vid. Tech., 13(7):604–613, July 2003.

[51] R. M. Willett and R. D. Nowak. Platelets: a multiscale approach for
recovering edges and surfaces in photon-limited medical imaging.IEEE
Trans. Medical Imaging, 22(3):332–350, March 2003.

[52] Z. Xiong, K. Ramchandran, C. Herley, and M. T. Orchard. Flexible tree-
structured signal expansions using time-varying wavelet packets.IEEE
Trans. Sig. Proc., 45(2):333–345, February 1997.

[53] D. Xu and M. N. Do. Anisotropic 2-D wavelet packets and rectangular
tiling: theory and algorithms. InProc. SPIE Conf. on Wavelet Appl. in
Sig. and Im. Proc. X, San Diego, Aug. 2003.

PLACE
PHOTO
HERE

Dr. Yan Huang received the B.Eng. degree in
electronic engineering from Tsinghua University,
Beijing, China, in 2000, and Ph.D. in electrical
engineering from Purdue University in 2004. She
is currently a post-doctoral researcher at the School
of Electrical and Computer Engineering, Purdue
University. Her research interests are in image and
signal processing.

PLACE
PHOTO
HERE

Dr. Ilya Pollak received the B.S. and M.Eng. de-
grees in 1995 and Ph.D. in 1999, all from M.I.T.,
all in electrical engineering. In 1999-2000, he was a
post-doctoral researcher at the Division of Applied
Mathematics, Brown University. Since 2000, he has
been Assistant Professor of Electrical and Computer
Engineering at Purdue University. He has held short-
term visiting positions at the Institut National de
Recherche en Informatique et en Automatique in
Sophia Antipolis, France, and at Tampere University
of Technology, Finland. In 2001, he received a

CAREER award from the National Science Foundation. He is the Chair of
the Signal Processing Chapter of the Central Indiana Section of the IEEE. His
research interests are in image and signal processing, specifically, hierarchical
statistical models, fast estimation algorithms, nonlinear scale-spaces, and
adaptive representations.

PLACE
PHOTO
HERE

Dr. Minh N. Do was born in Thanh Hoa, Vietnam,
in 1974. He received the B.Eng. degree in computer
engineering from the University of Canberra, Aus-
tralia, in 1997, and the Dr.Sci. degree in commu-
nication systems from the Swiss Federal Institute
of Technology Lausanne (EPFL), Switzerland, in
2001.

Since 2002, he has been an Assistant Professor
with the Department of Electrical and Computer
Engineering and a Research Assistant Professor with
the Coordinated Science Laboratory and the Beck-

man Institute, University of Illinois at Urbana-Champaign. His research
interests include wavelets, image and multidimensional signal processing,
multiscale geometric analysis, and visual information representation.

Dr. Do received a Silver Medal from the 32nd International Mathematical
Olympiad in 1991, a University Medal from the University of Canberra in
1997, the best doctoral thesis award from the Swiss Federal Institute of
Technology Lausanne in 2001, and a CAREER award from the National
Science Foundation in 2003.

HUANG ET AL.:FAST SEARCH FOR BEST REPRESENTATIONS IN MULTITREE DICTIONARIES 15

PLACE
PHOTO
HERE

Dr. Charles A. Bouman received a B.S.E.E. degree
from the University of Pennsylvania in 1981 and
a MS degree from the University of California at
Berkeley in 1982. From 1982 to 1985, he was a
full staff member at MIT Lincoln Laboratory, and in
1989 he received a Ph.D. in electrical engineering
from Princeton University. In 1989, he joined the
faculty of Purdue University where he holds the
rank of Professor with a primary appointment in the
School of Electrical and Computer Engineering and
a secondary appointment in the School of Biomedi-

cal Engineering.
Professor Bouman’s research focuses on the use of statistical image models,

multiscale techniques, and fast algorithms in applications including medical
and electronic imaging. Professor Bouman is a Fellow of the IEEE, a Fellow
of the American Institute for Medical and Biological Engineering (AIMBE),
a Fellow of the society for Imaging Science and Technology (IS&T), a
member of the SPIE professional societies, a recipient of IS&T’s Raymond
C. Bowman Award for outstanding contributions to digital imaging education
and research, and a University Faculty Scholar of Purdue University. He is
currently the general Co-Chair of the SPIE/IS&T Symposium on Electronic
Imaging, secretary of the IEEE Biomedical Image and Signal Processing
Technical Committee, and a member of the Steering Committee for the
IEEE Transactions on Medical Imaging. He has been an associate editor
for the IEEE Transactions on Image Processing and the IEEE Transactions
on Pattern Analysis and Machine Intelligence. He has also been the Awards
Chair for the ICIP 1998 organizing committee, Co-Chair of the SPIE/IS&T
conferences on Visual Communications and Image Processing 2000 (VCIP),
and a member of the IEEE Image and Multidimensional Signal Processing
Technical Committee, a Vice President of Publications and a member of the
Board of Directors for the IS&T Society, and he is the founder and co-chair
of the SPIE/IS&T conference on Computational Imaging.

