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Abstract

Finite element based techniques have been one of the most popular methods used to model electromagnetic field behavior.

Typically, the methods invoked involve representing the function of interest in terms of basis functions whose support is defined

over a simplicial mesh. Since its introduction, the technique has seen steady improvement. The method now boasts of adaptive

h-p refinement. Recently, however, Babuska and his colleagues introduced the notion of “meshless finite elements” or the

so-called Generalized Finite Element method (GFEM). This method does not rely on an underlying tesselation and admits

a larger class of basis functions. Application of this technique to analyze practical problems has largely been restricted to

systems that require the solution to the Poisson equation. Investigation of the applicability of this technique to wave scattering

problems has been limited. The principal difficulty in analyzing scattering and radiation problems using this technique lies

in developing appropriate boundary conditions to truncate the computational domain. Our method of choice is to impose

exact boundary conditions using boundary integrals–this is largely governed by the fact that these may be conformal to the

surface, and can be readily accelerated using existing fast solvers. We will thoroughly explore the applicability of this technique

to two-dimensional electromagnetic systems. In doing so, we will explore the methods necessary to impose various boundary

conditions. This analysis will give us the background necessary to develop the framework for hybridizing boundary integral

techniques with GFEM, thus imposing an exact radiation boundary condition. The results obtained using this hybrid code will

be first validated against analytical data for a range of scenarios. To further validate the proposed approach for more complex

scatterers, we integrate GFEM with perfectly matched layers, and compare results obtained for a complex scatterer. Several

results that demonstrate the accuracy of the proposed method will also be presented.
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I. Introduction

The state of art of FEM tools for electromagnetic analysis has grown by leaps and bounds over the past few

decades [1]. Classical methods require an underlying tesselation on which basis functions are defined. These

basis functions are based on a span of polynomials, have finite support, and obey conditions at inter-element

boundaries. For instance, Whitney elements that are typically used in computational electromagnetics
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satisfy either tangential or normal continuity across inter-element boundaries. A genre of higher order basis

functions have also been presented and have been continually refined [2, 3]. Likewise, basis functions that

can be used in a h, p-convergence setting have been presented and applied to several engineering problems.

Indeed, in a series of excellent papers, it has been shown that it is possible to have true h, p–convergence [4,

5].

Classical FEM schemes require a simplicial structure that satisfies certain aspect ratios to define the

span of polynomials. In many situations, creating such a mesh can be laborious and time consuming. For

instance, developing h, p-convergence meshes or analyzing time varying phenomena that requires re-meshing

at every time instant can be laborious. Another handicap of classical FEM is that the ansatz space used

to approximate the local behavior is a span of polynomials. If analytic local behavior is known, then it

might be possible to use functions other than polynomials to approximate local behavior. The development

of “meshless FEM” was motivated by the need to address these possible improvements. Intuitively, these

methods work as follows: the domain being considered is partitioned into a union of patches or a “partition

of unity,” and on these patches, the local approximation is constructed using a span of functions [6]. Thus,

the representation of the function is achieved via two functions; one that is defined on the partitions of

unity and the other on each of the patches. The basis functions describing the unknowns inherits the higher

order nature of approximation from the local basis functions and the smoothness of the functions defined

on the partition of unity. As with classical FEM, using a span of different local approximations in different

regions is also possible. Thus, the meshless methods retain several features of classical FEM and provide

additional flexibility in terms of functions that are used and obfuscating the need for a simplical partition

of the domain.

Several flavors of meshless methods exist; the principal difference between these lie in the manner in which

the local approximations and functions on patches are specified. However, it has been shown that most of

the these methods fit into the framework of the Partition of Unity FEM (PUFEM) or Generalized FEM

(GFEM) introduced by Babuska and his colleagues [7, 8]. In what follows, we will use the term GFEM to

describe methods to be developed herein. The mathematical foundations of this algorithm have been laid

out in great detail [7–9], and it has been shown that h-, p- and hp-adaptivity is easily achieved. Likewise,

the efficacy of using a space of harmonic functions as local approximants have been demonstrated [9].

The application of this technique to solving problems in electromagnetics has not been extensive. Princi-

pally (this is not a complete list), research has been conducted by [10–21]. To a large extent, our work in this

area revolved around developing meshless methods for solving the diffusion equation in both the frequency

and time domain as applied to non-destructive evaluation [11–13]. The basis functions used in this analysis

relied on the element free Galerkin method (EFG) [22]. The method, particularly its scalar implementa-

tion, has been gaining a foothold in the research landscape insofar as application to magnetic field analysis.

Recently, we have explored the viability of suitably modifying the EFG method to enable the analysis of
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vector fields [15] and have developed meshless-PMLs to enable the analysis of open region problems [23]

within the context of the EFG method. However, while the EFG method can be thought of as a subset of

GFEM, it does not lend itself readily to hp–adaptivity, whereas this is inherent in other GFEM methods.

Having a proper understanding of the sources of error and the means though which one may control them

is important. We have found that in most of the implementation, reason that the convergence is not of the

same order of the underlying scheme is largely due to the improper imposition of boundary conditions.

Proper imposition of boundary conditions within a meshless scheme is challenging. Unlike classical FEM,

the space of approximating functions are not interpolatory. This poses severe challenges in imposing Dirichlet

boundary conditions. More specifically, one cannot use the Lagrange multiplier technique as the approxi-

mation spaces have to obey the inf-sup condition, and it is not always possible to construct such spaces for

meshless methods. This deficiency is directly linked to the difficulty in truncating the computational domain

using boundary integrals. This is due to two facts; (i) to solve the hybrid problem, one typically defines an

auxiliary set of basis functions and unknowns to represent the tangential components of the fields [1]. It

implies from the above discussion [24] that these basis functions, together with those used in the interior,

should satisfy the inf-sup (Babuska-Brezzi) condition, and (ii) there are practical situations wherein one

uses a first kind Fredholm integral equation as the boundary is not closed. In these cases, the BI enforces a

Dirichlet type condition. Thus, the principal contribution of this paper is four fold:

1. We present a scheme for implementing GFEM for the Helmholtz equation.

2. We develop an adaptation of Nitsche’s method for implementing the Dirichlet boundary condition.

3. We develop the hybrid GFEM-BI technique for domain truncation for both open and closed domains.

4. We develop the methodology wherein local boundary conditions can be integrated with GFEM–more

specifically, the perfectly matched layer (PML). The development of this technique is a by-product of the

need to have an additional modality of validating the results obtained by the GFEM-BI scheme.

Our ultimate aim is to develop a three-dimension vector solver for analyzing electromagnetics. The rationale

for embarking upon this specific problem is as follows: (a) This approach presented in this paper (basis

functions/means to impose boundary conditions, etc) can readily used for solution of quasi-static electro-

magnetic phenomena and scalar wave equations; (b) It permits us to work out several mathematical and

numerical hurdles–the principal being the application of Dirichlet boundary condition and the accurate eval-

uation of integrals; (c) it is equally important to understand the manner in which boundary integral based

techniques can be hybridized with this scheme. The advantage of hybridizing GFEM with BI is readily ap-

parent; it imposes an exact boundary condition for open domain problems, and the computational cost can

be amortized using recent advances in the integral equation technology namely the fast multipole method

or a host of FFT-based schemes. This work has provided the mathematical basis for our subsequent work

on three-dimensional vector solvers for electromagnetics problems. Our preliminary work in this area was

presented recently [?], and a paper is being prepared for submission.
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This paper proceeds along the following lines; in the next section, we formulate the problem in detail. Here

we introduce the concepts of GFEM, discretization of the domain, basis functions, methods for integration,

and methods for implementing various boundary condition. The last includes different types of boundary

integral techniques and a local absorbing boundary condition. Next, we demonstrate the accuracy and

convergence of the GFEM and GFEM-BI via a series of analytical comparisons. We shall also demonstrate

the accuracy of this scheme by comparing the results obtained against those obtained by truncating the

domain using a PML as an absorbing boundary condition. Finally, the paper will conclude with directions

on our future research.

II. Formulation

Consider a multiply connected domain Ω whose interior boundaries are denoted by ∂Ω:= Γ =
⋃

i Γi. It is

assumed that this domain is embedded in a domain Ωe and its exterior boundary Γe is defined as Γe := Ωe∩Ω̄.

Interior to the domain Ω, the function u(x) satisfies

(∇ · [α(x)∇] + ω2γ(x)
)
u(x) = f(x)

Bi {u(x)} = gi(x) for x ∈ Γi

Be {u(x)} = ge(x) for x ∈ Γe

(1)

In the above equations it is assumed that x ∈ Rd, Be and Bi are differential operators, and gi(x) is the

function that is imposed on Γi. Here, d = 2, 3, α(x) and γ(x) are material parameters. The function of

interest u(x) is used to denote the ẑ component of either the electric or magnetic field. The rationale of

defining Γe explicitly is to impose appropriate boundary conditions that enable the analysis of scattering

problems. The parameters α(x) and β(x) can stand for either the permittivity or permeability, depending

on the variable that u(x) represents. Solution to this problem using the standard finite element method

requires an underlying tesselation on which basis functions are defined. These basis functions are based on

a span of polynomials, have finite support, and obey conditions at inter-element boundaries. For instance,

Whitney elements that are typically used in computational electromagnetics satisfy either tangential or

normal continuity across inter-element boundaries. Higher order basis functions based on these elements

have also been presented and have been continually refined [2, 3]. Likewise, basis functions that can be used

in a h, p-convergence setting have been presented and applied to several engineering problems. Indeed, in a

series of excellent papers, it has been shown that it is possible to have true hp–adaptivity [4, 5]. On the other

hand, meshless methods attach a patch or volumina to each point whose union forms an open covering of

the domain. The local shape functions are constructed within each domain. Several different flavors of these

methods exists [8]. In this paper we will base our development on the generalized finite element method

(GFEM) [8].
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A. Generalized Finite Element Method

A.1 Basis functions

The presentation of the fundamentals of basis functions is a repetition of those in [9, 25]. Inclusion of this

description is purely for the sake of completeness. GFEM is based on a set of N nodes located at xi in the

vicinity of the domain Ω such that
{
xi ∈ Rd : xi ∈ Ω, i = 1, · · · , N

}
. Associated with each of these nodes is a

patch or volumina denoted by Ωi of size hi such that Ω ⊂ CΩ :=
⋃

i Ωi and Ωi =
{
x ∈ Rd : ||x− xi|| ≤ hi

} ⊂
Rd. Specifically, a patch Ωi is defined as Ωi =

⊗d
k=1 Ω(k)

i , Ω(k)
i = {x(k) ∈ R, | x

(k)
i − x(k) |≤ h

(k)
i }. Figure

1 describes such a construction. Typically, there are no restrictions on the shape of the domain. To a large

extent, these are chosen depending on the underlying basis functions. Associated with each patch are basis

functions that will be used for Galerkin testing and source. The basis function is a product of two functions,

ψi(x) and vi(x): functions ψi(x) form a partition of unity subordinate to the cover Ωi, and a space of

functions vi(x) = span {vm
i (x)} that are local to the domain Ωi. The global approximation of the variable

is then a space of functions denoted by Vi(x) = ψi(x)vi(x). The basic theory of the GFEM method using

this space of functions was originally developed by Babuska and Melenek [9] and is summarized below. Note

that the definitions listed below are key to some of the proposed tasks.

Definition : Let Ω ∈ Rd be an open set, and let Ωi be an open cover of Ω satisfying a point-wise overlap

condition

∃M ∈ N ∀x ∈ Ω card {i|x ∈ Ωi} ≤ M

Definition : Let {ψi} be a Lipchitz partition of unity subordinate to the cover {Ωi} satisfying the following

conditions: (i) supp(ψi) ⊂ Ωi for all i; (ii)
∑

i ψi ≡ 1 on Ω; (iii) ||ψi||L∞(Rd) ≤ C∞; and (iv) ||∇ψi||L∞(Rd) ≤
C∇

diam(wi)
. Here C∞ and C∇ are two constants. Then {ψi} is called an (M,C∞, C∇) partition of unity

subordinate to {wi}. The partition of unity is said to be of degree k if ψi ∈ Ck(Rd). The covering sets wi

are called patches.

Assume that the PUM space of functions V (x) = span {ψivi} is given. Let the function uap :=
∑

i ψivi ∈
V ⊂ H1(Ω) be an approximation to u(x). The upper bounds on the error in the function and its gradient

have been derived in [9].

The choice of the functions ψi(x) and vi(x) can vary from patch to patch, and is usually dictated by

the geometry of the problem. More specifically, the functions vi(x) can theoretically be modified to include

logarithmic singularities. However, the first step of implementing this method is the construction of the

patches Ωi of size hi that form the open cover for the domain. In general we allow hj
i , for j = 1, · · · , d

to be different in each dimension. In this paper, we have restricted ourselves to rectangular domains. As

the patches Ωi are to be used in a Galerkin scheme, it is necessary for
⋃

i Ωi ⊃ Ω. In other words, for any

x ∈ Ω there exists at least one patch Ωi that contains x. To develop the cover we use a set of points and

psuedo-points as is done in [25]. This will ensure that for x ∈ Ω there exists at least one patch such that
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x ∈ Ωi. Next, the partition of unity functions ψi are defined in each Ωi. By definition,
∑

i ψi(x) = 1 ∀ x ∈ Ωi.

To construct these functions, we use a localized version of Shepard’s method [26] that relies on defining a

function Wi(x) with respect to each characteristic point xi ∈ Ωi such that Wi(x) = 0 ∀x ∈ ∂Ωi. In other

words, these functions are different from zero only for x ∈ Ωi. Several choices for these functions exist; the

most common are B-splines of different orders, Gaussian, regularized Lagrangians, etc. The choice of the

functions Wi depends on shape of the patch. In this paper, we restrict ourselves to rectangular domains,

and therefore, to B-splines of different orders. Then in d-dimensions we construct a function Wi(x) using a

tensor product of 1-D functions; i.e., Wi(x) =
∏d

l=1W
(

x−xl
i+hl

i

2hl
i

)
. Next, the functions ψi(x) are defined by

ψi(x) = Wi(x)∑
Ωk∈Ci

Wk(x) , wherein Ci := {Ωi ∈ CΩ|Ωi

⋂
Ωj 6= 0}.

The partition of unity functions are consistent to first order and higher order approximations are obtained

by defining higher order local functions, vi(x). As mentioned in [9], local approximating functions can be

chosen such that they better capture the local behavior of the current. However, we have restricted our

choices to either Legendre or Tchebychev polynomials of order P . Thus, in any domain Ωi the functions

vi(x) = span

{∏d
l=1 fp(l)

(
x(l)−x

(l)
i

h
(l)
i

)}
where p(l) = 0, · · · , P .

It is well known that the bilinear form of the differential equation (1) on H1(Ω) is

A(u,w) = (f, w) ∀ (u and w) ∈ H1(Ω) (2a)

A(u,w) = −(α∇u,∇w) + ω2(γu, w) (2b)

where (·, ·) denotes the standard inner product in L2(Ω). It is apparent that we have not yet incorporated the

boundary conditions; the means by which various boundary conditions are incorporated into the variational

form will be dealt with exhaustively in Section II-A.3. Using the definitions of basis functions elaborated

upon thusfar, u(x) can be now approximated as u(x) =
∑N

i IiVi, where N is the total degrees of freedom.

Using Galerkin method, the discrete version of this bilinear form can be written as

A (ui,n, wj,m) = A (
ψiv

n
i , ψjv

m
j

)
(2c)

(f, wj,m) =
(
f, ψjv

m
j

)
(2d)

Note, that the above equations indicate that the interaction between any two domains form block matrices.

However, what is crucial in the process is the evaluation of the inner products; this will be dealt with next.

A.2 Evaluation of inner products

The basis functions Vi(x) that were introduced earlier are piecewise rational functions. This is immediately

apparent when one examines the construction of ψi(x); a different number of functions Wi(x) may contribute

to ψi(x) at different location. This implies that the quadrature rules must be such that they respect these

discontinuities. To overcome these deficiencies, we have followed a method similar to the one proposed by

Schweitzer [27]. Here the domain of integration is subdivided into smaller domains where the integrand can
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be represented as a product two rational functions. Note that the integrands comprise of products of both

ψi(x)vm
i (x) and their derivatives. To illustrate the decomposition of the domain, consider two patches Ωi

and Ωj that overlap; the domain of overlap is denoted by Cij := Ωi ∩ Ωj . Further assume that in each

domain, the weight functions Wi(x) and Wj(x) are polynomials of degree l. Then in Ωi, the function Wi(x)

is piecewise rational in (l + 1)d–domains. As the function ψi(x) is a combination of both Wi(x) and Wj(x)

for x ∈ Ωi, we can partition the intersection Cij into Cij =
⋃

n Dn
ij disjoint subcells as in Fig. (2), and

ψi(x) is piecewise rational in each subcell. The process becomes more involved when more than two patches

overlap. Such a scenario is illustrated in Fig. (3). Assume Eijk := Ωj ∩ Ωj ∩ Ωk denotes the domain of

intersection of these three domains. It follows that
⋃

m Fm
ijk ⊆

⋃
n Dn

ij denotes the union of domains wherein

the function ψi(x) is piecewise continuous. Recursive identification of domains where the function ψi(x) is

piecewise rational ensures the appropriate construction of quadrature rules.

The above procedure works well for intersection between two domains Cij := Ωi ∩ Ωj ⊂ Ω. However, if Γ

dissects Cij , then it can no longer be considered a union of rectangular domains; see Fig. (4). As before,

assume that Cij =
⋃

n Dn
ij , and in each Dn

ij the functions ψi and ψj are rational functions. The cells Dn
ij

are be partitioned into two sets; those that are fully contained within Ω and those that intersect Γ. For

the former, we shall use the standard quadrature rules; the latter can be be evaluated through adaptive

quadrature. In this paper, we have restricted ourselves to boundaries that are circular. The geometric choice

permits the division into rectangular domains and curvilinear triangles as shown in Fig. (4). As before, we

use standard quadrature rules in the rectangles, and coordinate transformation and higher order integration

in the triangles [1]. Thus, the prescribed procedure enables higher order evaluation of all the inner products

in the variational form.

A.3 Imposing boundary conditions

It is evident from the above exposition, that (i) the basis functions Vi are NOT interpolatory; (ii) Ω ⊂
⋃

n supp {Vn}. These two facts make imposition of boundary conditions more difficult than those for classical

h, p convergence FEM methods. In this section, we will discuss the imposition of both the Nuemann and

Dirichlet boundary conditions, as well as the truncation of the domain using boundary integrals.

A.3.a Neumann Boundary Condition:. First, consider the differential equation in (1) with Bi {u(x)} =

αun = αn̂ · ∇u(x) = gn(x) ∀x ∈ Γ. Here, n̂ denotes the outward pointing normal from the domain Ω. This

boundary condition implies that the bilinear form is to be modified as

A(u,w) = (f, w)−
∫

Γ

dxgn(x)w(x) (3)

From the above, it is apparent that it is sufficient for the trial and basis functions to be in H1(Ω). There are

no additional constraints, and the basis do not have to satisfy the boundary conditions. Hence, incorporation

of Neumann boundary condition is no different than that in classical FEM.
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A.3.b Dirichlet Boundary Condition:. Next, assume that Bi {u(x)} = u(x) = g(x) ∀x ∈ Γ, i.e., Dirichlet

boundary condition explicitly imposes the values of u(x) on the boundary of the domain. Alternatively, the

problem may be cast as follows: “find u(x) ∈ H1(Ω) such that u(x) = g(x) ∀ x ∈ Γ” and the bilinear form

for w ∈ H1(Ω)

A(u,w) = −
∫

Γ

dxα(x)w(x)n̂ · ∇u(x) + (f, w) (4)

This statement is not very different from that posed for standard FEM albeit with a couple of differences:

in classical FEM (1) w ∈ H1
0 (Ω) which implies that the integral over the boundary vanishes; (ii) the basis

functions are interpolatory. Hence, imposing the boundary conditions is tantamount to modifying the linear

system. In GFEM, both the trial and test function do not satisfy either of these properties. Thus, imposing

Dirichlet boundary conditions is not as straightforward. This has been a topic of considerable discussion

[28]. Methods attempted have been (i) to hybridize meshless methods with classical FEM; (ii) use a penalty

function method; (iii) use a Lagrange multiplier technique, and (iv) use Nitsche’s method. Of the four

methods, we have chosen to use Nitsche’s method to impose the boundary condition. While we shall discuss

this method detail, we shall also dwell briefly on the Lagrange multiplier technique as it will shed light on

the constraints on imposing a global boundary condition.

Solving the problem using Lagrange multipliers involves finding a solution (u, λ) ∈ H(Ω)×H−1/2(Γ). The

formulation can than be stated as follows: given u(x) ∈ H1(Ω) and λ ∈ H−1/2(Γ) find the solution to

Ah(u, λ;w, µ) = Fh ∀ (w and µ) ∈ H1(Ω)×H−1/2(Γ) (5a)

Ah = − (α∇u,∇w) + ω2 (γu, w) + 〈λ,w〉+ 〈u, µ〉 (5b)

Fh = (f, w) + 〈g, µ〉 (5c)

Solution to the discrete version of this equation in the GFEM setting is not trivial. It is well-known that for

this problem to converge, it is necessary for both the interior and multiplier spaces to fulfill the Babuska-

Brezzi condition. However, it is difficult to design a multiplier space that satisfies this condition [29–31]

especially for the space of basis functions being considered here. Moreover, Lagrange multiplier based tech-

niques lead to indefinite systems. An alternative to this could be a stabilized-Lagrange multiplier technique

[32]. However, in what follows, we use the Nitsche’s technique for imposing the Dirichlet boundary condi-

tion. This method is related to the stabilized Largrange multiplier technique with two advantages: (i) it

is relatively straightforward to implement in a numerical scheme, and (ii) one does not need to define an

additional space of functions in H−1/2(Γ). The method proceeds as follows: find an approximate solution
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such that u(x) ∈ VN ⊂ H1(Ω) such that

Ah(u,w) = Fh ∀w ∈ VN (6a)

Ah(u,w) = − (α∇u,∇w) + ω2 (γu,w) +
∫

Γ

dx αun̂ · ∇w +
∫

Γ

dx αwn̂ · ∇u− β

∫

Γ

dx uw (6b)

Fh = (f, w) +
∫

Γ

dxαgn̂ · ∇w − β

∫

Γ

dx gw (6c)

where β is chosen such that it guarantees coercivity. Rigorous estimates exist for β [27]. As is also apparent

from the above equations, the resulting system is symmetric.

A.3.c Global Radiation Boundary Condition:. The above exposition has a significant impact on the

development of a global boundary condition. In standard FEM-BI expositions [1], one defines equivalent

currents on Γe, and uses the radiation boundary integral to impose either the electric field or the magnetic

field or a combination of both. The equivalent current are of both the electric and magnetic types. As u(x)

represents one field (either the electric or magnetic field), either the magnetic or electric currents can be

easily obtained. One typically prescribes basis functions for all x ∈ Γe to represent currents. However, from

our preceding discussion it is apparent that basis functions prescribed on Γe have to belong to H−1/2(Γe),

and these functions together with those used in the interior have to satisfy the Babuska-Brezzi condition.

While such a space can be easily developed in the case of standard tesselation, it is perhaps not possible for

GFEM. Therefore, prescribing additional unknowns on the boundary is ruled out. The method that we use

for hybridizing will depend on whether Γe = ∂Ω or Γe ⊂ ∂Ω. In the former case, the domain of integration

encloses a volume, and in the latter, it is open. When the domain is closed, it is sufficient to prescribe

conditions such that the solution is unique; i.e., one does not excite the interior resonance modes. While this

is a solved problem, it is implementing this condition within the context of GFEM that causes problems.

If Γe ⊂ ∂Ω, then imposing conditions is considerably more challenging, as imposing the BI is similar to

prescribing a Dirichlet boundary condition. This is challenging on two counts; (i) the basis functions Vi are

NOT interpolatory; (ii) Ω ⊂ ⋃
n supp {Vn}. Therefore, techniques that were used earlier to overcome this

problem [1] need to be modified to impose the boundary condition.

Our formulation proceeds as follows: Assume that just inside the boundary, one can define another surface

Γs that completely encloses all the inhomogeneities in Ω; see Fig. 5(a). For the purposes of discussion, assume

that u(x) refers to the electric field. Then ∀x ∈ Γe,

u(x) = uinc(x) + L{u(x)} (7a)

∂nu(x) = ∂nuinc(x) +K{u(x)} (7b)

L{u(x)} := −
∫

Γs

dΓs (∂n′u(x′)g(x, x′)− u(x′)∂n′g(x, x′)) (7c)

K{u(x)} :=
∫

Γs

dΓs (∂n′u(x′)∂ng(x, x′)− u(x′)gt(x, x′)) (7d)
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where ∂n′ and ∂n are used to denote the normal derivatives with respect to the primed and unprimed

coordinates, respectively, t̂ = −n̂ × ẑ, and uinc(x) denotes the incident field. Denoting r = x − x′ where

r ∈ R2, the Green’s functions may be written as g(x, x′) = 1
4j H2

0 (k|r|) and gt(x, x′) = k2(t̂ · t̂′)g(x, x′) +

t̂′ · (∇∇g(x, x′)) · t̂ where t̂ and t̂′ are the tangent vectors at x and x′, respectively. These equations are

essentially derived from surface equivalence theorems (or Huygen’s principle). Note, the surfaces Γe and Γs

can be arbitrarily close to each other; however, if they are very close to each other, the integral operators in

(7) may be singular/hyper-singular, and one should evaluate these with care. Techniques for doing so are

similar to those prescribed in [33]. Next, to incorporate the global boundary condition within the differential

equation solver, one needs to specify the differential operator Be {u(x)} in (1). The simplest is to specify

that Be {u(x)} = u(x) = uinc(x)+L{u(x)} ∀x ∈ Γe. This is, of course, a Dirichlet type boundary condition,

and has to be incorporated using Nitsche’s method; more specifically by implementing the following

Ah(u,w) = Fh ∀w ∈ VN (8a)

Ah(u,w) = − (α∇u,∇w) + ω2 (γu, w) +
∫

Γ

dx αun̂ · ∇w +
∫

Γ

dx αwn̂ · ∇u (8b)

− β

∫

Γ

dx uw −
∫

Γ

dxαL{u(x)} n̂ · ∇w + β

∫

Γ

dxωL{u(x)}

Fh = (f, w) +
∫

Γ

dxαuincn̂ · ∇w − β

∫

Γ

dx uincw (8c)

Alternatively, one can specify Be {u(x)} = ∂nu(x) = ∂nuinc(x) + K{u(x)} ∀x ∈ Γe. As before, this is the

Neumann type boundary condition, and can be incorporated by appropriately modifying the variational

formulation. However, it is well known that both global boundary conditions do not yield unique solutions

at all frequencies. These frequencies correspond to the null spaces of the appropriate operators [1]. Among

the several methods prescribed [1] to overcome this deficiency, one is to combine the two operators; i.e.,

use a combined field formulation. Thus, the method proceeds as follows: find an approximate solution

u(x) ∈ H1(Ω) such that

Ah(u,w) = Fh ∀w ∈ H1(Ω) (9a)

Ah(u,w) = − (α∇u,∇w) + ω2 (γu,w)− jk

∫

Γe

dxw(x)u(x) +
∫

Γe

dx w(x) [jkL{u(x)}+K{u(x)}] (9b)

Fh = (f, w)−
∫

Γe

dxw(x)
[
jkuinc(x) + ∂nuinc(x)

]
(9c)

In the above exposition, we have essentially focused on imposing the boundary condition at Γe. As in (1),

another condition might need to be imposed in the interior boundaries. However, as is apparent, the bilinear

form for imposing these conditions may be derived trivially using material presented thusfar. Evaluation of

the integrals over the boundary may be carried out using several different methods. In our implementation,

we proceed as follows: The domain of integration (either Γs or Γe can be partitioned into a union of

subdomains over with the basis function is piecewise smooth. Then over each such subdomain, we use a
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Gauss-Legendre quadrature. While this is not truly optimal and one may construct better quadrature rules,

we did obtain convergent results.

A.3.d Local Radiation Boundary Condition:. Our interest in implementing the local boundary condition is

purely to develop another measure of validating the results obtained using global boundary condition. As we

will show, the results obtained using GFEM-BI converge exponentially to analytical solutions. However, as

these solutions are available only for canonical problems, it is of interest to know that the fields obtained using

the afore-developed scheme and those obtained using a local boundary condition agree with each other. There

is a wealth of local boundary conditions that are available [1, 34]. Here we implement a perfectly matched

layer (PML) within GFEM. The literature on PML is extensive, and our goal is to present a rudimentary

development that can be used as a validation modality. The approach that we use to implement this relies

on the stretched coordinate system first introduced in [35]. Using this technique results in a slight change

in α(x) in that it becomes a tensor of rank 2, i.e., ᾱ(x) = α0αij(x). The quantity γ̃(x) and the non-zero

elements of ᾱ(x) are

α11(x) = α0
s1(x)
s2(x)

α22(x) = α0
s2(x)
s1(x)

γ̃(x) = γ0s1(x)s2(x)
(10)

where x = (x1, x2), α0 and γ0 are appropriate constants when all stretching parameters are one, and

s1(x) = 1− j
σ11(x1)

ωε0
s2(x) = 1− j

σ22(x2)
ωε0

(11)

In these equations, s1 and s2 are stretching coordinates, and σij(x) denotes the conductivity tensor of the

domain. As is apparent, this tensor is chosen to be diagonal. The domain of application of the PML is

denoted using ΩPML = Ω0 − Ωi, where the rectangular domains Ω0 and Ωi are defined as Ω0 = x2
1 × x2

2

and Ωi = x1
1 × x1

2; see Fig. 5(b). The conductivity profiles are chosen to be zero inside the Γi and

vary quadratically in the direction of the outward normal to the boundary Γi. σ11 is nonzero in do-

main (−0.5x2
1,−0.5x1

1) × (−0.5x2
2, 0.5x2

2) and (0.5x1
1, 0.5x2

1) × (−0.5x2
2, 0.5x2

2), σ22 is nonzero in domain

(−0.5x2
1, 0.5x2

1)× (−0.5x2
2,−0.5x1

2) and (−0.5x2
1, 0.5x2

1)× (0.5x1
2, 0.5x2

2). Finally, the computational domain

is truncated by imposing the condition

n̂ · ∇us + jkcos(θa)us = 0 (12)

on Γ0. Here, θa denotes the angle of perfect absorption and is chosen to be θa = π
3 in our simulation. Note

that in this formulation, the unknown is scattered field us. With these changes, the bilinear form may now
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be written as

Ah(us, w) = Fh ∀w ∈ VN (13a)

Ah(us, w) = − (ᾱ · ∇us,∇w) + ω2 (γ̃us, w)− jkcos(θa)
∫

Γ

dx usw (13b)

Fh = (f, w)− (
α∇2uinc, w

)− ω2
(
γuinc, w

)
(13c)

III. Numerical experiments

In what follows, we shall present a series of numerical experiments that will serve to demonstrate the

accuracy and convergence of the method presented herein. In all examples presented below, we have chosen

d = 2 merely for demonstration purposes, and as is evident from the presentation, extension to d = 3, is

relatively easy albeit at considerable more programming cost. First, we shall demonstrate h, p convergence

for problems wherein either the Dirichlet or Neumann boundary conditions are specified. Next, we shall

demonstrate similar convergence for our hybrid GFEM-BI scheme and also demonstrate that our scheme

is free from corruption due to interior resonance modes. In these examples, global boundary conditions

are used to truncate the computational domain, and Dirichlet boundary conditions are imposed in the

interior of the domain. Finally, we present a set of results that analyze electrically large problems, and

compare these against either analytical results or against GFEM augmented with local boundary truncation

schemes. While meshless methods offer a host of advantages, one significant hurdle/unsolved problem is the

conditioning of the resultant linear system as the order of the basis function increases. This is an issue when

we are trying to demonstrate h, p convergence. In these cases, we resort to an SVD-based solver. However,

in the analysis of electrically large objects, wherein we are satisfied with an error in the L2-norm = 1e-4, we

use a non-stationary iterative solver like TFQMR [36] with block preconditioners.

In the next two examples, we demonstrate h, p convergence of this method when imposing either the

Neumann or the Dirichlet boundary condition. The domain of analysis of both problems are the same and

defined as follows: the domain of interest Ω = (0, 1)2, and the boundary Γ =
⋃4

i Γi where {Γ1 : x ∈ 0×(0, 1)},
{Γ2 : x ∈ (0, 1)× 1}, {Γ3 : x ∈ 1× (0, 1)}, and {Γ4 : x ∈ (0, 1)× 0}.

In the first example, the Neumann boundary conditions are imposed on all four walls. More specifically,

Bi {u(x)} = ∂nu(x)|∀x∈Γi
= gi(x). Denoting x = (x1, x2), gi(x) = 0,−2.97 cos(4x1), 3.0272 sin(3x2), 3 cos(4x1),

for i = 1, · · · .4. The above boundary conditions permit analytical solution of the (1). In this experiment,

all nodes are distributed uniformly, and rectangular patches are used. The size of each patch is chosen to

be 1.5 times the distance between the nodes. The weight functions Wi(x) is a product rooftops, and the

approximation is a tensor product of Legendre polynomials. Two sets of results are shown. In the first, we

demonstrate the error between analytical and numerical solutions in Fig. 6 for h = 0.11λ and p = 4. We

also demonstrate h, p convergence in Fig. 7. As is evident from the graphs, the results are excellent.

Next, the Dirichlet boundary condition is imposed on all four walls. More specifically, Bi {u(x)} =
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u(x)|∀x∈Γi
= gi(x). Denoting x = (x1, x2), gi(x) = sin(3x2), 0.1411 cos(4x1),−0.6536 sin(3x2), 0, for i =

1, · · · .4. All the parameters used in the computation are the same as those used for imposing the Neumann

boundary condition. Again, the Fig. 8 plots the relative value of the error in the entire computational

domain when using h = 0.11λ and p = 4. Also, the errors for different values for h and p are shown in Fig.

9. It is evident that Nitsche’s method for imposing the boundary conditions shows excellent convergence.

Next, we examine the accuracy of imposing the boundary integral to truncate the domain. To do so

we analyze scattering from a perfect electrically conducting (PEC) cylinder and the truncation boundary

is placed 0.1λ away from the surface. Given the configuration of the problem, we need to apply the BI

(CFIE) (9a) and Dirichlet boundary condition on the truncation boundary Γe and the inner boundary,

respectively. We compare these results against that obtained analytically to obtain the h, p convergence

graphs in Fig. 10(a). As is evident, the scheme presented in this paper demonstrates the anticipated

convergence characteristics. The next, we analyze scattering from a PEC cylinder over a range of frequencies.

The outer boundary is truncated using the EFIE specified in (8a), and the inner boundary is truncated using

a Dirichlet boundary condition. We know that truncating the outer boundary with the EFIE would lead

to unique values for all values of ka except those that correspond to interior resonance modes of a cylinder

with a PEC wall at the outer boundary. Thus, to satisfy ourselves that this is indeed the case, and to show

that the variational form that imposes the EFIE formulation presented in this paper is valid (note: EFIE

is imposed using Nitsche’s method), we analyze scattering from a cylinder over a range ka varying from 2.0

to 8.0 in steps of 0.05. Additionally, values of ka that are within three digits of the resonance frequencies

corresponding to TMz modes of the cylinder whose radius corresponds to that of Γe are chosen. In total,

we ran this simulation for a total of 128 frequency points. In all cases, h = 0.1λ and p = 3. Figure 10(b)

compares the error in the field values within the computational domain to analytical data. As is expected,

Fig. 10(b) shows the results obtained are accurate except at resonance frequencies. So, the next challenge

is to ensure that our results are free of corruption by spurious modes. Again, we analyze scattering from a

PEC cylinder over a range of frequencies with combined boundary integral formula. It is apparent from Fig.

10(c) that the error is fairly constant over the entire band of frequencies. It should be noted that in all the

cases mentioned thus far, we are quoting the error in the field values at a sufficient dense set of samples inside

the computational domain. These error are NOT in the echo width data, as they tend to be significantly

smaller.

Next, we demonstrate the applicability of this technique to various scattering problems. In all three

examples described, the incident plane wave propagates along the x̂ direction and is polarized along ẑ. First,

scattering from a cylinder of radius 2.7λ is analyzed. The source boundary Γs and fictitious boundary Γe

are at 2.85λ and 3.0λ, respectively, and h = 0.11λ and p = 3. The analytical and numerical data of electric

field on fictitious boundary and echo width (EW) are compared in Fig. 11. As is evident from these graphs,

the results are excellent. Next, scattering from dielectric-coated PEC cylinder is analyzed. The radius of
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the PEC cylinder is 2.82λ, and the thickness of the dielectric coating is 0.06λ. The relative permittivity of

dielectric is 2.0. The source boundary Γs and fictitious boundary Γe are at 2.94λ and 3.0λ, respectively,

where λ is the free space wavelength and h = 0.12λ and p = 3. The analytical and numerical data of the

electric field on fictitious boundary and echo width (EW) are compared in Fig. 12. As is evident from these

graphs, the results are excellent. Finally, we analyze scattering from a coated cylinder that is considerably

larger. The radius of cylinder PEC and dielectric coating are 3.76λ and 3.84λ, respectively. The source

boundary Γs and fictitious boundary Γe are at 3.92λ and 4.0λ, respectively. As before, λ is the free-space

wavelength, εr = 2, h = 0.15λ and p = 3. Our discretization in this case is considerably coarser, however,

as is evident from Fig. 13 (a,b), both the fields on the fictitious surface and the echo-width agree very well

with the analytical data.

In the last example, we compare the results obtained using GFEM-BI with those obtained by analyzing

the same object using GFEM-PML. As is well known, the principal advantage of the boundary integral is

that realized by a reduced computational domain. This, of course, implies that the cost of application of the

BI can be reduced to something that scales almost linearly with the number of unknowns on the boundary.

This is indeed possible by augmenting the BI with acceleration techniques, notably by the fast multipole

technique [37]. The object that we choose for simulation is a L-shaped dielectric scatterer. The length and

width of each arm is 1λ and 0.3λ, respectively, and the arms are oriented along the x̂ and ŷ directions.

The truncation boundary Γe for the BI is conformal to the scatterer and is at a distance of 0.25λ away

from the scatterer. When employing the PML, the scatterer is embedded in an rectangular domain of size

Ωi = 5.4× 5.4λ2, and the thickness of the PML is 0.95λ. In both simulations, h = 0.08λ and p = 3, and the

relative dielectric constant εr = 2. The incident field is ẑ polarized and propagates along k̂ = −1/
√

2 (x̂ + ŷ).

Figure 14(a,b) show the fields obtained by both methods. As is evident, they are identical to each other.

Indeed, the relative error in the field values at a set of points in the domain is 2.3e-3, indicating that both

techniques compare very well with each other.

IV. Conclusions

Generalized finite element techniques have not been extended extensively to applications that involve the

Helmholz equation; as was noted earlier, aside from a small community, there is a paucity of researchers using

this approach to problems in applied electromagnetics. This may largely be attributed to the lack of details

on all implementation aspects of this technique as well as difficulties associated with imposing boundary

conditions that are commonly encountered in electromagnetics. This paper addresses several of these issues

in detail, and demonstrates for a range of “scalar” problems that this method does indeed work well. To

make this technique widely applicable, we have developed the first hybrid GFEM-BI technique that enables

the truncation of the computational domain, and demonstrated its h, p convergence properties. As was

noted, we have specified the manner in which different types of boundary integrals may be incorporated into
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the simulations. Validating the proposed technique for scattering from more complex shapes necessitated

the development of GFEM-PML techniques. However, to make this technique truly applicable to a wide

class of problems in electromagnetics, one needs to develop vector basis functions that satisfy the de-Rham

map. Preliminary results of this results have been presented recently [?], and a full paper detailing these

ideas and results is being prepared.
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[29] J. Pitkäranta, “Boundary subspaces for the finite element method with lagrange multipliers,” Numer. Math., vol. 33,

pp. 273–289, 1979.
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Fig. 1. Construction of the computational domain.
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Fig. 2. Subdivision of the domain of integration based on piecewise weight function Wi.
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(a) Boundary Integral domain

description

(b) PML domain description

Fig. 5. (a) Definition of geometry for imposing the boundary integral; (b) Definition of the geometry for application of the

PML.
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Fig. 9. h, p convergence of the numerical scheme applied to the solution of a PDE with Dirichlet boundary condition.
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Fig. 10. (a) h, p convergence of the GFEM-BI scheme; (b) Error in E-field over a range of ka with GFEM-BI (EFIE) (c) Error

in E-field over a range of ka with GFEM-BI (CFIE).
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Fig. 11. Comparison between numerical and analytical data obtained for scattering from a perfectly conducting cylinder of

radius 2.7 λ: (a) the electric field at Γe; (b) Echo-width of the cylinder.



IEEE TRANSACTIONS ON MAGNETICS, VOL. XX, NO. Y, MONTH, 2003 26

0 50 100 150 200 250 300 350
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θ (degrees)

E
z

Analytical result
Numerical result

(a) Ez on fictitious boundary Γe

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

16

18

20

θ (degrees)

E
ch

o 
w

id
th

 (
dB

)

Analytical result
Numerical result

(b) Echo width (EW)

Fig. 12. Comparison between numerical and analytical data obtained for scattering from the coated perfectly conducting

cylinder if radius 2.88 λ: (a) the electric field at Γe; (b) Echo-width of the cylinder.
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Fig. 13. Comparison between numerical and analytical data obtained for scattering from a coated perfectly conducting cylinder

of radius 3.84 λ: (a) the electric field at Γe; (b) Echo-width.
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Fig. 14. Comparison of data obtained for scattering from an L-shaped object using GFEM-BI and GFEM-PML.


