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Pacer: A Progress Management System for Live
Virtual Machine Migration in Cloud Computing

Jie Zheng, T. S. Eugene Ng, Kunwadee Sripanidkulchai, Zhaolei Liu

Abstract—Live migration of virtual machines is a key manage-
ment function in cloud computing. Unfortunately, no live migra-
tion progress management system exists in the state-ofthe- art,
leading to (1) guesswork over how long a migration might take
and the inability to schedule dependent tasks accordingly; (2)
unacceptable application degradation when application compo-
nents become split over distant cloud datacenters for an arbitrary
period during migration; (3) inability to tradeoff application
performance and migration time e.g. to finish migration later
for less impact on application performance. Pacer is the first mi-
gration progress management system that solves these problems.
Pacer’s techniques are based on robust and lightweight run-time
measurements of system and workload characteristics, efficient
and accurate analytic models for progress predictions, and online
adaptation to maintain user-defined migration objectives for
coordinated and timely migrations. Our experiments on a local
testbed and on Amazon EC2 show that Pacer is highly effective
under a range of application workloads and network conditions.

Index Terms—Live migration, cloud computing, progress man-
agement, datacenter.

I. INTRODUCTION

HIS paper presents techniques to solve an emerging

service management problem in cloud computing, the
progress management of /ive virtual machine (VM) migration.
Our techniques are implemented in a system called Pacer,
which accurately predicts the migration time and uses the pre-
diction to realize two advanced functions of migration progress
management: (1) best-effort migration time control, and (2)
coordinated migration of VMs. By making the VM migration
more predictable, Pacer facilitates orderly and timely service
management operations.

A. The Role of Virtualization in Cloud Computing

Cloud computing, or “the cloud”, is the delivery of on-
demand computing resources over the Internet on a pay-for-
use basis [1]. In both industry and academia, cloud computing
has attracted significant attention. A research report sponsored
by Virtustream, an enterprise cloud provider [2], shows that
the cloud is being widely used by more than half of the
businesses in the US [3]. In the past, cloud computing services
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have experienced rapid growth, and in the future the public
cloud service market is expected to grow to $206.6 billion by
2016 [4]. Internet and business applications are increasingly
shifting to the cloud to maximize effectiveness of shared
resources and economies of scale. Cloud providers such as
Amazon EC2 [5] and IBM [6] operate public cloud to offer
storage and virtual hosts to customers at a low rate on demand,
while some other clouds are built to deliver development
environments as a service, such as Google App Engine [7].

The cloud service usually runs in data centers. The main
purpose of a data center is to host the applications that
handle the core business logic and process the operational
data of the organization. Currently, data centers may contain
hundreds of thousands of servers. Applications running on
the cloud are typically composed of multiple components
running on multiple hosts. The common components could be
databases, file servers, application servers, middle-ware, and
various others [8]. A multi-tier e-commerce application [9]
may include web servers, database servers and application
servers. The front end web server displays information such
as merchandise lists. The application server communicates to
the front end web server and implements the core functionality
of the application. The database server stores the transaction
data and keeps it neutral and independent from application
logic [9].

A key enabling technology for cloud computing is virtu-
alization, which abstracts the physical infrastructure, hides
the complexity of the underlying hardware or software, and
makes the infrastructure available as a soft component that is
easy to isolate and share physical resources [10], [11]. The
management of a pool of virtualized resources requires the
ability to flexibly map and move the application and the data
across and within pools [12]. Usually there are multiple VMs
running on a single physical machine. Therefore, virtualization
provides an effective way to consolidate hardware to get vastly
higher productivity from fewer servers. Virtualization also
speeds and facilitates IT management, maintenance and the
deployment of new applications [13]. In cloud computing, the
hypervisor or the virtual machine monitor (VMM) is a piece
of software that creates, runs, and manages VMs. KVM [14],
XEN [15], VMware ESX [16] and Hyper-V [17] are four
popular hypervisors.

B. Virtual Machine Migration as a Management Primitive

As data centers continue to deploy virtualized services,
there are many scenarios that require moving VMs from one
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physical machine to another within the same data center or
across different data centers. Some examples are:

o Planned maintenance: To maintain high performance
and availability, VMs needs to be migrated from one
cloud to another to leverage better resource availabil-
ity, avoid down time caused by hardware maintenance,
and overcome computing power limitation in the source
cloud. If a physical machine requires software or hard-
ware maintenance, the administrator could migrate all the
VMs running on that machine to other physical machines
to release the original machine [18].

o Load balancing: VMs may be rearranged across differ-
ent physical machines in a cluster to relieve workload
on congested hosts [18]. The workload increase of a
virtual server can be handled by increasing the resources
allocated to the virtual server under the condition that
some idle resources are available on the physical server,
or by simply moving the virtual server to a less loaded
physical server [19].

o Avoiding single-provider lock-in: While many cloud
users’ early successes have been realized by using a
single cloud provider [20], [21], the ability to use multiple
clouds to deliver services and the flexibility of moving
freely among different cloud providers are emerging
requirements [22]. Users who used to implement their
applications using one cloud provider ought to have the
capability and flexibility to migrate applications back
in-house or to other cloud providers in order to have
control over business continuity and avoid fate-sharing
with specific providers [23].

o Enterprise IT Consolidation: Many enterprises working
with multiple data centers have attempted to deal with
data center “sprawl” and cut costs by consolidating
multiple smaller sites into a few larger data centers. The
ability to move a service with minimal or no down-time
is attractive due to the corresponding reduction in the
disruption seen by a business [12].

o Hybrid cloud computing: Hybrid cloud computing
(HCC) - where virtualizable compute and storage
resources from private datacenters and public cloud
providers are seamlessly integrated into one platform, in
which applications can migrate freely — is emerging as
the most preferred cloud computing paradigm for com-
mercial enterprises according to recent industry reports
and surveys [24], [25], [26]. This is not surprising since
HCC combines the benefits of public and private cloud
computing, resulting in extra flexibility for cost saving,
application adaptivity, disaster survivability, etc. In order
to achieve the above benefits, VM migration technologies
are critical to the HCC paradigm.

In summary, from the cloud providers’ perspective, VM mi-
gration has maintenance, resource management, disaster plan-
ning and economic benefits. From the cloud users’ perspective,
VM migration could provide lower cost, better reliability and
better performance.

C. The Benefits of Live Virtual Machine Migration

There are different approaches to migrate VMs, depending
on whether the VM runs a stateless server or a stateful server.
Some applications contain stateless servers that do not retain
any session information, such as a web server with static
content [27]. The service provider could easily migrate a
stateless server by terminating the old server and provisioning
a new server at the new site. However, the majority of
enterprise applications run on stateful servers. The stateful
server keeps records of the state of the clients from one request
to the next. For instance, ftp server, database server, mail
server and web server with dynamic content are all stateful.
To migrate a stateful server, the traditional approach is to
stop the VM, copy the VM state and restart the VM at the
destination. This approach incurs a long application downtime.
A more attractive mechanism for moving applications is live
migration, because the live migration is completely application
independent (stateless or stateful) and it avoids interrupting the
running application.

Live migration refers to the process of moving a running
VM or application between different physical machines with-
out disconnecting the client or application. Full migration of
a VM includes the following aspects:

o the running state of the VM (i.e., CPU state, memory

state)

o the storage or virtual disks used by the VM

« the networking and existing client connections

State-of-the-art hypervisors, such as VMware ESX, Hyper-
V, KVM, and Xen, support live migration. The hypervisors on
the source and destination control the migration. The source
hypervisor typically copies all the disk state of the VM from
the source to the destination while the VM is still running on
the source. If some disk blocks are written during this process,
they will be re-copied. When the number of disk blocks to be
copied becomes less than a threshold, the hypervisor starts to
copy the memory state. Once the disk and memory state have
been transferred, the hypervisor briefly pauses the VM for the
final transition of disk, memory, processor and network states
to the destination host.

D. The Problem: Lack of Progress Management During Live
Migration

Unfortunately, the state-of-the-art hypervisors enable live
migration without providing any ability to manage the migra-
tion progress. This deficiency leads to the following questions:

« How long does the migration take? — This is a popular

question among users of live VM migration [28], [29],
[30]. It is also an important question. Nicolae et al. [31]
point out that the migration time is important, because
it indicates the total amount of time, during which the
source machine is busy and cannot be reallocated to a
different task or shut down. Unfortunately, there is no
simple formula for calculating the answer, because the
finish time depends on many dynamic run-time variables.
Those variables includes the application I/O workload
intensity, network throughput, disk throughput, etc.

There are numerous indications [32], [33], [34], [35],
[36], [37], [38], [39] that users routinely try to guess
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why the migration is slow and whether it could be sped
up, and how long they might have to wait.

o How to control the trade-off between application per-
formance and migration time? — This is another popular
question raised by users [40], [41]. Studies [42], [43],
[44], [45] have shown that the migration can degrade
application performance, and decreasing the migration
speed helps reduce performance degradation [43]. Al-
though the administrator might be willing to slow down
the migration to some extent to improve application
performance, a migration task must still be finished be-
fore a deadline or other dependent tasks cannot proceed.
Unfortunately, no solution exists for managing migration
progress to finish at a desired time.

o« How to avoid application components getting split
between distant datacenters during the migration? —
This issue is important to enterprises, because their appli-
cations often consist of multiple interacting components
that perform different functions (e.g. content generation,
custom logic, data management, etc. [46]). Without the
ability to manage migration progress, individual appli-
cation components could finish the migration at very
different time and become split over distant cloud data-
centers for an arbitrarily long period. The resulting large
inter-component communication delay leads to decreased
performance.

E. The Solution: Pacer

Our contribution is Pacer — the first migration progress man-
agement system. Pacer effectively addresses all above open
questions by accurately predicting the migration time, and uses
this prediction to further realize the best-effort migration time
control and coordinated migration of VMs. Our experiments
on a local testbed and on Amazon EC2 show that (1) Pacer
can predict the time of a long migration, which takes about 1.7
hours, with less than 10 seconds of error, and this prediction
accuracy is achieved quickly, merely within 5 minutes after the
migration starts; (2) Pacer can control the migration to finish
within 2 seconds of the desired finish time under a variety
of application workloads; (3) Pacer can dramatically shorten
the time period during which the application components are
split between remote datacenters from nearly 400 seconds to
3 seconds.

Pacer’s effectiveness is due to the following key elements
in the design:

o Using real run-time measurements to drive decisions
— We have identified important measurements that are
essential for accurate predictions, such as application I/O
workload intensity (both memory and disk accesses) and
the bottleneck migration speed (network or disk). Further-
more, in our implementation of Pacer, we continuously
collect these measurements at run-time using techniques
with low overhead as shown in Section III.

o Using detailed analytic progress models — We have
developed novel and detailed analytic models for (1)
predicting the amount of remaining data to be migrated
as a function of the application’s I/O workload charac-
teristics and the migration progress, and (2) predicting

the finish time of the migration as a function of the
characteristics of each migration stage (i.e. disk, dirty
blocks, CPU/memory, etc.).

+ Adapting to run-time conditions — Due to run-time
dynamics, static migration settings cannot successfully
achieve the migration time control objective or the coor-
dinated migration objective. Pacer continuously adapts to
ensure that the objectives are met. In the case of migration
time control, Pacer adapts the migration speed to maintain
a targeted migration finish time in face of application
dynamics. In the case of coordinated migration, Pacer
adapts the targeted migration finish time for all compo-
nents, given what is predicted to be feasible from run-
time measurements.

F. Road map

The rest of this paper is organized as follows. Section II
presents the techniques in Pacer for migration progress man-
agement. Section III and IV present experimental results
demonstrating the capability and benefits of Pacer. Section V
discusses the application of Pacer in the concurrent migration
scenario. We discuss related work in Section VI and conclude
in Section VIIL

II. DESIGN OF PACER
A. Overview

Pacer is designed for the pre-copy migration model, which
is widely used in virtualization platforms KVM [14] and
XEN [18]. A slightly different variant of this model used
by VMware [47], [48] will be discussed later. In the pre-
copy model, the virtual disk migration is performed prior to
the memory migration. During the virtual disk migration, all
write operations to the disk are logged. The dirty blocks are
retransmitted, and the new dirty blocks generated during that
time period are again logged and retransmitted. The process
of dirty block retransmission repeats until the number of dirty
blocks falls below a threshold, and then the memory migration
begins.

As far as we know, there is no existing solution to quantify
the migration time for each stage in full VM migration,
especially for the dirty iteration. The problem is challenging
for two reasons. Firstly, the application on the VM is running
and constantly creating dirty pages/blocks throughout the
migration depending on its workload and how it accesses the
memory/storage, so the total number of dirty pages/blocks
during migration is a variable that is not known before
the migration completes. Secondly, the migration experiences
interference from the migrated VM’s own workload and other
competing workloads that share the network or disk bandwidth
with the migration, and thus the migration speed is also a
variable that is not known.

Pacer has two main functions: migration time prediction and
best-effort migration time control.

B. Predicting migration time

Pacer performs predictions periodically (default configura-
tion is every 5 seconds). To predict the remaining time during
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the migration, three things must be known: (1) what operation
is performed in each stage of migration, (2) how much data
there is to migrate, (3) how fast the migration is progressing.
The paper will address these three issues in the following
sections. In the formulas, we use bold font for constants and
regular font for variables.

1) Migration Time Model: The total migration time 7T’
can be modeled as four distinct parts: tpyecopy fOr the pre-
copy stage, tpirtyrteration for the period after pre-copy but
before memory migration, tazemory for the period from the
beginning of the memory migration until the time the VM
is suspended, and Tpowntime for a small downtime needed
to copy the remaining dirty blocks and dirty pages once they
drop below a configured threshold. Tqowntime 1S considered
as a constant because the remaining data to be migrated is
fixed (e.g. downtime is 30ms in KVM):

T = tPrecopy + tDirtyIteration + tMemory + TDowntime (1)

For the pre-copy phase, we have:

; _ DISK_SIZE @)
frrecory SpeedPrecopy

where DISK_SIZE is the VM virtual disk size obtained directly

from the VM configuration and speedprccopy is the migration

speed for the pre-copy stage.

At the end of pre-copy, a set of dirty blocks need to be
migrated. The amount is defined as DirTY_sET_S1zE. This
variable is crucial to the prediction accuracy during the dirty
iteration. However, the exact value is unknown until the end
of the pre-copy phase. It is very challenging to know the dirty
set size ahead-of-time while the migration is still in the pre-
copy stage. The algorithm in Section II-B2 is the first to solve
this problem.

In the dirty iteration, while dirty blocks are migrated and
marked clean, the clean blocks may be overwritten concur-
rently and become dirty again. The number of blocks getting
dirty per second is called the dirty rate. The dirty rate depends
on the number of clean blocks (fewer clean blocks means
fewer blocks can become dirty later) and the workload of the
VM. Similar to the need for dirty set size prediction, we need
an algorithm to predict the dirty rate (AVE_DIRTY_RATE)
while migration is still in pre-copy. The time for dirty iteration
is

DIRTY _SET_SIZE

tDirtyIteration =
speedpirtyrteration —AVE_DIRTY _RATE

3)
where speedpirtyrteration 1 the migration speed for the dirty
iteration stage.

Memory migration typically behaves similarly to the storage
migration dirty iteration. All memory pages are first marked
dirty, then dirty pages are iteratively migrated and marked
clean. Pages can become dirty again after being written.

We propose an algorithm in Section II-B2 that is
effective for predicting the average memory dirty rate
(AVE_MEM_DIRTY _RATE).

During memory migration, different hypervisors have differ-
ent behaviors. For KVM, the VM still accesses the storage in
the source and disk blocks could get dirty during the memory
migration. Therefore, in KVM, memory migration and storage

dirty iteration may happen alternatively. Denoting the size of
the memory as MEM_SIZE and memory migration speed as
speedpremory, We have

tMemory = MEM_SIZE/(speedpremory

—AVE_MEM_DIRTY_RATE
—AVE_DIRTY_RATE) 4

Other variants: The previous derivation is based on the
assumption that the memory migration follows the storage
migration (KVM and XEN). The model can easily be adapted
to other hypervisors, e.g. VMware. Storage migration and
memory migration are two separate tasks. At the end of the
storage dirty iteration, the VM is suspended and the remaining
dirty blocks are copied to destination. Subsequently, storage
I/O requests go to the destination, and thus no more dirty
blocks will be generated, while the memory and the CPU of
the VM are still at the source, so the storage I/O accesses
remains remote until memory migration completes. The speed
for memory migration in VMware would be lower than that in
KVM, because the network bandwidth is shared between the
migration and remote I/O requests. Therefore, for VMware,
Equation 4 will be adjusted as follows:

MEM_SIZE

tMemory = (5)
speedMemory — AVE_MEM_DIRTY_RATE

The above migration time model describes how the time is
spent in each phase of live migration. The next question to
address is the amount of data to migrate.

2) Dirty set and dirty rate prediction: Migrated data con-
sists of two parts. The first part is the original disk and memory
(DIsK_sIZE in Equation 2 and MEM_SIZE in Equation 4),
the size of which is known ahead of time. The second
part is the generated dirty blocks and dirty pages during
migration (DIRTY_SET_S1ZE in Equation 3), the size of which
is unknown. We now present algorithms for predicting this
unknown variable.

Disk dirty set prediction: We divide the VM disk into a
sequence of small blocks with BLOCKSIZE (e.g. IMB) per
block. For each block, we record the average write interval,
the variance of write interval (used in dirty rate prediction),
and the last written time. When a write operation is issued,
Pacer updates the record for blocks accessed by the operation.

Dirty set consists of three types of blocks. SET1 is
the migrated blocks, which are already dirty. This set can
be computed by taking the intersection of already-migrated
blocks and dirty blocks. SET2 is the migrated blocks which
are clean right now, but they are predicted to be dirty before
the end of pre-copy. The pre-copy finish time is predicted
by the current progress, and the block write access pattern is
predicted by the current access sequence. If a block will be
written before pre-copy finishes, it should be included in this
set. SET3 is the not-yet-migrated blocks, which are predicted
to get dirty after its migration finish time and before the end
of pre-copy. The fact that whether a block should be in this
set is predicted by the possible migrated time of that block
and its possible written time.
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Dirty Set = SET1 + SET2 + SET3={2,4,5}

SET1 = {Already migrated and already dirty} = {2}

SET2 = {Already migrated, still clean, but predict that it will get dirty
before t2} = {4}

SET3 = {Not migrated yet but predict that it will get dirty in

[migrated_time, t2] } = {5}

Fig. 1. An example of disk dirty set prediction.

FUNCTION getPredictedDirtyBlockSet(remain_precopy_size,
speed_expected)

SETD'irty = {}
SET1 = {block;| already migrated and marked as dirty }

_ . remain_precopy_size
Teng = current_time + —Specd_cwpected

SET?2 = {block;| already migrated and marked as clean }
N{block;|3k : trast_written (block;)
+k - ave_write_interval(block;)
€ [current_time, Tepql} // k is an integer
SET3 = {block;|not migrated yet}
Predict the expected migration time ¢; for each block; € SET3
SET3 = SET3 N {block:|3k : tiasi_written (block;)
+k - ave_write_interval(block_i) € [ti, Tenal}
SETpirty = SET1USET2U SET3
return SETpirty

An example is shown in Figure 1. The first 4 blocks are
already migrated to the destination. ¢1 is the current time when
the dirty set prediction algorithm is invoked, and 2 is the
predicted pre-copy finish time. Among the migrated blocks,
block 2 is known to be dirty and it is in SET'1. Block 4 is
migrated and is clean so far, but we predict that it will get dirty
before t2, so block 4 is in SET2. Among the non-migrated
blocks, block 5 was accessed before, and we predict that it
will be written after its migration time and before ¢2. Block
5 is in SET3. Thus the SETpirsy is {2,4,5}.

Disk dirty rate prediction: We develop an analytical model
of the dirty iteration to predict disk dirty rate. Let ¢ be the
time budgeted for the dirty iteration. Consider the state of
the disk at the beginning of the dirty iteration. Let N be the
number of dirty blocks in SETp;r+, and M be the number of
clean blocks in SET¢iean, and let dblock; be the i-th block
in the dirty set and cblock; be the i-th block in the clean set.
Abstractly, during each time interval ¢’ = %, Pacer needs to
perform the work to migrate one of the NV dirty blocks and
any newly generated dirty blocks in the same interval.

In the first interval ¢/, dblock; is migrated. The expected
number of new generated dirty blocks that are assumed to be
cleaned immediately during this first interval (D;)is computed
as follows:

tl
D =
! Z ave_write_interval (block;)
Vblock; € SET¢ciean U {dblock}
(6)

Note that dblock; is included because it becomes clean. In
general, the expected number of new generated dirty blocks
during the k-th interval is computed as follows:

tl
D; =
k Z ave_write_interval(block; )
Vblock; € SET¢iean U {dblocki, dblocka, ..., dblocky }
7

Thus, the average dirty rate can be computed as follows:
N

o

7':1t . BLOCKSIZE

AVE_DIRTY_RATE =
M
BLOCKSIZE

- Z ave_write_interval(cblock;)
i=1
N

(N +1— k) - BLOCKSIZE

N - ave_write_interval(dblocky,)
k=1

®)

Our previous research about I/O characteristic in typical
virtualization workloads [23] shows that the disk write rate
is stable over long time scales. Therefore, the disk dirty rate
prediction is able to perform well. To further optimize the
algorithm, we add the following mechanism to remove inactive
blocks from dirty rate calculation. For simplicity, assume the
write intervals of a block follow a normal distribution [49]
~ N(u, o). The possibility that the next arrival time is in
(4 — 20, 1+ 20] is 95%. Therefore, if the time since the last
write is already longer than 20 for a block, that block can
be safely considered inactive. The average write interval for
such a block is set to infinity. This mechanism significantly
improves the accuracy of dirty rate prediction.

Memory dirty rate prediction: The disk dirty rate pre-
diction algorithm would incur high tracking overhead if it is
applied to the memory dirty rate prediction. Therefore, we
propose a sampling-based algorithm to trade precision for
reduced overhead. The idea is that Pacer periodically takes
a snapshot of the dirty bitmap of memory pages, resets the
dirty bitmap, and updates two types of information. The first
is a cumulative write access counter for each page. If a page is
written to during this period, this counter is incremented. The
second is the number of unique written pages u during this
period obtained by counting the number of set bits. With this
information, we can predict the average dirty rate as follows.

We define the access ratio for each page ¢ as follows:

o write_access_counter (i)
access_ratio()

B Z write_access_counter(i), i € {all pages}

(C)]

Denote the sampling interval to be ts, and then the rate
that unique write pages are generated is % The rate is an
upper bound for the true dirty page rate, and it corresponds
to the worst case scenario, where all pages were clean at the
beginning of the interval. With access ratio representing the

contribution of a page to the overall dirty rate, the dirty rate for
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page i can be predicted as d(i) = - -access_ratio(i). Similar
to the analysis for the disk dirty iteration, when migrating the
n-th page, the dirty rate is > d(z). The average dirty rate is
N i=1
>

k=11

M-

d(i)

! where [V is the total number of memory

therefore
pages.

The selected sampling interval would affect the accuracy of
the prediction. For example, if we sample at 2s and there is a
page written every one second, its predicted dirty rate will be
lower than the real dirty rate. A way to increase the accuracy
is to reduce the sampling interval in consecutive rounds and
see whether the predicted dirty rate increases. If the dirty rate
increases, the sampling interval will be reduced further until
the rate stabilizes or the interval meets a configured minimal
interval. In Pacer, the sampling interval starts at 2s and is
reduced by half if needed. To bound the overhead, we set a
minimum sampling interval to 0.25s.

3) Speed measurement: In KVM, a statically configured
migration speed is used to decide how fast the migration
system will copy and transmit migrated data. However, the
actual migration speed may be smaller than the configured
speed due to interference. It is therefore important to measure
and use the actual speed for migration time prediction in
Equations (2) (3) (4)

Smoothing measurements: In each interval, we measure
the migrated data and compute the average actual speed during
the interval. In order to smooth out short time scale variations
of the measured actual speed, we apply the commonly used
exponential smoothing average method to update the measured
actual speed. The smoothing weight « represents the degree
of weighting decrease, a constant smoothing factor between
0 and 1. A lower o discounts older observations faster and
does not smooth-out short term fluctuation well. We ran some
experiments to test o in [0.5,0.9] and found 0.8 to be a
reasonable choice.

Spe€ds7nooth = a'Speedsmooth+(1_a)'Speedmeasured (10)

C. Controlling the migration time

Pacer divides the migration time into rounds of small
intervals. In each round, Pacer adapts the configured migration
speed to maintain a target migration finish time. It updates the
prediction of dirty block set, dirty disk rate, and dirty memory
rate based on the algorithms in Section II-B2, and then Pacer
computes a proper configured migration speed described in
the following section. The speed is adjusted later based on
the algorithms that handle I/O interference in Section II-C2.

1) Solving for speeds in each phase of migration: For
a specific desired migration time 7', many combinations of
migration speeds in each phase are feasible. Pacer aims to
control the migration progress in a systematic and stable way,
which leads to the following speed equations.

Migrating memory pages generally will not generate disk
I/0, because the memory of the VM is usually mapped to the

memory of the physical machine for performance considera-
tion. Consequently, the speed of memory migration is limited
by the available network bandwidth (NETWORK_SPEED
which can be directly measured) and so

(1)

With above simplification, only two variables need to be
solved: speedprecopy and speedpirtyrteration- There are still
many combinations of such speeds that can finish migration
in time 7. Migration generates I/O reads which interfere with
the I/O workload of the VM during the storage migration. If
we set a high speedprecopy and a low speedpirtyrteration,
or a low speedpirtyrteration and a high speedprecopy, the
high migration speed may degrade the application performance
significantly. To maintain a stable migration speed, make
the pre-copy and dirty iteration balanced, and minimize the
severity of disk I/O interference caused by the migration, we
apply the following policy:

speedyremory =NETWORK_SPEED

Speedprecopy = SpeedDirtyIteration (12)

where speedpirtyrteration 15 the average speed for the dirty
iteration during the storage migration. Thus, the appropriate
speedprecopy can finally be solved by substituting and rear-
ranging terms in Eq. (1).

More precisely, during the pre-copy stage, at the beginning
of each interval, we solve the following equations to obtain
the migration speed (speedprecopy Or s1 for short) to use for
the interval. NETWORK_SPEED is measured in the previous
interval and passed into the equations as a constant.

Solve the following equations. We use 1,2, t3

to represent tP'recopy7 tDirtyIte'ration7 t]blemo'ry

and s1, s2 to represent speedprecopy, SP€EADirtyIteration
remain_time is the remaining migration time before deadline
remain_precopy_size is the remaining disk data in the precopy

t1 + to + ts = remain_time — Tdowntime

remain_msize

NETWORK_SPEED —dirtyrate_mem—dirtyrate_disk

3=

remain_precopy_size
t1

S1 =

dirty_set_size + dirtyrate_disk - to = s2 - ta
S1 = 82
S1, 82 Z 0
0 < t1,t2 < remain_time — Tbowntime — t3

During the dirty iteration, we have the total bytes of current
dirty blocks dirty_dsize. The migration speed consists of
two parts. One part is to migrate the current dirty blocks
in the remaining time before memory migration. The other
part is to migrate newly generated dirty blocks at the rate of
dirtyrate_disks.

. . — dirt dsi . .
SpeedDzrtyIteratzon = 7‘emainzt'ignejzjy:enboy~y +dirtyrate_disk

(13)
During memory migration, the migration speed is set to the
available network bandwidth.
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Fig. 2. An example of migration speeds in different stages.

We apply an algorithm which will be described in Sec-
tion II-C2 for computing the maximal actual migration speed
that can be realized under interference. When Pacer detects
that the computed speed is higher than the maximal actual
speed, it knows that finishing the migration by the desired
time is not feasible. Then it conducts disk I/O throttling to
upper bound the disk dirty rate to a configurable fraction of
the achievable migration speed.

Figure 2 illustrates how the migration speed might be
controlled by Pacer during different migration stages. During
pre-copy, Pacer aims to maintain a stable speed but adapts to
workload changes if necessary. During the dirty iteration, the
migration speed depends on the dirty set size and the dirty
rate. At the beginning of dirty iteration, the dirty set already
includes the most frequently written blocks, so few new blocks
will get dirty, corresponding to a low dirty rate. As more dirty
blocks become clean, the dirty rate increases. The shape of
the curve in practice depends on the workload. Pacer aims
to migrate the dirty set at a stable pace, and thus the dirty
iteration migration speed curve is parallel to the dirty rate
curve. Finally, during the memory migration, the migration
can typically proceed at a higher speed than the speed in the
previous two stages because the bottleneck is most likely to
be the network.

Other variants: Similar to the discussion in Section II-B1
for migration time model, speed control can readily be adapted
to other hypervisor. As an example, for VMware, Equations 11
will be adjusted as follows:

speedpsemory =NETWORK_SPEED-IO_RATE (14)

where 10_RATE denotes the bandwidth consumed by remote
storage 1/0 and can be predicted by monitoring the application
workload.

2) Maximal speed prediction and speed tuning: Due to
the interference from disk or network, the achieved actual

migration speed may vary. Therefore, it is important to predict
the true maximal actual migration speed and ensure that the
configured migration speed is realized.

We predict the maximal actual speed by comparing the
configured speeds as specified by Pacer and the measured
actual speeds in reality. When the migration starts, if we detect
that the measured actual speed cannot reach the configured
speed, we will record this speed values pair. In the subsequent
rounds, if the new measured actual speed is lower than or equal
to the previous recorded actual speed, and the new configured
speed is higher than previous recorded configured speed, we
predict that the maximal actual speed has been reached. The
maximal actual speed is updated by the current actual speed. In
the future, when any measured actual speed is higher than the
maximal actual speed, the maximal actual speed is updated. In
order to smooth out short time scale variations on the maximal
actual speed, we use an exponential smoothing average for
updating the maximal actual speed. The smoothing weight £
in Pacer is set to 0.8.

When the measured actual speed cannot reach the config-
ured speed in a round, Pacer will scale up the configured
speed for the next round and set a scale-up flag to indicate
that the speed has been scaled up. In the next round, if the
new measured configured speed is not higher than the previous
measured actual speed, that means the scaling up did not help.
Pacer then does not perform scale up for the next round.

ITI. EVALUATION
A. Implementation

Pacer is implemented on the kernel-based virtual machine
(KVM) platform. KVM consists of a loadable kernel module,
a processor specific module, and a user-space program —
a modified QEMU emulator. QEMU performs management
tasks for the VM. Pacer is implemented on QEMU version
0.12.50 with about 2500 lines of code. Two options are added
to the migration command: (1) an option to enable migration
prediction and report the predicted migration time periodically
(2) an option to specify the desired migration time and let
Pacer control the migration progress to achieve the specified
desired finish time.

B. Experiment Setup

The experiments are set up on two physical machines. Each
machine has a 3GHz Quad-core AMD Phenome II X4 945
processor, 8GB RAM, 640GB WD Caviar Black SATA hard
drive, and Ubuntu 9.10 with Linux kernel (with the KVM
module) version 2.6.31. In all experiments (unless specified),
the migration speed is restricted to be no more than 32MBps
to mimic the level of available bandwidth in inter-datacenters
scenarios.

In our test platform, the I/O write speed on the destination
disk for migration is at most 15MBps, while RAID is widely
used in commercial clouds to increase the I/O speed to be over
a hundred MBps. To fully measure the prediction accuracy
with a wide range of configured speeds, and to meet the
time control requirement of various desired migration time,
we modify QEMU at the destination machine not to write
the received data to the disk. To ensure that the result is not
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TABLE 1
VMMARK WORKLOAD SUMMARY

Workload VM Configuration Server Default#
Name Application Clients
File SLES 10 32-bit dbench 45
Server (fs) 1 CPU,256MB RAM,8GB disk
Mail Windows 2003 32-bit Exchange 1000
Server (ms) 2 CPU,1GB RAM,24GB disk 2003
Java Windows 2003 64-bit SPECjbb 8
Server (js) 2 CPU,1GB RAM,8GB disk @2005-based
Web SLES 10 64-bit SPECweb 100
Server (ws) | 2 CPU,512MB RAM,8GB disk | @2005-based
Database SLES 10 64-bit MySQL 16
Server (ds) 2 CPU,2GB RAM,10GB disk

biased by the disabled writing, we run a set of experiments
of enabling and disabling writing at the destination, vary the
number of clients, and compare the average prediction error in
both cases. The difference is less than 1s. We vary the desired
migration time and compare the difference between the actual
migration time and desired time in both cases. The difference
is less than 1s again. The results show that disabling writing
does not bias the experiment results.

The experiment VMs run VMmark Virtualization Bench-
mark [50]. VMmark consists of five types of workloads: file
server, mail server, database server, web server, and java
server, with each representing different types of applications.
Table I shows the configuration of those servers. We vary
the number of client threads to generate different levels of
workload intensity. A simple program is used to generate
competing disk I/O traffic on the source machine to create
more challenging test scenarios that are more representative
of multi-tenancy clouds. It randomly accesses the disk by
generating read/write I/O requests. Three models are applied
to control the I/O rate by varying the interval between two
I/O requests. The static model generates I/O with a constant
interval. Two dynamic models generate I/O following an expo-
nential distribution (A = 10, 50 or 90) or Pareto distribution
(PAR(a, k) where a = 2 and k = 10, 50, or 90). Each
experiment is run for 3 times with different random number
seeds. The results show very little variance (< 0.1%). We
believe that is because the VMmark workload is quite stable
from run to run as our previous research [23] about VMmark
workload shows.

The performance of prediction is evaluated by prediction
error. The predictor computes and reports its prediction t;
every N seconds from the beginning of migration until the
migration finishes. After the migration, we evaluate the ac-
curacy of the prediction by computing the absolute difference
between the actual migration time ¢ and the reported prediction
time, and then report the average of those absolute differences:
%. We optimize Pacer to avoid prediction spikes due
to some sudden temporary workload shifts by generating a
cumulative average predicted time over all past individual
predicted times and using it as the reported prediction time.

C. Prediction of migration time

1) VM-size based predictor and progress meter do not
work: In the following experiment, we will show that the VM-

TABLE 11
PREDICTION ERRORS FOR THE VM SIZE-BASED PREDICTOR AND THE
PROGRESS METER ARE SEVERAL ORDERS OF MAGNITUDE HIGHER THAN
PACER

(a) VM-160GB

Predictor Prediction Error
Vary Write Rate Vary Written Region Size
(Written Region Size 10GB) (Write Rate 20MBps)
SMBps 15MBps 25MBps 5GB 15GB 25GB
VM size-based 326s 395s 519s 185s 698s 1157s
Predictor
Progress 316s 382s 510s 169s 687s 1149s
Meter
Pacer 6s Ss 8s 8s 10s 9s
(b) VM-8GB
Predictor Prediction Error
Vary Write Rate Vary Written Region Size
(Written Region size 1GB) (Write Rate 20MBps)
SMBps 15MBps 25MBps 512MB 1GB 2GB
VM size-based 43s 74s 99s 46s 60s 122s
Predictor
Progress 41s 70s 94s 45s Sls 114s
Meter
Pacer 4s 6s 5s 5s 6s 4s

size based prediction method and a more dynamic method,
progress meter, fail to give an accurate prediction of the
migration time.

The VM-size based predictor wuses the formula
storage_size+memory_size : :
con Figured migration speed” This approach is commonly

used when users want to predict the migration time.

Another dynamic predictor is also implemented for compar-
ison. The predictor is called progress meter, which is based
on the migration progress reported by QEMU. Whenever the
migration progress increases by 1%, the predictor records the
current migration time t and the progress x%, computes the
progress rate 2% and uses that rate to predict the finish time
% dynamically.

The experiment runs on two types of VM image sizes to
represent the typical image sizes in industrial environments.
160GB is the size of an Amazon EC2 small instance and 8GB
is the size of the VMmark file server image. We use a micro
benchmark that repeatedly writes to a data region of the VM’s
virtual disk at a specified write rate. The size of the written
region and the write rate vary to create different dirty set sizes
and dirty rates during the migration.

Table II shows the results. The prediction errors for the VM-
size based predictor and the progress meter are several orders
of magnitude larger than those of Pacer, mainly because those
two methods do not predict the time of the dirty iteration and
memory migration. The prediction errors of those two methods
scales up with higher write rates and larger written region
sizes, while Pacer always achieves small prediction errors in
all cases.

2) Pacer in face of uncertain dynamics: We vary multiple
dimensions in the migration environment to demonstrate that
Pacer performs well under different scenarios. We use the file
server VM with 8GB storage as the representative workload
in many experiments, because it is the most I/O intensive
workload in VMmark and it challenges Pacer the most. Pacer
computes and reports a predicted time every five seconds.

Figure 3 shows an example of the prediction process during
migration. The experiment is based on the migration of a file
server with 30 clients. There is additional competing traffic on
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Fig. 3. The prediction of a VM (file server-30clients) migration. Pacer

achieves accurate prediction from the very beginning of the migration.

the same hypervisor. The additional competing traffic follows
the exponential distribution of average 10ms sleeping time.
The actual migration time is 596s. In the first 20 seconds,
Pacer predicts the migration time as 400 seconds because it
does not have enough data for an accurate prediction. From 20
seconds onwards, its prediction time is very close to the actual
migration time. The prediction error is [0s, 26s] excluding the
first 20 seconds. The average prediction error is 14s over the
entire migration period and 7s for the period excluding the
first 20 seconds.

Table III shows more scenarios for evaluating Pacer under
different dynamic changes. The first three experiments have
no additional competing traffic.

Vary configured speed: This experiment is based on the file
server with the workload of 15 clients. We vary the configured
migration speed from 30MBps to S0MBps. As Table III shows,
the average prediction error varies from 2s to 7s.

Vary the number of clients: This experiment is based on
the file server with the default configured speed of 32MBps.
We vary the number of clients from 0 to 30 to represent
light workload, medium workload, and heavy workload. The
average prediction error ranges from 2s to 6s. The results show
that Pacer achieves good prediction even with heavy workload.

Vary workload type: We vary the workload types with the
default configured speed of 32MBps. The average prediction
error varies from Is to 8s across four types of workload.

Vary additional competing traffic: This experiment is
based on file server with 15 clients. We vary the intensity
of additional competing traffic based on the Pareto model of
average 50ms and 90ms sleeping time. The average prediction
errors are 4s and 6s.

According to the results and observations, an advantage of
Pacer is that Pacer achieves accurate prediction from the very
beginning of the migration. We take the prediction values in
the first minute and compute the average prediction error for
each experiment above. The resulting errors are within the
range of [2s,12s], which is slightly larger than the average
prediction error of the entire migration. The reason why
Pacer achieves accurate prediction from the very beginning
is because of the effective dirty set and dirty rate prediction

TABLE 111
PREDICTION WITH PACER

Actual Average
Migration | Prediction
Time Error
Vary configured speed

(fs-15 clients)
30 MBps 309s 5s
40 MBps 234s 2s
50 MBps 201s 7s

Vary the number of client
(Configured speed 32MBps)
0 client 263s 2s
15 client 288s 2s
30 client 331s 6s
Vary workload types
ms-200 client 794s 8s
js-16 client 264s Is
ws-100 client 269s 2s
ds-16 client 402s 8s
Vary additional competing traffic

(fs-15 clients)
Pareto 50ms 319s 4s
Pareto 90ms 299s 6s

algorithms. We will quantify the benefits of these algorithms
in Section III-D3.

In summary, Pacer provides accurate average prediction in
various scenarios. The prediction error ranges from Is to 8s
across all the above scenarios.

D. Best-effort migration time control

1) Dirty block prediction is critical for effective time
control: We implement an adaptive time controller without

dirty block prediction. The migration speed is computed by

the formula rcmazn_prc_copy+_erzsi%zng_dw’ty_blocks. Similar to
remain_time

the setup in Section III-Cl, the experiment uses two types
of image size, 160GB and 8GB. The micro benchmark is
leveraged to generate dynamic write workload on VM. The
desired migration time is 6500s for the migration of VM
(160GB) and is 400s for the migration of VM (8GB).

Table IV shows the migration time deviation. The actual
migration time of Pacer is very close to the desired time, with
maximal deviation of [-1s,+6s]. The migration time of the
controller without dirty block prediction exceeds the desired
time up to 1528s and the deviation gets larger when the
workload is more write intensive, because the controller lack
the capability to predict the amount of remaining blocks for
migration and thus it selects a wrong speed. We will show
how the key components in Pacer help to reduce the deviation
later in Section III-D3.

2) Pacer in face of uncertain dynamics: Similar to the
experiments for prediction, we vary multiple dimensions in
the migration environment to show that Pacer can perform
adaptive pacing to realize the desired migration time.

Vary desired migration time: This experiment is based on
the file server with the workload of 30 clients. We vary the
desired migration time from 150s to 400s. The Figure 4 shows
that when the desired time is within the range of [200s,400s],
the migration time in the three runs is very close to the desired
time, with maximal deviation of [—2s, 2s]. When we decrease
the desired migration time way beyond anything feasible, the
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TABLE IV
MIGRATION TIME DEVIATION FOR PACER IS MUCH SMALLER THAN THE
CONTROLLER WITHOUT DIRTY BLOCK PREDICTION

(1) VM-160GB

Migration Migration Time Deviation
Time Vary Write Rate Vary Written Region Size
Controller (Written Region Size 10GB) (Write Rate 20MBps)
SMBps 15MBps 25MBps 5GB 15GB 25GB
Controller 282s 309s 327s 264s 1004s 1528s
w/o dirty block prediction
Pacer 2s 4s 4s Ss 6s 4s
(b) VM-8GB
Migration Migration Time Deviation
Time Vary Write Rate Vary Written Region Size
Controller (Written Region Size 1GB) (Write Rate 20MBps)
SMBps 15MBps 25MBps 1GB 2GB 3GB
Controller 31s 47s 59s 54s 88s 110s
w/o dirty block prediction
Pacer 1s 2s -1s 1s 1s 2s
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Fig. 4. Migration with different desired finish times. Pacer almost matches
the ideal case when the desired time is larger than 176s. The deviation is very
small in [-2s,2s].

I/O becomes the bottleneck, and consequently Pacer will hit
its minimal migration time of 176s, while the default QEMU
with the configured speed of 32MBps can finish the migration
in 362s.

Vary the number of clients: We vary the number of clients
from O to 60 on the file server. As Figure 5 shows, there
exists a lower bound for migration time (minimal migration
time) because of the I/O bottleneck. Pacer can adaptively
pace the migration to achieve any target migration time in the
feasible region above the smallest possible time for migration
to complete, while default QEMU can only achieve one
migration time for a specific number of clients. Moreover,
when the number of clients increases above 35, QEMU cannot
converge and the migration time becomes infinite. The reason
is that QEMU uses a configured constant speed that will not
increase when the I/O bandwidth becomes higher.

We choose six different desired migration times from 144s
to 400s in the feasible region, and migrate VM with different
number of clients with those different desired migration times.
The results in Table V show that Pacer can achieve the desired
time in all cases with maximal deviation of [—2s, 1s].

Vary workload type: We perform live migration with Pacer
for five types of VMmark workloads. In order to guarantee that
the default QEMU can converge in the migration, we decrease

500

N
o
o

Migration Time (s)
W
3

n
o
o

Default QEMU —+—

100
Lower Bound for Migration Time —%

0 10 20 30 40 50 60
# of Clients

Fig. 5. Migration with different degrees of workload intensity. Any point in
the feasible region can be realized by Pacer. The lower bound for migration
time is limited by I/O bottleneck. Default QEMU can only follow a narrow
curve in the region.

TABLE V
DEVIATION OF MIGRATION TIME ON PACER WITH DIFFERENT WORKLOAD
INTENSITIES. THE NUMBER IN THE BRACKET REPRESENTS THE WORST
EARLIEST AND LATEST DEVIATION IN PACER. FOR EXAMPLE, [—17 l}
MEANS AT MOST EARLY BY 1S AND LATE BY 1S. ”-” MEANS THE TIME IS
BEYOND THE FEASIBLE REGION

Desired 10 20 30 40 50 60
Time Clients Clients Clients Clients Clients | Clients
144s [—1,0] [0,0] - - - -
176s [0,0] 1,1 0,1 - - -
203s [—1,1] —2,1 0,0 [0,1] - -
222s 0,0 [0,1] —1,0 —1,0 0,1 -
305s 0,0 —2,1 —1,0 —2,0 0,0 [0,0]
400s 0,0 —-1,0 —2,0 —2,0 [—1,1] | [-2,0]

the number of clients. We set the desired migration time to
be 900s and use Pacer to control the migrations with different
types of workload. Table VI shows that Pacer can achieve
desired migration time with a small deviation in [—2s, 42s].

Vary additional competing traffic: To test whether Pacer
can achieve desired migration time when different levels of I/O
interference exist, we run the following experiment with the
program in Section III-B to generate additional competing I/O
traffic. The migrated VM runs file server with 30 clients. The
desired migration time is 264s. Table VII shows the results for
three runs. Pacer can achieve the desired time when the 1I/O
interference varies. The deviation is [—5s, 3s] which is small
comparing to the desired time of 264s.

3) Benefits of key components in Pacer: Dirty set and
dirty rate prediction: In order to understand the benefit of
key components in Pacer, we design an experiment to compare
the systems with and without dynamic dirty set and dirty rate
prediction to evaluate the effectiveness of those algorithms.
The workload is file server. As Table VIII shows, the actual
migration time will exceed the desired migration time signifi-
cantly in the case that there is no prediction algorithm. When
only the dynamic dirty set prediction algorithm is added into
the system, the accuracy of migration time improves but still
exceeds the desired time. When both the dirty set and dirty
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TABLE VI
MIGRATION TIME ON DIFFERENT TYPES OF WORKLOAD. PACER CAN
ACHIEVE THE DESIRED MIGRATION TIME

Workload Desired Pacer

Migr Migr
Time(s) | Time(s)
fs-30 clients 900 898
ms-200 clients 900 902
js-16 clients 900 901
ws-100 clients 900 900
ds-16 clients 900 901
TABLE VII

MIGRATION TIME FOR PACER WHEN THE ADDITIONAL COMPETING
TRAFFIC VARIES. PACER CAN ACHIEVE THE DESIRED MIGRATION TIME
WITH A SMALL FINISH TIME DEVIATION

Sleeping Runl Run2 Run3
Time MigrTime | MigrTime | MigrTime

Dev(s) Dev(s) Dev(s)
No Add Traffic -1 0 0
Static 50ms 0 -5 1
Expo (ave 50ms) -5 0 -4
Pareto (ave 50ms) 0 -2 3
Static predictor 90ms -3 0 -5
Expo (ave 90ms) -5 -2 1
Pareto (ave 90ms) 0 2 1

rate prediction algorithms are used in Pacer, Pacer can perform
adaptive pacing with very little deviation [—2s, —1s].

Speed measurement and tuning: We design an experiment
to run Pacer with and without maximal speed prediction.
The VM runs the file server with 30 clients. Additional
competing traffic is generated by a constant interval of 10ms.
Without maximal speed prediction, migration runs in 697s
when the desired time is 600s. With prediction, migration can
finish in time. Moreover, we design another experiment to
run migration with and without the speed scale-up algorithm
on the file server with 30 clients, but without additional
competing traffic on the disk. We set the desired migration
time to be 200s, 300s and 400s. The results are shown in
Table IX. Without the speed scale-up algorithm, migration will
considerably exceed the desired time in all three experiments.

E. Overhead of Pacer

In this experiment, we measure the overhead introduced
by Pacer in terms of time and space. For example, for best
effort time control, we run migration with Pacer for the file
server workload with 60 clients and a desired migration time
of 400s. We measure the computation time of Pacer in each
round. We observe that the computation time is 28.24ms at the
beginning of migration. As the migration progresses and more
blocks in the dirty set are determined, the computation time
drops to below Ims in the final stage of migration. Overall,
Pacer on average only incurs 2.4ms of computation time for
each 5 second interval. The overhead is 0.05% ,which is
negligible. The space overhead in terms of additional memory
required to run Pacer compared to default QEMU is less than
IMB. Prediction consumes less computation resource than
best-effort time control.

We also evaluate the overhead introduced by Pacer for each
disk I/0O write operation during migration. The default QEMU

TABLE VIII
IMPORTANCE OF DYNAMIC DIRTY SET AND DIRTY RATE PREDICTION.
WITHOUT ANY OF THESE ALGORITHMS, IT IS HARD TO ACHIEVE DESIRED

MIGRATION TIME
Work Desired | Pacer without Pace with Pacer
dirty set/rate | only dirty set
load Time(s) prediction(s) prediction(s) (s)
30 clients 200 216 206 198
60 clients 400 454 431 399
TABLE IX

IMPORTANCE OF SPEED SCALING UP ALGORITHM

Desired | With speed | Without speed
Time tuning tuning
200s 198s 284s
300s 300s 380s
400s 399s 553s

already has a dirty block tracking function to track each disk
write operation during migration. Pacer just leverages the
existing tracking system and performs a simple update for
average write interval. We ran experiments to measure the
disk I/O write latency with and without Pacer. The average
disk I/O latency at millisecond accuracy and throughput at
MB/s accuracy is the same with and without Pacer.

We also measure the application throughput and response
time on the file server during migration with and without
Pacer. The results show no side effect on application perfor-
mance with Pacer. In summary, the overhead of Pacer is small
and has no impact on the performance of the application.

F. Potential robustness improvements

Pacer could be improved further by including mechanisms
to mitigate the negative impact of rare case when migration
environment variables are not steady. Firstly, Pacer is an
adaptive system with a fixed adaptation interval (5s) in the
current design. Instead, a flexible interval can be applied when
Pacer detects that the workload intensity or the network avail-
able bandwidth varies significantly. Reducing the adaptation
interval will improve the adaptivity but it also incurs more
overhead. By adjusting the adaptation interval, we can make
a trade-off between the speed of adaptation and overhead.
Secondly, we can test the migration environment, e.g. network
bandwidth, against expected patterns to find out whether any
increasing or decreasing trend exists. These mechanisms will
be considered in our future work.

IV. EC2 DEMONSTRATION

To demonstrate the functions of Pacer in a commercial
hybrid cloud environment, we conduct a set of experiments
using the Amazon EC2 cloud. In these experiments we migrate
VMs from Rice University to EC2. On EC2, we use High-CPU
Medium instances running Ubuntu 12.04. EC2 instances do
not support KVM, thus we use the “no-kvm” mode in QEMU
in EC2. The downside is that VMs are run without KVM’s
hardware virtualization support which has lower performance
than if there were hardware virtualization support.
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TABLE X
PREDICTION ACCURACY WITH PACER IN EC2

Workload intensity None | Low | Medium | Heavy
Actual Migration Time 227s | 240s 255s 250s
Average Prediction Error 6s S5s 4s Ts

A. Network and disk speed measurements

We run experiments to characterize the network and disk
speed that can be achieved between Rice and EC2 and make
several interesting observations. Firstly, we use “iperf” to
measure the network throughput for 200 seconds. We find
that when transmitting data from Rice to EC2, the throughput
increases gradually and linearly for a surprisingly long 30s
before reaching the peak at roughly 60MBps. More specif-
ically, 50% of the speed samples fall between 58MBps to
62MBps. After the initial 30s, 5% of the speed samples are
below 40MBps and 3.5% are below 30MBps. Based on these
findings, we cap the migration speed in the experiments to
50MBps. Secondly, we use “scp” linux command to copy a
8GB file from Rice to EC2 to measure the achievable disk
speed. We sample the reported speed every 0.5s. The average
speed is 30.9MBps and the variation is SMBps. Thus, disk
speed is the most likely bottleneck for migration in the EC2
experiments.

B. Prediction of migration time

To measure the accuracy of Pacer’s prediction, we migrate
one VM that runs the file server from Rice to EC2. We vary
the number of clients to emulate different workload intensities
of the VM server. The CPU utilization rate is 30-45% for the
low workload, 45-55% for the medium workload, and 55-70%
for the high workload.

For each intensity of the workload we run three sets of
experiments and report the average prediction error in Table X.
The first observation is that the accuracy of the prediction does
not decrease as the workload increases. Secondly, given the
fact that the network and disk speeds are quite unstable, Pacer
can still predict with an average absolute error of about 5s. We
find that, if disk write at the destination is disabled to eliminate
the impact of disk speed variation, the average prediction error
is reduced to 2s. Given the disk speed typically fluctuates 16%
from the average speed, the obtained average prediction error
ranging from 2% to 3% of the actual migration time is quite
desirable.

TABLE XI
MIGRATION TIME CONTROL WITH PACER IN EC2

500s
[-25,+2s]

600s
[-25,+2s]

700s
[-1s,+2s]

800s
[-3s,0s]

Desired time
Deviation

C. Best-effort migration time control

In this experiment we migrate the 8GB file server with
medium workload and vary the desired migration time from
500s to 800s. For each desired time we run three experiments
and report the range of the deviations in Table XI. Although
we have reported that the network and disk speeds between
Rice and EC2 are not very stable, Pacer still works very well
in controlling the migration time to within a small deviation
[—3s, +2s] of the desired time.

V. CONCURRENT MIGRATION

In this section, we will briefly introduce how Pacer helps in
the use case of coordinating migrations of multiple VMs (refer
to the second use case in Section I-D). Enterprises usually
have applications consisting of multiple interacting compo-
nents. To coordinate the concurrent migration of VMs and
avoid application components getting split between distant dat-
acenters during migration, we design a centralized controller
by leveraging Pacer’s prediction and time control capabilities.
The controller continuously gathers and analyzes the predicted
migration time for each VM, dynamically updates the desired
migration time for each VM with a feasible target time, and
thus paces the migration of the whole set of VMs. In our
current design, we apply a simple target finish time selection
policy — the maximum expected finish time among the related
VMs is chosen as the uniform target finish time. When Pacer
on a VM receives a new target finish time from the controller,
it adjusts its migration speed as explained in Section II-C to
adapt to the new target finish time.

On the EC2 test bed, we migrate a web service (SPECweb
2005 in VMmark) from Rice to Amazon EC2. The web service
contains a frontend apache server and a backend database
server. The two servers are deployed on two VMs. The image
sizes for the frontend and backend VMs are 8GB and 16GB
respectively. The experiment migrates the web service in three
different methods and illustrates how Pacer can reduce the
time of performance degradation, which is defined as the
period that one VM runs at the source and the other VM runs
at the destination. The degradation happens when two VMs
finish migration at different times. During the degradation
period, the communication between frontend and the backend
goes across the wide area network between Rice and EC2. The
first method is sequential migration. It migrates the frontend
VM first. When the first VM migration finishes, it starts
the second VM migration. The second method is parallel
migration which starts both VM migrations at the same time.
The sequential migration and parallel migration result in 577s
and 394s of degradation time. Pacer’s coordinated migration
function is able to reduce the performance degradation time
from hundreds of seconds to 3s.
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VI. RELATED WORK

To our knowledge no previous work is directly comparable
to Pacer. VMware ESX[16], KVM [14] and XEN [15] only
report the live migration progress percentage in their user
interfaces. They do not provide any prediction or time control
functions of live migration progress. In section III-C1, we
already show that predicting or controlling migration time
based on progress (called progress meter) does not work.

There exists related work on setting the speed or estimating
the time of VM migration. Breitgand et al. [43] propose a
cost function for computing the network bandwidth allocated
to CPU/memory-only migration in order to minimize the the-
oretical number of application delay bound violations as given
by a queuing theory model. Akoush et al. [44] simulate the
execution of the iterative data copy algorithm of CPU/memory-
only migration so as to estimate the required migration time.
The simulation makes certain simplifying assumptions such as
fixed network bandwidth and fixed or historically known mem-
ory page dirty rate. Liu et al. [51] investigate methodologies
to quantitatively predict the migration performance and energy
cost. Similarly it focuses on CPU/memory-only migration
and the prediction model requires prior knowledge about
the workloads at the hypervisor. In contrast, Pacer addresses
the issue of full VM migration and performs adaption to
dynamically predict and control migration time.

Relative to the above related work, not only does Pacer
address a different set of problems in migration progress
management for full VM migration, Pacer also takes a systems
approach, using real measurements and run-time adaptation,
which are found to be crucial to cope with workload and
performance interference dynamics, realized in a complete
system.

Several optimization techniques have been proposed to
reduce migration traffic and therefore reduce migration time.
For example, compression techniques are applied to memory
migration [52] and storage migration [53] to avoid transmitting
duplicate data. A scheduling algorithm is used to reduce the
amount of dirty blocks by reordering the migration sequence
of storage blocks [23]. A prefetching strategy is designed to
tolerate rapid changes of disk state during storage migration
when the VM runs I/0 intensive workload [31]. Pacer is com-
plementary to these techniques as it aims to provide accurate
migration time prediction and control. It is possible to extend
Pacer to function alongside these optimization techniques by
adjusting Pacer’s migration time model accordingly. This is
an area for our future research.

Beyond VM migration, there is also interesting related work
in disk-data-only migration. In [54], Lu et al. presents Aque-
duct, a disk-data-only migration system that minimizes the
impact on the application performance. However, Aqueduct
simply treats the migration as a low-priority task and does not
provide a predictable migration time. Dasgupta ef al. [55] and
Zhang et al. [56] present different rate controlling schemes
that attempt to meet a disk-data-only migration time goal.
However, these schemes are only simulated. Furthermore,
these schemes ignore the problem caused by dirty disk-data
generated by write operations during migration.

VII. CONCLUSIONS

We have argued that the live VM migration progress
management functions are much needed in the hybrid cloud
computing environment. Our contribution is Pacer — the first
system capable of accurately predicting the migration time,
coordinating the migrations of multiple application compo-
nents to minimize the performance degradation, and managing
the progress so that the actual migration finishing time is as
close to the desired finish time as possible. Through extensive
experimentation, including a realistic commercial hybrid cloud
scenario with Amazon EC2, we show that Pacer is highly
effective.

Recently we have extended Pacer by providing a new
function for prediction migration time before migration begins.
The main addition is to monitor the disk I/O workload and to
measure the available network bandwidth for a short period
of time, e.g. 3 minutes, and to use these observations for
migration time prediction. We have found that the prediction
accuracy is as good as the prediction during migration. The
new function is helpful for operators for planning and schedul-
ing cloud management tasks.

As future work, we are extending Pacer to analyze and
model the behavior of complex enterprise applications so as
to automatically and optimally manage the migration of such
complex applications.
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