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Abstract—Low-density parity-check (LDPC) convolutional
codes are capable of achieving excellent performance with low en-
coding and decoding complexity. In this paper, we discuss several
graph-cover-based methods for deriving families of time-invariant
and time-varying LDPC convolutional codes from LDPC block
codes and show how earlier proposed LDPC convolutional code
constructions can be presented within this framework. Some of
the constructed convolutional codes significantly outperform the
underlying LDPC block codes. We investigate some possible rea-
sons for this “convolutional gain,” and we also discuss the—mostly
moderate—decoder cost increase that is incurred by going from
LDPC block to LDPC convolutional codes.

Index Terms—Block codes, convolutional codes, low-density
parity-check (LDPC) codes, message-passing iterative decoding,
pseudocodewords, pseudoweights, quasi-cyclic codes, unwrap-
ping, wrapping.

I. INTRODUCTION

I N the last 15 years, the area of channel coding has been
revolutionized by the practical realization of capacity-

approaching coding schemes, initiated by the invention of
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turbo codes and their associated decoding algorithms in 1993
[1]. A few years after the invention of the turbo coding
schemes, researchers became aware that Gallager’s low-den-
sity parity-check (LDPC) block codes and message-passing
iterative decoding, first introduced in [2], were also capable
of capacity-approaching performance. The analysis and design
of these coding schemes quickly attracted considerable atten-
tion in the literature, beginning with the work of Wiberg [3],
MacKay and Neal [4], and many others. An irregular version
of LDPC codes was first introduced by Luby et al. in [5], [6],
and analytical tools were presented in [7] and [8] to obtain
performance limits for graph-based message-passing iterative
decoding algorithms, such as those suggested by Tanner [9].
For many classes of channels, these tools have been success-
fully employed to design families of irregular LDPC codes
that perform very well near capacity [10], [11]. Moreover, for
the binary erasure channel these tools have enabled the de-
sign of families of irregular LDPC codes that are not only
capacity-approaching but in fact capacity-achieving (see [12]
and references therein).

The convolutional counterparts of LDPC block codes are
LDPC convolutional codes. Analogous to LDPC block codes,
LDPC convolutional codes are defined by sparse parity-check
matrices, which allow them to be decoded using iterative mes-
sage-passing algorithms. Recent studies have shown that LDPC
convolutional codes are suitable for practical implementation
in a number of different communication scenarios, including
continuous transmission and block transmission in frames of
arbitrary size [13]–[15].

Two major methods have been proposed in the literature for
the construction of LDPC convolutional codes, two methods
that in fact started the field of LDPC convolutional codes. The
first method was proposed by Tanner [16] (see also [17] and
[18]) and exploits similarities between quasi-cyclic block codes
and time-invariant convolutional codes. The second method was
presented by Jiménez-Feltström and Zigangirov [19] and relies
on a matrix-based unwrapping procedure to obtain the parity-
check matrix of a periodically time-varying convolutional code
from the parity-check matrix of a block code.

The aims of this paper are threefold. First, we show that
these two LDPC convolutional code construction methods,
once suitably generalized, are in fact tightly connected. We
establish this connection with the help of so-called graph
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covers.1 A second aim is to discuss a variety of LDPC convolu-
tional code constructions. Although the underlying principles
are mathematically quite straightforward, it is important to
understand how they can be applied to obtain convolutional
codes with good performance and attractive encoder and de-
coder architectures. A third aim is to make progress towards
a better understanding of where the observed “convolutional
gain” comes from, and what its costs are in terms of decoder
complexity.

The paper is structured as follows. After some notational re-
marks in Section I-A, we discuss the basics of LDPC convolu-
tional codes in Section II. In particular, in that section, we give
a first exposition of the LDPC convolutional code construction
methods due to Tanner and due to Jiménez-Feltström and Zigan-
girov. In Section III, we discuss two types of graph-cover code
constructions and show how they can be used to connect the
code construction methods due to Tanner and due to Jiménez-
Feltström and Zigangirov. Based on these insights, Section IV
presents a variety of LDPC convolutional code constructions
(along with simulation results), and in Section V, we mention
some similarities and differences of these constructions com-
pared to other recent code constructions in the literature. Af-
terwards, in Section VI, we analyze some aspects of the con-
structed LDPC convolutional codes and discuss some possible
reasons for the “convolutional gain,” before we conclude the
paper in Section VII.

A. Notation

We use the following sets, rings, and fields: is the ring
of integers; is the set of nonnegative integers; is the
field of size two; is the ring of polynomials with coef-
ficients in and indeterminate ; and is the
ring of polynomials in modulo , where is a pos-
itive integer. We also use the notational shorthand for

.

1Note that graph covers have been used in two different ways in the LDPC
code literature. On the one hand, starting with the work of Tanner [20], they
have been used to construct Tanner graphs [9] of LDPC codes, and therefore
parity-check matrices of LDPC codes. Codes constructed in this way are nowa-
days often called proto-graph-based codes, following the influential work of
Thorpe [21], who formalized this code construction approach. On the other
hand, starting with the work of Koetter and Vontobel [22], [23], finite graph
covers have been used to analyze the behavior of LDPC codes under message-
passing iterative decoding. In this paper, we will use graph covers in the first
way, with the exception of some comments on pseudocodewords.

By and , we mean, respectively, a row vector
over of length and a row vector over of length

. In the following, if is some matrix, then denotes
the entry in the th row and th column of . Note that we use
the convention that indices of vector entries start at (and not
at ), with a similar convention for row and column indices of
matrix entries. (This comment applies also to semi-infinite ma-
trices, which are defined such that the row and column index sets
equal .) The only exception to this convention are bi-infinite
matrices, where the row and column index sets equal . Finally,

will denote the Kronecker product of the matrices
and .

II. LDPC CONVOLUTIONAL CODES

This section defines LDPC convolutional codes and discusses
why they are interesting from an implementation perspective.
Afterwards, we review two popular methods of obtaining
LDPC convolutional codes by unwrapping block codes. Later
in this paper, namely in Section III, we will use graph covers to
show how these two methods are connected, and in Section IV
we will see how these two methods can be implemented and
combined to obtain LDPC convolutional codes with very good
performance.

A. Definition of LDPC Convolutional Codes

A semi-infinite binary parity-check matrix as in (1), shown
at the top of the page, defines a convolutional code as
follows. Namely, it is the set of semi-infinite sequences given
by

where denotes the transpose of a vector or of a matrix.
We comment on several important aspects and properties of

the code and its parity-check matrix .
• If the submatrices , have

size with , then is said to have
(design) rate .

• The parameter that appears in (1) is called the syndrome
former memory. It is an important parameter of be-
cause the maximal number of nonzero submatrices per
block row of is upper bounded by .
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• The quantity is called the constraint length
of . It measures the maximal width (in symbols) of
the nonzero area of .2

• We do not require that for a given the
submatrices are independent of , and so

is in general a time-varying convolutional code.
• If there is a positive integer such that

for all and all , then
is called the period of , and is periodically
time-varying.

• If the period equals 1, then is called time-in-
variant, and the parity-check matrix can be simply written
as

...
...

. . .

. . .
. . .

. . .
(2)

• If the number of ones in each row and column of is
small compared to the constraint length , then is
an LDPC convolutional code.

• An LDPC convolutional code is called
-regular if, starting from the zeroth column,

has ones in each column, and, starting from the
th row, has ones in each row.

If, however, there are no integers , and such that
is -regular, then is called irregular.

Of course, there is some ambiguity in the above definition.
Namely, a periodically time-varying LDPC convolutional code
with parameters , and can also be considered to be a pe-
riodically time-varying LDPC convolutional code with param-
eters , and for
any integer that divides . In particular, for we con-
sider the code to be a time-invariant LDPC convolutional code
with parameters and .

B. Implementation Aspects of LDPC Convolutional Codes

An advantage of LDPC convolutional codes compared to
their block code counterparts is the so-called “fast encoding”
property. As a result of the diagonal shape of their parity-check
matrices, many LDPC convolutional codes enjoy simple shift
register based encoders. Even randomly constructed LDPC
convolutional codes can be formed in such a way as to achieve
this feature without any loss in performance (see, e.g., [19] and
[24]). On the other hand, in order to have a simple encoding
procedure for LDPC block codes, either the block code must
have some sort of structure [25] or the parity-check matrix must
be changed to a more easily “encodable” form [26].

The difficulty in constructing and decoding LDPC convolu-
tional codes is dealing with the unbounded size of the parity-
check matrix. This is overcome at the code construction step

2Strictly speaking, the above formula for � gives only an upper bound on the
maximal width (in symbols) of the nonzero area of ���� , but this upper bound
will be good enough for our purposes.

by considering only periodically time-varying or time-invariant
codes. The code construction problem is therefore reduced to
designing just one period of the parity-check matrix. For de-
coding, the most obvious approach is to terminate the encoder
and to employ message-passing iterative decoding based on the
complete Tanner graph representation of the parity-check matrix
of the code. Although this would be straightforward to imple-
ment using a standard LDPC block code decoder, it would be
wasteful of resources, since the resulting (very large) block de-
coder would not be taking advantage of two important aspects of
the convolutional structure: namely, that decoding can be done
continuously without waiting for an entire terminated block to
be received and that the distance between two variable nodes
that are connected to the same check node is limited by the size
of the syndrome former memory.

In order to take advantage of the convolutional nature of the
parity-check matrix, a continuous sliding window message-
passing iterative decoder that operates on a window of size

variable nodes, where is the number of decoding
iterations to be performed, can be implemented, similar to a
Viterbi decoder with finite path memory [27]. This window size
is chosen since, in a single iteration, messages from variable
(or check) nodes can be passed across a span of only one
constraint length. Thus, in iterations, messages can propagate
only over a window of size constraint length. [See also the
recent paper by Papaleo et al. [28], which investigates further
reducing the window size for codes operating on a binary
erasure channel (BEC).] Another simplification is achieved
by exploiting the fact that a single decoding iteration of two
variable nodes that are at least time units apart can be
performed independently, since the corresponding bits cannot
participate in the same parity-check equation. This allows the
parallelization of the iterations by employing independent
identical processors working on different regions of the parity-
check matrix simultaneously, resulting in the parallel pipeline
decoding architecture introduced in [19]. The pipeline decoder
outputs a continuous stream of decoded data after an initial
decoding delay of received symbols. The operation of this
decoder on the Tanner graph of a simple time-invariant rate-
convolutional code with and is illustrated in
Fig. 1.3

Although the pipeline decoder is capable of fully parallelizing
the iterations by using independent identical processors, em-
ploying a large number of hardware processors might not be
desirable in some applications. In such cases, fewer processors
(even one processor) can be scheduled to perform subsets of
iterations, resulting in a serial looping architecture [29] with
reduced throughput. This ability to balance the processor load
and decoding speed dynamically is especially desirable when
very large LDPC convolutional codes must be decoded with
limited available on-chip memory. Further discussion on the
implementation aspects of the pipeline decoder can be found
in [30].

3For LDPC convolutional codes the parameter � is usually much larger than
typical values of � for “classical” convolutional codes. Therefore, the value
� � � of the convolutional code shown in Fig. 1 is not typical for the codes
considered in this paper.
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Fig. 1. Tanner graph of a rate-��� convolutional code and an illustration of pipeline decoding. Here, � ���� � ���� � ��� denote the stream of channel output
symbols, and �� ���� �� ���� �� ��� denote the stream of decoder code bit decisions.

C. Unwrapping Techniques due to Tanner and due to
Jiménez-Feltström and Zigangirov (JFZ)

In this section, we discuss two approaches for deriving convo-
lutional codes from block codes, in particular for deriving LDPC
convolutional codes from LDPC block codes. The first tech-
nique will be the unwrapping due to Tanner and the second will
be the unwrapping due to Jiménez-Feltström and Zigangirov
(JFZ). In Section III, we will see, with the help of graph covers,
how these two—seemingly different—unwrapping techniques
are connected with each other.

The term unwrapping, in particular unwrapping a
quasi-cyclic block code to obtain a time-invariant convolu-
tional code, was first introduced in a paper by Tanner [17] (see
also [16]). That paper describes a link between quasi-cyclic
block codes and time-invariant convolutional codes and shows
that the free distance of the unwrapped convolutional code
cannot be smaller than the minimum distance of the underlying
quasi-cyclic code. This idea was later extended in [31] and [32].

Consider the quasi-cyclic block code defined by the

polynomial parity-check matrix of size , i.e.,

Here the polynomial operations are performed modulo .
The Tanner unwrapping technique is simply based on dropping
these modulo computations. More precisely, with a quasi-cyclic
block code we associate the convolutional code

with polynomial parity-check matrix

(3)

Here the change of indeterminate from to indicates the lack
of the modulo operations. [Note that in (3) we assume

that the exponents appearing in the polynomials in are
between and inclusive.]

It can easily be seen that any codeword in maps
to a codeword in through

a process which was described in [17] as the wrapping around
of a codeword in the convolutional code into a codeword in
the quasi-cyclic code. The inverse process was described as un-
wrapping.

Having introduced the unwrapping technique due to Tanner,
we move on to discuss the unwrapping technique due to JFZ
[19], which is another way to unwrap a block code to obtain a
convolutional code. The basic idea is best explained with the
help of an example.

Example 1: Consider the parity-check matrix

with size , of a rate- block code. As indicated
above, we can take a pair of scissors and “cut” the parity-check
matrix into two pieces, whereby the cutting pattern is such that
we repeatedly move units to the right and then
unit down. Having applied this “diagonal cut,” we repeatedly
copy and paste the two parts to obtain the bi-infinite matrix
shown in Fig. 2. This new matrix can be seen as the parity-check
matrix of (in general) a periodically time-varying convolutional
code (here the period is ). It is worth observing that this
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Fig. 2. Deriving a rate � � ��� periodically time-varying convolutional code with � � �� � � ��� � �� � � ��, and � � � from a rate-��� block code of
length 10.

new matrix has the same row and column weights as the matrix
that we started with.4

This example can be formalized easily. Namely, starting with
an parity-check matrix of some block code, let

. Then, the “diagonal cut” is performed by alternately
moving units to the right and then units
down (i.e., . The resulting convolutional code
has rate , syndrome former memory ,
constraint length , and period

.
Analogous to the comment at the end of Section II-A, it

is also possible to cut the matrix in larger step sizes, e.g.,
moving units to the right and units
down, for any integer that divides , thereby obtaining
a periodically time-varying convolutional code with rate

, syndrome former memory ,
constraint length , and period

. (See also the discussion in Section IV-B.)
In the rest of this paper, the term “JFZ unwrapping technique”

will also stand for the following generalization of the above pro-
cedure. Namely, starting with a length- block code defined
by some size- parity-check matrix , i.e.,

we write as the sum (in ) of a collection
of matrices . The convolutional code is then de-
fined to be

(4)

4In practice, the codewords start at some time, so the convolutional parity-
check matrix has effectively the semi-infinite form of (1), and the row weights
of the first � � � rows are reduced.

where

...
...

. . .

. . .
. . .

. . .
. . .

Referring to the notation introduced in Section II-A, the matrix
is the parity-check matrix of a time-invariant convolu-

tional code. However, depending on the decomposition of
and the internal structure of the terms in that decomposition,
the matrix can also be (and very often is) viewed as the
parity-check matrix of a time-varying convolutional code with
nontrivial period .

In order to illustrate the generalization of the JFZ unwrapping
technique that we have introduced in the last paragraph, observe
that decomposing from Example 1 as (in )
with
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yields a convolutional code with parity-check matrix
whose bi-infinite version equals the matrix shown in Fig. 2.

III. TANNER GRAPHS FROM GRAPH COVERS

Having formally introduced LDPC convolutional codes in the
previous section, we now turn our attention to the main tool of
this paper, namely graph covers.

Definition 2 (see, e.g., [33]): A cover of a graph with vertex
set and edge set is a graph with vertex set and edge
set , along with a surjection which is a graph
homomorphism (i.e., takes adjacent vertices of to adjacent
vertices of ) such that for each vertex and each

, the neighborhood of is mapped bijectively to
. A cover is called an -cover, where is a positive

integer, if for every vertex in .5

These graph covers will be used for the construction of new
Tanner graphs from old Tanner graphs, in particular for the con-
struction of Tanner graphs that represent LDPC convolutional
codes.

More specifically, this section starts by discussing two simple
methods to specify a graph cover, which will be called graph-
cover construction 1 (GCC1) and graph-cover construction 2
(GCC2). Although they yield isomorphic Tanner graphs, and
therefore equivalent codes, it is convenient to have both methods
at hand.6 As we will see, interesting classes of Tanner graphs
can be obtained by repeatedly applying these graph-cover con-
structions, by mixing them, and by suitably shortening the re-
sulting codes. Moreover, these two graph-cover constructions
will allow us to exhibit a connection between the Tanner and
the JFZ unwrapping techniques.

A. Graph-Cover Constructions

Let be an matrix over . With such a matrix we
can associate a Tanner graph , where we draw variable
nodes, check nodes, and where there are edges from
the th variable node to the th check node.7 Given the role that
the matrix will play subsequently, we follow [21] and call the
matrix a proto-matrix and the corresponding graph a
proto-graph.

The next definition introduces GCC1 and GCC2, two ways
to specify graph covers that will be used throughout the rest of
the paper.8

Definition 3: For some positive integers and , let
be a proto-matrix. We also introduce the following

objects.
• For some finite set , let be a collection of ma-

trices such that , and such that
(in ).

5The number� is also known as the degree of the cover. (Not to be confused
with the degree of a vertex.)

6For a formal definition of code equivalence, see, for example, [34].
7Note that we use a generalized notion of Tanner graphs, where parallel edges

are allowed and are reflected by corresponding integer entries in the associated
matrix.

8We leave it as an exercise for the reader to show that the graphs constructed
in GCC1 and GCC2 are indeed two instances of the graph cover definition in
Definition 2.

• For some positive integer , let be a collection
of size- permutation matrices. For example, for every

, the matrix is such that it contains one “ ” per
column, one “ ” per row, and “ ”s otherwise.

Based on the collection of matrices and the collection
of matrices , there are two common ways of defining
a graph cover of the Tanner graph . (In the following ex-
pressions, is the identity matrix of size .)

• Graph-cover construction 1 (GCC1). Consider the inter-
mediary matrix

whose Tanner graph consists of disconnected
copies of . This is an -fold cover of , albeit a
rather trivial one. In order to obtain an interesting -fold
graph cover of , for each , we replace by

, i.e., we define

• Graph-cover construction 2 (GCC2) Consider the interme-
diary matrix

whose Tanner graph consists of disconnected
copies of . This is an -fold cover of , albeit a
rather trivial one. In order to obtain an interesting -fold
graph cover of , for each , we replace by

, i.e., we define

If all the matrices are circulant matrices, then the graph
covers and will be called cyclic covers of .

One can verify that the two graph-cover constructions in Def-
inition 3 are such that the matrix , after a suitable reordering
of the rows and columns, equals the matrix .9 This implies
that and are isomorphic graphs; nevertheless, it is
helpful to define both types of constructions.

B. Graph-Cover Construction Special Cases

The following examples will help us to better understand how
GCC1 and GCC2 can be used to obtain interesting classes of
Tanner graphs, and, in particular, how the resulting graph-cover
constructions can be visualized graphically. Although these ex-
amples are very concrete, they are written such that they can be
easily generalized.

Example 4 (Cyclic Cover): Consider the proto-matrix

(5)

9Indeed, a possible approach to show this is to use the fact that��� ���� and
��� ���� are permutation equivalent, i.e., there is a pair of permutation matrices
�������� � such that��� ���� � ��� � ���� ���� � ���� . Of course, for this to work,
the pair �������� � must be independent of � � �, i.e., dependent only on the
size of the matrices ���� � and ���� � . Such a �������� � pair can easily be
found.
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Fig. 3. Proto-graph and graph-covers for the graph-cover constructions dis-
cussed in Example 4. (Compare with the corresponding graphs in Fig. 4.) (a)
Proto-graph �����. (b) GCC1 based on �����. Top: ���� �. Bottom: �����.
(c) GCC2 based on �����. Top: � ���� �. Bottom: � �����.

with and , and whose Tanner graph
is shown in Fig. 3(a). Let , and let the
collection of matrices be given by , where for
each and each the matrix

is defined as follows:

if
otherwise.

Moreover, let , and let the collection of matrices
be given by , where

, and where is an
times left-shifted identity matrix of size .

• Using GCC1, we obtain the matrices

(6)

whose Tanner graphs and , respectively, are
shown in Fig. 3(b).

• Using GCC2, we obtain the matrices

(7)

whose Tanner graphs and , respectively, are
shown in Fig. 3(c). Note that all the block rows and all the
block columns sum (in ) to . (This observation holds in
general, not just for this example.)

We would like to add two comments with respect to the above
example.

First, instead of defining to be an times left-shifted iden-
tity matrix of size , we could have defined to be an
times right-shifted identity matrix of size . Compared to the
matrices and graphs described above, such a change in defini-
tion would yield (in general) different matrices but isomorphic
graphs.

Second, we note that GCC2 was termed the “copy-and-per-
mute” construction by Thorpe et al. This terminology stems
from the visual appearance of the procedure: namely, in going
from Fig. 3(a) to (c)(top), we copy the graph several times,
and in going from Fig. 3(c)(top) to (c)(bottom), we permute the
edges of the graph, where the permutations are done within the
sets of edges that have the same preimage in Fig. 3(a).

Remark 5 (Quasi-Cyclic Codes): Consider again the matrices
that were constructed in Example 4, in particular the matrix
in (5) and its -fold cover matrix in (6). Because all matrices
in the matrix collection are circulant, represents
a cyclic cover of . Clearly, when seen over , the matrix

is the parity-check matrix of a quasi-cyclic binary
linear block code

Using the well-known isomorphism between the addition and
multiplication of circulant matrices over and the addition and
multiplication of elements of the ring , this code can be
written equivalently as

with

As noted above, the graphs and that are con-
structed in Definition 3 are isomorphic. Applying this observa-
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tion to Example 4, the matrix with from (7) is
therefore the parity-check matrix of a binary linear block code

that is equivalent to , i.e., the codewords of can be

obtained from the codewords of by a suitable reordering
of the codeword components. In terms of the matrices ,
which also appear in the matrix in (7), one can verify that
the polynomial parity-check matrix can be written as

.

Besides defining finite graph covers, we can also define
infinite graph covers, as illustrated in the following examples.
These infinite graph covers will be crucial towards defining
Tanner graphs of convolutional codes.

Example 6 (Bi-Infinite Toeplitz Covers): We continue Ex-
ample 4. However, besides keeping the proto-matrix and the
collection of matrices , we consider a different collec-
tion of matrices . Namely, we set

. Here
is a bi-infinite Toeplitz matrix with zeros everywhere ex-

cept for ones in the th diagonal below the main diagonal, i.e.,
if and otherwise. For example

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .
. . .

. . .
. . .

. . .
. . .

where for clarity we have underlined the entries of the main
diagonal.

• Using GCC1, we obtain the matrices and

(8)

The Tanner graph , which is depicted in
Fig. 4(b)(top), is similar to the corresponding Tanner
graph in Fig. 3(b)(top), but with bi-infinitely many in-

Fig. 4. Proto-graph and graph-covers for the graph-cover constructions
discussed in Example 6. (Compare with the corresponding graphs in Fig. 3.)
(a) Proto-graph �����. (b) GCC1 based on �����. Top: ���� �. Bottom:
�����. (c) GCC2 based on �����. Top: � ���� �. Bottom: � �����.

dependent components. Analogously, the Tanner graph
, which is depicted in Fig. 4(b)(bottom), is similar to

the Tanner graph shown in Fig. 3(b)(bottom), but instead
of cyclically wrapped edge connections, the edge connec-
tions are infinitely continued on both sides.

• Using GCC2, we obtain the matrices and
(9), shown at the bottom of the page. The Tanner graph

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

(9)
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, which is depicted in Fig. 4(c)(top), is similar to
the corresponding Tanner graph in Fig. 3(c)(top), but
with bi-infinitely many independent components. Anal-
ogously, the Tanner graph , which is depicted in
Fig. 4(c)(bottom), is similar to the Tanner graph shown in
Fig. 3(c)(bottom), but instead of cyclically wrapped edge
connections, the edge connections are infinitely continued
on both sides.

Although it is tempting to replace in Example 6 the
bi-infinite Toeplitz matrices (whose row and column index
sets equal ) by semi-infinite Toeplitz matrices (whose row
and column index sets equal ), note that the resulting
Tanner graphs and would then in general not
be graph covers of . This follows from the fact that
semi-infinite Toeplitz matrices are not permutation matrices
(except for ), and so some vertex degrees of and

would not equal the corresponding vertex degrees in
.10

Remark 7: It turns out that the Tanner graphs in Fig. 4 are
infinite graph covers of the Tanner graphs in Fig. 3. More
precisely, the Tanner graphs in
Fig. 4 are graph covers of the corresponding Tanner graphs

in Fig. 3. For the Tanner graphs
in Figs. 3(b)(top) and 4(b)(top) and the Tanner graphs
in Figs. 3(c)(top) and 4(c)(top), this statement is easily

verified by inspection.
To verify that the Tanner graph in Fig. 4(c)(bottom) is a

graph cover of in Fig. 3(c)(bottom), we apply GCC2 with
proto-matrix , with resulting matrix , with the set , with
the collection of matrices , and with the collection of
permutation matrices as follows. Namely, we let the
proto-matrix be the matrix from (7) (there denoted by ), we
let the resulting matrix be the matrix in (9) (there denoted by

), we define , we select

(10)

(11)

10As will be clear from the discussion later on, in this paper we take an
approach where in a first step we construct bi-infinite Tanner graphs that are
“proper” graph covers and where in a second step we obtain semi-infinite Tanner
graphs by applying a “shortening” procedure to these bi-infinite Tanner graphs.
Alternatively, one could also choose an approach based on “improper” graph
covers. Both approaches have their advantages and disadvantages; we preferred
to take the first approach.

and we select and , where was defined in
Example 6. Clearly, (in ).11 With this we have

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .
. . .

. . .
. . .

. . .
. . .

and one can verify that this matrix equals the matrix in (9) (there
denoted by ), which means that is indeed an infinite
cover of . We remark that, interestingly, in this process we
have shown how a certain GCC2 graph cover of a proto-matrix
can be written as a GCC2 graph cover of a certain GCC2 graph
cover of that proto-matrix.

Finally, a similar argument shows that the Tanner graph
in Fig. 4(b)(bottom) is a graph cover of the Tanner graph in
Fig. 3(b)(bottom), also denoted by .

There are many other ways of writing a proto-matrix as
a sum of a collection of matrices . The next example
discusses two such possibilities.

Example 8: Consider the proto-matrix

that is shown in Fig. 5(a), and that also appeared in Example 1.
Its Tanner graph is -regular, i.e., all variable nodes
have degree and all check nodes have degree . Let

, and consider the collection of matrices with
and , where the matrices and are de-

fined as in Example 6. In the following, we look at two different
choices of the collection of matrices .

• Fig. 5(c) shows a typical part of the matrix that is ob-
tained when GCC2 is used to construct a graph cover of
with the collection of matrices defined as shown
in Fig. 5(a).

• Fig. 5(d) shows a typical part of the matrix when GCC2
is used to construct a graph cover of with the collection
of matrices defined as shown in Fig. 5(b).

Overall, because of the choice of the collection , the
support of both matrices possesses a banded diagonal struc-
ture. Moreover, the different choices of the collection
leads to a somewhat narrower banded diagonal structure in the
first case compared to the second case.

The next example makes a crucial observation; namely, it
shows that the above graph-cover constructions can be applied
repeatedly to obtain additional interesting classes of Tanner
graphs.

11Note that a nonzero block diagonal of��� would be put in��� .
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Fig. 5. Matrices appearing in Example 8. (See main text for details.) (a) First decomposition of the matrix��� into the matrices��� and��� . (b) Second decompo-
sition of the matrix��� into the matrices ��� and��� . (c) Part of the matrix ���� based on the first decomposition of���. (d) Part of the matrix ���� based on the second
decomposition of ���.

Example 9 (Iterated Graph-Cover Construction): Starting
with the proto-matrix from Example 4, we consider two it-
erated graph-cover constructions. In the first case, we apply
GCC1 and then GCC2, and in the second case we apply GCC2
twice.

• Consider the matrix obtained from the matrix using
GCC1, like in Example 4. The resulting matrix is shown
in (6) and will be called in this example, since it is con-
sidered to be a proto-matrix by itself; cf. Fig. 6(a). Based on
the “cutting line” shown in Fig. 6(a), we define the matrices

and as follows: the nonzero part of equals
the nonzero part of the lower triangular part of and the
nonzero part of equals the nonzero part of the upper
triangular part of . (Clearly, .) Ap-
plying the procedure from Example 8, Fig. 6(c) shows a
typical part of the matrix that is obtained when GCC2
is used to construct a graph cover of .

• Consider the graph-cover obtained from using GCC2,
like in Example 4. The resulting matrix is shown in (7)
and will be called in this example, since it is consid-

ered to be a proto-matrix by itself; cf. Fig. 6(b). Based on
the “cutting line” shown in Fig. 6(b), we define the matrices

and as follows: the nonzero part of equals
the nonzero part of the lower triangular part of and the
nonzero part of equals the nonzero part of the upper
triangular part of . (Clearly, .) Ap-
plying the procedure from Example 8, Fig. 6(d) shows a
typical part of the matrix that is obtained when GCC2
is used to construct a graph cover of .

We observe a large difference in the positions of the nonzero
entries in and .

• In the first case, the two graph-cover constructions are “in-
compatible” and the positions of the nonzero entries in

follow a “nonsimple” or “pseudorandom” pattern. As
we will see in Example 18 with the help of simulation re-
sults, such Tanner graphs can lead to time-varying LDPC
convolutional codes with very good performance.

• In the second case, the two graph-cover constructions are
“compatible” in the sense that can be obtained from
the proto-matrix by applying GCC2 with suitable matrix
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Fig. 6. Matrices appearing in Example 9. (See main text for details.) (a) Matrix��� , (b) Matrix��� , (c) Part of matrix ���� , (d) Part of matrix ���� .

collections and . As such, the positions
of the nonzero entries of follow a relatively “simple”
or “nonrandom” pattern, which leads to a time-invariant
LDPC convolutional code.

The above procedure of obtaining two matrices that add up
to a matrix is called “cutting a matrix.” Actually, we will also
use this term if there is no simple cutting line, as in the above
examples, and also if the matrix is written as the sum of more
than two matrices (cf. Example 1 and the paragraphs after it).

C. Revisiting the Tanner and the JFZ Unwrapping Techniques

In Section II-C, we introduced two techniques, termed the
Tanner and the JFZ unwrapping techniques, to derive convolu-
tional codes from block codes. In this subsection we revisit these
unwrapping techniques. In particular, we show how they can be
cast in terms of graph covers and how the two unwrapping tech-
niques are connected.

Because of the importance of the coding-theoretic notion of
shortening [34] for this subsection, we briefly revisit this con-
cept. Let be a parity-check matrix that defines some length-

binary code . We say that the length- code is obtained
by shortening at position if

In terms of parity-check matrices, a possible parity-check matrix
of is obtained by deleting the th column of . In terms

of Tanner graphs, this means that the Tanner graph is
obtained from by removing the th variable node, along
with its incident edges. In the following, we will also use the
term “shortening” to denote this graph modification procedure.

Now, to explain the Tanner unwrapping technique in terms of
graph covers, consider the quasi-cyclic block code defined

by the polynomial parity-check matrix of size
, i.e.,

where the polynomial operations are performed modulo
(see also Remark 5). As already mentioned in Section II-C, the
Tanner unwrapping technique is simply based on dropping these



846 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011

modulo computations. More precisely, with a quasi-cyclic block
code , we associate the convolutional code

with polynomial parity-check matrix

Again, the change of indeterminate from to indicates the
lack of modulo operations.

In the following we will give, with the help of an example, two
interpretations of the Tanner unwrapping technique in terms of
graph covers.

Example 10: Unwrapping the quasi-cyclic block code
that was considered in Remark 5, we obtain a rate- time-
invariant convolutional code

with polynomial parity-check matrix

Consider now the infinite graph covers that were constructed
in Example 6 using GCC1, in particular . Let
be the set of codewords defined by the Tanner graph .
Then, the convolutional code is a shortened version of

where all codeword bits corresponding to negative
time indices have been shortened. Therefore, the Tanner graph
of is given by the Tanner graph in Fig. 4(b)(bottom),
where all bit nodes with negative time indices, along with their
incident edges, are removed. Clearly, this bit-node and edge re-
moval process implies decreasing the degrees of some check
nodes. In fact, some check nodes become obsolete, because their
degree is decreased to zero.

Therefore, one interpretation of the Tanner unwrapping tech-
nique in terms of graph covers is that the Tanner graph of the
convolutional code is obtained by taking a suitable graph cover
of the same proto-graph that was used to construct the quasi-
cyclic LDPC code, along with some suitable shortening.

Example 11: We continue Remark 5 and Example 10.
Clearly, in the same way as the block code is equivalent

to the block code , we can define a code (with
parity-check matrix ) that is equivalent to . The
observations in Remark 7 and Example 10 can then be used to
show that the Tanner graph of equals a graph cover of
the Tanner graph , along with some suitable shortening.

Therefore, the second interpretation of the Tanner unwrap-
ping in terms of graph covers is that the Tanner graph of the
convolutional code is obtained by taking a suitable graph cover
of the Tanner graph of the quasi-cyclic code, along with some
suitable shortening.

Now turning our attention to the JFZ unwrapping technique,
recall from Section II-C that this method is based on writing a

parity-check matrix of some block code as the sum
(in ) of a collection of matrices . The con-

volutional code is then defined to be

(12)

where

...
...

. . .

. . .
. . .

. . .
. . .

(13)

With the help of an example, we now explain how the JFZ
unwrapping technique can be cast in terms of graph-covers.

Example 12: Consider the infinite graph covers that were
constructed using GCC2 in Example 6, in particular . Let

be the set of valid assignments to the Tanner graph
. Moreover, let

, and let be defined as in
(12). Then, the code is a shortened version of ,
where all codeword bits corresponding to negative time indices
have been shortened. Therefore, the Tanner graph of is
given by the Tanner graph in Fig. 4(c)(bottom), where all the bit
nodes with negative time indices are shortened.

In order to connect the unwrapping techniques due to Tanner
and due to JFZ, we show now, with the help of an example, that
in fact the unwrapping technique due to Tanner can be seen as
a special case of the unwrapping technique due to JFZ.12

Example 13: Consider the quasi-cyclic block code defined
by the parity-check matrix , where was defined
in (7). Applying the JFZ unwrapping technique with the matrix
decomposition (in ), with defined in (10)
and defined in (11), turns out to equal a submatrix of

in (9), namely the submatrix of where the row and column
index set are equal to . However, the code defined by
is equivalent to the code defined by the Tanner unwrapping tech-
nique applied to the quasi-cyclic code defined by .

Therefore, the unwrapping technique due to JFZ is more gen-
eral. In fact, whereas the Tanner unwrapping technique leads to
time-invariant convolutional codes, the unwrapping technique
due to JFZ can, depending on the parity-check matrix decom-
position and the internal structure of the terms in the decompo-
sition, lead to time-varying convolutional codes with nontrivial
period.13

Despite the fact that the unwrapping technique due to Tanner
is a special case of the unwrapping technique due to JFZ, it
is nevertheless helpful to have both unwrapping techniques at

12We leave it as an exercise for the reader to show the validity of this connec-
tion beyond this specific example.

13Of course, if the underlying quasi-cyclic block code is suitably chosen, then
also the Tanner unwrapping technique can yield a time-varying convolutional
code; however, we do not consider this option here.
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hand, because sometimes one framework can be more conve-
nient than the other. We will use both perspectives in the next
section.

We conclude this section with the following remarks.
• Although most of the examples in this section have regular

bit node degree and regular check node degree , there
is nothing special about this choice of bit and check node
degrees; any other choice would work equally well.

• Although all polynomial parity-check matrices that ap-
pear in this section contain only monomials, this is not re-
quired, i.e., the developments in this section work equally
well for polynomial parity-check matrices containing the
zero polynomial, monomials, binomials, trinomials, and
so on.

• It can easily be verified that if the matrix in Definition
3 contains only zeros and ones, then the graph covers con-
structed in GCC1 and GCC2 never have parallel edges. In
particular, if is the parity-check matrix of a block code
(like in most examples in this paper), then the constructed
graph covers never have parallel edges. However, if con-
tains entries that are larger than one, then there is the poten-
tial for the constructed graph covers to have parallel edges;
if parallel edges really appear depends then critically on
the choice of the decomposition (in ) and
the choice of the permutation matrices . An ex-
ample of such a case is the Tanner graph construction in
Section V-C, where and where and

are chosen such that parallel edges are avoided
in the constructed graph cover. We note that in the case
of iterated graph-cover constructions it can make sense to
have parallel edges in the intermediate graph covers. How-
ever, in the last graph-cover construction stage, parallel
edges are usually avoided, because parallel edges in Tanner
graphs typically lead to a weakening of the code and/or of
the message-passing iterative decoder.

IV. GRAPH-COVER-BASED CONSTRUCTIONS OF

LDPC CONVOLUTIONAL CODES

Although the graph-cover constructions and unwrapping
techniques that were discussed in Sections II and III are
mathematically quite straightforward, it is important to under-
stand how they can be applied to obtain LDPC convolutional
codes with good performance and attractive encoder and de-
coder architectures. To that end, this section explores a variety
of code design options and comments on some practical issues.
It also proposes a new “random” unwrapping technique which
leads to convolutional codes whose performance compares
favorably to other codes with the same parameters. Of course,
other variations than the ones presented here are possible,
in particular, by suitably combining some of the example
constructions.

The simulation results for the codes in this section plot
the decoded bit error rate (BER) versus the signal-to-noise
ratio (SNR) and were obtained by assuming binary
phase-shift keying (BPSK) modulation and an additive white
Gaussian noise channel (AWGNC). All decoders were based on
the sum-product algorithm [35] and were allowed a maximum

of 100 iterations, with the block code decoders employing a
syndrome-check based stopping rule. For comparing the perfor-
mance of unwrapped convolutional codes with their underlying
block codes we will use the following metric.

Definition 14: For a convolutional code constructed from an
underlying block code, we define its “convolutional gain” to be
the difference in SNR required to achieve a particular BER with
the convolutional code compared to achieving the same BER
with the block code.

The rest of this section is structured as follows. First, we dis-
cuss the construction of some time-invariant LDPC convolu-
tional codes based on the Tanner unwrapping technique. In this
context, we make a simple observation about how the syndrome
former memory can sometimes be reduced without changing the
convolutional code. Second, we present a construction of time-
varying LDPC convolutional codes based on iterated graph-
cover constructions. An important subtopic here will be an in-
vestigation of the influence of the “diagonal cut” (which is used
to define a graph cover) on the decoding performance.

A. Construction of Time-Invariant LDPC Convolutional Codes
Based on the Tanner Unwrapping Technique

In this section, we revisit a class of quasi-cyclic LDPC codes
and their associated convolutional codes that were studied in
[36]. As we will see, they are instances of the quasi-cyclic code
construction in Example 4 and Remark 5, and the corresponding
convolutional code construction based on Tanner’s unwrapping
technique in Example 10.

Example 15: Consider the regular proto-matrix

(14)

with and . We apply GCC1, as in Example
4 and Remark 5, with an interesting choice of permutation ma-
trices first suggested by Tanner [37] that yields the parity-check
matrix

(15)

where as before is an times left-circularly shifted identity
matrix of size and . The corresponding polynomial
parity-check is

The resulting quasi-cyclic -regular LDPC block codes
have block length . In particular, for ,
and , we obtain codes of length 155, 240, and 400,
respectively, whose simulated BER performance results are
shown in Fig. 7. The choice yields the well-known
length-155 quasi-cyclic block code that was first introduced by
Tanner [37] (see also the discussion in [18]).
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Fig. 7. Performance of three ��� ��-regular quasi-cyclic LDPC block codes and their associated time-invariant and time-varying LDPC convolutional codes. (Note
that the small gaps that appear between the second, third, and fourth curves for high signal-to-noise ratios are caused by a slight difference in code rates due to the
existence of redundant rows in the block code parity-check matrices.)

Unwrapping these codes by the Tanner unwrapping technique
as in Example 10, we obtain a rate- time-invariant convolu-
tional code with defined by the polynomial parity-
check matrix

Its decoding performance is also shown in Fig. 7 under the label
“ time-invariant conv. code with .” We con-
clude this example with a few remarks.

• Fig. 7 shows that the convolutional code exhibits a “convo-
lutional gain” of between 0.5 and 0.7 dB compared to the

quasi-cyclic LDPC block code at moderate BERs
and that the gain remains between 0.15 and 0.3 dB at lower
BERs.

• Note that the polynomial parity-check matrix
that is obtained by the Tanner unwrapping technique
is independent of the parameter of the polynomial
parity-check matrix , as long as is strictly

larger than the largest exponent appearing in .

Moreover, for , the Tanner graph of is
closely related to the Tanner graph of , and so
it is not surprising to see that, for larger , the decoding
performance of quasi-cyclic LDPC block codes based on

tends to the decoding performance of the LDPC
convolutional based on , as illustrated by the
two curves labeled “ QC code” and “
QC code” in Fig. 7.

• The permutation matrices (more precisely, the circulant
matrices) that were used for constructing the quasi-cyclic
codes in this example were not chosen to optimize the
Hamming distance or the pseudoweight properties of the
code. In particular, a different choice of circulant matrices
may result in better high-SNR performance, i.e., in the
so-called “error floor” region of the BER curve. For choices
of codes with better Hamming distance properties, we refer
the reader to [38].

• The remaining curves in Fig. 7 will be discussed in Ex-
ample 18.

We conclude this section with some comments on the syn-
drome former memory of the convolutional codes obtained
by the Tanner unwrapping technique, in particular how this syn-
drome former memory can sometimes be reduced without
changing the convolutional code.

Assume that we have obtained a polynomial parity-check ma-
trix from according to the Tanner method.
Clearly, the syndrome former memory is given by the largest
exponent that appears in . In some instances there is a
simple way of reducing without changing the convolutional
code. Namely, if is the minimal exponent that appears in the
polynomials of a given row of , then the polynomials
in this row of can be divided by . We illustrate this
syndrome former memory reduction for the small convolutional
code that appeared in Example 10.

Example 16: Applying the Tanner unwrapping tech-
nique to the polynomial parity-check matrix of the
quasi-cyclic LDPC code with in Remark 5, we obtain
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Fig. 8. Parts of the scalar parity-check matrices [see (2)] corresponding to the
two equivalent LDPC convolutional codes with syndrome former memories (a)
� � � and (b) � � �.

of a rate- time-invariant LDPC convolutional
code, as shown in Example 10, with syndrome former memory

. Following the procedure discussed in the paragraph
above, the first and second rows of can be divided by

and , respectively, to yield an equivalent convolutional
code with syndrome former memory and polynomial
parity-check matrix

(16)

Fig. 8 shows parts of the corresponding scalar parity-check ma-
trix for , together with the original scalar parity-
check matrix for , and illustrates the equivalence of the
two matrices in the sense that only the ordering of the rows is
different, which does not affect the corresponding convolutional
code. In this example, the order of the even-numbered rows stays
the same, while the odd-numbered rows are shifted by four po-
sitions. The equivalence of the two parity-check matrices can be
seen by noting that the parity-check matrix, outside of the diag-
onal structure, is filled with zeros.

B. Construction of Time-Varying LDPC Convolutional Codes
Based on Iterated Graph-Cover Constructions

As was seen in Example 9, interesting graph covers can be ob-
tained by combining GCC1 with GCC2, or vice versa. Inspired
by that example, this subsection considers iterated graph-cover
constructions for constructing Tanner graphs of LDPC convolu-
tional codes, in particular of time-varying LDPC convolutional
codes.

Definition 17: Based on a combination of GCC1 and GCC2,
and the code-shortening concept introduced in Section III-C,
we propose the following construction of LDPC convolutional
codes.

1) We start with a proto-matrix of size .
2) We apply GCC1 to with finite-size permutation matrices

and obtain the matrix .
3) We apply GCC2 to with permutation matrices that are

bi-infinite Toeplitz matrices and obtain the matrix .

4) Finally, looking at as the parity-check matrix of a bi-in-
finite convolutional code, we obtain the parity-check ma-
trix of a convolutional code by shortening the code bit po-
sitions corresponding to negative time indices.

Here, Steps 3 and 4 can be seen as an application of the JFZ
unwrapping method.

The following example shows how this construction can be
applied to obtain LDPC convolutional codes with excellent per-
formance. (In the example, where suitable, we will refer to the
analogous matrices of Example 9 and Fig. 6 that were used to
illustrate the iterated graph-cover construction.)

Example 18: Based on Definition 17, we construct an LDPC
convolutional code by performing the following steps.

1) We start with the same regular proto-matrix as in Ex-
ample 15, for which and .

2) We apply GCC1 to with permutation matrices that are
circulant matrices of size and obtain the parity-check
matrix shown in (15), which is the analogue of

in Fig. 6(a).
3) We apply GCC2 to with permutation ma-

trices that are bi-infinite Toeplitz matrices and obtain a
new parity-check matrix . This is analogous to the tran-
sition of the matrix in Fig. 6(a) to the matrix
in Fig. 6(c). The “diagonal cut” is obtained by alternately
moving units to the right and then units
down.

4) Finally, we obtain the desired convolutional code by short-
ening the code bit positions corresponding to negative time
indices.

For the choices , this construction results in
rate- time-varying convolutional codes with syndrome
former memory , respectively, and with
constraint length , respec-
tively. The label “time-varying” is indeed justified because the
convolutional codes constructed here can be expressed in the
form of the parity-check matrix in (1) with a suitable choice
of syndrome former memory , nontrivial period , and
submatrices .

The decoding performance of these codes is shown in Fig. 7,
labeled “ time-varying conv. code with .” As
originally noted in [39], we observe that these three LDPC con-
volutional codes achieve significantly better performance at a
BER of than the other codes shown in this plot, namely
with “convolutional gains” of 2.0 dB for the convo-
lutional code, 2.4 dB for the convolutional code, and
2.8 dB for the convolutional code, compared to the
three respective underlying LDPC block codes.

In order to compare these codes based on a given decoding
processor (hardware) complexity, we consider a block code of
length (see [40] and [41]). The above time-varying
convolutional code for has constraint length

, and hence approximately the same pro-
cessor complexity as the quasi-cyclic block code of length

in Fig. 7 and the time-invariant convolutional code with
in Fig. 7, but it achieves large gains compared to

both of these codes. We note, in addition, that the performance
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Fig. 9. Performance of a family of irregular proto-graph-based LDPC block codes and the associated time-varying LDPC convolutional codes.

of the time-varying convolutional code with constraint length
is quite remarkable, since, at a BER of , it per-

forms within 1 dB of the iterative decoding threshold of 0.965
dB, while having the same processor complexity as a block code
of length only . In Section VI-C, we discuss some pos-
sible reasons for these “convolutional gains,” along with their
associated implementation costs in terms of decoder memory
and decoding delay.

We make the following observations with respect to the above
definition and example.

• The LDPC code construction in the above example yields
time-varying LDPC convolutional codes with syndrome
former memory and period . Most im-
portantly, varying in the above construction leads to dif-
ferent LDPC convolutional codes. This is in contrast to the
Tanner unwrapping technique discussed in Section IV-A,
where the obtained LDPC convolutional code is indepen-
dent of the parameter , as long as is strictly larger than
the largest exponent in .

• As mentioned previously in Example 9, the iterated graph-
cover construction based on the combination of GCC1 and
GCC2 yields Tanner graphs that have a “pseudorandom”
structure, a structure that seems to be beneficial as indi-
cated by the above simulation results. (We remark that the
improved performance of the time-varying LDPC convo-
lutional codes obtained by unwrapping a randomly con-
structed LDPC block code was first noted by Lentmaier et
al. [42].)

• Instead of constructing a first parity-check matrix as in
Step 2 of Definition 17, one can also start with any other
(randomly or nonrandomly constructed, regular or irreg-
ular) parity-check matrix, and still achieve a “convolu-

tional gain.” The next example is an illustration of this
point.

Example 19: As was done in [41], one can replace the parity-
check matrix that was constructed in Step 2 of Definition 17 by
an irregular LDPC block code with optimized iterative decoding
thresholds. In particular, one can start with the parity-check ma-
trix of the rate- irregular proto-graph-based code from [43]
with an iterative decoding threshold of 0.63 dB, and several of
its punctured versions. Fig. 9 shows simulation results for the
obtained block and convolutional codes. Each simulated block
code had a block length of about 2500, with code rates ranging
from to . We see that “convolutional gains” ranging from
0.6 to 0.9 dB at a BER of were obtained.

Similarly, it was shown in [24] that an LDPC convolutional
code derived from a randomly constructed rate- irregular
LDPC block code with block length 2400 outperformed the un-
derlying code by almost 0.8 dB at a BER of . The degree
distribution of the underlying LDPC block code was fully op-
timized and had an iterative decoding threshold of 0.3104 dB
[11].

Of course, there are other ways of applying the “diagonal cut”
in Step 3 of Example 18, and so it is natural to investigate the
influence of different “diagonal cuts” on the decoding perfor-
mance. We will do this in the next few paragraphs by extending
the discussion that was presented right after Example 1.

We start by assuming that the matrix after Step 2 of Definition
17 has size , and define . Then, for any
positive integer that divides , we can perform a “diagonal
cut” where we alternately move units to the
right and then units down [i.e.,

]. With this, the obtained convolutional code is a
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Fig. 10. Performance of a family of LDPC convolutional codes obtained from a ��� ��-regular LDPC block code using different step sizes.

periodically time-varying LDPC convolutional code with rate
, syndrome former memory

, period , and
constraint length . (Note that the
syndrome former memory depends on , but the constraint
length is independent of .)

Example 20: Here we simulate the performance of some
LDPC convolutional codes obtained according to the above
generalization of the “diagonal cut.” Namely, we start with a
randomly-constructed -regular LDPC block code based
on a parity-check matrix of size 1024 2048. Therefore

, and . (Note that
and in this

case.) Fig. 10 shows the performance of the resulting family
of LDPC convolutional codes, where varies in powers of 2
from 1 to 1024, each with constraint length . We
make the following observations. First, the case is
not interesting because it results in , i.e., it is a trivial
concatenation of copies of the block code, and so the BER is the
same as for the underlying block code. Secondly, for all other
choices of , the constructed codes perform very similarly, each
exhibiting a sizable “convolutional gain” compared to the block
code, although the syndrome former memory is different
in each case.

A special case of the above code construction deserves men-
tion. When , i.e., and are relatively prime, the only
possible step size is obtained by choosing , which
results in the above-mentioned uninteresting case of trivial
concatenations of copies of the block code. However, all-zero
columns can be inserted in the parity-check matrix such that
a value of is obtained, which allows a step size to be

chosen that results in a convolutional code with . The
variable nodes corresponding to the all-zero columns are not
transmitted, i.e., they are punctured, so that the rate corresponds
to the size of the original parity-check matrix.

For the “diagonal cut” LDPC convolutional code construc-
tions discussed above, the unwrapped convolutional codes have
the minimum possible constraint length , which is equal to
the block length of the underlying block code. Although this
is a desirable property for practical implementation, we do not
need to limit ourselves to diagonal cuts in general.

Inspired by the graph-cover construction of Fig. 5(b) and (d)
in Example 8, instead of a “diagonal cut” we now consider a
“random cut,” which we define as a partition of the parity-check
matrix into two matrices that add up (over ) to the parity-
check matrix. Despite the randomness of this approach, several
of the key unwrapping properties of the “diagonal cut” are pre-
served. For example, the computational complexity per decoded
bit does not change, since the degree distributions of the re-
sulting codes are all equal.14 However, the LDPC convolutional
codes based on a “random cut” typically require larger decoding
processor sizes as a result of increased code constraint lengths.

Example 21: We continue Example 20; however, instead of
performing “diagonal cuts,” we perform “random cuts.” Fig. 11
shows the performance of five such LDPC convolutional codes,
each with rate and constraint length , compared
to the underlying block code and the LDPC convolutional code
constructed in Example 20 (with parameters

, and ). We note that the increase in constraint length
from to due to the “random cut” results

14This is guaranteed by choosing a random partition of the block code parity-
check matrix and then using this partition to construct one period of the time-
varying convolutional code parity-check matrix.
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Fig. 11. Performance of “randomly unwrapped” LDPC convolutional codes obtained from a ��� ��-regular LDPC block code using random partitions.

in a small additional coding gain in exchange for the larger de-
coding processor size.

Finally, we note that, for a size sparse parity-check ma-
trix with nonzero entries, there are a total of possible
ways of choosing a random cut. However, due to the sparsity,
there are only distinct random cuts, where .

V. CONNECTIONS TO OTHER LDPC CODES BASED ON

GRAPH-COVER CONSTRUCTIONS

In this section, we briefly discuss some other graph-cover-
based LDPC code constructions proposed in the literature,
namely by Ivkovic et al. [44], Divsalar et al. [43], [45], Lent-
maier et al. [46], [47], and Kudekar et al. [48].

A. LDPC Code Construction by Ivkovic et al.

The LDPC code construction by Ivkovic et al. [44] can
be seen as an application of the graph-cover construction in
Figs. 5(b) and (d) in Example 8. Namely, in terms of our
notation, Ivkovic et al. [44] start with a parity-check matrix ,
choose the set , a collection of zero-one matrices

such that (in ), and the collection
of permutation matrices

Most importantly, the decomposition of into and is
done such that trapping sets that were present in the Tanner
graph of are not present in the Tanner graph of the new
parity-check matrix. In addition, Ivkovic et al. give guarantees
on the relationship between the minimum Hamming distances
of the old and new code.15

15See also the discussion of similar results in [49, Appendix J].

B. LDPC Code Construction by Divsalar et al.

One of the LDPC code constructions by Divsalar et al. [43],
[45] is the so-called rate- AR4JA LDPC code construction,
which was also considered earlier in Example 19. A particu-
larly attractive, from an implementation perspective, version
of this code construction is obtained by an iterated graph-cover
construction procedure, where each graph-cover construction
is based on a cyclic cover, as in the application of GCC1 in
Example 4. Although cyclic covers result in simplified encoding
and decoding circuitry, codes based on cyclic covers are known
to have the disadvantage that the minimum Hamming distance is
upper bounded by a number that is a function of the proto-graph
structure [49], [50]. However, because the cyclic cover of a cyclic
cover of the proto-graph is not necessarily a cyclic cover of the
proto-graph, such disadvantages are avoided to a certain extent
in the AR4JA LDPC code construction. Nevertheless, ultimately
the minimum Hamming distance of such codes will also be
upper bounded by some number; however, these bounds usually
become relevant only beyond the code length of interest.16

C. LDPC Code Construction by Lentmaier et al.
and Kudekar et al.

The LDPC code constructions by Lentmaier et al. [46], [47]
and Kudekar et al. [48] can also be seen as iterated graph-cover
constructions. We now describe a specific instance of this con-
struction.

• It starts with a proto-matrix .
• The first graph-cover construction is very similar to the

bi-infinite graph-cover construction in Example 6 and
Fig. 4. Namely, in terms of our notation, we define the set

, the collection of matrices

16For this statement we assume that the degree of the first cover is fixed.
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with and ,
and the collection of permutation matrices with

, where as before is a bi-infinite Toeplitz matrix
with zeros everywhere except for ones in the th diagonal
below the main diagonal.

• The second graph-cover construction is a random graph-
cover construction of cover-degree .

• The code is shortened. Namely, for some positive integer
all codeword indices corresponding to values outside the

range are shortened.17

We now point out some differences between this code construc-
tion and the LDPC convolutional code construction in Defini-
tion 17. Namely, the LDPC code ensemble constructed above
has the following properties.

• The first graph-cover construction is based on bi-infinite
Toeplitz permutation matrices, and the second graph-cover
construction is based on finite-size permutation matrices.

• The analysis focuses on the case where and go to
infinity (in that order), i.e., for a fixed the parameter
tends to infinity. Afterwards, tends to infinity.

• The number of check nodes with degree smaller than in
the Tanner graph is proportional to .

• In [48], for the binary erasure channel, when and go
to infinity (in that order), Kudekar et al. prove that the sum-
product algorithm decoding threshold for a slight variation
of the above-mentioned ensemble of codes equals the max-
imum a-posteriori decoding threshold for the ensemble of

-regular LDPC codes. This is a very remarkable prop-
erty. (In [51], using density evolution methods, Lentmaier
et al. give numerical evidence that this statement might also
hold for binary-input output-symmetric channels beyond
the binary erasure channel.)

On the other hand, the codes constructed in Definition 17 have
the following properties. [We assume that the underlying block
code is a -regular LDPC code.]

• Thefirstgraph-coverconstructionisbasedonfinite-sizeper-
mutation matrices, and the second graph-cover construction
is based on bi-infinite Toeplitz permutation matrices.

• In a typical application of this construction, is fixed.
• The number of check nodes with degree smaller than

in the Tanner graph of the LDPC convolutional code is
proportional to .

• For a binary-input output-symmetric channel, the per-
formance of the unterminated LDPC convolutional code
under the continuous sliding window sum-product algo-
rithm decoding discussed in Section II-B improves with
increasing (see, e.g., Fig. 7), but the ultimate asymptotic
threshold of such unterminated decoding is unknown.18

17Although this code construction method could be presented such that the
shortening is done between the two graph-cover construction steps, namely by
shortening all codeword indices that correspond to values outside the range
������, we have opted to present the code construction such that the shortening
is done after the two graph-cover construction steps. In this way, the structure of
the code construction description matches better the description in Definition 17.

18Lentmaier et al. have shown in [46] and [47] that properly terminated LDPC
convolutional codes become equivalent to the LDPC block codes constructed by
Kudekar et al. in [48] and inherit their excellent asymptotic threshold properties,
but whether this is true for unterminated LDPC convolutional codes is still an
open question.

The differences between these two code families come mainly
from the fact that the codes constructed by Lentmaier et al. and
Kudekar et al. are essentially block codes, although sophisti-
cated ones, whereas the codes in Definition 17 are convolutional
codes, along with their advantages and disadvantages. In partic-
ular, the way the limits of the parameters are taken, there is a
significant difference in the fraction of check nodes with degree
strictly smaller than . Namely, in the case of the codes by Lent-
maier et al. and Kudekar et al. this fraction is a fixed nonzero
function of (here we assume fixed and ), whereas
in the case of the codes considered in this paper, this fraction is
zero (here we assume fixed and an unterminated convolutional
code).

We conclude this section with the following remarks. Namely,
although the convolutional codes in Definition 17 may not enjoy
the same asymptotic thresholds as the block code constructions
by Lentmaier et al. and by Kudekar et al., they lend themselves to
a continuous decoding architecture, as described in Section II-B,
which can be advantageous in certain applications, such as
data streaming, without a predetermined frame structure. More
importantly, however, it is very encouraging that the simulation
results reported in this paper indicate that sizable “convolutional
gains” are already visible for very reasonable constraint/code
lengths. In the next section, we discuss some possible reasons for
these gains. Finally, it is worth noting that, as the block lengths
and associated constraint lengths of the constructions presented
in this section become larger, the observed “convolutional gains”
will become smaller since the block code results will approach
their respective thresholds.

VI. ANALYSIS OF DERIVED LDPC CONVOLUTIONAL CODES

This section collects some analytical results about LDPC
convolutional codes. In particular, we compare the exis-
tence/nonexistence of cycles in LDPC block and LDPC
convolutional codes, we present some properties of pseu-
docodewords, and we discuss the—mostly moderate—cost
increase in decoder complexity that is incurred by going from
LDPC block to LDPC convolutional codes.

A. Graph-Cycle Analysis

It is well known that cycles in the Tanner graph representa-
tion of a sparse code affect message-passing iterative decoding
algorithms, with short cycles generally pushing the performance
further away from optimum. (Indeed, attempts to investigate and
minimize these effects have been made in [52] and [53], where
the authors propose LDPC code construction procedures to max-
imize the connectivity of short cycles to the rest of the graph,
thus also maximizing the independence of the messages flowing
through a cycle.) Hence it is common practice to design codes
that do not contain short cycles, so as to obtain independent mes-
sages in at least the initial iterations of the decoding process.

Avoiding cycles in Tanner graphs also has the benefit
of avoiding pseudocodewords.19 To see this, let the active

19Here and in the following, pseudocodewords refer to pseudocodewords as
they appear in linear programming (LP) decoding [54], [55] and in the graph-
cover-based analysis of message-passing iterative decoding in [22], [23]. For
other notions of pseudocodewords, in particular computation tree pseudocode-
words, we refer to the discussion in [56].
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TABLE I
AVERAGE (PER BIT NODE) NUMBER �� OF CYCLES OF LENGTH � FOR THE

TANNER GRAPHS OF THE BLOCK CODES (BCS) OF BLOCK LENGTH � AND

CONVOLUTIONAL CODES (CCS) OF CONSTRAINT LENGTH � DISCUSSED IN

EXAMPLE 22. (ALL TANNER GRAPHS HAVE GIRTH 8.)

part of a pseudocodeword be defined as the set of bit nodes
corresponding to the support of the pseudocodeword, along
with the adjacent edges and check nodes. With this, it holds
that the active part of any pseudocodeword contains at least
one cycle and/or at least one bit node of degree one. And
so, given that the typical Tanner graph under consideration
in this paper does not contain bit nodes of degree one, the
active part of a pseudocodeword must contain at least one
cycle. Therefore, avoiding cycles implicitly means avoiding
pseudocodewords.20

Let and be two parity-check matrices such that
is a graph cover of . It is a well-known result that any
cycle in can be mapped into a cycle in . This has
several consequences. In particular, the girth of is at least
as large as the girth of , and more generally, contains
fewer short cycles than .21 For the codes constructed in this
paper, this means that the unwrapping process (from block code
to convolutional code) can “break” some cycles in the Tanner
graph of the block code.

We now revisit some codes that were discussed in earlier sec-
tions and analyze their graph cycle structure using a brute-force
search algorithm.22 Note that, in order to accurately compare the
graph cycle distributions of two codes with different block/con-
straint lengths, we compute the total number of cycles of a given
cycle length per block/constraint length, and divide this number
by the block/constraint length.23

Example 22: Consider the LDPC block and convolutional
codes that were constructed in Examples 15 and 18 and whose
BER performance was plotted in Fig. 7. Table I shows the av-
erage number of cycles of certain lengths for the Tanner graphs
of the quasi-cyclic block codes, for the Tanner graph of the
corresponding time-invariant convolutional code, and for the
Tanner graph of the time-varying convolutional codes.

20Note that the support of any pseudocodeword is a stopping set [22], [23],
[57].

21This observation has been used in many different contexts over the past ten
years in the construction of LDPC and turbo codes; in particular, it was used
in [42], where the authors dealt with bounding the girth of the resulting LDPC
convolutional codes.

22The search technique that we used is based on evaluating the diagonal en-
tries of the powers of the matrix ��� defined in [33, eq. (3.1)]. Note that this
search technique works only for counting cycles of length smaller than twice
the girth of the graph. For searching longer cycles, more sophisticated algo-
rithms are needed.

23For LDPC convolutional codes, we have made use of the periodicity of the
parity-check matrices in order to complete the search in a finite number of steps.

TABLE II
AVERAGE (PER BIT NODE) NUMBER �� OF CYCLES OF LENGTH � FOR THE

TANNER GRAPHS OF THE BLOCK CODES (BCS) OF BLOCK LENGTH � AND

CONVOLUTIONAL CODES (CCS) OF CONSTRAINT LENGTH � DISCUSSED IN

EXAMPLE 23. (ALL TANNER GRAPHS HAVE GIRTH 4.)

Example 23: Table II shows the cycle analysis results for
the rate- proto-graph-based codes that were discussed in Ex-
ample 19 and whose BER performance was plotted in Fig. 9.

From Examples 22 and 23, we see that many of the short cy-
cles in the Tanner graphs of the LDPC block codes are “broken”
to yield cycles of larger length in the Tanner graphs of the de-
rived LDPC convolutional codes.

B. Pseudocodeword Analysis

This section collects some comments concerning the pseu-
docodewords of the parity-check matrices under consideration
in this paper.

We start by observing that many of the statements that were
made in [36] about pseudocodewords can be extended to the
setup of this paper. In particular, if some parity-check matrices

and are such that is a graph cover of , then
a pseudocodeword of can be “wrapped” to obtain a pseu-
docodeword of , as is formalized in the next lemma.

Lemma 24: Let the parity-check matrices and be such
that is an -fold graph cover of . More precisely,
let for some set , for some collection
of parity-check matrices such that (in

), and for some collection of permutation matrices
. Moreover, let be the set of column indices of

and let with be the set of
column indices of . With this, if is a
pseudocodeword of , then with

(17)

is a pseudocodeword of .
Proof: (Sketch.) There are different ways to verify this

statement. One approach is to show that, based on the fact that
satisfies the inequalities that define the fundamental polytope

of [22], [23], [54], [55], satisfies the inequalities that define
the fundamental polytope of . (We omit the details.) Another
approach is to use the fact that pseudocodewords with rational
entries are given by suitable projections of codewords in graph
covers [22], [23]. So, for every pseudocodeword of with
rational entries, there is some graph cover of with a code-
word in it, which, when projected down to , gives . How-
ever, that graph cover of is also a graph cover of ,
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and so this codeword, when projected down to , gives
as defined in (17). (We omit the details; see [36] for a similar,
but less general, result.)

One can then proceed as in [36] and show that the AWGNC,
the BSC, and the BEC pseudoweights [3], [22], [23], [54], [55],
[58] of will be at least as large as the corresponding pseu-
doweights of . As a corollary, the minimum AWGNC, BSC,
and BEC pseudoweights of are, respectively, at least as large
as the corresponding minimum pseudoweights of . Similar re-
sults can also be obtained for the minimum Hamming distance.

Because the high-SNR behavior of linear programming de-
coding is dominated by the minimum pseudoweight of the rele-
vant parity-check matrix, the high-SNR behavior of linear pro-
gramming decoding of the code defined by is at least as good
as the high-SNR behavior of linear programming decoding of
the code defined by .24

In general, because of the observations made in Section VI-A
about the “breaking” of cycles and the fact that the active part
of a pseudocodeword must contain at least one cycle, it follows
that the unwrapping process is beneficial for the pseudocode-
word properties of an unwrapped code, in the sense that many
pseudocodewords that exist in the base code do not map to pseu-
docodewords in the unwrapped code. It is an intriguing chal-
lenge to better understand this process and its influence on the
low-to-medium SNR behavior of linear programming and mes-
sage-passing iterative decoders, in particular, to arrive at a better
analytical explanation of the significant gains that are visible in
the simulation plots that were shown in Section IV. To this end,
the results of [46] and [48] with respect to some related code
families (see the discussion in Section V) will be very helpful,
since they indicate that some of the features of the fundamental
polytope deserve further analysis.

C. Cost of the “Convolutional Gain”

In this section, we investigate the cost of the convolutional
gain by comparing several aspects of decoders for LDPC block
and convolutional codes. In particular, we consider the com-
putational complexity, hardware complexity, decoder memory
requirements, and decoding delay. More details on the various
comparisons described in this section can be found in [30], [40],
and [41].

LDPC block code decoders and LDPC convolutional code
decoders have the same computational complexity per decoded
bit and per iteration since LDPC convolutional codes derived
from LDPC block codes have the same node degrees (row and
column weights) in their Tanner graph representations, which
determines the number of computations required for message-
passing decoding.

We adopt the notion of processor size to characterize the hard-
ware complexity of implementing the decoder. A decoder’s pro-
cessor size is proportional to the maximum number of variable
nodes that can participate in a common check equation. This
is the block length for a block code, since any two variable
nodes in a block can participate in the same check equation.
For a convolutional code, this is the constraint length , since

24We neglect here the influence of the multiplicity of the minimum pseu-
doweight pseudocodewords.

no two variable nodes that are more than positions apart can
participate in the same check equation. The constraint lengths of
the LDPC convolutional codes derived from LDPC block codes
of length satisfy . Therefore, the convolutional codes
have a processor size less than or equal to that of the underlying
block code.

On the other hand, the fully parallel pipeline decoding
architecture penalizes LDPC convolutional codes in terms of
decoder memory requirements (and decoding delay/latency) as
a result of the iterations being multiplexed in space rather than
in time. The pipeline decoder architecture of Fig. 1 consists of

identical processors of size performing decoding iter-
ations simultaneously on independent sections of a decoding
window containing constraint lengths of received symbols.
This requires times more decoder memory elements than an
LDPC block code decoder that employs a single processor of
size performing decoding iterations successively on
the same block of received symbols. Therefore, the decoder
memory requirements and the decoding delay of the pipeline
decoder are proportional to , whereas the block decoder’s
memory and delay requirements are only proportional to .
Another way of comparing the two types of codes, preferred by
some researchers, is to equate the block length of a block code
to the memory/delay requirements, rather than the processor
size, of a convolutional code, i.e., to set . In this
case the block code, now having a block length many times
larger than the constraint length of the convolutional code, will
typically (depending on ) outperform the convolutional code,
but at a cost of a much larger hardware processor. Finally, as
noted in Section II, the parallel pipeline decoding architecture
for LDPC convolutional codes can be replaced by a serial
looping decoding architecture, resulting in fewer processors but
a reduced throughput along with the same memory and delay
requirements.

In summary, the convolutional gain achieved by LDPC
convolutional codes derived from LDPC block codes comes at
the expense of increased decoder memory requirements and
decoding delays. Although this does not cause problems for
some applications that are not delay-sensitive (e.g., deep-space
communication), for other applications that are delay-sensitive
(e.g., real-time voice/video transmission), design specifications
may be met by deriving LDPC convolutional codes from
shorter LDPC block codes, thus sacrificing some coding gain,
but reducing memory and delay requirements, or by employing
a reduced window size decoder, as suggested in the recent
paper by Papaleo et al. [28], with a resulting reduction in the
“convolutional gain.”

VII. CONCLUSION

In this paper, we showed that it is possible to connect two
known techniques for deriving LDPC convolutional codes from
LDPC block codes, namely the techniques due to Tanner and
due to Jiménez-Feltström and Zigangirov. This connection
was explained with the help of graph covers, which were also
used as a tool to present a general approach for constructing
interesting classes of LDPC convolutional codes. Because it is
important to understand how the presented code construction
methods can be used—and in particular combined—we then
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discussed a variety of LDPC convolutional code constructions,
along with their simulated performance results.

In the future, it will be worthwhile to extend the presented
analytical results, in particular to obtain a better quantitative un-
derstanding of the low-to-medium SNR behavior of LDPC con-
volutional codes. In that respect, the insights in the papers by
Lentmaier et al. [46], [47] and Kudekar et al. [48] on the be-
havior of related code families will be valuable guidelines for
further investigation.
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