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Fast Search for Best Representations in Multitree
Dictionaries.

Yan Huang llya Pollak* Minh N. Do Charles A. Bouman

Abstract—We address the best basis problem—or, more gener- as the double-tree algorithm [14], time-frequency trees [46],
ally, the best representation problem: given a signal, a dictionary [52], space-frequency trees [15], adaptive Haar-Walsh tilings
of representations, and an additive cost function, the aim is to [24], anisotropic wavelet packets [2], [11], anisotropic cosine

select the representation from the dictionary which minimizes . . . : .
the cost for the given signal. We develop a new framework of packets [2], and mixed isotropic/anisotropic packets [2].

multitree dictionaries which includes some previously proposed ~ The main contributions of the present paper are:
dictionaries as special cases. We show how to efficiently find the | 5 new framework of multitree dictionaries which includes

best representation in a multitree dictionary using a recursive . . : : .
tree pruning algorithm. We illustrate our framework through some previously proposed dictionaries as special cases;

several examples, including a novel block image coder which ® @ fast recursive algorithm to find the best representation

significantly outperforms both the standard JPEG and quadtree- of data in a multitree dictionary,
based methods, and is comparable to embedded coders such as « several application examples, including a novel image
JPEG2000 and SPIHT. coder, which typically reduces the bit rate by about 25-

40% compared to JPEG and by about 10-20% compared
to the quadtree-based approach of [37], and whose rate-

‘ h eff h | distortion performance is comparable to that of embedded
A number of research efforts have recently concentrated wavelet coders such as JPEG2000 and SPIHT.

on developing adaptive algorithms for representing and ap-

proximating signals in overcomplete dictionaries. This paperWe start our discussion in Sect|0n_ Il with a_5|mple eX‘_i'_“p'e
addresses théest basis probleror, more generally, the of an optimal rectangular tiling algorithm. A simple modifica-

best representation problengiven a signal, a dictionary of tion of this algorithm leads to a best wedgelet algorithm for

representations, and an additive cost function, the aim is qg)itrary rectangular tilings which we prg_sent in S(_ection li.
select the representation from the dictionary which minimizd4/© further extensions of our basic tiling algorithm are
the cost for the given signal. This paradigm has been SLSjce_scrlbed in Section IV. Section V applies our algorithm to the

cessfully used for problems in compression [23], [24], [37 roblem of image compressic_)n. In Sgction_ VI, we introduce
[49], estimation [11]-[13], [19], [20], [25], [29]. [33], [51] he general framework of multitree dictionaries, and argue that

; ; he algorithms of Sections II, 1ll, and IV are special cases
and time-frequency (or space-frequency) analysis [7], [14]}= ) X o ,
[17], [46] [431 [523/_ ( P q ) ysis [7]. 1 f a general recursive algorithm for finding the best object

The original papers on best basis search [8], [9] considerj@da multitree dictionary. In Section VII, we then discuss

the wavelet packet bases [8] and bases of local cosines [1r gtionships of our framework and algorithms to. prgviously
[26], [27], [38] on dyadic intervals. In each of these wd oposed best basis algorithms, and to other application areas.

cases, all the bases in the dictionary can be organized using a

single tree: a binary tree in 1-D and a quadtree in 2-D. This Il. EXAMPLE 1: OPTIMAL RECTANGULAR TILINGS.
organization was exploited in [8], [9] to devise a fast recursiv’g
tree pruning algorithm to find the best basis for any additive

|. INTRODUCTION.

A Fast Recursive Tiling Algorithm.

cost function. We consider all images supported on a discrete rectangular
Since then, a number of efforts have sought to lift thdomain@ C 72 Suppose we are given an imagand would
restrictions that a fixed binary/quadtree structure imposes ¢ to segment it into rectangular tile;, P, ..., P; so as

the underlying dictionary. Search methods for various diéo> minimize a cost which is equal to the sum of the costs of
tionaries that correspond to different sets of possible timée individual tiles:
frequency or space-frequency tilings have been proposed, such Z o(P))
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(C%,s%) < bestsplitvo(P) {
if C% has been computed
getC}h andsy, from the global data structureABLE;

else{
s — MNnitialize best left childs},
C}h «— e(P); Initialize best cosC,

for (P’, P") = a partition of P into two rectangleg
(C%/,8%,) — bestsplit vO(P');

(@) An admissible tiling. (b) An inadmissible tiling. _(C}S,,, %) — bestsplitvo(P");
if Cp + Ch < Cp {
sp — P’ I/Updates*,
C}*D — CT)/ + CT)//; //UpdateCI*)
}
}
recordC% andsy in the global data structureABLE;
}
’ returnC, and s%;
i . }
(c) A tree of splits. (d) Another tree of splits.

(a) Recursive calculation of the optimal splits and corresponding costs.
Fig. 1.  An illustration of tilings and trees of splits. (a) An admissible
tiling—i.e., a tiling that can be obtained via recursive binary splitting. (b) —
An inadmissible tiling. (c) A tree of splits that leads to the tiling in (a). (d) | BF < besttiling_vO(P) {

Another tree of splits that leads to the tiling in (a). get s}, from the global data structureABLE;
if 3 is the empty set
By — {P};
« for every tile in the tiling which consists of more than else
one pixel By, « besttiling_v0(s},) U besttiling vO(P\s});
. . . . return B%,;
either keep it and do not split it ever again, ) P

or split it into two smaller rectangular tiles;

« continue until all the tiles in the tiling either consist of o _
one pixel or are labeled “never Split again”. Fig. 2. Pseudocode specification of a fast recursive search for the best

B ; ) rectangular tiling: (a) the recursive calculation of the optimal left children
A rectangular tiling which can be obtained through this; and the corresponding costs); (b) the recursive generation of the best

procedure is called aadmissible tiling An admissible tiling {ling. It is assumed that both routines have access to the same global data
.structure RBLE. The optimal tiling 57, of an image domair@) is obtained

is illustrated in Fig. 1(a). The rectangular tiling depicted ig, (C, 5%y) — bestsplitvo(Q), followed by 57, — besttiling v0(Q).
Fig. 1(b) cannot be obtained through the binary splitting

process described above, even though every tile in the tiling

is a rectangle. This tiling is therefore not an admissible tiIinghe fact that although the number of possible trees and tilings
The binary splitting process is conveniently visualized as;a very large (see [25], [53] and Appendix), the number of
tree, with every node of the tree corresponding to a uniqﬁ‘@ctangular tiles is much smaller and manageable.
rectangular region of the image, as shown in Fi_g. _1(We To describe our search algorithm, let; be the cost of
therefore use the termsode and rectangular regioninter- optimal tiling for a rectangleP. In particular, C, =
changeably. In particular, the entire image domain corresporhqﬁlcosmﬁ) is the optimal cost for the entire image domain

to the root of the tree. The yield of the binary tree—i.e., thef Our algorithm makes the following recursive call, startin
set of all leaves—is then a tiling of the image. We thereforé: 9 9 ' 9

(b) Recursive generation of the best tiling.

use the termdeaf nodeandtile interchangeably. The set ofWlth P=a

all such trees will give us the set of all admissible tilings C% = min{e(P), min(Ch + Chi)}, ()

(however, several different trees may correspond to the same

tiling, as shown in Fig. 1(c,d)). where the inner minimization is done over all ordered pairs of
To efficiently solve our optimal tiling problem, we assigriectangles(”’, P"") which partition the rectanglé’:

the cost given in Eq. (1) to every trgewhose vyield is an P=PUP andP' NP =

admissible tiling{ Py, ..., P;}:
_ We always assume that, if the split is horizontal, th&nis
cosT0(t) = Z e(P)- 2) on top of P, and if the split is vertical, the®’ is to the left
Peyield(t) of P
We then search over all trees to find one of the trees with theThe recursive call (3) terminates at the pixels:
smallest cost. The optimal tiling is then the yield of this tree. ) . ) .
Since our search space consists of multiple trees, we call it if P is a pixel, thenCp = e(P). 4)

a multitree dictionary Our efficient search algorithm epr0|tsTO avoid repetitive calculation, we store the optimal cost

1In the figure, a short vertical (horizontal) line through a node signifies %nd _the optlmal .Sp|l'[ for each reCtangle in a table. B.efore
vertical (horizontal) split. making a recursive call for any rectangke, the table is
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consulted to make sure th@ has not been visited before.and noticing that, if we know these two variables for a pair
If the original image domain isV; x Na, it has O(NZN3) of rectangleg P’, P”) which partition a rectanglé®, we can
different subrectangles, and therefore maintaining the taldalculatee(P) in O(1) time as follows:
requiresO(NZN3) memory. With this table, we only need , "
to make one recursive call per rectangle. Since each recursive plfoP) = pi(f, P) +pu(f PT)
call involves O(N; + N,) comparisons to calculat€’}, via p2(f, P) p2(f, P') + p2(f, P")
Eqg. (3)—corresponding td/; — 1 horizontal splits andv, — 1 e(P) = po(f,P)— pf(f, P)/|P| + w.
vertical splits—the computational complexity of the search ] .
algorithm is O(N2N2(N; + N»)) which is O(N25) for a Thls is use_d to compute all the costs in a bottom-up fashion,
square imagewith N pixels, N, = Ny = v/N. with both time and space complexi@(N{N3).

The pseudocode for the search algorithm is shown in Fig. 2.
The optimal left child ofP is denoted by}, and the optimal C. Reducing the Computational Complexity.
overaII_ t|||ng|by|81?. F'%’ ﬁ(a) showls th(le_ pseudocode for the The overall time complexity of the optimal tiling algorithm
recursive calculation of the optimal splits and correspondlr\ll%th the cost (5)—i.e., the computation of the costs and

coss uhh i s 12§ dala SHULNOLE 0160 s st combred G113, .. The
P P ' P 9 &erall space complexity i©(N2N2).

constructed using the routine in Fig. 2(b) which is assumee{Note that reducing the number of admissible rectangular
to have access to the same global data structweLH. .. . . ;
tilings may result in a lower computational complexity of the

EE; ‘i:gleco?l\l/?//iltrght?l;?ct)llrlgwir?“rlﬁch(c))frnﬁaerjige domair is algorithm. For example, we can restrict the search space if we
9 ' only allow a rectangle to be split into two congruent rectangles,

(CGHy85) < bestsplitvo(Q), as was .done in, e.g., _[11]._In otheri vyords, we can impose
By « besttiling vO(Q), that during our recursive blnary ;plltthg process, 5an x
ng rectangle may only be split either into twe, /2 X ny
which call the two routines in Fig. 2. rectangles, or into twou; x ny/2 rectangles. This “dyadic
tiling” scenario is called “dyadic CART” in [11] and is similar
B. A Simple Cost Function. to the anisotropic wavelet packets [2], [FLlt can be shown

The preceding discussion supposes that the individual co.@}gt in this case, the total number of pos;ible rectangular tiles
¢(P) have been precomputed for every rectangte We Is O(N1Ns), and therefore the computation of the costs has

analyze this computation using the following simple cost: time anq space (_:omp_lexn@(]leg). The m|r_1|m|zat|on n
Eqg. (3) isO(1) since it now involves choosing one of no

e(P) = Z (f(n1,m2) — fp)? + w, (5) more than three options: horizontal split or vertical split or
(n1,n2)€EP no split. Therefore, both the time and space complexity of the
search iSD(N; N»), which is also the overall complexity of the

which results in the following overall cost of a tiling . . ; .
algorithm—i.e., the computation of the costs and the recursive

P, Pl search combined. In this case, the complexity is linear in the
d ) number of pixels.
Y (fna,ne) = fr)? +wd, (6)  Another way of reducing the computation time and memory
=1 (ni,n2)ep; requirements is restricting the split locations to only occur at
where multiples of some integek/ > 1. In this case, the elementary
f(n1,m2) is the pixel value at the locatiofn;, n,); cells i|j the rgsulting tilings will bd\/.{_x M reqtangles rather
fp. is the average of the imageover the rectanglé; than single pixels. Our rectangular tiling algorithms, with=
d is the number of tiles in the tiling: 16, are illustrated in Fig. 3: Fig. 3(b) shows the result of the

w is an application-specific penalty on the number diyadic search, and Fig. 3(c) shows the result of the search for

tiles (such as, e.g., the average coding complexity in8gpitrary split locations. -
compression application). We also note that for any set of admissible tilings, a further

For this particular cost function (), computingP) for reduction in computational complexity can be achieved by

every rectangle® can be done very efficiently by defining thesacrificing optimali_ty and using a suboptimal, greedy search
following two variables: method proposed in, e.g., [30], [31].
The problems addressed in the remainder of the paper exem-

m(f,P) = Z f(ni,n2) = |P|fp plify many situations where the computation of the costs may
(n1,n2)€P be more complex thaf?(1) per pixel and in fact may dominate

pa(fP) = Z F(n1,n2)2, the computational complexity of the overall algorithm.
(n1,m2)€EP

3The scenario which is similar to the classical wavelet packets results from
) ] o imposing that, furthermore, any horizontal split must be followed by a vertical

2For aN1 x N2 x ... x Np D-dimensional hyperrectangle, it is similarly one, and vice versa. In other words, if an x ns rectangle resulted from a
shown that the complexity of the searchON7 ... N7, (N1+...+Np)), horizontal split, it is only allowed to be split into twe; x na/2 rectangles;
which is O(DN2?+1/P) for a D-dimensional hypercube wittV voxels, and if it resulted from a vertical split, it is only allowed to be split into two
Ni=...=Np=NYD, n1/2 X ng rectangles.
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Fig. 4. A wedgelet.

Eqg. (2) with the following:
cosTl(t)= > c(P,xp). (7)

Pe&yield(t)
Note that if we lete(P) = mlnc(P xp), this cost becomes

the same a€o0sT0 in Eq. (2) Therefore, the search for the
best tree and the best tiling now consists of two steps: finding
the best state for each til® via minimizing ¢(P, zp) with
respect toxp, and then applying our recursive algorithm of
Fig. 2(a).

B. Wedgelet Experiments.

A wedgelet [12] is an image defined on a rectangular
domain and consisting of two constant pieces which are joined
together along a straight line, as illustrated in Fig. 4. We
can represent a wedgelet on a domdnas a quadruple
xp = (P',P" i/, 1) where P’ and P” are the two regions
that the straight line partition® into, and ./ and p” are
the respective image intensities. Alternatively,and P” can
be specified by the two endpoints of the line. It is typically
assumed that the endpoints are restricted to a grid with some
small stepA, as shown in Fig. 4.

Given an imagef, we can approximate the image val-
HI.IIF-_‘.I ues over a rectangular domaiR with a wedgeletzp =
(c) Best arhitrary tiling, cost 0.44 (P, P", fpr, fpr) where fpr and fp. are the average in-
tensities of f over the regions”’ and P”, respectively. We
Fig. 3. A 256 x 256 cameraman image and its best rectangular tilings

with the smallest cell sizé6 x 16: (b) best dyadic tiling, cost 0.57; (c) bestpenal'ze any such approximation using the following simple

arbitrary tiling, cost 0.44. cost function which is similar to Eq. (5):
c(Pxp) = Z (f(n1,n2) = fpr)?
(n1,m2)€EP’
I1l. EXAMPLE 2: OPTIMAL WEDGELET TILINGS.
+ Y (fm,ne) = fpr)? + 2w
(n1,m2)€EP”
A. Algorithm Extension 1: State Variables. In addition, we still allow approximating an image tile with a

constant, and still use the cost in Eq. (5) in this case.

In the best wedgelet algorithm [12], each tile can be rep- Our fast search algorithm can then find the optimal wedgelet
resented using one of several wedgelets. In our image codtiligpg. Fig. 5 depicts some examples for a binary image.
algorithm in Section V, we will allow the choice of severaFig. 5(a) shows the best quadtree wedgelet tiling. This strategy
guantizers for encoding each tile. To model these choicegs proposed in the original wedgelet paper [12]. Allowing
we introduce the concept of state variable To every tile more possibilities for split locations leads to more compact and
P, we associate a state variable taking values in some more precise wedgelet tilings. The best dyadic wedgelet tiling
finite set which, without loss of generality, we assume to be shown in Fig. 5(b) and allows each rectangle to be split into
{1,2,..., X} whereX is some fixed integer. Each term of thewo congruent rectangles either horizontally or vertically.
cost function is now allowed to depend on the correspondingWe assumed the following simple approximation for the
state variable—in other words, we replace the cost given mumber of bits required to encode our wedgelet tilings:
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Fig. 5. Two best wedgelet tiling examples for &28 x 128 binary image: (a) Quadtree wedgelets, SNR=17.1 dB, rate = 0.0062 bits per pixel; (b) Dyadic
wedgelets, SNR = 17.8 dB at 0.0055 bits per pixel. Panel (c) shows the rate-distortion curves for this image, for the quadtree wedgelets (dashed) and th
dyadic wedgelets (solid).

« one bit per node to encode whether it is an internal nodse a cost functio@ to penalize the split of a nod® with
or a leaf; a statexp into nodesP’ and P” with stateszp/ and zp,
« one bit per leaf node to encode whether it is a constamispectively. Our new cost for any tréés:
tile or a wedgelet;

« one bit per leaf node to encode the intensity (this is (P,xp)
a reasonable approximation, since our input image &)STZ(t) _ Z c
blnary)’ PGinternaI—nodeét) (Pl’ :L‘P,) <PN7 xP”)

e log,(((M +N)/A)?) bits per wedgelet leaf node of size
M x N, to encode the position of the wedgelet partition;

« in addition, for dyadic wedgelet tilings, we spend one bit + Z o(P,zp), 8
per internal node to encode whether it is split horizontally P Eyild(t)
or vertically. where

With these assumptions, the quadtree tiling of Fig. 5(a) in the first summation, the node’®’ and P” are the
produces SNR of 17.1 dB and rate 0.0062 bits per pixel,  children of the nodeP on the treet;

whereas Fig. 5(b) has both a higher SNR of 17.8 dB and a 4, 25/, andzp~ are the state variables associated with
lower rate of 0.0055 bits per pixel. Note also that the quadtree  the nodesP, P/, and P”, respectively;
tiling has 16 tiles whereas the dyadic tiling has only eight tiles. ¢ and¢ are application-specific cost functions.

Dyadic tilings outperform quadtree tilings, achieving IoweNote that this cost is a generalization@bsTL(t) in Eq. (7).
rates at the same SNR’s and higher SNR’s at the same r ed, if we set = 0, thencosT2(t) = cosTL(¢). Note also

for this Image, as shown in Fig. ‘L__’(C)' The curves in Fig. 5(9 at, in the cost (5,6) which we used in our tiling experiments,
were obtained by varying the split penaity the penaltyw can be interpreted as a split cost functiomnhich
assigns a constant penaltyto each split.
IV. FURTHER EXTENSIONS OF THEOPTIMAL TILING We letC3 , be the cost of the optimal tree for a rectangle
ALGORITHM. P, given IP7: xz, and we IetC‘j; be the cost of the overall
A. Algorithm Extension 2: Incorporating Internal Nodes intaptimal tree forP, i.e., C;, = minC}, . The optimal tree is
the Cost. found using the recursion in Eq. (9). This recursion is similar
Recall that in previous sections, the trees played an auxiligry Egs. (3,4) and can therefore be implemented using the
role since the cost only depended on the yield of the tree—i.pseudocode in Figs. 6 and 7 which are extensions of Figs. 2(a)
the leaf nodes—but was independent of the internal nodesanfd 2(b), respectively.
the tree. However, in some applications the internal structure of
the tree matters. For example, in the wedgelet experiments_of i i i )
the previous section as well as in the compression experimell?itsAlgorlthm Extension 3: Dynamic Programming Over a
which will be discussed in Section V, the structure of the freaquence of Blocks.
must be encoded, and the encoding costs may be different folf an image is partitioned intd blocksQ1,Qs, ..., Qx—
two different trees which correspond to the same tiling. Ws in, for example, JPEG and [37]—our algorithm can be used
would like to be able to include these costs in the cost functido find the optimal tiling within each block. In [37], it was
optimized by our algorithm. To model this and a variety oAssumed that each block is handled independently. However,
other such situations where the internal structure of the treeais argued in [5], [40], it is sometimes advantageous to assume
important, we now equip every node with a statexp, and that pairs of consecutive blocks are interdependent. In order to
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c(P, ), if P is an elementary cell,
(P,x)
Cpa = min ¢ ¢(P, ), min c + Chi gt + Chi g | p, oOtherwise ©)
P/ P! 2 (P',x’) (P”,JZ”) ’
(Ch 4 5p,) < bestsplitv2(P,z) { (5, .., t}) — besttreesequencs, ..., Q) {
if 01*3,1 has been computed /I Initialization
get (71*% and §}YI from the global data structureaBLE; forr=1:X,P=Q1:Qk
else{ (C;g 1 5p ) — bestsplitv2(P, z);
/1 Initialize forz=1:X{
§p, — ((2,0),(2,0)); Clie = CQy 8
Cp, — c(Pz); optimalpreviousstatg ,; ,, < 0;
fore’ =1:X,2"” =1:X, (P, P") = a partition of P { }
(Cps )8 pr) — bestsplitv2(P’, z'); Il Forward sweep
(Cir prs 5o yir) — bestsplitv2(P”, z'); fori=2: K
1 Y fore=1:X{
P, x L -
- P ) Gy — min(EQu, 2, Qio1,0") + Gy, o + Gy )
it Cpr gt + Cpr o+ Py (P <Cp, 1 optimalpreviousstatg ,; , < arg n;i/n(é(Qi,gf, Qi_1,7")
+ C5, JrC1 i1 )}
/I Update }
55, — (P2, (P",2")); //Backtracking
(P v = argmin G
B B B fori=K:—-1:1{
CP,x — CP’,I’ + CP”?z” +c (P/7 x,) (P”7 x”) ’ t:‘* — bes‘ttreevz((‘gi, ,1,’*);
x* « optimalpreviousstatg ; ,«;
} }
} returnty, ... %,
record C’}*)x and sy, . in the global data structureABLE; !
} Fig. 8. Pseudocode for the dynamic programming over blocks, Section IV-B.
returnC3 . andsh ;
} —
Fig. 6. Pseudocode for the recursive calculation of the optimal splits afd N Other wordsCy; is demed as the result of minimizing
states and the corresponding costsdars12 of Section IV-A. COSTBLOCKS(t1,...,t;) subject toxg, = x. Then we have
the following recursion foiCy,;
tp . < besttreev2(P,z) { B
getsP = ((P',2'),(P",z'")) from the global RBLE; B CH,» fori=1, -
if P’ is the empty set Clie =14 min(@(Qiz,Qi-1,2") +Co, . +Cli1)  (11)
th o < [(Po)]; v ! for i — K ’
else Orzf2,..., 5
(P.x) . . .
where C IS computed through the recursion (9), using
b2 | pesttree P2 besttreav2(P”,z") |’ the pseudocode in Fig. 6. The overall optimal cost, which we
denoteC;. , is found from:
returnt’ - o=
} P CTK = H’;Hl CT:K,m'

Fig. 7. Pseudocode for the recursive generation of the best tree for SectionTHjs recursive calculation is performed using the dynamic

A programming algorithm of Fig. 8, similar to those used in
[5], [40].
model this new assumption, we Igt ..., tx be the trees cor-
responding to the blockg§, ..., Qk, respectively, and assign V. EXAMPLE 3: MULTITREE IMAGE CODING ALGORITHM.
the following cost to this collection of treef§, ..., ¢ }: We fuse our rectangular tiling algorithm with several aspects
K of the compression strategy in [37], to obtain an image coder
COSFBLOCKS(t1,...,tx) = é(Qr,z0,,Qr-1,20, ,) which finds the optimal tiling, and encodes every tile. The
k=2 input is partitioned into block§, .. ., Qk, in the raster order.
K Within each block, we find the optimal tre¢ and encode it
+) cosT2(ty). (10)  as follows:
k=1

_ « one bit per node is used to indicate whether the node is
Let C7.; . be the optimal cost for blocks, given thatg, = an internal node or a leaf;
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« for each node with a state € {1,...,X}, we use JPEG (dash) by about 2-4 dB and the quadtree algorithm
[log, X| bits to encode the state (dashdot) by about 1-2 dB at a fixed bit rate. Equivalently, the

« [log, SPLITSp] bits are used to encode the split locatiomultitree algorithm represents compression savings of about
for every internal nodeP, where spLITSp is the total 25-40% over the standard JPEG and 10-20% over the quadtree
number of possible split locations for the nofte algorithm, for a fixed PSNR.

To find the optimal tree, we optimize with respect to the In these experiments, we take the block size ta&ex 16
rate-distortion cost [37]D + AR, whereR is the number of and we take the smallest cell size to be 4—i.e., we allow
bits it takes to encode the imagh, is the total distortion, and rectangular tiles with sides 4, 8, 12, and 16. This means that,
) is a parameter. We assume that the distorfibis additive for eachl6 x 16 block, we search over 68480 distinct tilings—
over the tiles and over the blocks. In our experiments, wW8is is in contrast to the quadtree method which only allows 17
use the sum of squared differences as our distortion criterigfistinct tilings, and the standard JPEG which only considers
For each tile, we follow a JPEG-like procedure which findgne tiling. While the number of possible tilings for our method
the DCT coefficients, quantizes them, and entropy-codes iRedrastically larger, the number of distinct subrectangles
AC coefficients and differential DC coefficients. The D®f each block—which is what determines the computational

coefficients are differentially coded in the following mannercomplexity of our algorithm—is only 100, compared to 21 for
« the root DC coefficient for the first bloo®; is encoded; the quadtree method and 4 for the standard JPEG. Thus, we

. the difference between the root DC coefficients for th@'® able to search over a much larger set with only a modest
k-th block and the(k — 1)-st block is encoded, fok = increase in the computational burden. It is shown in Appendix
2. K: that the increase in the allowed number of tilings is exponential

. for every leaf nodeP of every treet, the difference 25 compared to the quadtree algorithm whereas the increase
between the DC coefficient fo and the root DC N the computational burden is only polynomial.
coefficient is encoded. The results for the “barbara” image at PSNR = 36.4 dB are

. . jven in Fig. 10: the JPEG, quadtree, and multitree compres-
Following [37], we assume that one of several quantizers Cg'?;n algorithms achieve 1.31, 1.00, and 0.83 bits per pixel,

be used for each tile, and optimize our choice of the uantize : . )
P d espectively. Note that the images look basically the same;

for each tile concurrently with the search for the optimal tiIini.1 . : : i .
owever, the multitree algorithm gives compression savings

The staterp corresponds to the quantizer used for the fle 0 0 .
In addition, we allow the choice of the same set of quantize?g 3_7/0 over JPEG and 17% over the quadtree glgorlthm.
Fig. 11 illustrates the results for the same image at the

to encode the root DC coefficient. . . ) . . .
Because of the differential coding of the DC coefﬁcient?'t rate 0.49 bits per pixel. (In this experiment, the bit rate
vas fixed at 0.49, and the distortions for the quadtree and

the bit rate within each block can be shown to have the forff . L R
ultitree methods were minimized.) At this bit rate, the JPEG,

of Eq. (&), and the overall bit rate is additive over pairs guadtree, and multitree algorithms achieve PSNR's for the
consecutive blocks and is therefore of the form (10). This, i .
(10) verall image of 28.3 dB, 30.5 dB, and 31.9 dB, respectively.

combined with the additivity of the distortion, means that th _ . . :
overall costD + AR is of the form (10). This means that, in patch from the image and its three compressed versions is
f l§hown in Fig. 11. In addition to a higher signal-to-noise ratio,

order to optimize it, we can use the algorithm of Section IV- : . :
and Fig. 8. !t is clear from the flgure. 'Fhat the multitree algorithm results
In order to minimize the distortion subject to a fixed" both less blocky renditions of _hor_nogeneous areas O.f the
rate, or to minimize the rate subject to a fixed distortiorllr,nage' sharper edges, and less ringing and blockiness in the
our optimization algorithm can be used within an iterativI%(':'Xtured areas anq around the. edges. ) )
procedure similar to that of [37]. In "[hes'e experlmepts, our implementation of J'PEG is a
baseline implementation which uses Huffman coding of the
) _ coefficients. To make the comparisons fair, we use similar
A. Compression Experiments. Huffman coding strategies for the quadtree and multitree
We compare our multitree-JPEG compression algorithaigorithms.
with standard JPEG and with the quadtree-based algorithm ofFurther experiments show that, if we replace Huffman cod-
[37].4 We test the algorithms on four images:5&2 x 512 ing with arithmetic coding, then our multitree coder becomes
image “barbara”, and thre@56 x 256 images “goldhill,” competitive when compared to the state-of-the-art embedded
“lenna,” and “cameraman”. The corresponding sets of rateravelet coders such as JPEG2000 [45] and SPIHT [39] which
distortion curves are shown in Fig. 9. In each figure, the ral®th employ arithmetic coding).Fig. 12 shows the rate-
in bits per pixel is plotted against the peak signal-to-noig#stortion curves for JPEG2000, SPIHT, and our multitree
ratio (PSNR). For each quadtree and multitree experimentc@der with arithmetic coding. The right column of the figure
target distortion was fixed, and the rate was minimized. Notlsplays the bit rates as percentages of the multitree bit rate.
that our multitree algorithm (solid) outperforms the standard

5The improvement in performance is due to the fact that the

4The rate-distortion curves we obtain for the JPEG and quadtree algorithbeseline JPEG Huffman encoder, whose variant we use, is relatively

are different from those given in [37] since we use a somewhat differeppor. It has been observed that the QM arithmetic coder speci-

implementation—for example, we use a different set of quantization matricéied in the JPEG standard typically produces 5-10% compression sav-

However, the relative improvement of the quadtree algorithm over JPEG tlags, as compared to the baseline Huffman coder, see, for example,
we observe is similar to what is reported in [37]. sylvana.net/jpeg-ari/luncompressed/READ.txt
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Fig. 9. Rate-distortion curves for “goldhill”(top left), “barbara” (top right), “lenna” (bottom left), and “cameraman” (bottom right).

For “goldhill” (top row) and “cameraman” (bottom row), our « a setA of symbol$® and
algorithm clearly outperforms both JPEG2000 and SPIHT. It« a setS of allowed splits also calledproductions of the
also does better than SPIHT for “barbara” (second row) and form a — o wherea € A, anda is a finite sequence of
better than JPEG2000 for “lenna” (third row). At low and  elements ofA.
high rates .for barbara,” our aIgonthnl is outperformed b}éor example, in Section IV-A, the symbols are paifd z)
JPEG2000; and at low rates for “lenna,” it is outperformed b\x . .
! . . . here P is a rectangular region ande {1,..., X}, and the

SPIHT. While the rate-distortion curves of the three algorithms . ), o

- : , : roductions are all of the forntP,z) — (P’,z') (P",2")
are similar, our algorithm is potentially more amenable Y ) " . "
. . ) . .~ _Where P’ and P” are two rectangles which partitioR.
implementations with much lower memory complexity, since,

unlike JPEG2000 and SPIHT, it is based on small imageBY Starting with a single element of, we can generate
blocks. various sequences of elements Afvia recursive splitting—

i.e., recursive application of productions. This process can
be visualized as a tree where each production— « is
VI. MULTITREE DICTIONARIES. depicted as a node labeledwhose children are labeled with

We now generalize our algorithms of Sections I, Ill, and \N€ €lements od, left to right. We letT’(G) be the set of all

A and show that they are all instances of one general algorithm

which is appllcable to a wide variety (_)f scenarios. 6This is somewhat different from standard treatments of grammars [28]
Tree models such as those of Sections I, Ill, and IV-A arghich distinguish between thstart symbolwhich can only appear at the

conveniently described using the formalism of grammars. Virot, thenonterminal symbolsvhich can only appear at the nonroot internal

. . . nodes, anderminal symbolswhich can only appear at the leaves. We, on
define agrammarG = <A7 S) to be a pair of the followmg the other hand, assume that any symbolircan appear at the root or any

sets: internal nodes or leaf nodes.
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(c) Quadtree compression, 1.00 bpp (d) Multitree compression, 0.83 bpp

Fig. 10. Compression results for the “barbara” image at PSNR = 36.4 dB: (a) original image, (b) JPEG (rate = 1.31 bits per pixel), (c) quadtre@rompressi
(rate = 1.00 bits per pixel), and (d) multitree compression (rate = 0.83 bits per pixel).

trees that can be produceby the grammarG. that each productiom — o € S is assigned a cost(u —
Note that in the previous sections, the splitting process wa$. Suppose further that the cosbsT(t) of any treet €
binary and led to binary trees. Here, we allow splits into &, (G) is the sum of the individual costs of all the productions

arbitrary finite number of symbols. comprisingt, plus the sum of the costs of all its leaves:
We let amultitree dictionaryT, (G) be the set of all trees _

in T(G) whose root is labeled.. We say that a grammar costt)= > cu—a)+ Y cw). (12

G = (A, S) is finite-depthif, for every a € A, T,(G) is a uact uEyei(t)

finite set. This can be insured by only allowing a finite set alle would like to find the best tree in the dictionafy(G)
symbols to be descendants @fand not allowinga to be its i.e., the treet? whose cost is the smallest:
own descendant. ) )

Suppose that each symhok A is assigned a costu), and ta = I ) COST().

"We assume that each branch of our recursive tree generation process\4é denote the corresponding cost 6y, i.e., Ci = C(t}).

stop after any number of recursions_. Th_is is differen@ from _stan_dar_d treatmegife |et S, be the set of all allowed splits of a fixed symbol
of grammars [28] where the stopping is handled via distinguishing betwej.n il f . | ithm for b h
nonterminal symbols which must have children, and terminal symbols whi i 1 ustrate our fast recursive algorithm for best tree search,

never have children. we first suppose thaf, = {a — by ba}. Then there is a
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(a) A patch of “barbara”

\

A

MR

(c) Quadtree (d) Multitree

Fig. 11. Compression results for the “barbara” image at the bit rate of 0.49 bits per pixel: (a) a patch of the original image, (b) JPEG (PSNR fdf the overa
image = 28.3 dB), (c) quadtree compression (PSNR = 30.5 dB), and (d) multitree compression (PSNR = 31.9 dB).

single tree inT,(G) which consists of one node labeled Then the possible candidates fgrare

with cosT([a]) = ¢(a). For any other tree € T, (G), its left

subtreet; s, is in Tp, (G), and its right subtree,;s. is in ol

Ty, (G). Therefore, since the cost is additive, /f\ with costé(a — a) + > Cy,,
=1

* *

t, o

cosT(t) = é(a — by bz) + COSTtiest) + COST(tright)- forany a = (b1b2 ... bja)) € R(a),
and [a], with costc(a).
Consequently, the optimal tree is:
To find the globally optimak;, we recursively search over

these possibilities. The recursion terminates whgn= &: in
o /U\ if &(a — by bo) + Cf, + Ci, < cla) fchis casef; = [a]. The termination i_s _guaranteed to happen
@ t; t; in a finite number of steps for a finite-depth grammar. To
by bo
[a] otherwise. avoid repetitive calculation, we store the optimal costs and

corresponding productions in a global data structure called
In other words, we find the best trees and ¢, in the TABLE, as illustrated in the pseudocode of Fig. 13(a). Once
dictionaries T}, (G) and Ty, (G), respectively, and comparethis recursive call is done, the best tree can be generated from
their total cost plus the cost of the root production- b; b,, TABLE using the pseudocode in Fig. 13(b).
with the cost of the treéu]. The most significant computational burden is in computing

We have a similar recursion in the general case. W&|ef) and storing the best costs and productions. To analyze this
be the set of the right-hand sides of all the elements$of procedure, we letA(a) be the union of{a} and the set of
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Fig. 12.
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Rate-distortion curves for “goldhill” (top row), “barbara” (second row), “lenna” (third row), and “cameraman” (bottom row). The righticolu
shows bit rates as percentages of the bit rate for the multitree algorithm with arithmetic coding of the coefficients.
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(C#,s%) «— bestsplit(a) {

a’-a

t* < besttrega) {

if Ck has been computed
getCy ands}; from the global data structureABLE;

else{
Sk — & Mnitialize s},
Cr — c(a); Mnitialize C}
for a € R(a) {
forb e o

(Cy, s;) « bestsplit(b);
if e(a—a)+ > Cp<Ci{

get sy from the global data structureABLE;
if s* is the empty set
ty < lal;
else{
i« 0;
forb € s} {
i—1+1;
b; < b;
t, < besttree(b;);

bEa }

55—
Ci —tla—a)+ > CF; . /T\
bea tg — £+ t* ;
¥ by cee b;
recordC’ ands} in the global data structureABLE; }
returnty;
returnCy andsj; }

(a) Recursive calculation of best splits and costs. (b) Recursive generation of best tree.

Fig. 13. Pseudocode for the recursive calculation of the best splits and best costs, and for the recursive generation of the globally optimal tree.

all symbols which can be descendantsaofWe letS,,) be basis algorithm of [2], [11], and its specialization to dyadic
the set of all allowed splits of elements dff(a). For each tiling is a restatement of the dyadic CART algorithm of [11].
symbol b € A(a), there is exactly one recursive call to the Our algorithm can also be used for a variety of other
subroutine bessplit of Fig. 13(a). During this call, the costsdictionaries, such as, for example, any dictionary of block
of all possible splits o are compared. The number of suclor lapped bases in two or more dimensions. It is interesting
comparisons i$S;|. Therefore, the overall time complexity ofto point out that arbitrary block and lapped dictionaries in
the algorithm isO(|S4(q|). In applications where only the 1-D can be efficiently searched without exploiting their tree
yield of a tree is of interest, such as our rectangular tilingfructure, but rather using standard dynamic programming
example of Section Il, there is some redundancy associatedhniques, as was shown in [16], [17].
with searching over multiple trees which have the same yield.It was pointed out in [11] that there is a close relationship
In some instances, such as in [16], [17], this redundancy histween the best basis algorithm of [8], [9] and pruning meth-
very significant and may be eliminated, leading to a lowads used in the design of classification and regression trees [4].
time complexity. These methods have also been used for vector quantization and
The overall space complexity ©(|A(a)|) since we need other applications [6]. These and other methods such as, for
to store two numbers—the best cost and the best splittxample, [3], [18], [22], [32], [41], [42], [44], [47], [49]-[51],
for each symbol inA(a). The key to controlling the time seek to optimally tile a multidimensional domain with dyadic
and space complexity is therefore keeping the sizes of thgperrectangles. Our multitree algorithm can potentially be
setsS, () and A(a) low. In addition, as we have remarkedapplied to these problems, allowing one to lift the requirement
before, the computation of the costs: — a) andc(a) could that the split locations be dyadic.
actually dominate the time complexity of the overall algorithm, We now point out a close relationship between our algorithm
and therefore another important guideline to a successfild procedures for estimating the maximum a posteriori prob-
application of our algorithm is to use tractable cost function@bility parse of a string [1], [21], [28] or an image [34]—[36],
We note that the dynamic programming algorithm of Se¢43]. In these problems-c(u — «) of Eq. (12) stands for the
tion IV-B is easily generalized to the problem of finding thé@g-probability of the production. — «, and the probability
optimal tree in each of a sequence of multitree dictionarie®f @ treet is defined as the product of the probabilities of all
provided that the overall cost has additive structure, as i€ productions iri. The objective of these estimation tasks is
Eq. (10). to find the most probable tree, i.e., to minimize with respect to
t the negative-log-probability of the treg Z élu — a).

But this is exactly what our algorithm of %TéaeltS does. Thus,
the estimation algorithms of [1], [21], [28], [34]-[36], [43]

It can be easily shown that standard wavelet packet arghresent special cases of our search algorithm for the best
dyadic local cosine dictionaries [8], [9], as well as anisotropigee in a multitree dictionary.
2-D wavelet packet dictionaries [2], [11], are all multitree
dictionaries. It is also easy to see that a specialization of VIII. CONCLUSIONS
our algorithm of Fig. 13 to the wavelet packets and dyadic We presented a general framework of multitree dictionaries
local cosines is essentially a restatement of the best bamisl provided a recursive algorithm for finding the best repre-
algorithm of [8], [9], its specialization to anisotropic wavelesentation in a multitree dictionary. We illustrated our frame-
and cosine packets is a restatement as the anisotropic lestk and algorithm within the contexts of optimal rectangular

VIl. RELATIONSHIPS WITHPRIOR WORK.
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and wedgelet tilings and image compression, and designed a

new block image coder. The key property that enables o
algorithm to be fast for any additive or multiplicative cost
is the fact that, while the number of possible trees can be
enormous, the number of possible symbols at tree nodes !
typically manageable. By storing the optimal cost and the
optimal set of children for each symbol in a global datd3l
structure, the algorithm only needs to make one recursive call
per symbol.

In the future we plan to further explore the flexibility of [4]
our framework and design various other multitree dictionarie
which allow a fast selection of the best representation in
applications such as time-frequency analysis, approximation,
embedded image compression, video compression, vec
guantization, and classification.

[71

APPENDIX
(8]
THE TOTAL NUMBER OF TILINGS AND TIME COMPLEXITY

FORMULTITREE VS QUADTREE DICTIONARIES. o]

Suppose we have 2 x 2F square image, withv = 22F
pixels. It is shown in Section Il that for such an image, OL}IlO]
algorithm finds the optimal rectangular tiling in a multitregi1]
dictionary with arbitrary split locations, i®(N?-%) time. The
search algorithm of [8], [9] which finds the best quadtree tiIin&Z]
is linear in N. The optimal multitree search in this case ig13]
therefore a factor of(N!-5) slower than the optimal quadtree
search. On the other hand, we now show that the ratio of
number of multitree tilings and the number of quadtree tilings
is exponential inV.

Proposition 1. Let uy and xy be the total number of [19]
multitree and quadtree rectangular tilings, respectively, for a
2L x 2& square image withV = 22~ pixels. Assume that the
multitree tilings allow arbitrary splits of a rectangle into two[16]
other rectangles, and quadtree tilings may only partition each
square into four congruent squares. Then, f§r > 64, we

have:

UN [17]

KN

> 1.5V, (13)

Proof. A careful enumeration fol, = 2 (i.e., a4 x 4 image) (18]
yields p16 = 68480. For L = 3, note that ar8 x 8 square can

be partitioned into fourt x 4 squares, and thus one way of19]
tiling an 8 x 8 square is to tile eachx 4 square independently.
Therefore,pgy > u‘{ﬁ. Proceeding by induction oh, we see [2q]
that, for N = 221 with L > 3,

4L-2 4L /16 1/16 ar 4L N [21]
un > e = 68480 :(%@o ) > 91" — oV,

On the other hand, it is shown in Proposition 8.5 of [25] tha£Z
[23]

49 4L—1
rEN < 2154

which is smaller thari.2™. Therefore,

“N 2 \"
s (=) >15V
KN <1.2>

proving our assertion.

(24]

(25]

(26]

% N. N. Bennett.
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