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Abstract— Being able to automatically predict digital picture
quality, as perceived by human observers, has become important
in many applications where humans are the ultimate consumers
of displayed visual information. Standard dynamic range (SDR)
images provide 8 b/color/pixel. High dynamic range (HDR)
images, which are usually created from multiple exposures of
the same scene, can provide 16 or 32 b/color/pixel, but must be
tonemapped to SDR for display on standard monitors. Multi-
exposure fusion techniques bypass HDR creation, by fusing
the exposure stack directly to SDR format while aiming for
aesthetically pleasing luminance and color distributions. Here, we
describe a new no-reference image quality assessment (NR IQA)
model for HDR pictures that is based on standard measurements
of the bandpass and on newly conceived differential natural
scene statistics (NSS) of HDR pictures. We derive an algorithm
from the model which we call the HDR IMAGE GRADient-
based Evaluator. NSS models have previously been used to devise
NR IQA models that effectively predict the subjective quality of
SDR images, but they perform significantly worse on tonemapped
HDR content. Toward ameliorating this we make here the fol-
lowing contributions: 1) we design HDR picture NR IQA models
and algorithms using both standard space-domain NSS features
as well as novel HDR-specific gradient-based features that
significantly elevate prediction performance; 2) we validate the
proposed models on a large-scale crowdsourced HDR image data-
base; and 3) we demonstrate that the proposed models also per-
form well on legacy natural SDR images. The software is available
at: http://live.ece.utexas.edu/research/Quality/higradeRelease.zip.

Index Terms— Image quality assessment, high dynamic range,
natural scene statistics, no-reference.

I. INTRODUCTION

RECENT years have seen a huge growth in the acqui-
sition, processing and transmission of digital pictures

and videos. While most pictures are still represented as
Standard Dynamic Range (SDR) images of 8 bits/color/pixel
acquired using a fixed exposure, there is a growing practice of
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acquiring/creating and displaying high dynamic range (HDR)
images and other types of pictures created by multiple expo-
sure fusion. These kinds of images allow for more pleasing
representation and better use of the available luminance and
color ranges in real scenes, which can range from direct
sunlight to faint starlight [1]. HDR content can be captured
by smart phones and digital SLR cameras, streamed by video-
on-demand services, and displayed by modern monitors.

HDR images which are commonly represented by 16 or
32 bits/color/pixel, are typically obtained by blending a stack
of SDR images at varying exposure levels, thereby allowing
a range of intensity levels on the order of 10,000 to 1.
HDR rendering also finds use in computer graphics, where
lighting calculations are performed over a wider dynamic
range. This results in a better contrast distribution, thereby
leading to a higher degree of detail preservation. However,
in order to visualize these images on standard SDR display
devices, they must be tonemapped to SDR. In addition to tone-
mapped SDR images, images are also often created by multi-
exposure fusion, where a stack of SDR images taken at varying
exposure levels are fused to create an SDR image that is more
visually informative than the input images. This bypasses the
intermediate step of creating an HDR irradiance map. HDR
images may also be post-processed (color saturation, color
temperature, detail enhancement, etc.) for aesthetic purposes.

Since different fusion/tone-mapping algorithms result in
different SDR images, a natural question is how to evaluate
the quality of the images obtained. Subjective testing is
important to evaluate the visual quality of images produced
by different algorithms. Recently we created the ESPL-LIVE
HDR Image Quality Database comprising of more than
1,800 HDR-processed images [2] obtained by tone-mapping
and multi-exposure fusion with or without post-processing.
We conducted extensive subjective experiments on more
than 5,000 observers using Amazon’s online crowdsourcing
platform, Mechanical Turk.

A highly desirable goal is to design objective quality pre-
diction models that automate the process of IQA, and that can
be classified into full-reference (FR) and no-reference (NR)
categories. FR-IQA algorithms have been proposed that eval-
uate tone-mapped SDR images [1], [3], [4] and SDR images
created by multi-exposure fusion [5] based on the principles
of structural similarity. However, when evaluating the quality
of images created by HDR processing algorithms, it is hard to
assume a ‘reference’ image, since the input to the algorithms
is an exposure stack that may have a varying number of
images of unknown qualities based on the camera settings
used. In these applications, NR IQA is the only realistic option.
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The most successful NR IQA algorithms for SDR images
deploy Natural Scene Statistics (NSS) models as essential
building blocks [6]. NSS models are based on the observation
that pristine real-world optical images obey certain statistical
principles (‘naturalness’) [7], [8] that are violated by the
presence of distortions (‘unnaturalness’). NR IQA algorithms
that extract NSS features usually train a kernel function to map
the features to ground-truth human subjective scores using a
supervised learning framework. These techniques have shown
remarkable correlations with ground truth human subjective
scores on SDR images containing distortions such as blur,
additive noise, and compression on legacy IQA databases like
LIVE IQA Database [9], TID2013 [10], and so on.

To the best of our knowledge, NSS models have not yet been
used by other authors to create IQA models for NR evaluation
of tonemapped HDR image quality. Towards filling this gap,
we propose two NSS based NR IQA models that deliver
good predictive performance of the perceptual quality of
tonemapped HDR images. Specifically, we make the following
contributions:

1) We develop new natural scene-statistics based NR IQA
models that embody the fundamental NSS modeling
steps of extracting pointwise and pairwise bandpass
log-derivative statistics from image pixels (following
a local divisive-energy normalization step). We signif-
icantly elevate performance by also extracting gradient
image features, including a gradient structure tensor NSS
feature. The use of gradient-domain NSS is motivated
by the fact that most HDR processing tone-mapping
and multi-exposure fusion algorithms modify the local
gradients of the input images to achieve aesthetically
appealing contrast distributions.

2) We evaluate the performance of the proposed algo-
rithms against other leading NR-IQA models on the new
ESPL-LIVE HDR Image Quality Database using mea-
sures of correlation, outlier ratio, and root-mean-square
error. We also conduct statistical significance tests to val-
idate the conclusions reached. We find that the proposed
models significantly outperform the compared state-of-
the-art NR IQA algorithms.

3) We also tested performance of the proposed mod-
els/algorithms on legacy SDR image databases and
found that they perform extremely well; hence including
HDR distortion-specific sensitivity does not reduce their
performance on SDR content.

The remainder of the paper is organized as follows.
Section II outlines related work on NR IQA. Details of the
proposed NR IQA algorithms, including the HDR-specific
features extracted are described in Section III. Section IV
evaluates the performance of the new algorithms on the
ESPL-LIVE HDR Image Quality Database and as well as
on legacy natural image databases and discusses the results.
Section V concludes the paper.

II. RELATED WORK

NR IQA models may be conveniently divided into two
categories. The first category aims to evaluate the quality of an
image by assuming the presence of a specific type of distor-
tion. For example, JNBM [11], CPBDM [12], and LPCM [13]

aim to perform perceptual blur estimation, while algorithms
like NJQA [14] and JPEG-NR [15] respectively quantify the
presence of noise and JPEG compression artifacts. In [16]
Fang et al. proposes an NR IQA algorithm that conducts
perceptual quality evaluation on contrast-modified images.

By contrast, another category of NR IQA models that
are based on NSS generally make no assumptions with
respect to feature design regarding the type of distortions
present in the images. These models are often learned, and
have proved versatile for evaluating the quality of images
afflicted by a wide range of distortions or processing arti-
facts. As was systematically observed in [17], the local
mean-subtracted-contrast-normalized (MSCN) coefficients of
good quality natural images tend to follow a Gaussian-
like distribution [17]. The distribution of MSCN coefficients
and products of adjacent pairs of them were successfully
employed in the Blind/Referenceless Image Spatial QUality
Evaluator (BRISQUE) [18] and the Natural Image Quality
Evaluator (NIQE) [19]. The Derivative Statistics-based QUal-
ity Evaluator (DESIQUE) [20] supplements BRISQUE by
using log-derivative distributions of MSCN pixels. Similarly,
a normalized Gaussian-smoothed gradient magnitude (GM)
map and a normalized Laplacian of Gaussian (LOG) map are
used in the NR IQA GM-LOG model [21]. The gradient map
also finds its application in the calculation of local binary
pattern used in [22]. Neurons employed in early stages of
the visual pathway capture information over multiple orien-
tations and scales, motivating multiscale processing in many
NSS-based NR IQA models: log-Gabor decomposition
(DESIQUE [20]), Daubechies 9/7 wavelets (BIQI [23]), steer-
able pyramid wavelets (DIIVINE [24], C-DIIVINE [25]),
DCT (BLIINDS-II [26]), and curvelets (CurveletQA [27]).
In addition, features like phase congruency (GRNN [28]) and
expected image entropy upon a set of predefined directions
(Anisotropy [29]) have also been used in NR-IQA. Mod-
els like COdebook Representation for No-Reference Image
Assessment (CORNIA) [30] uses a supervised learning tech-
nique to learn a dictionary of different distortions from the
raw image patches instead of using a fixed set of features.
Mittal et al. [31] applies a “topic model” to the visual words
extracted from the pristine and distorted images. The Bag-of-
Words model has also been used in [32]. In addition, blind IQA
models that use sophisticated deep learning models have also
been proposed in [33] (DIQI), [34] (DLIQA-R), [35] (CNN),
and [36].

Most of these NR IQA algorithms have been trained
and evaluated on the artificially distorted images contained
in legacy SDR image databases. Although these algorithms
deliver excellent correlations against human ground truth sub-
jective scores on these type of images, they perform poorly
on the images produced by HDR processing algorithms, as
we will show in the following sections.

III. PROPOSED ALGORITHM

Here we describe the perceptually relevant features that
are employed in our proposed NR IQA models. The features
include established NSS quality descriptors as well as new
features designed to handle processing artifacts arising in HDR
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processed images. These are based on the observation that NSS
features extracted from image gradients are modified by HDR
processing artifacts in characteristic ways. These deviations
may be used to improve predictions of human subjective
responses. In the following subsections, I (i, j) at the (i, j)-th
coordinate could be any color channel of an image, represented
in any common luminance or color space such as LAB, LMS,
or YUV, as specifically studied later in Section IV-E.

A. Log-Derivatives
A recent state-of-the-art NR IQA algorithm called

DESIQUE [20] uses log-derivative (log gradient) features to
predict the quality of natural images afflicted by (non-HDR)
processing artifacts. The log-derivative statistics are com-
puted after logarithmically converting the image luminances
(or other color channel values in some color space) [20].
We also deploy these features in our models. Let M × N be
the dimension of the image I , and I (i, j) be the value at the
(i, j)-th spatial location, i ∈ {1, 2, . . . , M}, j ∈ {1, 2, . . . , N}.
The logarithmic image is then:

J (i, j) = log[I (i, j) + C] (1)

where C is a small constant added to avoid numerical
instabilities. The following log-gradient values are computed
as in [20]:

D1 : ∇x J (i, j) = J (i, j + 1) − J (i, j), (2)
D2 : ∇y J (i, j) = J (i + 1, j) − J (i, j), (3)

D3 : ∇xy J (i, j) = J (i + 1, j + 1) − J (i, j), (4)
D4 : ∇yx J (i, j) = J (i + 1, j − 1) − J (i, j), (5)

D5 : ∇x∇y J (i, j) = J (i − 1, j) + J (i + 1, j)
− J (i, j − 1) − J (i, j + 1), (6)

D6 : ∇cx∇cy J (i, j)1 = J (i, j) + J (i + 1, j + 1)

− J (i, j + 1) − J (i + 1, j), (7)
D7 : ∇cx∇cy J (i, j)2 = J (i − 1, j − 1) + J (i + 1, j + 1)

− J (i − 1, j + 1) − J (i + 1, j − 1).

(8)

B. Spatial Domain Scene Statistics
Similar to the BRISQUE [18] and NIQE [19] models,

we also model the scene statistics of images processed
by mean subtraction and divisive normalization opera-
tors (MSCN). Let M×N be the dimensions of an image I , and
I (i, j) be the luminance value in the (i, j)-th spatial location,
i ∈ {1, 2, . . . , M}, j ∈ {1, 2, . . . , N}. Then MSCN values are
generated by:

Î (i, j) = I (i, j) − μ(i, j)

σ (i, j) + 1
, (9)

where the local mean μ(i, j) and standard deviation σ(i, j)
are defined as:

μ(i, j) =
k=K∑

k=−K

l=L∑

l=−L

wk,l I (i + k, j + l) (10)

and

σ(i, j) =
√√√√

k=K∑

k=−K

l=L∑

l=−L

wk,l [I (i + k, j + l) − μ(i, j)]2, (11)

where w = {wk,l |k = −K , . . . , K , l = −L, . . . , L} is a
symmetric local Gaussian convolution window centered at the
(i, j)-th pixel. K and L determine the size of the local patches
used in the calculation of the mean and standard deviation.
In [18], the authors used 7 × 7 image patches, and a circularly
symmetric 2D Gaussian kernel; however, our experiments
indicate that the distributions of the MSCN patches are not
very sensitive to the window size.

Generally, as in [18], [19], and [24], we may view the
distribution of (9) as a tool for studying the loss of natu-
ralness of an image, due to distortion or processing. It is
effective for measuring tone-mapping effects. The normalized
image ( Î ) of a good quality, unprocessed pristine image will
have an empirical probability distribution or a histogram that is
Gaussian like. The standard deviation map σ highlights object
boundaries and other details of the image. The MSCN values
of both original and distorted images are commonly modeled
using a Generalized Gaussian Distribution (GGD) when used
for image quality assessment [18], [19].

The zero mean Generalized Gaussian Distribution (GGD)
used to model MSCN coefficients Î (i, j) is given by:

f (x; α, γ 2) = α

2β�(1/α)
ex p

[
−

( |x |
β

)α]
(12)

where β = γ
√

�(1/α)
�(3/α) and �(x) = ∫ ∞

0 t(x−1)e−t , x > 0
is the gamma function. The variables α and γ are shape
and scale parameters, respectively, and are valuable quality-
aware features that capture deviations of the image statistics
corresponding to HDR processing artifacts.

Local adaptation methods [40], [41] that tone-map the HDR
irradiance maps to SDR images work on the principle of
dividing each pixel by its average luminance, approximat-
ing the“dodge-and-burn” technique employed by photogra-
phers [42]. This corresponds to subtracting a low-pass filtered
version from the original image in the logarithm domain.
This further motivates the use of NSS features extracted
from the log-derivatives of the MSCN coefficients to evaluate
the quality of HDR-processed images. Log-derivatives of the
MSCN coefficients modified by( 2) -( 8) are also well modeled
by as GGD. The shape (α) and scale (γ ) parameters of GGD
fits to the seven types of log-derivatives are useful quality
aware features.

The σ -field has previously been shown to provide effective
quality-aware NSS features [43]. We extract two quantities
from the σ -field: the mean value and the square of the
reciprocal of the coefficient of variation. These quantities are
respectively defined as:

�σ = 1

M N

M−1∑

i=0

N−1∑

j=0

σ(i, j), (13)

�σ (i, j) =
√√√√

M−1∑

k=0

N−1∑

j=0

[σ(i + k, j + l) − �σ ]2, (14)

and

	σ =
(

�σ

�σ

)2

. (15)



2960 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 6, JUNE 2017

Fig. 1. Image of the same scene processed using several different HDR/tone-mapping algorithms obtained from the ESPL-LIVE HDR Image Quality
Database (details are available in IV-A). (a) Raman TMO [37], (b) Ward TMO [38], and (c) post-processing by ‘Surreal’ effect in Photomatix [39]. Each of
the processing algorithms give rise to visually distinctive images. The caption of each image shows the associated Mean Opinion Score (MOS).

Fig. 2. (a) MSCN coefficients (b) Local standard deviation and (c) Log-derivative of the MSCN coefficients map of the luminances of the images in Fig. 1(c).

Fig. 3. Histograms of (a) MSCN pixels (b) Log-derivatives of MSCN pixels (c) σ -field of the L-channel of the pixels. (d)-(f) represent the corresponding
histograms for the A-channel in the LAB color space. The three plots represent processing by Raman TMO [37], Ward TMO [38], and post-processing by
‘Surreal’ effect in Photomatix [39] respectively for the images shown in Figure 1.

Figure 1 shows three images of the same scene processed
using three different HDR/tone-mapping algorithms. Figure 3
shows the histograms of the MSCN coefficients, the log-
derivatives of the MSCN coefficients, and the σ -field of the
images in Fig. 1. The spatial domain features extracted at each
scale and in each color channel are summarized in Table I. The
features are extracted in the three color channels of the LAB
color space. In order to separately study the impact of the
spatial domain features, we also created and tested a model
we refer to as HIGRADE-S, which uses only the described
spatial domain features to predict quality.

C. Gradient Domain Scene Statistics
Image gradients contain important information regarding

the distribution of edges and variations of local contrast.
They are used widely in IQA since they capture changes of
local structures when images are distorted by post-acquisition
processing techniques. Several state-of-the-art FR-IQA [4],
[44], [45] and NR IQA [21] algorithms employ gradient
information. Further, many HDR processing algorithms, such
as tone-mapping and multi-exposure fusion algorithms, modify
the gradients of images in the multi-exposure stacks, which
results in modified contrast levels in the resultant fused images.
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Fig. 4. Histograms of (a) MSCN coefficients (b) Log-derviatives of the MSCN coefficients (c) σ -field (d) Gradient structure tensor coherence of gradient
field of the L-channel. (e)-(h) are the corresponding histograms for the A-channel. The legends represent processing by Raman TMO [37], Ward TMO [38],
and post-processing by the ‘Surreal’ effect in Photomatix [39] on the images shown in Figure 1.

TABLE I

SPATIAL DOMAIN FEATURES EXTRACTED FOR EVERY COLOR

CHANNEL USED IN THE PROPOSED IQA MODELS

While gradient magnitude features are widely used in IQA,
gradient orientation information has only been recently studied
as an IQA feature [46]. We utilize both gradient magnitude and
gradient orientation information extracted from the gradient
structure tensor [47], as explained in the following.

1) Gradient Magnitude Features: The local gradient is com-
puted by convolving the image with a simple Sobel operator.
The horizontal (Hx) and vertical (Hy) components of the Sobel
operator are given by:

Hx =
⎡

⎣
−1 0 1
−2 0 2
−1 0 1

⎤

⎦ (16)

Hy =
⎡

⎣
−1 −2 −1
0 0 0
1 2 1

⎤

⎦. (17)

The estimated gradient magnitude M of the image I (i, j)
is then given by:

M(i, j) =
√

(I ∗ Hx)2(i, j) + (I ∗ Hy)2(i, j), (18)

where ∗ denotes the convolution operator.
The same spatial domain features summarized in Table I are

also extracted from the gradient magnitude field. An algorithm
that combines the spatial domain features with the gradient
magnitude features will be referred to as the HDR Image
GRADient based Evaluator-1 (HIGRADE-1). Since many of
the HDR processing algorithms modify the local gradients
across multiple scales [48], we compute all of the image
features over two image scales.

2) Gradient Structure Tensor Features: The structure tensor
is a well known concept in signal and image processing. For
example, in [49], Saad et al. used features extracted from a
motion structure tensor to conduct objective quality evaluation
of natural videos. The gradient structure tensor [47] captures
the predominant gradient directions and degree of coherence
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Fig. 5. 2-D scatter plot between (a) shape and scale parameters obtained by fitting GGD to the empirical distributions of MSCN coefficients of gradient
magnitude of the image luminances (b) The features �σ and 	σ extracted from the local σ -map of gradient magnitude of the image luminances (c) Mean and
standard deviation of the gradient structure tensor coherence for the images in the ESPL-LIVE HDR Image Quality Database. The legends ‘TMO’, ‘MEF’,
and ‘PP’ show images processed by tone-mapping, multi-exposure fusion and post-processing algorithms respectively.

of the gradient vector field of an image. It has been used for
image interpolation [50], anisotropic filtering [51], and motion
detection [52]. It is particularly relevant for analyzing the
quality of HDR/tonemapped images which have had gradient
manipulations executed on them that can unnaturally modify
the spatial distribution of the local image gradient. The 2D
structure tensor is given by:

J =
[

f (Gx) f (Gx .Gy)
f (Gx .Gy) f (Gy),

]
(19)

where

f (V ) =
∑

l,k

w[i, j ]V (i − l, j − k)2 (20)

and where Gx(i, j) and Gy(i, j) are smoothed horizontal and
vertical second derivatives at coordinate (i, j), respectively,
and w is a window of dimension of P × P over which the
localized structure tensor is computed. The quantities Gx(i, j)
and Gy(i, j) are implemented as directional difference-of-
Gaussian filters. The relative discrepancy between the two
eigenvalues indicates the degree of anisotropy of the local
gradient. The coherence measure is defined by:

C =
(

λ1 − λ2

λ1 + λ2

)2

(21)

where λ1 and λ2 are the two eigenvalues of the gradient
structure tensor. The coherence measure is computed over
P × P non-overlapping blocks of the image. The sample
mean, standard deviation, skewness, and kurtosis values of
the coherence measure are also used as features. An algorithm
that combines the spatial domain features of Table I with the
gradient structure tensor features just described is referred to as
the HDR Image GRADient based Evaluator-2 (HIGRADE-2).
The tensor features are also calculated over all three LAB
chromatic channels.

To study the effect of using all of the gradient features,
we defined a model using features f1 − f40 which we call
HIGRADE-3. In order to motivate the gradient based features
used in proposed HIGRADE algorithms, we plotted the vari-
ations of the different parameters extracted from the image
gradients on images produced by different HDR processing
algorithms. The scatter plot between the shape and scale para-
meters obtained by fitting the GGD to the empirical distribu-
tions of the MSCN coefficients of the gradient magnitudes of

Fig. 6. Gradient structure tensor coherence of MSCN coefficients map of
L-channel of Fig. 1(c).

the luminances (of the images in the ESPL-LIVE HDR Image
Quality Database) is shown in Fig. 5(a), while Fig. 5(b) shows
the scatter plot between the features �σ and 	σ extracted
from the corresponding local σ -map. The images obtained by
the TMO and MEF algorithms show overlap of the gradient
features, but the post-processed images show a difference in
the features extracted. The variations of the mean and standard
deviation of the local gradient structure tensor coherence
computed across all the image blocks is shown in Fig. 5(c).

Overall, 216 features constitute the HIGRADE-1
model while 120 features define the HIGRADE-2 model.
HIGRADE-3 and HIGRADE-S use 228 and 108 features
respectively. In the next section, we study the performances
of these models on the HDR and legacy SDR image quality
databases.

IV. RESULTS

We conducted an experiment where we evaluated the per-
formance of several state-of-the-art NR IQA algorithms on
the recently developed ESPL-LIVE HDR Database as well
as on two legacy SDR image quality databases. The per-
formances of the proposed algorithm models were evaluated
by measuring the correlations between the predicted and the
subjective scores (after non-linear regression), as well as the
outlier ratios and root-mean-square-errors. The results were
also analyzed to determine the statistical significance of the
algorithm comparisons.

A. ESPL-LIVE HDR Image Quality Database

The ESPL-LIVE HDR Image Quality Database was recently
created by crowdsourcing a large number of subjective eval-
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TABLE II

SPEARMAN’s RANK ORDERED CORRELATION COEFFICIENT BETWEEN EACH FEATURE AND DMOS ACROSS 50 TRAIN-TEST (4:1) COMBINATIONS
ON THE ESPL-LIVE HDR DATABASE FOR VARIOUS PROCESSING ALGORITHMS. TO ISOLATE THE EFFECT OF EACH SCALE AND COLOR

CHANNEL, THIS TABLE SUMMARIZES THE RESULTS FOR THE COARSEST IMAGE SCALE AND USES THE L-COMPONENT ONLY. ‘TMO’,
‘MEF’, ‘PP’ REPRESENTS TONE-MAPPING, MULTI-EXPOSURE FUSION, AND POST-PROCESSING ALGORITHMS RESPECTIVELY.

LOW CORRELATIONS BETWEEN EACH INDIVIDUAL FEATURE AND DMOS SHOW THAT THE FEATURES COMPLEMENT EACH
OTHER. FEATURES f1− f36 ARE USED IN HIGRADE-1 AND FEATURES f1− f18, f37− f40 ARE USED IN HIGRADE-

2 RESPECTIVELY. IN ORDER TO STUDY THE EFFECT OF USING ALL THE GRADIENT FEATURES, WE USED

FEATURES f1 − f40 IN HIGRADE-3. FURTHER, IN ORDER TO STUDY THE IMPACT OF THE SPATIAL DOMAIN
FEATURES SEPARATELY, HIGRADE-S WAS PROPOSED USING FEATURES f1 − f18

uations on a sizeable corpus of images processed using a
variety of HDR processing algorithms. More details about
the types of processing algorithms, the subjective testing
framework, and the method of analyzing the raw scores may
be found in [2]. The database contains 1,811 HDR-processed
images created from 605 high quality source HDR scenes.
The original multiple exposure stacks were captured using a
Canon Rebel T5, a Nikon D2x, and a Nikon D5300 digital
SLR cameras and displayed at a resolution of 960 × 540
(landscape) and 540 × 304 (portrait). Figure 7 shows some
sample images from the new database.

Although legacy subjective IQA databases usually catego-
rize images into distortion types (such as blur, JPEG com-
pression, and color saturation), this database makes no such
attempt. It is infeasible to superimpose artificial classification
schemes onto realistic HDR images, since, depending on the
scene and the type of processing algorithm considered, the
image could be impaired by a complex interplay of multiple
luminance, structural or chromatic artifacts that are difficult
to categorize. Here we briefly describe the different methods
used to create the images.

1) Images Generated by Tone Mapping Operators (TMO):
The process of generating well-exposed SDR scenes involves
estimating the scene radiance map (typically represented
as a 32 bit floating point HDR map), followed by tone-
mapping it to the displayable gamut of SDR displays
(8 bit/color/pixel). Tone-mapping algorithms compute either
a spatially varying transfer function or shrink image gradients
to fit within the available dynamic range [53]. In our database,
747 tonemapped images were created by using four represen-
tative TMOs proposed by Larson et al. [38], Fattalet al. [48],
Durand and Dorsey [54] and Reinhard et al. [42].

2) Images Generated by Multi-Exposure Fusion (MEF):
The bracketed stack of images, after being downsampled to
the display resolution, was first registered using a SIFT based
image alignment method [55], then the aligned images were
cropped so that every pixel was visible in every image of the
stack, thus avoiding “black border” artifacts. The exposure

Fig. 7. Sample images from the ESPL-LIVE HDR Image Quality Database.
The images include pictures taken both during day and night under diverse
illumination conditions. Scenes containing both natural and man-made objects
are included.

images were then blended using a MEF algorithm, which can
broadly be expressed as [5]:

Y (i) =
K∑

k=1

Wk(i)Xk(i) (22)

where K is the number of bracketed images, Y is the fused
output image, and Xk(i) and Wk(i) indicate luminance or
color either in the spatial domain or coefficients in a transform
domain, and the weight at the i -th pixel in the k-th exposure
image, respectively. Wk is a relative spatial weight on images
captured at the different exposure levels, based on the per-
ceptual information content. Different MEF algorithms differ
in the ways that the weights are captured, but they all have
an end goal of maintaining details both in underexposed and
overexposed regions. These methods bypass the intermediate
step of creating an HDR irradiance map, by instead creating an
SDR image that can be directly displayed on standard displays.
In the ESPL-LIVE HDR Image Database, 710 images were
created via multi-exposure fusion (using local and global
energy methods and the ones described in [37], [56], and [57]).
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Fig. 8. Scatter plots between the predicted scores and the MOS scores on the ESPL-LIVE HDR Database for a few NR IQA algorithms. The red
line indicates the logistic regression fit. The abbreviations “TMO”, “MEF”, and “PP” indicate Tone-Mapping, Multi-Exposure Fusion, and Post-Processing
algorithms respectively.

3) Post Processed Images: Many HDR images created by
professional and amateur photographers are post-processed
in order to convey different ‘feels’ about a scene. This can
drastically alter the final look of the image. We also included
post-processed HDR images in the database for subjective
evaluation, since these types of effects are not represented in
any existing HDR quality database. In our implementation,
we first created an irradiance map using Photomatix and
tonemapped it using their default tone-mapping algorithm,
followed by post-processing using two commonly used effects:
“Surreal” and “Grunge”, using different parameter settings
on color saturation, color temperature and detail contrast
preservation. A total of 354 images in the database were
created using this method.

We obtained subjective evaluations from 5,462 observers
using Amazon’s online crowdsourcing platform, Mechanical
Turk. A total of 327,720 human subjective ratings were gath-
ered, and each image was rated by an average by 110 subjects.
Although the subjects viewed the images under widely varying

conditions, a high degree of consistency was observed among
the subjects with respect to their judgments of perceptual qual-
ity. For each image, the ratings were divided into two disjoint
equal sized subsets and the MOS values computed using each
of them. This procedure was repeated over 25 random splits.
The median Pearson Linear Correlation Coefficient (PLCC)
between the MOS of the two sets was found to be 0.9721.1 In a
separate control experiment, we also collected ‘gold standard’
MOS values on 5 images via a subjective test conducted in a
traditional laboratory setting. The PLCC between these scores
and the crowdsourced MOS on the same images was found to
be 0.9465.

The high values of these correlations indicate exceptionally
good consistency between the scores obtained via crowdsourc-
ing. The database is publicly available at http://signal.ece.

1All of the correlation values between IQA algorithm scores and/or human
ground truth values were computed following non-linear logistic regression
as outlined in [9]
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TABLE III

MEDIAN SPEARMAN’s RANK ORDERED CORRELATON COEFFICIENT (SROCC) AND PEARSON’s LINEAR CORRELATION COEFFICIENT (PLCC)
BETWEEN THE ALGORITHM SCORES FOR VARIOUS IQA ALGORITHMS AND THE MOS SCORES ON THE ESPL-LIVE HDR DATABASE

ALONG WITH ALGORITHM COMPUTATION TIME (ON A MACINTOSH LAPTOP HAVING 8 GB RAM, 2.9 GHz CLOCK, INTEL CORE i7 CPU).
THE TABLE WAS SORTED IN DESCENDING ORDER OF SROCC OF THE ‘OVERALL CATEGORY’. THE BOLD VALUES INDICATE

THE BEST PERFORMING ALGORITHM. THE PROPOSED HIGRADE ALGORITHMS ARE SHOWN IN RED.
(L) DENOTES ALGORITHM IS APPLIED ON LUMINANCE ONLY

TABLE IV

ROOT-MEAN-SQUARE ERROR (RMSE), REDUCED χ̃2 STATISTIC BETWEEN THE ALGORITHM SCORES AND THE MOS FOR VARIOUS NR-IQA
ALGORITHMS (AFTER LOGISTIC FUNCTION FITTING) AND OUTLIER RATIO (EXPRESSED IN PERCENTAGE) FOR EACH DISTORTION CATEGORY

ON THE ESPL-LIVE HDR DATABASE. THE BOLD VALUES INDICATE THE BEST PERFORMING ALGORITHM FOR THAT CATEGORY. THE
PROPOSED HIGRADE ALGORITHMS ARE SHOWN IN RED. (L) DENOTES ALGORITHM IS APPLIED ON LUMINANCE ONLY

utexas.edu/~debarati/ESPL_LIVE_HDR_Database/index.
html.

B. Regressions Conducted

Once the features described in Section III were extracted,
a mapping was obtained from the feature space to the DMOS
scores using a regression method, which provides predic-
tions of perceptual quality. We used a support vector regres-
sor (SVR), implemented using the LibSVM [58] package to
implement an ε-SVR using the radial basis function kernel,
where the kernel parameter was by default the inverse of the
number of features.

C. Experiments on the ESPL-LIVE HDR Database

We randomly split the data into disjoint training and testing
sets at a 4:1 ratio and the split was randomized over 100 trials.

Care was taken to ensure that the same source scene did not
appear in both the training and the testing sets to prevent
artificial inflation of the results. The Spearman’s rank ordered
correlation coefficient (SROCC) and Pearson’s linear correla-
tion coefficient (PLCC) values between the predicted and the
ground truth quality scores were computed at every iteration.
The median value across iterations of the correlations was
reported. Fig. 8 shows the scatter plots between the predicted
scores and the MOS scores on the ESPL-LIVE HDR Database
for a few NR IQA algorithms.

We discovered that there is significant room for improve-
ment among contemporary top-performing NR IQA models
with regards to their HDR quality prediction power. Further,
as compared to HIGRADE-S, the HIGRADE models that
utilize gradient features delivered higher correlations against
human judgments than otherwise (HIGRADE-1, HIGRADE-2,
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TABLE V

MEDIAN SPEARMAN’s RANK ORDERED CORRELATION COEFFICIENT (SROCC) AND PEARSON’s LINEAR CORRELATION COEFFICIENT (PLCC)
BETWEEN ALGORITHM SCORES AND DMOS FOR VARIOUS NR IQA ALGORITHMS ACROSS 100 TRAIN-TEST (4:1) COMBINATIONS ON THE

LEGACY LIVE IQA DATABASE. PERFORMANCES OF SOME FR-IQA ALGORITHMS (SHOWN IN ITALICS) HAVE BEEN INCLUDED FOR

COMPARISON. ‘−’ INDICATES THAT THE ORIGINAL PAPER DID NOT REPORT THESE VALUES. THE TABLE HAS BEEN SORTED

IN THE DESCENDING ORDER OF SROCC OF THE ‘OVERALL CATEGORY’ FOR NR IQA ALGORITHMS. NUMBERS WITHIN
PARENTHESES IN THE “OVERALL” CATEGORY SHOW THE CONFIDENCE INTERVALS ON CORRELATION VALUES,

COMPUTED BY OVER 100 TRIALS. BOLD VALUES INDICATE THE BEST PERFORMING ALGORITHM

FOR THAT CATEGORY. RED INDICATES THE PROPOSED MODELS. (L) DENOTES
ALGORITHM IS APPLIED ON LUMINANCE ONLY

and HIGRADE-3). However, using all of the gradient features,
as in HIGRADE-3, did not produce an improvement in perfor-
mance relative to HIGRADE-1 or HIGRADE-2. This may be
explained by the redundancy between their feature sets. The
results are summarized in Table III.

The algorithm compute times were also measured on a
960×540 image using a Macintosh laptop having 8 GB RAM,
2.9 GHz clock, and an Intel Core i7 CPU. Fig. 9 shows a
scatter plot of SROCC vs. execution time for the considered
NR-IQA algorithms. The plot makes quite clear the high
efficiency achieved by the HIGRADE models.

Table IV shows the root-mean-squared-errors (RMSE),
reduced χ̃2 statistic between scores predicted by the algo-
rithms and MOS (after logistic regression) and the outlier
ratios (expressed in percentage). The top performing algo-
rithms yielded lower values of RMSE and outlier ratio.
HIGRADE-1 (L), HIGRADE-2 (L), and HIGRADE-3 (L) only
used features extracted on the L-component after conversion
to LAB color space.

We believe that this is because of the fact that adding
more number of features may not always result in better
performance of the algorithms because the features might
be capturing overlapping or redundant information from the
images.

Fig. 10 shows box plots of the distributions of the Spear-
man’s Rank Ordered Correlation Coefficient values for each
of the 100 trials of random train-test splits on the ESPL-LIVE
HDR Image Database. This enabled us to study the robustness
of the algorithms against variations of the choice of training
set. The HIGRADE model predictions had smaller variation
of correlation against the human subjective scores.

Fig. 9. Scatter plot of SROCC of selected NR-IQA algorithms with images
in the ESPL-LIVE HDR Image Quality Database vs. runtime. Red indicates
the proposed algorithms.

To analyze the degree of variation of SROCC between the
scores predicted by the algorithm and MOS, the percentage of
train/test splits was varied from in 10% increments, 90% of
the content used for training and the remaining 10% used for
testing, to 10% of the content used for training to 90% used
for testing. As shown in Fig. 11, the knee of the curve occurs
roughly at 60:40 train:test splits for the proposed HIGRADE
algorithms. This shows that the results are not affected by
overfitting or underfitting to the training data.

D. Experiments on Other Databases

We also tested the performance of the proposed HIGRADE
algorithms on the legacy LIVE IQA database [9], TID2013
database [10], LIVE Multiply Distorted Image Database [59]
and on the large new crowd-sourced LIVE In the Wild
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TABLE VI

SPEARMAN’s RANK ORDERED CORRELATION COEFFICIENT (SROCC) AND PEARSON’s LINEAR CORRELATION COEFFICIENT (PLCC)
BETWEEN ALGORITHM SCORES AND DMOS FOR VARIOUS NR IQA ALGORITHMS ON A SUBSET OF THE TID 2013 DATABASE AFTER

TRAINING THE ALGORITHMS ON THE LIVE IQA DATABASE. ‘−’ INDICATES THAT THE ORIGINAL PAPER DID NOT REPORT

THESE VALUES. THE TABLE WAS SORTED IN DESCENDING ORDER OF SROCC OF THE ‘OVERALL’ CATEGORY. THE

BOLD VALUES INDICATE THE BEST PERFORMING ALGORITHM. RED INDICATES THE PROPOSED MODELS.
(L) DENOTES ALGORITHM IS APPLIED ON LUMINANCE ONLY

Fig. 10. Box plot of SROCC of selected learning based NR IQA algorithms
on ESPL-LIVE HDR Image Database using 4:1 train-test splits over 100 trials.
For each box, median is the central box, edges of the box represent 25th and
75th percentiles, whiskers span the most extreme non-outlier data points, and
outliers are plotted individually.

Fig. 11. Median SROCC between predicted scores and subjective DMOS
scores for HIGRADE-1, HIGRADE-2, HIGRADE-3, and HIGRADE-S (and
the associated 95% confidence intervals) as a function of the percentage of the
content used to train on the ESPL-LIVE HDR Image Database over 25 trials.
Note that the ordinate is plotted over [0.4,0.8].

Challenge database [60]. None of these databases contain HDR
processed images. In each of these experiments, a mapping
was obtained from the feature space to MOS/DMOS scores

TABLE VII

SPEARMAN’s RANK-ORDER CORRELATION COEFFICIENT (SROCC),
PEARSON’s LINEAR CORRELATION COEFFICIENT (PLCC), AND

ROOT MEAN SQUARE ERROR (RMSE) BETWEEN VARIOUS
IQA ALGORITHM SCORES AND THE MOS ACROSS 100

TRAIN-TEST (4:1) COMBINATIONS ON THE LIVE MULTIPLY

DISTORTED IMAGE DATABASE. THE TABLE IS SORTED
IN DESCENDING ORDER OF SROCC FOR PART 2

OF THE DATABASE. RED INDICATES THE

PROPOSED MODELS. (L) DENOTES

ALGORITHM IS APPLIED
ON LUMINANCE ONLY

using a support vector regressor (SVR) to implement ε-SVR
with the radial basis function kernel. The same protocol was
followed of splitting the data into disjoint training and testing
sets at 4:1 ratio, randomized over a number of trials.

Table V shows the performance of the HIGRADE
algorithms on the LIVE database [9]. The high degrees of
correlation obtained against the subjective data shows that the
HIGRADE methods are also able to capture typical artifacts
arising in SDR images. Several blind IQA models that use
sophisticated deep learners are included in Table V, [34]–[36].
These models can achieve the outer bounds of performance on
this legacy database.

In order to explore the database independence of
HIGRADE, it was trained on the legacy LIVE IQA database of
natural images, then evaluated on the TID 2013 database [10].
From among the distortions present in the TID2008 database
only the ones corresponding to those in the LIVE database
were selected: JPEG2000, JPEG, gaussian noise, and blur.
Table VI shows the results obtained on those types of artifacts.
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TABLE IX

MEDIAN SPEARMAN’s RANK ORDERED CORRELATON COEFFICIENT (SROCC) AND PEARSON’s LINEAR CORRELATION COEFFICIENT (PLCC)
BETWEEN ALGORITHM SCORES AND MOS ACROSS 50 TRAIN-TEST COMBINATIONS ON THE ESPL-LIVE HDR DATABASE WHEN

HIGRADE-1 FEATURES FROM EACH COMPONENT OF EACH OF THREE DIFFERENT COLOR SPACES WERE INDEPENDENTLY

USED TO TRAIN AN SVR, WAS WELL AS USING ALL THREE CHANNELS OF EACH COLOR SPACE

TABLE X

MEDIAN SPEARMAN’s RANK ORDERED CORRELATON COEFFICIENT (SROCC) AND PEARSON’s LINEAR CORRELATION COEFFICIENT (PLCC)
BETWEEN ALGORITHM SCORES AND MOS ACROSS 50 TRAIN-TEST COMBINATIONS ON THE ESPL-LIVE HDR DATABASE WHEN

HIGRADE-2 FEATURES FROM EACH COMPONENT OF EACH COLOR SPACE WERE INDEPENDENTLY USED TO TRAIN AN SVR,
AS WELL AS WHEN USING ALL THREE CHANNELS OF EACH COLOR SPACE

TABLE XI

RESULTS OF THE F-TEST PERFORMED ON THE RESIDUALS BETWEEN MODEL PREDICTIONS AND MOS SCORES ON THE ESPL-LIVE HDR
DATABASE. EACH CELL IN THE TABLE IS A CODEWORD CONSISTING OF 4 SYMBOLS THAT CORRESPOND TO “TONE MAPPING OPERATORS,”

“MULTI-EXPOSURE FUSION,” “POST PROCESSING,” AND “OVERALL” PROCESSING ALGORITHMS. “1”(“0”) INDICATES THAT THE

PERFORMANCE OF THE ROW IQA ALGORITHM IS BETTER(WORSE) TO THAT OF THE COLUMN IQA ALGORITHM. - INDICATES
THAT THE STATISTICAL PERFORMANCE OF THE ROW IQA IS EQUIVALENT TO THAT OF THE COLUMN IQA.

THE MATRIX IS SYMMETRIC. THE PROPOSED ALGORITHMS HAVE BEEN SHOWN IN RED

For the sake of comparison, results obtained under the same
train-test setup from some other well-known NR IQA models
were also included, including the Deep learning based Image
Quality Index (DIQI) in [33]. The correlation figures did drop
somewhat relative to the results obtained when training and
testing on disjoint sets of the same database, which is to
be expected given the diversity of distortion ranges across

databases, but the agreement with human quality judgments
remained very strong.

The LIVE Multiply Distorted Image database contains
images distorted by mixtures of blur, noise, and JPEG com-
pression artifacts and offers a more realistic simulation of
the images impaired by distortions arising from multiple
sources. ‘Part 1’ of the database contains images distorted
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TABLE VIII

MEDIAN SPEARMAN’s RANK-ORDER CORRELATION COEFFICIENT
(SROCC), PEARSON’s LINEAR CORRELATION COEFFICIENT (PLCC)

AND OUTLIER RATIO (OR) BETWEEN VARIOUS IQA ALGORITHM

SCORES AND MOS ACROSS 50 TRAIN-TEST (4:1)
COMBINATIONS ON THE LIVE CHALLENGE DATABASE.

BOLD VALUES INDICATE THE BEST PERFORMING

ALGORITHM. THE TABLE IS SORTED IN

DESCENDING ORDER OF SROCC. RED
INDICATES THE PROPOSED MODELS.

(L) DENOTES ALGORITHM IS

APPLIED ON LUMINANCE ONLY

by blur, followed by JPEG compression, whereas ‘Part 2’
contains images that are distorted by blur, followed by additive
Gaussian white noise. The HIGRADE models again achieved
good correlation against MOS on these type of artifacts. These
results are summarized in Table VII.

We tested the performance of the HIGRADE algorithms
on the challenging LIVE In the Wild Challenge Database [60]
containing 1,162 images obtained under a wide variety of pho-
tographic and lighting conditions, captured using a variety of
imaging devices, and afflicted by highly diverse and complex
authentic distortions. The results are shown in Table VIII.2

Again, the performance of the HIGRADE models was highly
competitive with the current state-of-the-art.

In addition to natural images, the proposed HIGRADE mod-
els have also been found to show high degrees of correlation
with human subjective scores on the ESPL Synthetic Image
Database [61] composed to pristine and distorted computer
graphics images obtained from video games and animation
movies. The details may be found at [62].

E. Experiments on Different Color Spaces

In order to see the impact of choosing different color spaces
on the performance of the proposed algorithms, HIGRADE-1
and HIGRADE-2 features were also extracted from the same
images represented in the YUV and LMS color spaces. For
the images in the ESPL-LIVE HDR Image Quality database,
the correlations between the HIGRADE model predictions
against MOS are summarized in Tables IX and X. In the
LAB color space, using only the L-component resulted in
a higher degree of correlation with human subjective scores
as compared to only extracting features from the A or B
chromatic channels. Interestingly, when testing on images
represented in the YUV and LMS color spaces, extracting all

2As stated in [43], outlier ratio on the predicted scores is not computed for
NIQE since it is not trained on MOS values.

the features from any of the three channels in isolation yielded
almost equal degrees of correlation between the predicted
scores and MOS. Unsurprisingly, the best performance on
each color space was achieved when all three channels were
used. Overall, using the LAB color space produced the best
prediction results for HIGRADE-2 and YUV color space for
HIGRADE-1.

F. Determination of Statistical Significance

In order to study the statistical significance of the correlation
results on the ESPL-LIVE HDR Image Quality database,
ten representative NR IQA algorithms were selected. The
statistical significance tests were carried out over multiple
training-test splits, using random 4:1 train-test splits of the
database each time, and similar results were obtained over
all trials. Table XI outlines the results obtained for one such
representative trial. To determine whether results delivered by
the IQA algorithms were significantly different from each
other, the F-statistic, as in [9], was used to determine the
degree of statistical significance between the variances of the
residuals after a non-linear logistic mapping between the two
IQA algorithms, at the 95% confidence interval. Overall, the
proposed HIGRADE algorithms were found to be statistically
better to the other NR IQA algorithms.

V. CONCLUSION

We devised a new gradient-based NSS framework and
proposed two algorithms that predict the perceptual qual-
ity of tonemapped/fused/post-processed HDR images. We
also studied the relevance of various color spaces of the
input HDR maps when perceiving their quality. We vali-
dated the new model(s) on a new, very large crowdsourced
study of HDR images that deployed 5,462 unique partici-
pants who reported 327,720 image evaluations. The proposed
HIGRADE algorithms were found to be the top performing
predictors of human perceptual judgments of visual HDR
artifacts, among the 12 NR-IQA models that were tested.
The HIGRADE features were also shown to be effective at
assessing the artifacts arising in SDR images, as corroborated
by the experimental results on the legacy image quality
databases [9], [10], [59], [60]. In the future, we believe that the
HIGRADE models or features may prove to be quite useful for
the perceptual optimization [63] of HDR processed pictures.
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