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Abstract—Uncertainty accompanies our life processes and covers almost all fields of scientific studies. Two general categories of

uncertainty, namely, aleatory uncertainty and epistemic uncertainty, exist in the world. While aleatory uncertainty refers to the inherent

randomness in nature, derived from natural variability of the physical world (e.g., random show of a flipped coin), epistemic

uncertainty origins from human’s lack of knowledge of the physical world, as well as ability of measuring and modeling the physical

world (e.g., computation of the distance between two cities). Different kinds of uncertainty call for different handling methods.

Aggarwal, Yu, Sarma, and Zhang et al. have made good surveys on uncertain database management based on the probability theory.

This paper reviews multidisciplinary uncertainty processing activities in diverse fields. Beyond the dominant probability theory and

fuzzy theory, we also review information-gap theory and recently derived uncertainty theory. Practices of these uncertainty handling

theories in the domains of economics, engineering, ecology, and information sciences are also described. It is our hope that this study

could provide insights to the database community on how uncertainty is managed in other disciplines, and further challenge and

inspire database researchers to develop more advanced data management techniques and tools to cope with a variety of uncertainty

issues in the real world.

Index Terms—Uncertainty management, probability theory, Dempster-Shafer theory, fuzzy theory, info-gap theory, probabilistic

database, fuzzy database
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1 INTRODUCTION

UNCERTAINTY is ubiquitous and happens in every single
event we encounter in the real world. Whether it rains or

not tomorrow is uncertain; whether there is a train delay is
uncertain. . . Just as Socrates in ancient Greece said, “as for
me, all I know is I know nothing [1].” Uncertainty distin-
guishes from certainty in the degree of belief or confidence.
If certainty is referred to as a perception or belief that a
certain system or phenomenon can experience or not,
uncertainty indicates a lack of confidence or trust in an
article of knowledge or decision [2]. According to the US
National Research Council, “uncertainty is a general concept
that reflects our lack of sureness about something or someone,
ranging from just short of complete sureness to an almost
complete lack of conviction about an outcome [3].”

1.1 Uncertainty Categorization

Uncertainty arises from different sources in various forms

and is classified in different ways by different communities.

According to the origin of uncertainty, we can categorize

uncertainty into aleatory uncertainty or epistemic uncertainty

[3], [4], [5], [6], [7], [8], [9]:

. Aleatory uncertainty derives from natural variability
of the physical world. It reflects the inherent

randomness in nature. It exists naturally regardless

of human’s knowledge. For example, in an event of

flipping a coin, the coin comes up heads or tails with

some randomness. Even if we do many experiments

and know the probability of coming up heads, we

still cannot predict the exact result in the next turn.
Aleatory uncertainty cannot be eliminated or

reduced by collecting more knowledge or informa-

tion. No matter whether we know it, this uncertainty
stays there all the time. Aleatory uncertainty is

sometimes also referred to as natural variability [3],

objective uncertainty [10], external uncertainty [11],
random uncertainty [12], stochastic uncertainty [13],

inherent uncertainty, irreducible uncertainty, fundamen-

tal uncertainty, real-world uncertainty, or primary

uncertainty [14].
. Epistemic uncertainty origins from human’s lack of

knowledge of the physical world and lack of the
ability of measuring and modeling the physical
world. Unlike aleatory uncertainty, given more
knowledge of the problem and proper methods,
epistemic uncertainty can be reducible and some-
times can even be eliminated. For example, the
estimation of the distance between Boston and
Washington can be more precise if we have known
the distance from Boston to New York.

Epistemic uncertainty is sometimes also called

knowledge uncertainty [3], subjective uncertainty [13],
[10], internal uncertainty [11], incompleteness [15],

functional uncertainty, informative uncertainty [16], or
secondary uncertainty [14].

Taking the flood frequency analysis, for example, the
probability distribution of the frequency curve is a repre-

sentation of aleatory uncertainty, reflecting an inherent
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randomness of the physical world. We cannot reduce this
type of uncertainty. On the contrary, parameters of the
frequency curve imply a kind of epistemic uncertainty,
constrained by the existing knowledge and corresponding
model. However, with the increase of information, we can
always modify and refine the model to make it approach the
realistic situation.

Although uncertainty is categorized into aleatory un-
certainty or epistemic uncertainty, there is not a clear
boundary between them, and they may even be dealt with
in the same way. Nevertheless, this classification indeed
reminds us what we should notice in representing and
processing diverse uncertainty in our real world.

1.2 Uncertainty Management

Uncertainty complicates events and affects decision making
in a number of unfavorable aspects. Even worse, some
attempts that we take to manage and reduce uncertainty are
accompanied with uncertainty themselves.

Though it is hard to completely eliminate uncertainty, it is
worthwhile to recognize and cope with uncertainty to avoid
unfavorable hazards for high-quality decisions. So far,
uncertainty management covers almost all fields of scientific
studies [17]. Berztiss outlined common methods of un-
certainty management, including Bayesian inference, fuzzy
sets, fuzzy logic, possibility theory, time Petri nets, evidence
theory, and rough sets [18]. Walley [19] compared four
measures of uncertainty in expert systems, including
Bayesian probabilities, coherent lower and upper precisions,
belief functions of evidence theory, and possibility measures
in fuzzy theory. Klir [20] studied uncertainty and informa-
tion as a foundation of generalized information theory.

In the early attempts of database community, null values
were commonly used to manage uncertain information
[21]. Imieli�nski and Lipski [22] represented different-
leveled uncertainty information through different null
values or variables satisfying certain conditions. Querying
over the databases with null values was investigated by
Abiteboul et al. [23]. So far, probabilistic, fuzzy, and
possibilistic databases constitute major ways for uncertain
data management.

Probabilistic databases. The framework of probabilistic
databases was first presented in 1990 by Fuhr [24]. Query
evaluation over probabilistic databases was extensively
investigated by Dalvi and Suciu [25]. Pei et al. [26] surveyed
various ways to answer probabilistic database queries.
Sarma et al. [27], [28] presented a space of models for
representing and processing probabilistic data based on a
variety of uncertainty constructs and tuple-existence con-
straints. A recent good survey by Aggarwal and Yu [29]
covered probabilistic data algorithms and applications,
where traditional database management methods (join
processing, query processing, selectivity estimation, OLAP
queries, and indexing) and traditional mining problems
(frequent pattern mining, outlier detection, classification,
and clustering) are outlined.

Fuzzy and possibilistic databases. Fuzzy databases arose in
1990s, where tuple/attributewise fuzziness, similarity of
fuzzy terms, and possibility distribution fuzzy data model-
ing and querying were researched. Good survey on fuzzy
and possibilistic databases could be found in [30], [31], [32],
[33], [34].

1.3 Our Study

This paper provides a cross-disciplinary view of uncertainty
processing activities by different communities. We first
examine existing uncertainty theories. Among them, prob-
ability theory [35], [36] and fuzzy theory [37], [38], [39] are
the most common theories to model uncertainty. From the
basic probability theory, three methods (i.e., Monte Carlo
method, Bayesian method, and evidence theory) are
derived. Beyond these, we also present information-gap
(info-gap) theory originally developed for decision making
[40], [41], as well as a recently derived uncertainty theory
from probability and fuzzy theories, which intends to
establish a mathematical model for general use [42], [43].
Based on these theories, different types of uncertainty are
represented and handled. We overview some typical
practices of the theories in different disciplines, spanning
from economy, engineering, ecology, to information
science. We hope the work reported here could advance
uncertain database technology through cross-disciplinary
research inspirations and challenges.

We list achievements made by the database community
in uncertainty management through a running example of
customers’ interests to restaurants. Beyond classic probabil-
istic, fuzzy, and possibilistic databases, Monte Carlo and
evidence-based database models and query evaluation are
particularly described. We also discuss a few interesting
issues for further data-oriented research.

The remainder of the paper is organized as follows: We
outline four uncertainty handling theories in Section 2,
followed by their applications in diverse domains in Section 3.
We particularly review probabilistic and fuzzy database
technologies developed in the database field in Section 4 and
identify a few challenges ahead of the data-oriented research
in Section 5. We conclude the paper in Section 6.

2 UNCERTAINTY HANDLING THEORIES

2.1 Outline of Four Theories

Fig. 1 illustrates four uncertainty handling theories:

. Probability theory is the most widely used method in
almost every field. It can deal with both natural
aleatory uncertainty through random experiments
and subjective aleatory uncertainty by statistics from
questionnaires. Based on probability theory, Monte
Carlo method, Bayesian method, and Dempster-
Shafer evidence theory are developed.

- Monte Carlo method can solve complicated
situations where computing an exact result with
a deterministic algorithm is hard. It approx-
imates the exact value by repeated random
sampling.

- Bayesian method pursues an exact value based
on a graphical model with prior and conditional
probabilities. It is a good tool for inference.

- Dempster-Shafer theory avoids the prior prob-
ability assumption. It computes the confidence
interval, containing the exact probability, by
evidences collected from different sources.

. Fuzzy theory is good at handling human ambiguity
by modeling epistemic uncertainty through fuzzy
sets with membership functions.
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. Info-gap theory can address severe uncertainty whose
probability cannot be easily measured or computed
by using a range around the expected value to
represent epistemic uncertainty.

. Derived uncertainty theory from probability and
fuzzy theories aims at human’s subjective episte-
mic uncertainty.

Details of the four uncertainty handling theories are
reviewed in the following sections.

2.2 Probability Theory

The most well-established probability theory [35], [36]
originally aims at random phenomena, such as flipping a
coin. It states knowledge or belief that an event will occur or
has occurred by means of probability, and the probability
value is obtained based on statistics and random experi-
ments through repeated trials and analysis. That is, in N
times of independent random experiments, the occurrence
times of an event approach a constant N0. Then, N0=N is the
probability of the random event.

A function P is a way to represent the value of
probability. Let � be a sample space. Each subset of � is
called an event, denoted as A1; A2; . . . . Assume A is an
event, then P satisfies

1Þ ðNormalityÞ P ð�Þ ¼ 1:

2Þ ðNonnegativityÞ P ðAÞ � 0:

3Þ ðAdditivityÞ For mutually disjoint events A1; A2; . . . ;

P
[1
i¼1

Ai

 !
¼
X1
i¼1

P ðAiÞ:

ð1Þ

Probability theory can deal with both aleatory and
epistemic uncertainty. Random experiments usually deal
with natural variability, which satisfies the definition of
aleatory uncertainty. Through random experiments, one
can calculate the frequency of a certain event, which is close
to the real probability with the increase of running times.
With the introduction of subjective probability, it is applied
to subjective objects and situations that are not suitable for
random experiments. Currently, in dealing with uncer-
tainty, probability theory is at a dominant position. In most
of today’s applications, uncertainty problems are consid-
ered to be probabilistic ones.

2.2.1 Extensions of Probability Theory

Based on the classic probability theory, a few models such
as the Monte Carlo method, Bayesian method, and
Dempster-Shafer evidence theory are developed.

Monte Carlo methods. Monte Carlo methods origin from a
famous experiment of dropping needles conducted by
Buffon in 1777. It inspires researchers to simulate some
values of interest by random sampling [44]. Now, the Monte
Carlo method has become a well-known numerical calcula-
tion method based on the probability theory. It relies on
repeated random sampling to compute the result (e.g., value
of a parameter). In the random sampling, the Chernoff
bound [45] can be used to determine the number of runs for a
value by majority agreement. In n runs of random experi-
ments flipping coins, p is the probability of heads coming up.
For the assurance of 1� " accuracy that is the probability for
majority agreement, the number of runs should satisfy

n � 1

ðp� 1
2Þ

2
ln

1ffiffiffi
"
p : ð2Þ

Practically, Chernoff bound gives bounds on tail dis-
tributions of sums of independent random variables. Let
X1; . . . ; Xn be independent random variables, X ¼

Pn
i¼1 Xi,

and � is the expectation of X, then for any � > 0,

P ðX > ð1þ �Þ�Þ < e�

ð1þ �Þð1þ�Þ

 !�

: ð3Þ

This bound measures how far the sum of random
variables deviates from the expectation in n runs of
random experiments.

Monte Carlo methods can generally solve complicated
situations where computing an exact result with a determi-
nistic algorithm is hard. It is especially good at simulating
and modeling phenomena with significant uncertainty in
inputs, such as fluids, disordered materials, strongly
coupled solids, and cellular structures. It is widely used
in mathematics, for instance, to evaluate multidimensional
definite integrals with complicated boundary conditions.
When Monte Carlo simulations are applied in space
exploration and oil exploration, their prediction of failures,
cost overruns, and schedule overruns are routinely better
than human intuition or alternative soft methods.

A Markov chain, named for Andrey Markov, is a
mathematical system that undergoes transitions from one
state to another, between a finite or countable number of
possible states. The popularly used first-order Markov
chain is like:

P ðXn ¼ xn j X1 ¼ x1; X2 ¼ x2; . . . ; Xn�1 ¼ xn�1Þ
¼ P ðXn ¼ xn j Xn�1 ¼ xn�1Þ;

ð4Þ
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where Xið1 � i � nÞ is a random variable of value xi,

stating that the next state depends only on the current state

and not on the sequence of events that preceded it.
Furthermore, Markov chains join Monte Carlo simula-

tions to have a Markov chain Monte Carlo (MCMC) method
[46]. MCMC is a sampling approach for a desired
probability distribution �ðxÞ, where the sequence of
samples satisfies a Markov property. Often, it is used as a
mathematical model for some random physical process or
complex stochastic systems. If the parameters of the chain
are known, quantitative prediction can be made.

Bayesian methods. Bayes theorem, proposed by Bayes in

1763 [47], is based on the probability theory. It expresses

relations between two or more events through conditional

probabilities and makes inferences:

P ðH j DÞ ¼ P ðD j HÞP ðHÞ
P ðDÞ ; ð5Þ

where H is a hypothesis with a prior probability P ðHÞ, and

P ðH j DÞ is H’s posterior probability given observed data

D. The value of P ðH j DÞ can be evaluated based on

P ðD j HÞ, P ðHÞ, and P ðDÞ.
Confronted with mutually exclusive hypotheses H1;

H2; . . . ; Hn, we have P ðDÞ ¼
Pn

i¼1 P ðD j HiÞP ðHiÞ. There-

fore, the posterior probability of Hk is

P ðHk j DÞ ¼
P ðD j HkÞP ðHkÞPn
i¼1 P ðD j HiÞP ðHiÞ

; k ¼ 1; 2; . . . ; n: ð6Þ

Bayes Theorem suits situations that are lack of direct
information about an event. It involves logic reasoning,
rather than random sampling as in the Monte Carlo
method. Based on the Bayes theorem, a probabilistic
graphical model, Bayesian network, is developed to represent
a set of random variables and their conditional dependen-
cies via a directed acyclic graph.

Example 1. Fig. 2 shows a Bayesian network representing the

probabilistic relationships between disease and symptom.

Each node represents a random variable with a prior

probability. Edges represent the dependencies between

nodes with conditional probabilities. Given the values

of P ðfluÞ; P ðfever j flu; coldÞ, and P ðfever j �flu; coldÞ,
according to the Bayes theorem, we have

P ðfever j coldÞ ¼ P ðfever; flu j coldÞ þ P ðfever;�flu j coldÞ
¼ P ðfever j flu; coldÞ � P ðflu j coldÞ
þ P ðfever j �flu; coldÞ � P ð�flu j coldÞ
¼ P ðfever j flu; coldÞ � P ðfluÞ
þ P ðfever j �flu; coldÞ � P ð�fluÞ
¼ 0:9 � 0:1þ 0:2 � 0:9 ¼ 0:27:

Dempster-Shafer theory (evidence theory). Dempster-Shafer
theory (also called evidence theory), proposed by Dempster
and Shafer [48], [49], combines evidence from different
sources and arrives at a degree of belief by taking into
account all the available evidence. It defines a space of mass
and the belief mass as a function: m : 2X ! ½0; 1�, where X is
the universal set including all possible states, and 2X is the
set of all the subsets of X. For a subset S 2 2X, mðSÞ is
derived from the evidence that supports S:X

S22X

mðSÞ ¼ 1: ð7Þ

In evidence theory, belief and plausibility are further
defined as the low and upper boundary. Belief summarizes
all the masses of the subsets of S, meaning all the evidence
that fully supports S. Plausibility summarizes all the masses
of the sets that have intersection with S, meaning all the
evidence that partly or fully supports S:

beliefðSÞ ¼
X
T�S

mðT Þ; plausibilityðSÞ ¼
X

T\S 6¼�

mðT Þ: ð8Þ

The probability of a set S 2 2X falls into the range of
[belief(S), plausibility(S)].

Example 2. Reverting to the disease and symptom example in
Fig. 2, a patient may be diagnosed to catch a cold or have
a flu, i.e., X ¼ fcold; flug. The mass values mðfcoldgÞ,
mðfflugÞ, mð�Þ, and mðfcold; flugÞ (cold or flu) are
determined according to the collected evidence from
medical instruments or experiences of doctors, as shown
in the second column of Table 1. Accordingly, the
beliefs and plausibilitys of mðfcoldgÞ, mðfflugÞ, mð�Þ,
and mðfcold; flugÞ can be calculated. beliefðfcoldgÞ ¼
mð�Þ þmðfcoldgÞ ¼ 0þ 0:5 ¼ 0:5, plausibilityðfcoldgÞ ¼
mðfcoldgÞþmðfcold; flugÞ¼0:5þ 0:1¼ 0:6: mðfcold; flugÞ
derives from the evidence that supports both cold and flu,
such as the symptom of fever. However, mðfcoldgÞ
derives from the evidence that only supports cold.

The combination of two mass functions (e.g., m1 and m2)
derived from different (possibly conflicting) sources evi-
dence (e.g., different diagnoses from two doctors) is defined
by Dempster as follows:

m1;2ðSÞ ¼
1

1�K
X

A\B¼S 6¼�

m1ðAÞm2ðBÞ; ð9Þ

where K ¼
P

A\B¼� m1ðAÞm2ðBÞ.
Here, K is a normalization factor to ensure the total sum

m1;2 to be 1. It measures the amount of conflict between the
two diagnoses.

Some researchers propose different rules for combining
evidence, often with a view to handle conflict in evidence,
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like the transferable belief model [50] and coherent upper
and lower previsions method [51].

Compared to the prior and error assumptions needed by
the Bayesian method that are sensitive to the results,
evidence theory does not enforce any applicable conditions
and assumptions. It can thus deal with more uncertainty
(including subjective uncertainty arising from experts) than
the former Bayesian method. A comparison between
evidence theory and Bayesian method in handling episte-
mic uncertainty has been given by Soundappan et al. [52]
with some experiments.

2.3 Fuzzy Theory

Fuzzy theory, proposed by Zadeh in 1965 [37], is another
good way to deal with vagueness uncertainty arising from
human linguistic labels. It provides a framework for
modeling the interface between human conceptual cate-
gories and data, thus reducing cognitive dissonance in
problem modeling so that the way that humans think about
the decision process is much closer to the way it is
represented in the machine. The concept of fuzzy set extends
the notion of a regular crisp set and expresses classes with
ill-defined boundaries such as young, good, important, and so
on. Within this framework, there is a gradual rather than
sharp transition between nonmembership and full member-
ship. A degree of membership in the interval [0, 1] is
associated with every element in the universal set X. Such a
membership assigning function (�A : X ! [0, 1]) is called
a membership function and the set (A) defined by it is called a
fuzzy set.

Example 3. When we are not sure about the exact
centigrade degree of the day, we usually estimate the
weather to be warm, cool, cold, and hot, and put on more
or less clothes accordingly. The concept warm can be
described through a fuzzy set and its membership
function �warmðxÞ. We think that 26 	C is the most
appropriate temperature for the set warm. Then, the
grade of membership function of x ¼ 26	 is 1, denoted as
�warmð26	Þ ¼ 1. Similarly, �warmð20	Þ ¼ 0, �warmð23	Þ ¼ 1,
�warmð26	Þ ¼ 1, �warmð29	Þ ¼ 0. The fuzzy set warm can
thus be represented as f0=20	; 0:33=21	; 1=23	; 1=26	,
0=29	g. It can also be expressed in a function, as shown
in Fig. 3.

Let A and B be two fuzzy sets. �A[BðxÞ ¼ maxð�AðxÞ,
�BðxÞÞ, �A\BðxÞ ¼ minð�AðxÞ; �BðxÞÞ.

Based on the fuzzy set theory, fuzzy logic is developed [39].
A fuzzy proposition is defined on the basis of the universal
setX, and a fuzzy set F , representing a fuzzy predicate, such
as “tall.” Then, the fuzzy proposition “Tom is tall” can be
written as �F ðTomÞ, representing the membership degree.
Different from the classic two-value logic (either true or false),

a fuzzy proposition can take values in the interval [0, 1].
�F ðTomÞ ¼ 0:6 means the truth degree of “Tom is tall” is 0.6.

Possibility theory extends fuzzy set and fuzzy logic [38] as
a counterpart of probability theory. Let � be the universe of
discourse. A1; A2; . . . are events, which are subsets of �. The
possibility distribution Pos is a function from � to [0, 1],
satisfying the following axioms:

1Þ ðNormalityÞ Posð�Þ ¼ 1:

2Þ ðNonnegativityÞ Posð�Þ ¼ 0:

3Þ ðMaximalityÞ For disjoint eventsA1; A2; . . . ;

Pos
[1
i¼1

Ai

 !
¼ max

1

i¼1
PosðAiÞ:

ð10Þ

The above axioms show that the possibility distribution
satisfies the maximality, which is distinct from the
additivity property of probability theory.

2.4 Info-Gap Theory

Info-gap theory is proposed by Ben-Haim in the 1980s [40],
[41]. It models uncertainty mainly for decision making and
comes up with model-based decisions involving severe
uncertainty independent of probabilities. This severe
uncertainty belongs to the epistemic uncertainty category
and is usually immeasurable or uncalculated with prob-
ability distributions and is considered to be an incomplete
understanding of the system being managed, thus reflecting
the information gap between what one does know and what
one needs to know.

The info-gap decision theory consists of three compo-
nents (i.e., performance requirements, uncertainty model, and
system model) and two functions (i.e., robustness function and
opportuneness function).

The performance requirements state the expectations of the
decision makers, such as the minimally acceptable values,
the loss limitations, and the profit requirements. These
requirements form the basis of decision making. Different
from probability theory that models uncertainty with
probability distributions, the uncertainty model of info-gap
theory models uncertainty in the form of nested subsets:
Uð�; ~uÞ, where ~u is a point estimate of an uncertain
parameter, and �ð� 0Þ is the deviation around ~u. The
robustness and opportuneness functions determine the settings
of �. An example uncertainty model is

Uð�; ~uÞ ¼ fu : ju� ~uj � �~ug; ð11Þ

which satisfies two basic axioms:

1Þ ðNestingÞ For ð� < �0Þ; Uð�; ~uÞ � Uð�0; ~uÞ:
2Þ ðContractionÞ Uð0; ~uÞ ¼ f~ug:

ð12Þ

The robustness function represents the greatest level of
uncertainty, at which minimal performance requirements
are satisfied and failure cannot happen, addressing the
pernicious aspect of uncertainty. The opportuneness function
exploits the favorable uncertainty leading to better out-
comes, focusing on the propitious aspect of uncertainty.
Through the two functions, uncertainty can be modeled,
and the information gap can be quantified and further be
reduced with some actions [40], [41]. The decision-making
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process actually involves the construction, calculation, and
optimization of the two functions.

The third component of info-gap theory is an overall
model of system considering all factors and requirements.

Example 4. A worker faces a choice of cities to live: City A
or City B. The salary s he could earn is uncertain. In City
A, he might earn 80$ as an estimate every week, i.e.,
s
� ¼ 80$. If he earns less than 60$, he cannot afford the
lodging and is in danger of sleeping in the street. But if
he earns more than 95$, he can afford a night’s
entertainment as a windfall. In City B, he might earn
100$ as an estimate. The lodging costs 80$, and the
entertainment costs 150$.

Based on the system requirements (avoiding sleeping
in the street, or affording a night’s entertainment), for
City A, the uncertain salary of a worker can be
represented as a subset: Uð�; 80$Þ ¼ fs : js� 80$j �
80$ � �; � � 0g. That is, the worker’s income s falls into
the interval ½80$�ð1� �Þ; 80$�ð1þ �Þ�. Then, the robust-
ness/opportuneness functions determining � are

Robustðs; 60$Þ ¼ max � : min
s2Uð�;80$Þ

s � 60$

� �
¼ max � : 80$ � ð1� �Þ � 60$f g ¼ max � : � � 0:25f g
¼ 0:25:

O pportuneðs; 95$Þ ¼ min � : max
s2Uð�;80$Þ

s � 95$

� �
¼ minf� : 80$ � ð1þ �Þ � 95$g ¼ minf� : � � 0:1875g
¼ 0:1875:

ð13Þ

In a similar fashion, for City B, the � values returned
from the robustness and opportuneness functions are 0.2
and 0.5, respectively. As � represents the deviation from
the estimate value, the bigger � takes, the less danger the
salary is below the hazard threshold 60$ (or 100$); and
the smaller � takes, the higher chance to enjoy a night’s
entertainment. Therefore, moving to City A appears to be
better than to City B.

Info-gap theory applies to the situations of limited
information, especially when there is not enough data for
other uncertainty handling techniques such as probability
theory. Ben-Haim [40] once argues that probability theory is
too sensitive to the assumptions on the probabilities of events.
In comparison, info-gap theory stands upon an uncertain
range rather than a probability and is thus more robust.

2.5 Derived Uncertainty Theory

A derived uncertainty theory from probability and fuzzy
theories is later presented by Liu [42], [43] in 2007 to handle
human ambiguity uncertainty. Its three key concepts, i.e.,
uncertain measure, uncertain variable, and uncertain distribu-
tion are defined as follows:

Let � be a nonempty set. L is a �-algebra of �. A �-algebra
over a setA is defined as a nonempty collection of all subsets
of � (including � itself). Each element in L is an event,
expressed as �1;�2; . . . . The uncertain measure Mð�Þ repre-
sents the occurrence level of an event. (�;L;M) is called an
uncertainty space with the following axioms:

1Þ ðNormalityÞMð�Þ ¼ 1:

2Þ ðSelf-dualityÞMð�Þ þMð�CÞ ¼ 1:

3Þ ðSubadditivityÞM
[1
i¼1

�i

 !
�
X1
i¼1

Mð�iÞ:

4Þ ðProduct measureÞM
Yn
k¼1

�k

 !
¼ min

1�k�n
Mkð�kÞ:

ð14Þ

An uncertain variable is a function �ð�;L;MÞ ¼ 2R, where
ð�;L;MÞ is an uncertain space and 2R is a set of real
numbers. For any real number x, the uncertain distribution of
an uncertain variable � is an increasing function defined as:
UðxÞ ¼Mð� � xÞ.

In the derived uncertainty theory, instead of uncertainty
distribution functions, a discrete 99-Table (Fig. 4) is used to
state the uncertainty distribution. A 99-Table usually
accommodates 99 points in the curve of uncertain distribu-
tion and is helpful when uncertainty functions are unknown.
Considering comprehensive requirements of storage capa-
city and precision, 99 points are usually taken from the
uncertain distribution for calculation. However, this is not
strictly restricted. One can also take 80 or 150 points
according to different precision and storage requirements.

Example 5. Suppose an application is interested in the city
distances below a threshold. We can view the distance
between Cities A and B as an uncertain variable.
The uncertain distribution UðxÞwith its discrete 99-Table
expression is plotted in Fig. 4. The second row of 99-Table
represents the values that the uncertain variable can
take, and the first row means the corresponding
uncertainty. Uð90 kmÞ ¼Mðx � 90 kmÞ ¼ 0:3 states that
the distance between A and B is lower than 90 kilometers
with the uncertainty degree 0.3.

Derived uncertainty theory also possesses contradiction
and excluded-middle properties. Let H denote a proposition
(e.g., “restaurant ABC has a good reputation”) with a truth
value T ðHÞ. T ðH _ :HÞ ¼ 1 and T ðH ^ :HÞ ¼ 0. Besides, it
conforms to the monotonicity. It does well in describing
interval-based uncertainty measures and is suitable to
handle subjective epistemic uncertainty in risk analysis,
reliability analysis, and finance [43].

Table 2 summarizes the above four uncertainty theories
in managing diverse uncertainty in the real world.

3 UNCERTAINTY HANDLING PRACTICES

Table 3 lists some prototypical practices in the fields of
economics, engineering, ecology, and information science.
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Fig. 4. An uncertainty distribution example in a 99-Table.



3.1 Uncertainty Handling in Economics

Economics is a classical field for uncertainty and risk
analysis [53], [54], [55]. While uncertainty is generally
considered to be lack of certainty with possible states and
multiple outcomes, risk refers to a potential loss or
undesired effect, which may cause something bad or
unexpected [56]. In economic risk analysis, risk is usually
expressed as a quantity, measured with the use of
probabilities. In comparison, severe uncertainty is restricted
to the nonquantitative case, caused by the lack of informa-
tion or knowledge [53], where the underlying statistical
distribution is unknown.

3.1.1 Probability-Based Economic Risk Analysis

Economic budget planning is a common activity involving

risk analysis, where a probabilistic decision tree is usually

exploited in the process. All possible situations with

respective probabilities are outlined in the decision tree,

based on which possible target benefits are computed.

Example 6. Suppose a factory wants to build a new
workshop to produce products for 10 years. The
construction cost for a large workshop is 90K dollars
and 40K for a small workshop. The factory expects to get
some revenues from the products according to the sales
situation. Fig. 5 shows the decision tree that illustrates
all possible financial solutions. Based on it, the expected
10-year revenues are computed as follows:

Rlarge ¼ 0:8
 90
 10þ 0:2
 ð�10Þ 
 10� 90 ¼ 610K;

Rsmall ¼ 0:8
 30
 10þ 0:2
 20
 10� 40 ¼ 240K:

The result signifies that building a large workshop is
better than building a small one.

3.1.2 Info-Gap-Based Credit Risk Analysis

Besides probability theory, info-gap theory also initiates a

new way to assist economic risk evaluation during decision

making [57].

Example 7. In offering loans, financial institutions try to

make optimal decisions to manage credit risk by reducing

potential losses from arrears on loans. In credit risk

analysis [58], they can classify customers into categories

1; 2; . . . ; N of different credit rates. The corresponding
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TABLE 2
Summary of the Four Uncertainty Handling Theories

TABLE 3
Uncertainty Handling Techniques in Practice

Fig. 5. A probabilistic decision tree in an example plan.



probability of default (arrears) in category i (1 � i � N)
is denoted as di, and d ¼ ðd1; d2; . . . ; dNÞ. Let ~d be the best
estimate of d, and � constrain the scope of uncertainty. In
info-gap theory, the uncertainty model of d can be
represented as a nested subset:

Uð�; d
�
Þ ¼

�
d : d ¼ d

�
þ"; "TC�1" � �2

�
; � � 0; ð15Þ

where C is an N 
N positive symmetric matrix, whose
entry Cij is a model parameter that could be taken as an
element of a correlation matrix.

Let li and ri denote the loan amount and interest rate
to customers in category i. Let l ¼ ðl1; l2; . . . ; lNÞ and
r ¼ ðr1; r2; . . . ; rNÞ. The total loan amount L ¼ l1 þ
l2 þ � � � þ lN . Further, let � and � denote the fractions of
loss and profit in terms of the percentage of L. To ensure
the normal business, two performance requirements must
be satisfied. That is, the loss is not greater than � � L, and
the profit is not less than � � L.

Based on the above uncertainty model, as well as the
loss and profit requirements, one can compute the
relations among the arrear probabilities, loan amounts,
and interest rates with the system model:

RobustLoss ¼ max � : max
d2Uð�;~dÞ

lT d

 !
� � � L

( )
:

RobustProfit ¼ max � : min
d2Uð�;~dÞ

ðlT r� l0TdÞ
 !

� �L
( )

:

ð16Þ

l0 is a vector, and l0i ¼ ð1þ riÞ � liði ¼ 1; 2; . . . ; NÞ. lT r
expresses the income from loan interests, and l0T d
expresses the loss due to arrears.

With the analysis of the credit risk system model, the
financial institution can make the following decision:
The higher the probability of arrear a customer has, the
higher interest rate and less amount of loan the bank
should assign to him/her. The robust-optimal decisions
can be obtained by maximizing RobustLoss and
RobustProfit with respect to decision variables such as l
and r. For detailed numerical analysis, refer to [58].

Besides credit risk analysis, info-gap decision theory is
also applied to investment risk analysis, policy formulation,
microeconomics of demands, and the equity premium
puzzle [57].

3.2 Uncertainty Handling in Engineering

Uncertainty exists in engineering risk management and life-
cycle assessment (LCA).

3.2.1 Probabilistic Engineering Risk Analysis

Back to the 1970s, probabilistic risk analysis has been used
to evaluate the risk of operations of nuclear power plants
[59]. In probabilistic risk analysis, two data structures (i.e.,
event tree analysis (ETA) and fault tree analysis (FTA)) are
usually adopted [60]. They both model the problem or
process in the form of tree and can make both quantitative
and qualitative analysis.

ETA illustrates an inductive process from reasons to
results. It starts from an initial event, constructs the tree
following casual relations, and comes up to some outcome

events. ETA can aid to make predictions. In comparison,

FTA plots a deductive process from results to reasons to

facilitate discovery of some potential risks or failure causes.

ETA and FTA can be combined for synthetic research.

Example 8. Fig. 6a shows an ETA tree example in

measuring a dam’s reliability, where I is an initiating

event, E1; E2, and E3 are different events, and S is an
outcome event. The possibility of outcome S can be

gained by P ðSÞ ¼ P ðIÞP ðE1ÞP ðE2ÞP ð�E3Þ. Fig. 6b

shows a top-down analysis by listing factors causing

dam collapse.

Greenland [61] describes the use of Monte Carlo and
Bayesian risk uncertainty assessment in analyzing skin

cancer risks from coal tar containing products.

3.2.2 Derived Uncertainty Theory-Based Reliability

Analysis

Liu [43] analyzes system reliability with respect to the

factors of lifetime, production rate, cost, and profit based on

derived uncertainty theory. The term reliability index is used
to measure the degree of hazard, representing the un-

certainty of system reliability.
Assume a cascading system is composed of n compo-

nents. It fails if any of its components does not work. Let

�1; �2; . . . ; �n denote the lifetimes of the n components. The

system lifetime is minð�1; �2; . . . ; �nÞ.
If the system lifetime is expected to be longer than T , the

system reliability function can be defined as

fð�1; �2; . . . ; �nÞ ¼ minð�1; �2; . . . ; �nÞ � T:

Then, the system can work reliably, if and only if

fð�1; �2; . . . ; �nÞ ¼ minð�1; �2; . . . ; �nÞ � T � 0:

The reliability index of the system is defined as

Reliability ¼Mðfð�1; �2; . . . ; �nÞ � 0Þ ¼ �:

Due to Mð� � xÞ ¼ UðxÞ, we can get

Mðfð�1; �2; . . . ; �nÞ � 0Þ
¼ 1�Mðfð�1; �2; . . . ; �nÞ < 0Þ ¼ 1� Uð0Þ ¼ �:

ð17Þ

2470 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 11, NOVEMBER 2013

Fig. 6. Dam risk analysis example.



According to the 99-Table method, if �iði ¼ 1; 2; . . . ; nÞ can
be represented as the following 99-Table:

then the uncertainty distribution of fð�1; �2; � � � ; �nÞ ¼
minð�1; �2; . . . ; �nÞ � T can be represented as the 99-Table:

Then, according to (17), we can use the 99-Table of
fð�1; �2; . . . ; �nÞ to compute the value of �. In this table, we
find the value x ¼ 0, then the corresponding Uðx ¼
0Þ ¼ 1� �. Thus, the risk index � of the cascading system
can be calculated.

With the risk index, decision makers can evaluate
systems, make predictions, and take prevention actions.
Similarly, the reliability index can also be presented based
on a Boolean system.

3.2.3 Probabilistic and Fuzzy LCA

LCA refers to the evaluation of environmental and social
impacts relating to the life cycle of products, going through
all the stages of the products from raw materials, semi-
finished products, finished products, to products’ waste and
recovery. Various uncertainties [62], [63], [64] arising from
data sources, models, measurement errors, preferences of
analysts, and physical systems need to be coped with for
comparison and decision-making purposes [65].

Monte Carlo simulation, Bayesian statistics, and fuzzy
theory have been applied to LCA. Although some research-
ers think that fuzzy sets are more suitable than random
sampling methods, not only due to the ambiguity in LCA,
but also due to the less computing time with fuzzy theory
[66], [67], Monte Carlo is the most widely used approach in
the literature [63]. Next, we illustrate a fuzzy LCA approach
and a probabilistic LCA approach.

Fuzzy LCA approach. Tan [67] presents a matrix-based
fuzzy model to deal with data variability during the
evaluation of pollutant emission in LCA. Assume in a
two-process life-cycle system, two commodities P1 and P2

are involved, and pollutant E is released. As illustrated in
Fig. 7, Process I consumes P2 and produces P1 and pollutant
E, and Process II consumes P1 and produces P2 and
pollutant E. Through the LCA, one can compute the total
emissions of pollutant E.

The amount ratios of commodities P1, P2, and pollutant E
are uncertain, which can be represented as a fuzzy number.
As shown in Fig. 8, the amount ratio of commodity 1 to
commodity 2 in Process I is represented as a fuzzy number,
written as ð0:5; 0:6; 1ÞT , where 0.5 and 1 are the least
plausible values as the lower and upper boundaries of the

ratio, 0.6 is the most plausible value, and the subscript T
expresses that the fuzzy number is in the shape of triangle
distribution. At any given degree of possibility �, it is
possible to find a corresponding interval ðL;UÞ. In an �-cut
where � ¼ 0:4, the resulting interval is ð0:54; 0:84Þ. Other
amount ratios of the life-cycle system are shown in Fig. 9.

According to the uncertain ratios in the second and third
columns, and the output amount of the final column, the
emission x of pollutant E can be calculated based on the
following matrix-based fuzzy model:

gU;� ¼ BU;�A
�1
L;�f; gL;� ¼ BL;�A

�1
U;�f: ð18Þ

In this model, at the degree of possibility �, gU;� and gL;�
are the upper and lower bounds of the emission inventory
vectors, BU;� and BL;� are the upper and lower bounds of
the emission intervention matrix, AU;� and AL;� are the
upper and lower bounds of commodity-relevant technology
matrix, and f is the functional unit vector of output. With
this equation, the lower and upper bound of emission can
be estimated at the degree of possibility �.

According to Fig. 9, at � ¼ 1,

gU;� ¼ ðxÞ; BU;� ¼ ð0:06 1Þ

AL;� ¼
0:6 �1

�1 5

� �
; f ¼

100

0

� �
:

ð19Þ

Using the fuzzy model, we can get gU;� ¼ 65. That is, the
most plausible value of pollutant E is 65 kg, as shown in
Fig. 7. Varying the value of �, we can gain different
emissions, forming a fuzzy distribution of pollutant E. The
environmental impacts can thus be derived.

Probabilistic LCA approach. In a Monte Carlo-based
incineration system [68], wastes are collected in different
cities, and transported to incineration plants. After incin-
eration, electricity is recovered and ash is disposed. Assume
the probability distribution of CO2 emission satisfies the
normal distribution Nð1 kg; 0:05 kgÞ in the use of diesel.
Suppose one chooses 0:9 kg as one CO2 emission value.
A concrete total CO2 emission from the transportation
process and the incineration process can then be computed
according to a predefined formula. To repeat this process
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Fig. 7. A life-cycle system example [67]. Fig. 8. A triangular distribution of fuzzy numbers in LCA.

Fig. 9. A matrix-based fuzzy model for LCA [67].



for hundreds of times with different parameter settings by
the Monte Carlo method, one can obtain a statistic final
result of CO2 emission [68].

3.3 Uncertainty Handling in Ecology

Good forecasting of ecological phenomena can help policy
making and social/environmental planning.

3.3.1 Probabilistic Forecasting of Population

Confronted with the threat of global population increase,
population forecasting constitutes another focal research
point in ecology [69], [70], [71]. Basically, three factors (i.e.,
fertility, mortality, and migration) affect demographic
change. Population forecasting needs to analyze each
individual factor and their combined effects. Throughout
analysis procedures, much uncertainty lying in population
growth has to be coped with. According to the statistics
made against demographic forecasting from 1985 to 2005,
errors in forecasting come from four sources, which are
model misspecification, parameter estimation, random variation,
and informed judgment [72], [73].

To address them, probabilistic forecasting methods are
introduced to deal with some component uncertainty in the
manner of stochastic population renewal. Three comple-
mentary approaches are particularly developed to estimate
forecast uncertainty: model-based ex-ante error estimation,
expert-based ex-ante error estimation, and ex-post error estima-
tion, relying on the extrapolative techniques, expert knowl-
edge, and past forecast, respectively.

Besides, the Bayesian method is also applied to popula-
tion forecasting with some flexibility [74]. The relation
between the uncertain parameter 	 and observed data
yfTg ¼ fy1; y2; . . . ; yTg is formulated as

f 	 j yfTg
	 


¼
fðyfTg j 	Þfð	Þ

fðyfTgÞ
; ð20Þ

where fð	Þ is the prior distribution.
According to Bayes theorem, precedent values of yT can

be predicted:

fðyTþ1; . . . ; yTþK j yfTgÞ

¼
Z
fð	 j yfTgÞ

YK
k¼1

fðyTþk j yfTþk�1g; 	Þd	:

In this way, the next K values can be calculated with the
joint predictive and posterior distribution based on the
observed data yfTg.

3.3.2 Info-Gap-Based Conservation Management

Conservation management intends to avoid potential risk of
population decline or extinction and maximize opportu-
nities of population persistence. Conservation biologists
usually need to decide appropriate actions taken for
endangered species. In the following example, a utility
measurement is used to represent the environmental out-
come of a conservation action.

Assume there are three options of conservation manage-
ment that are translocation, new reserve, and captive
breeding, denoted as ajðj ¼ 1; 2; 3Þ. The three options may
lead to four possible outcomes that are poaching, loss of

habitat, demographic accidents, and disease. Let piði ¼
1; 2; 3; 4Þ denote the probability of each outcome. Further, let
vij represent the utility association between the jth option
and the ith outcome. Then, the expected utility of the jth
option is EV ðajÞ ¼

P4
i¼1 pivijðj ¼ 1; 2; 3Þ.

In the info-gap decision theory, the uncertainty vector p
and v can both be represented with a subset, Upð�; ~pÞ and
Uvð�; ~vÞ, satisfying

pi � ~pi
~pi

� �; vij � ~vij
~vij

� �ð� � 0; i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3Þ:

ð21Þ

There is a critical value EVc below which the utility is
unacceptable. Then, the robustness function for option aj
(j ¼ 1; 2; 3) can be formulated by

Robustðaj; EVcÞ

¼ max � : min
p2Upð�;~pÞ;v2Uvð�;~vÞ

X4

i¼1

pivij � EVc

( )
:

Robust is the robustness function, representing the
greatest horizon of uncertainty up to which all probabilities
and utilities result in an expected utility no worse than EVc.
Through experiments, when EVc ¼ 0:07, the option “new
reverse” holds the larger robustness (Robust ¼ 0:34) than
the other two options. Hence, it is a good choice.

3.4 Uncertainty Handling in Information Science

In the information domain, there exist unreliable informa-
tion sources, system errors, imprecise information gathering
methods, and/or model restrictions [75]. Unreliable infor-
mation sources may be due to fault-reading instruments,
incorrect input forms, and so on. System errors lie in
transmission noises or delays in processing updated
transactions, and so on. Information gathering may be
affected by constantly varying phenomena. In the modeling
process, some approximation techniques may be required
and used, which result in uncertainty as well.

3.4.1 Probabilistic and Fuzzy Social Networking

A social network accommodates various uncertainty rela-
tionships of people such as the belief degree of two friends
to be handled, where probability theory and fuzzy theory
are generally brought in to deal with the uncertain
situations. We use a music recommendation example to
show how the two approaches are applied.

Probability approach. People may easily be influenced by
friends in choosing music [76]. Fig. 10 gives a probabilistic
social networking example, where directed edges indicate
the influence upon song selection by each other. For
example, Alice influences Kim with a probability of 0.3.
Three probabilistic tables, Preference (Name, Genre, Prob.),
Song (Name, Genre, Prob.), and MusicInfluence (Name1,
Name2, Prob.), record users’ song preferences, songs’ genres,
and music influence with certain probabilities, respectively.

To find out users who probably like song A, the
following SQL can be issued:

SELECT Preference.Name

FROM Preference P, Song S

WHERE P.Genre=S.Genre AND S.Name=‘A’
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The probability that Kim likes song A is thus 0:75
 0:1 ¼
0:075. Furthermore, considering MusicInfluence in Fig. 10a

and song A is of genre Country with probability 0.1 and Pop

with probability 0.5, Alice, Bob, and Fred may all recom-

mend song A to Kim. The final result probability that Kim

accepts song A is 0:075
 ð1� ð1� 0:3Þ 
 ð1� 0:9Þ 
 ð1 �
0:7ÞÞ ¼ 0:073.

Fuzzy approach. Considering the ambiguous properties of

human thinking, fuzzy sets are employed to represent

and evaluate users’ social relationships. Some intuitive

linguistic concepts (like strong, weak, or medium), rather than

a raw probability value, can be used to express the users’

influence factor upon song selection, as shown in Table 4a.
A similarity relation of influence can be defined in a

matrix (Table 4b to replace classical membership functions

of fuzzy sets—strong, weak, and medium). Here, 0.7 means

that “medium” satisfies the concept “strong” with a degree of

0.7. Users who strongly influence Kim include (Bob, 1), (Fred,

0.7), and (Alice, 0.2).

3.4.2 Uncertain Decision Making in Project Management

Fuzzy approach. Efficient project management needs to be

aware of project goal and various constraints toward a high-

quality project output. Three factors (project cost (PC), project

duration, and project quality (PQ)) can generally quantify the

internal efficiency of project management in terms of how

well the project is managed and executed [77], [78].
Dweiri and Kablan [79] conduct a fuzzy decision making

to evaluate the internal efficiency of project management. It

describes the PC, project duration (PT), and PQ through fuzzy

sets. For instance, the PC is fuzzified into very low, low,

medium, high, and very high. Different factors have different

priorities to the project management, which are defined as

project cost weighting factor (PCWF), project time weight-

ing factor (PTWF), and project quality weighting factor

(PQWF). It satisfies PCWF þ PTWF þ PQWF ¼ 1.
The project management internal efficiency can be

measured based on some fuzzy rules like “IF project cost is

low AND project cost weighting factor is high, THEN project

management internal efficiency is very high.”
Derived uncertainty theory approach. The derived uncer-

tainty theory is used to solve the project scheduling

problem in the form of uncertain programming. This

process involves allocating resources to reduce total cost

and complete the project in time. In the project scheduling

model [43], these two factors are considered:

min EðCðx; �ÞÞ
s:t: MðT ðx; �Þ � T 0Þ � �; x � 0:

�
ð22Þ

Here, x is the allocating time vector needed for all
activities. � is the uncertain duration time vector of all
activities.EðCðx; �ÞÞ is the expectation of the total costCðx; �Þ
to be minimized, T is the complete time of the project that
should be earlier than the due date T 0, with an occurrence
level not less than �.

If the uncertain distribution of the total cost Cðx; �Þ can
be represented with a 99-Table:

then the expectation EðCðx; �ÞÞ ¼ ðc1 þ c2 þ � � � þ c99Þ=99.

4 UNCERTAINTY PROCESSING IN DATABASES

In the data management field, uncertain information is
typically managed by a probabilistic or fuzzy database whose
theoretic foundation is probability theory or fuzzy theory.
We illustrate various uncertainty handling efforts by the
database community, with an emphasis on uncertainty
database model and query processing.

4.1 Probabilistic Data Management

Databases based on the classic probability theory, Monte
Carlo methods, and evidence theory are described.

4.1.1 Classic Probabilistic Data Management

In a tuplewise probabilistic database relation, each tuple can
be regarded as a description of a basic probabilistic event
and associated with an explicitly given event identifier [80],
[81], as shown in Table 5a. The column Prob. means the
probability that a tuple belongs to the relation (e.g., tuple r1
belongs to the relation Restaurant with a probability of 0.7,
or r1 does not appear in Restaurant with a probability of
0.3). Tuples within a probabilistic relation as well as among
relations are assumed to be independent. The probabilistic
database is based on the possible world semantics that is a
probability distribution on all database instances [81]. It can
be regarded as a finite set of database instances with the
same schema. Each tuple in the database may or may not
appear in a database instance, and the database instance is
associated with a probability. Table 5b shows all the
possible worlds of relation Restaurant. The probability of
each possible world can be computed by multiplying its
tuples’ probabilities.
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Fig. 10. A probabilistic social networking example [76].

TABLE 4
Fuzzy MusicInfluence Relation and Similarity Matrix



Besides tuplewise uncertainty, attribute-level uncertainty
(e.g., Location attribute in the CustomerLoc relation in
Table 6b) considers an attribute value as a set of discrete
possible values or continuous values modeled through a
probability density function [82], [83].

Querying over a probabilistic database will deliver a
probabilistic result relation where each result tuple is
associated with a complex event expression that is a Boolean
combination of the events corresponding to the base tuples
from which it is derived. Evaluation of typical aggregate,
join, range, top-k, as well as lineage and correlation-based
queries is done based on the possible world semantics.

(Aggregate Query) “Find the average discount of restaurants.”
SELECT AVG (Discount) AS avgDiscount

FROM Restaurant

Each possible world in Table 5c leads to a partial result,
and the final outcome is (avgDiscount; Prob:Þ ¼ fð8:17;
0:308Þ; ð8:75; 0:077Þ; ð8:25; 0:132Þ; ð9:5; 0:033Þ; ð7:5; 0:252Þ;
ð8; 0:063Þ; ð7; 0:108Þ; ðNULL; 0:027Þg. As the world � does
not include any tuple, NULL is returned as a result
alternative according to [84].

Instead of listing all of the alternatives in exhaustive
aggregation, some variants of aggregation just consider a
low bound, a high bound, or a mean aggregate value of
non-NULL alternatives with the confidence setting as 1.0
(i.e., (7, 1), (9.5, 1), or (7.68,1)) for query efficiency [84].
Aggregation on data streams can also be computed
efficiently given a specific accuracy [85].

(Join Query) “Find restaurants of interest to customers.”

SELECT RName

FROM Restaurant, Customer

WHERE Restaurant.Type=Customer.Interest

The above join query involves operations over multiple
probabilistic relations, and the result is shown in Table 7.
The approach of evaluating join queries on each possible
world, called the intentional semantics, is precise yet not
efficient, and the complexity increases exponentially with
the number of tuples. Dalvi and Suciu [81] present an
efficient evaluation method without listing all possible
worlds based on the extensional semantics, where SQL
queries are represented in an algebra and operators are
modified to compute the probabilities of output tuples. To
avoid dependencies in the querying process that may lead
to incorrect results, they give a safe-plan algorithm that can
compute most queries efficiently and correctly, and prove
that the complexity of evaluating a query with a safe query
plan is in PTIME. However, there exist some queries with a
#P-complete data complexity, implying that these queries
do not admit any efficient evaluation method. 2 out of the
10 TPC/H queries fall in this category, and only when all
their predicates are uncertain. For these queries, a few
techniques have been developed [81], [86], [87], including
aggressively using previously computed query results
(materialized views) to rewrite a query in terms of views;
using heuristics to choose a plan that avoids large errors;
using a Monte Carlo simulation algorithm (to be discussed
later in Section 4.1.2), which is more expensive but can
guarantee arbitrarily small errors.

(Range Query) “Find customers whose locations are between

1km and 3km.”

SELECT CName FROM CustomerLoc

WHERE Location � 1km AND Location � 3km

In sensing and moving objects’ applications, data

recordings usually change continuously, making the query

of an interval more meaningful than a single value. In

Table 6b, each customer’s location is considered to be a

continuous random variable, satisfying the normal distribu-

tion Nð�; �2Þ, where � is the mean, and �2 is the variance

[82]. For c1ðLilyÞ, her location within [1 km, 3 km] has a

probability
R 3

1
1ffiffiffiffi
2�
p e�

ðx�2Þ2
2 dx ¼ 0:68. Combined with the over-

all tuple probability 0.9, one can get Lily : 0:68 � 0:9 ¼ 0:61.
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TABLE 5
Probabilistic Restaurant Relation and Its Possible Worlds

TABLE 6
Probabilistic Customer and CustomerLoc Relations

Nð�; �2Þ: normal distribution with probabilistic density function:

fðxÞ ¼ 1ffiffiffiffi
2�
p

�
e�
ðx��Þ2

2�2 , where � is mean and �2 is variance.

TABLE 7
Join Query Result (Relation RestInt)



Similarly, one can compute other customers’ probabilities,

with the final result as fðLily; 0:61Þ; ðTom; 0:01Þ; ðJessica;
0:38Þg. As the value distribution of an attribute is regarded

as a probabilistic density function, this approach incurs a

high complexity due to the expensive cost of integration

computation. Frequently, one must resort to approximation.

(Top-k Query) “Find top 2 restaurants with the highest

discounts.”
SELECT * FROM Restaurant

ORDER BY Discount DESC LIMIT 2

Several factors influence result ranking, including Dis-

count and Prob. of each tuple, probability of each possible

world, and the ranked tuple position in the possible world.

They make top-k ranking an intriguing issue, leading to

multiple query semantics [88]:

1. Ré et al. [89] rank query results based on tuples’
probabilities and return <r2; r1> (Table 5), because
their probabilities are among the top 2.

2. Uncertain top-K (U-TopK) query [90] returns a
tuple vector with the maximum aggregated prob-
ability of being top-k across all possible worlds. It
returns <r3; r1>, contributed by world W1 and W2

as the result.
3. Uncertain rank-k (U-kRanks) query [90] returns a list

of k tuples, where the ith tuple appears at rank i
with the highest probability in all possible worlds.
The top-2 query results are thus <r3; r1>, since r3

has the highest probability to be ranked first in all
possible worlds (r3 is ranked first in possible world
W1, W2, W3, W4 whose corresponding probabilities
sum up to be 0.55), and r1 has the highest probability
to be ranked second in all possible worlds.

4. Probabilistic threshold top-k query [91] returns all
tuples whose probabilities in the top-k list are larger
than a prespecified threshold. When threshold ¼
0:25, the returned results are <r1; r3> (r2 is ignored
with a probability of 0.132).

5. Expected rank query [92] returns a list of k tuples that
have the highest expected ranks, computed by
summarizing the product of ranked tuple position
and probability in each possible world. The top-2
results are <r3; r1>.

6. Expected score query [92] returns a list of k tuples that
have the highest expected discounts, computed by
multiplying tuple’s Discount and Prob. The top-2
results are <r1; r2>.

7. Parameterized ranking function-based query [93]. A
parameterized ranking function is first defined
�!ðtÞ ¼

P
i>0 !ðt; iÞPrðrðtÞ ¼ iÞ, where rðtÞ is a ran-

dom variable denoting the rank of t in all possible
worlds, and !ðt; iÞ is a weight function: T 
N ! C
(T is the set of all tuples, N is the set of all ranking
positions, and C is the set of complex numbers). The
top-k query returns k tuples whose j�!ðtÞj values are
among the top k.

In Table 5, when the weight function is set to

!ðt; iÞ ¼ 4� i, meaning the weight function is independent

of t, the top-2 results are <r1; r3>. By setting appropriate

weights, the parameterized ranking function can approx-

imate many of the previously proposed ranking semantics,

except for the U-TopK query.
k-nearest neighbor queries over uncertain data can be

classified to two types: One is probabilistic nearest
neighbor, which ranks uncertain objects based on their
probabilities of being the nearest neighbor of a query point
[94], [95], [96]; the other approach is based on a distance
metric, where similar query semantics like U-TopK query,
uncertain rank-k query, expected score query, and expected
rank query can be applied [97], [98], [99], [100].

In evaluating top-k queries based on ranking functions,

two efficient techniques are mainly involved:

1. Generating function technique. Li et al. [93] presented a
polynomial algorithm based on generating functions

avoiding listing all possible worlds in exponential

time complexity. Let a list of tuples Ti ¼ ft1; . . . ; tig
in a nonincreasing order by their score, a generating

function can be constructed in the form of F iðxÞ ¼
ð
Q

t2Ti�1
ð1� PrðtÞ þ PrðtÞ � xÞÞðPrðtiÞ � xÞ ¼

P
j�0 cjx

j

to compute the probability that the tuple ti is at rank

j (i.e., PrðrðtiÞ ¼ jÞ). In this formula, the coefficient cj
of xj in F i is exactly the value of PrðrðtiÞ ¼ jÞ.
Besides, F i can be obtained from F i�1, which further

simplifies the calculation. This approach is also

applied in [101], [102].
2. Poisson binomial recurrence technique. The probability

of a tuple ti to be ranked in the top-k list can be

computed as Prðti; jÞ ¼ PrðtiÞPrðSti ; j� 1Þ, where

PrðtiÞ is the probability that ti appears, Sti is the set of

all the tuples that satisfy the query and are ranked

higher than ti, and PrðSti ; j� 1Þ is the probability
that j� 1 tuples in Sti appear in possible worlds.

Based on the Poisson binomial recurrence PrðSti ; jÞ ¼
PrðSti�1

; j� 1ÞPrðtiÞ þ PrðSti�1
; jÞð1� PrðtiÞÞ [103],

the value of PrðSti ; jÞ can be computed recursively.

Poisson binomial recurrence and variants have been

applied in [91] to efficiently answer probabilistic

threshold top-k queries, [104] to do pruning in

inverse ranking query (for a user-specified query
point q, it computes all the possible ranks of q with

probability greater than a predefined threshold),

[100] to compute probabilistic similarity ranking on

uncertain vector data, and other works [105], [106],

[107], [108].

(Lineage Query) “Find customers contributing to ‘Starbucks’

in RestInt.”

SELECT Customer.CName FROM RestInt, Customer

WHERE lineage(RestInt, Customer)

AND RestInt.RName=‘Starbucks’

The Trio system [109] accommodates tuples’ lineage/

provence information. For the relation RestInt (Table 7),

lineageðt1Þ ¼ fr1; c1g, lineageðt2Þ ¼ fr2; c1g, lineageðt3Þ ¼
fr3; c1g. lineageðRestInt; CustomerÞ in the WHERE clause

holds true if the lineage of RestInt tuples includes a Customer

tuple. As t1:RName ¼ ‘‘Starbucks’’ and lineageðt1Þ ¼
fr1; c1g, the above query result is “Lily.”
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(Correlation-based Query) “Find restaurants of interest

to Lily.”
SELECT RName FROM Restaurant, Customer

WHERE Restaurant.Type=Customer.Interest

AND CName=‘Lily’

Computation of result probability of t1 (Table 7) after
joining r1 with c1 (Table 5) involves a logical-and relation-
ship. Sen and Deshpande [110] present the correlation
among tuples in probabilistic graphical model, as shown
in Fig. 11.

In the model, each tuple is associated with a Boolean
random variable, where 1 represents tuple existence, and 0
otherwise (i.e., Xr1, Xc1, and Xt1). The correlation in the
graphical model can then be represented with random
variables and factor functions in Fig. 11, and a 3-argument
factor fandt1;r1;c1 is defined to express this and correlation. Then,
query evaluation can be casted as inference over the
probabilistic graphical model by computing the marginal
probability of result tuples with all the tuples (regarded as
random variables) and factors (representing tuple correla-
tions) involved:

P ðXt1 ¼ 1Þ ¼
X

Xr1;Xc1

fr1ðXr1Þfc1ðXc1Þfandt1;r1;c1ðXt1; Xr1; Xc1Þ

¼ 0:7 � 0:9 ¼ 0:63:

Based on the model, various forms of correlation/
dependency such as implication, mutually exclusivity, xor
relationship can be represented. To reduce the storage and
computing complexity, the random variable elimination graph
(rv-elim graph) is built where nodes are marked with labels
allowing the recognition of shared correlation factors [111].
The compression of the rv-elim graph enables to speed up
query processing significantly [112]. A PrDB model for
managing and exploiting rich correlation for query evalua-
tion is further presented [112], [113]. Antova et al. [114],
[115] handle complex correlations by vertical partitioning,
where a databases relation is partitioned into several U-
relations, so that only the involved partition is used in the
query process. Correlations in probabilistic streams are also
examined in [116], [117].

4.1.2 Monte-Carlo-Based Data Management

Data imprecision usually results in a lot of possible query
answers. To address queries of a #P-complete data complex-
ity, Dalvi and Suciu [81] propose the use of the pseudoran-
dom Monte Carlo method [118] to approximately compute
the result probability. The simulation algorithm can run in
polynomial time and approximate the probabilities to an
arbitrary precision. Basically, given a DNF formula with

N clauses and any 
 and �, the algorithm runs in time
OðN


2
ln 1

�Þ, guaranteeing that the probability of the error
being greater that 
 is less than �.

Monte Carlo simulations are also exploited to evaluate
top-k queries. Considering the importance of correct ranking
rather than exact probabilities, Ré et al. [86] develop a Monte
Carlo approximation algorithm, which calculates the top-k
answers for many steps. After N steps, an approximation
interval [aN , bN ] is returned for a result tuple’s probability p,
whose width shrinks as N increases. The ranking among all
the result tuples is conducted to find the top-k probabilities
according to the approximation intervals.

Jampani et al. [119], [120] present a Monte Carlo-based
uncertain data management approach called MCDB. It does
not encode uncertainty within the data model itself, and all
its query processing is over the classical relational data
model. MCDB allows a user to define arbitrary variable
generation (VG) functions that embody the database un-
certainty. It then uses these functions to pseudorandomly
generate realized values for the uncertain attributes and
runs queries over the realized values. Moreover, these VG
functions can be parameterized on the results of SQL
queries over parameter table that are stored in the database.
By storing parameters rather than probabilities, it is easy to
change the exact form of the uncertainty dynamically,
according to the global state of the database [119], [120]. In
MCDB, each query is evaluated only once, regardless of
value N (number of Monte Carlo iterations) supplied by the
user. Each “database tuple” that is processed by MCDB is
actually an array or a “bundle” of tuples, where t½i� for tuple
bundle t denotes the value of t in the ith Monte Carlo
database instance. The performance benefit of such a “tuple
bundles” approach is that relational operations can effi-
ciently operate in batch across all N Monte Carlo iterations
that are encoded in a single tuple bundle. Most of the classic
relational operations can be modified slightly to handle the
fact that tuple bundles move through the query plan. Some
additional operators are also defined to facilitate uncertain
database querying, such as seed operators, instantiate
operator, split operator, and inference operator.

Arumugam et al. [121] further extend MCDB by
randomly generating database samples and exploring the
tails of the query-result distribution. By adapting the Gibbs
sampling (a special case of an MCMC) and cloning
techniques developed in the simulation field, they present
a statistical method for both estimating a user-specified
quantile on a query-result distribution and deriving a set of
samples from the tail. The approach finds a good place in
risk analysis [121].

Example 9. MCDB approximately simulates the quantile of
financial loss in enterprise risk analysis. In the relation
Loss(CustomerID, Val),Val is an uncertain attribute whose
values are generated through a predefined VG function
in the query process. The quantile is defined as “the value
c such that there is a probability p of seeing a total-loss of c or
more,” Prob:ðSUMðV alÞ � cÞ ¼ p.

Assume that there are r customers. The computation
of quantile c is as follows:

1. Generate four DB instances S ¼ fDð1Þ; Dð2Þ;
Dð3Þ; Dð4Þg, each including r tuples.
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2. Implement SUM query Q on each DB instance,
and discard the DB instances whose SUM values
are in the lowest 100ð1� p1=mÞ percent percentile.
The remaining DB instances are cloned to ensure
there are still four DB instances in S.

3. Implement Gibbs update in the newly cloned DB
instances to eliminate duplicate instances for a
new version of S, where tuples in a DB instance
are updated one by one in a conditional way.

4. Repeat m times from Step 2.

Finally, quantile c is obtained through the SUM query
on the final version of S.

4.1.3 Evidence-Based Data Management

Based on evidence theory, evidence-oriented database was
proposed in the 1990s [122] to support data ignorance. In an
evidence-oriented database, the value of an uncertain
attribute in a relation is represented as a probability
distribution on the power set of its domain. Each tuple
has an additional confidence attribute in the form of [belief,
plausibility], stating the confidence level of its belonging to
the relation. For an uncertain attribute A, its belief mass
function is defined as m : 2domðAÞ ! ½0; 1�.

Table 8a shows an evidence-based Customer relation.
John’s Interest attribute is expressed as <fi1g; 0:7>;
<fi1; i2g; 0:3>, meaning that John is interested in i1 with
probability 0.7, or interested in i2 or i3 with probability
0.3. That is, mðfi1gÞ ¼ 0:7 and mðfi1; i2gÞ ¼ 0:3. Due toP

S�2domðAÞ mðSÞ ¼ 1, mð�Þ ¼ 0, mðfi2gÞ ¼ 0, mðfi3gÞ ¼ 0,
mðfi2; i3gÞ ¼ 0, mðfi1; i3gÞ ¼ 0, mðfi1; i2; i3gÞ ¼ 0.

(Evidence-based Query) “Find customers who may

be interested in i1 or i3”.

SELECT CName,Interest FROM Customer

WHERE (Interest=i1) OR (Interest=i3)

The resulting table is shown in Table 8b. Taking John

tuple, for example,

beliefðfi1; i3gÞ ¼
X

B�fi1;i3g
mðBÞ ¼ mðfi1gÞ ¼ 0:7;

plausibilityðfi1; i3gÞ ¼
X

B\fi1;i3g6¼�

mðBÞ ¼ mðfi1gÞ

þmðfi1; i2gÞ ¼ 1:

Then, the confidence level of John tuple in the resulting
table is [0.7, 1].

Evidence-based compound query has more query con-
ditions connected by logical connectives (conjunction,
disjunction, or negation). The conjunction of two indepen-
dent events A and B can be computed as

beliefðA ^BÞ ¼ beliefðAÞ � beliefðBÞ;
plausibilityðA ^BÞ ¼ plausibilityðAÞ � plausibilityðBÞ:

Similarly, due to A _B ¼ :ð:A ^ :BÞ, the disjunction of
two events A and B can also be computed according to the
following equations in independent situations:

beliefðA _BÞ ¼ 1� ð1� beliefðAÞÞ � ð1� beliefðBÞÞ;
plausibilityðA _BÞ ¼ 1� ð1� plausibilityðAÞÞ

� ð1� plausibilityðBÞÞ:

4.2 Fuzzy Data Management

Fuzzy data management deals with imprecisely defined
vaguely bounded linguistic terms and statements like the
discount is high (or around 4) rather than the discount is 4.
Fuzzy approximate queries like “the discount is around 4” are
explained according to the definition of fuzzy sets with
vague boundaries.

Developed fuzzy data models can represent tuple-level,
attribute-level, or both-leveled uncertainty. To show differ-
ent representation and query mechanisms between prob-
abilistic and fuzzy databases, we use the same example
about customers’ interests in restaurants with discounts.
The tuple-level fuzzy data model considers a relation as a
fuzzy set that includes each tuple as an element with a
membership degree [123]. As shown in Table 9, attribute �
gives the fuzzy measure of the association among RName,
Discount, and Reputation. The attribute-level possibility data
model represents an uncertain attribute value that is
represented with a possibility distribution [124], [125],
[126] (e.g., Discount in Table 9), or a linguistic term (e.g.,
Reputation in Table 9). The possibility-distribution-fuzzy
data model combines the above two methods [127], [128].

Based on fuzzy theory, the fuzzy membership degree of
a conjunctive operation on fuzzy sets A and B is
�A[BðxÞ ¼ maxð�AðxÞ; �BðxÞÞ, and the fuzzy membership
degree of a disjunctive operation on A and B is �A\BðxÞ ¼
minð�AðxÞ; �BðxÞÞ [129].

We illustrate three typical fuzzy queries over Table 9.

(Fuzzy Query over Possibility Distributions) “Find

restaurants which offer a High discount.”.

SELECT RName FROM Restaurant

WHERE Discount=High

Assume term HighDiscount is represented as a possibility
distribution �HighDiscountðxÞ ¼ f0:2=8; 0:7=9; 1=9:5g, and Star-
bucks tuple has the discount possibility distribution
�Starbucks:DiscountðxÞ ¼ f0:5=7; 1=8; 0:6=9g. We use the nota-
tions A and B to denote the fuzzy sets HighDiscount and
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TABLE 9
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Starbucks.Discount separately. The degree that A matches B
can be computed as follows:

Ma [130] defined the semantic inclusion degree (SID) for
two fuzzy sets �A and �B as follows:

Definition 1. Let �A and �B be fuzzy sets. In the universe X, the
degree that �A semantically includes �B is

SIDð�AðxÞ; �BðxÞÞ ¼
X
xi2X

minð�AðxiÞ; �BðxiÞÞ
�X

xi2X
�BðxiÞ:

ð23Þ

For the above query, in the universe of discount
X ¼ f7; 8; 9; 9:5g,

SIDð�AðxÞ; �BðxÞÞ ¼ ð0:2þ 0:6Þ=ð0:5þ 1þ 0:6Þ ¼ 0:38;

SIDð�BðxÞ; �AðxÞÞ ¼ ð0:2þ 0:6Þ=ð0:2þ 0:7þ 1Þ ¼ 0:42:

ð24Þ

Then, the similarity between the possibility distribution
�BðxÞ and possibility distribution �AðxÞ is minðSIDð�AðxÞ;
�BðxÞÞ; SIDð�BðxÞ; �AðxÞÞÞ ¼ 0:38.

Considering the overall Starbucks tuple uncertainty 0.9,
the result Starbucks tuple satisfies high discount with the
degree of minð0:38; 0:9Þ ¼ 0:38. In the same way, we can
obtain the final result as ðStarbucks; 0:38Þ, ðPizzaHut; 0:8Þ,
and ðKFC; 0:13Þ. Thus, we find that PizzaHut is the most
likely to offer High discount.

(Fuzzy Query over Fuzzy Terms) “Find restaurants that

have a high reputation.”.

SELECT RName FROM Restaurant

WHERE Reputation=High

A similarity measurement between two fuzzy linguistic
terms can be expressed in Table 10.

As Starbucks has reputation High, its satisfying degree of
HighReputation is 1.0 according to the above table. Thus, its
membership degree in the final answer is minð1:0; 0:9Þ ¼
0:9. The query result is fðStarbucks; 0:9Þ, ðPizzaHut; 0:8Þ;
ðKFC; 0:5Þg.

(Fuzzy Query with Vague Condition) “Find restaurants

whose discounts are around 8”.

SELECT RName FROM Restaurant

WHERE Discount�8
The fuzzy condition about 8 can be defined a membership

function �around 8ðDiscountÞ ¼ f0:2=6; 0:7=7; 1:0=8, 0:7=9;
0:2=9:5g, which is similar to possibility distribution in the
previous fuzzy query example. Result computation can
follow exactly the same way through the SID.

We summarize tuplewise and attributewise uncertainty
representation in uncertain data management in Table 11.
In tuplewise uncertainty, two ways are used to express
tuple existence uncertainty: a single value (probability in
probabilistic databases, or membership degree in fuzzy
databases) or a range of confidence degree (evidence
databases). In attributewise uncertainty, various represen-
tations are used: a set of discrete attribute values and
corresponding probabilities (e.g., ðam; pamÞ), a number of
value sets with probabilities (e.g., ðAi;mðAiÞ), a probabil-
istic density function fðAÞ denoting the distribution, several
characteristic values for a distribution function (Monte
Carlo-based databases), and a possibility distribution
(fuzzy databases).

5 CHALLENGES TO UNCERTAIN DATA

MANAGEMENT

Great achievements have been made on uncertain data
management. On the other hand, when we look at different
origins of uncertainty as well as different handling practices
in diverse fields, we may find some interesting issues for
further data-oriented research, particularly from user and
domain perspectives.

5.1 Leveled Uncertainty Representation

Suciu et al. [81], [133], [87], [134] have made great efforts to
reduce the complexity of uncertain database query proces-
sing. Inspired by uncertainty handling activities in diverse
fields, domain-specific knowledge could be a help to further
reduce the complexity based on some specific uncertain
data representation.

For example, in a group-purchase application scenario,
customers may be interested in such restaurants that offer
discounts less than 4, between 3 and 5, and so on. On the other
hand, the possible discounts available from restaurants
themselves may fall into a scope rather than as a specific
value. A tabular representation of uncertain discount values
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Similarity Representation for Reputation

TABLE 11
Uncertainty Representation in Data Management



for a restaurant is illustrated in Table 12, whose pairwise
uncertainty values are increasingly ordered. For instance,
the first pair h0:1;�1i represents that the probability of
ðDiscount � 1Þ is 0.1. Apparently, the probability of
ðDiscount � 2Þ, including ðDiscount � 1Þ, is greater than
0.1, as shown in Table 12. Such a property could be
exploited to query optimization and is particularly good at
range queries. It is a compromise between discrete and
continuous probability distributions and offers a comple-
mentary way when a continuous probability distribution is
unavailable or impractical due to the high integration
computation complexity.

The size (or granularity) of the uncertainty table reflects
the precision level of uncertainty handling behavior itself,
forming a hierarchy of uncertainty tables (T u;
u), where
T u ¼ ðT1; T2; . . . ; TsÞ of s levels, and 
u is a partial order
among the levels of T u, such that (T1 
u Ti 
u Ts) where
ð1 < i < sÞ. Given a query or inference task, dynamically
selecting the right uncertainty table from the hierarchy
based on certain measurements is needed for different
applications.

5.2 Domain-Driven Uncertainty Management

Different applications have different requirements on
uncertainty management. Bringing application logics to
uncertainty management is important. Taking sensing and
monitoring domains, for example, real-time sensing and
response with low latency are very much desirable.
However, due to the inherent uncertainty in the real world,
the execution time and waiting time of a query may vary. It
is thus hard to precisely predicate and ensure real-time
query response performance.

For instance, for a query Q issued at time Ts and
expected to finish at Td, let Te denote its uncertain waiting
and execution time, represented in the form of a value scope
around the estimated value:

Uð�; ~TeÞ ¼
�
Te : jTe � ~Tej � � ~Te

�
; ð25Þ

where Te
�

is the estimated time for waiting and execution
and � 2 ½0; 1� is the derivation. A robust function can be
defined to compute the largest allowable scope of query
waiting and execution time to meet the query deadline:

Robust ¼ max
n
� : max

Te2Uð�; ~TeÞ
ðTs þ TeÞ � Td

o
: ð26Þ

Based on the robust value, the variation range of query
waiting and execution time, ½ ~Teð1� �Þ; ~Teð1þ �Þ�, can be
derived, which could then be used to guide time-sensitive
query scheduling and resource management of the system.

5.3 Leveraging User Knowledge

Human users are good at and highly successful in coping
with uncertainty throughout their daily lives, as most
human knowledge in the real world is uncertain. While

working with probabilistic database query and inference
mechanisms to infer sensible and actionable information
from underlying uncertain data, we could involve users in
the loop of query evaluation for feedback.

For example, based on the observation that a user is
usually more likely to recognize mistakes in basic uncertain
tuples leading to the final ranked answer, than mistakes in
the answer itself, the query engine could consider to display
those influential underlying probabilistic tuples to the
ranked query result, and then leverage user’s personal
knowledge to clarify the uncertainty degrees and precisions
of the basic tuples. After that, the query engine can
recompute the query and tailor its uncertain query result
toward a better quality from the perspective of the specific
user. More important, by opening the black box of the query
engine and showing to the user how it comes up with the
answer and which uncertain tuples it is based on, the user
with his/her knowledge can decide how much confidence
to be placed on the system, thus enhancing both the
intelligibility of system behavior and accountability of
human users.

Here, a few critical questions need to be answered, like
how can we interact with the user for result explanation and
uncertainty clarification without bringing much burden on
the user? How can we correct the query/inference result
after users uncertainty clarification without incurring much
computing overhead on the query engine? and how can we
reconcile different users’ uncertainty clarification upon the
uncertain database? Solutions to the above questions
determine the effectiveness of the approach.

5.4 Crowdsourcing for Uncertain Data Management

As queries may require information from human knowl-
edge that is missing in the databases, such as the
recognition of misspelling words, efforts to deeply involve
crowd on the internet in query processing have been made
[135], [136], [137], [138], [139], [140]. For instance, CrowdDB
[135] leverages human capability by crowdsourcing missing
values of tuples, crowdsourcing new tuples from the inner
relation that matches the tuple of the outer relation in join
operations, and crowdsourcing comparison work. Qurk
system [138] addresses the workflow management of
crowd-powered querying tasks by balancing monetary cost,
spending time, and result accuracy.

Currently, crowdsourcing in data management is still in
the initial stage, leaving some challenges to be solved,
such as quality assessment and improvement, latency,
scheduling, cost optimization, privacy, and social issues
[136]. The high ambiguity and multiple sources from
human inputs need to be tackled for a smart interface to
machine processing.

6 CONCLUSION

Uncertainty is unavoidable. It penetrates our lives. A good
knowledge of uncertainty and uncertainty processing
techniques is helpful to know the physical world and make
better decisions. Until now, decades of efforts have been
made to tackle uncertainty. In this survey, we review the
research of uncertainty in diverse fields. To represent and
model uncertainty, some mathematical tools are needed.
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TABLE 12
Tabular Form of Restaurant’s Uncertain Discount



We overview four uncertainty handling theories and give
some comparisons. Their applications to the fields of
economics, engineering, ecology, and information science
are described. We particularly describe uncertainty man-
agement achievements made by the database community
and list some potential problems for future work from the
data modeling and querying perspectives. We hope that
uncertain data management methods and uncertainty
handling practices could inspire each other. Therefore,
practical problems can be handled more efficiently with the
development of uncertainty management technologies.
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[76] E. Adar and C. Ré, “Managing Uncertainty in Social Networks,”
IEEE Data Eng. Bull., vol. 30, no. 2, pp. 23-31, 2007.

[77] A. Shenhar, O. Levy, and D. Dvir, “Mapping the Dimensions of
Project Success,” Project Management J., vol. 28, pp. 5-13, 1997.

[78] D. Baccarini, “The Logical Framework Method for Defining
Project Success,” Project Management J., vol. 30, no. 4, pp. 25-32,
1999.

[79] F. Dweiri and M. Kablan, “Using Fuzzy Decision Making for the
Evaluation of the Project Management Internal Efficiency,”
Decision Support Systems, vol. 42, pp. 712-726, 2006.

[80] N. Fuhr and T. Rolleke, “A Probabilistic Relational Algebra for the
Integration of Information Retrieval and Database Systems,” ACM
Trans. Information Systems, vol. 15, pp. 32-66, 1997.

[81] N. Dalvi and D. Suciu, “Efficient Query Evaluation on Probabil-
istic Databases,” Proc. 30th Int’l Conf. Very large Data Bases, 2004.

[82] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating
Probabilistic Queries over Imprecise Data,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, 2003.

[83] R. Cheng, S. Singh, and S. Prabhakar, “Efficient Join Processing
over Uncertain Data,” Proc. ACM Int’l Conf. Information and
Knowledge Management, 2006.

[84] R. Murthy and J. Widom, “Making Aggregation Work in
Uncertain and Probabilistic Databases,” Proc. Int’l VLDB Workshop
Management of Uncertain Data, pp. 76-90, 2007.

[85] T. Jayram, S. Kale, and E. Vee, “Efficient Aggregation Algorithms
for Probabilstic Data,” Proc. Ann. ACM-SIAM Symp. Discrete
Algorithms (SODA), 2007.
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