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Abstract—Synchronized phasor measurement has gained wide
acceptance in many power system applications, particularly
for tracking dynamic transitions during various disturbances.
Fourier filter-based phasor estimation algorithms, which have
been predominately used in phasor measurement units, have
difficulties in processing dynamic sinusoidal waveform distortions,
such as modulation, frequency drift, abrupt change in magnitude,
etc. This paper proposes an adaptive approach for accurately es-
timating phasors while eliminating the effect of various transient
disturbances on voltages and currents. The method preanalyzes
the waveform spanning the window of observation to identify and
localize the discontinuities which affect the accuracy of phasor
computation. A quadratic polynomial signal model is used to im-
prove the accuracy of phasor estimates during power oscillations.
Extensive experimental results demonstrate the advantages. The
method was implemented on a PC-based PXI system for real-time
phasor computations. It can also be used as reference algorithm
for testing the performance of the devices extracting synchronized
phasor measurements.

Index Terms—Abrupt step changes, amplitude modulation
(AM), phase modulation, phasor estimation, phasor measure-
ment, power system transients, wavelet transforms.

I. INTRODUCTION

N EW applications using synchronized phasor measure-
ments for enhancing the power grid reliability and

security become an important part of the overall smart-grid
deployment [1], [2]. The examples, such as real-time dy-
namic state monitoring, state estimation, model validation,
and instability detection/islanding are improving wide-area
visualization, protection, and control [3]–[11]. The accuracy
of phasor measurements becomes an essential aspect that may
directly affect the application performance and, hence, may
have a profound impact on the entire system.

As defined by Steinmetz [12], a static sinusoidal waveform
with known frequency can be represented by its amplitude and
angular position with respect to an arbitrary time reference.
The Fourier filter, which is widely used in phasor measurement

Manuscript received March 20, 2011; revised September 14, 2011; accepted
January 07, 2012. Date of publication February 23, 2012; date of current version
March 28, 2012. This work was supported by National Science Foundationn
I/UCRC called Power System Engineering Research Center (PSERC) under
the Project T-43 titled “Verifying Interoperability and Application Performance
of PMUs and PMU-enabled IEDs at the Device and System Level.” Paper no.
TPWRD-00235-2011.

The authors are with the Department of Electrical and Computer En-
gineering, Texas A&M University, College Station, TX 77843-3128 USA
(e-mail: j.f.ren@neo.tamu.edu; kezunov@ece.tamu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRD.2012.2183896

units (PMUs), can accurately compute phasors for the signals
with constant parameters within an observation interval. IEEE
C37.118-2005 standard defines the synchrophasor measure-
ments used in power system applications and specifies the
performance requirements under steady-state conditions [13].
In general, power system voltage and current waveforms are
not static sinusoids. Instead, they contain sustained harmonics
and noise. During system disturbances, oscillations, step
changes, and high-frequency interference in the magnitude
and phase angle may occur because of the faults, switching
operations, and electromechanical transients of machine rotors.
The Fourier-based phasor estimation algorithms are derived
based on the static sinusoidal signal model [14]. As a result,
significant algorithm errors are expected when dynamic wave-
forms containing modulation, an abrupt change in magnitude
and/or phase angle, and frequency drifts are used as inputs.

The Power System Relaying Committee (PSRC) is updating
the synchrophasor standards with a specification of dynamic
requirements for PMUs. This will accelerate the applications
in power systems and enhance the interoperability for prod-
ucts from different vendors. Meanwhile, many efforts have been
made to improve the accuracy of phasors’ computation under
transient conditions.

A raised cosine filter is proposed in [15]. This filter is able to
obtain accurate results during amplitude modulation. An intu-
itive way to improve the estimates for signal oscillation is to use
the polynomial models in magnitude and phase angle, instead
of constant values, and then to approximate the envelope of
the changing waveform parameters within an observation span.
Based on this idea, paper [16] proposes a second-order Taylor
polynomial model to improve the measurements under power
system oscillations. If the parameters reflecting the changing
characteristics of signals can be estimated, this provides more
information to the applications tracking the dynamic progress
compared to the traditional static phasor. Papers [17] and [18]
define the dynamic phasor computation using multiparameter
models and provide a compensation method for canceling the
error in the classical Fourier algorithm that arises under dynamic
conditions. Some issues regarding implementation of the algo-
rithm in different intelligent electronic devices (IEDs) are dis-
cussed as well.

In [19], the phasor measurements under transient system
conditions are reviewed looking at the basic definition, estima-
tion architecture, and power system dynamic characteristics.
As discussed in [19], step changes in the magnitude and phase
angle because of electromagnetic transients may occur within
the computation data window, in which case, the phasor es-
timate obtained from that window may be invalid. This may
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postpone the response time of the time-critical applications,
and in the worse cast, it may cause wrong protective or control
decisions. How to properly solve this issue is not addressed in
the aforementioned efforts [15]–[19].

In this paper, the effect of power system transients on phasor
behavior is analyzed in Section II. A wavelet method is used
to preanalyze the waveform within an observation window in
Section III. It can detect and localize various disturbances while
discriminating the valid steps from noise. In Section IV, once a
valid discontinuity is localized, an adaptive window containing
valid data is used to fit a quadratic polynomial model in the sense
of least square error. The signal model has perfect accuracy
when representing the magnitude and phase-angle-modulated
signals. The algorithm implementation and application studies
are presented in Sections V and VI, respectively, and conclu-
sions are outlined at the end.

II. POWER SYSTEM TRANSIENTS

The power system suffers various disturbances all of the time.
Relying on different types of control and protective functions,
the system can remain in dynamic stable condition. Some distur-
bances, for example, faults and switching operations, produce
discontinuous points, such as steps and ramps in voltage and
current waveforms, respectively, due to electromagnetic tran-
sients. The effect of these transients also results in high-fre-
quency components in voltage and current signals. Typically,
the phasor measurements are calculated at a certain rate (i.e.,
reporting rate [13]), and phasor estimation is determined over
one cycle of nominal power frequency. The discontinuities in
waveforms caused by the transients may occur within an ob-
serving data window. In this case, the accuracy of the phasor
output estimated over such a data window is affected by the dis-
continuities, and it can neither represent the pre-state nor the
post-state accurately.

An example for computing the phasors representation of
a waveform with an abrupt step in the amplitude and phase
angle is given in Fig. 1. The step forms a boundary which
separates the pre-disturbance from the post-disturbance seg-
ment. Assuming the observing window spans samples, as
the computation window moves forward when new samples
are obtained, the data window and are the windows
closest to the boundary containing only the samples belonging
to the pre-disturbance and post-disturbance, respectively. The
phasors calculated through the windows to
represent neither the pre- nor post-segments. Fig. 2 shows
the phasors during the transition period. Use of such phasor
estimates for any type of protection or control application may
be inappropriate. A technique for identifying the discontinuities
while eliminating their impact on the accuracy of outputs will
be described later in this paper. The technique can also be used
to flag such invalid phasor measurements.

A power swing may occur in a power system when a balance
between the power generation and consumption is broken be-
cause of the fault, line switching, generation tripping, loss of
load, or other system disturbances. This phenomenon in power
systems can be categorized as the electromechanical transient

Fig. 1. Moving data windows for estimating a waveform with steps in ampli-
tude and phase angle.

Fig. 2. Evolution of phasor measurements over the transient period.

because it typically involves the rotor movement of large elec-
tric machines. During the power swing, the amplitude and phase
angle of the voltage and current are modulated with a low-fre-
quency signal which corresponds to the deviation of rotating
speed among generators. Various examples of power swings ob-
served in practice can be found in technical reports [20]. Let
us consider an example of oscillations caused by a three-phase
fault. The waveform of phase-A voltage and its amplitude en-
velope are given in Fig. 3(a). The relay operation was delayed
and the oscillation started after the fault was cleared. A dis-
crete Fourier transform (DFT)-based algorithm is used to com-
pute the phasors. This algorithm is the widely used technique in
presently available PMUs though it has difficulty in dealing with
sinusoids with changing parameters. Fig. 3 shows the dynamic
behavior when the algorithm is exposed to the steps and modu-
lations. The phase estimates and total vector error (TVE), which
is defined in [13] is given in Fig. 3(b) and (c), respectively. In
this example, the TVE reaches 2.6% during oscillation, which
may hardly meet some applications requirements. The accuracy
during the power swing needs to be improved.

III. DISTURBANCE IDENTIFICATION AND LOCALIZATION

The step in a waveform discussed before is one class of edges,
also know as singular points as called in mathematics, which
exist among different segments of the waveform. In the area of
image processing, the edges contain a lot of critical information
and the detection of them plays a significant role in the disci-
pline. Many techniques have been proposed to detect and fur-
ther characterize the singularity of signals [21], [22]. This paper
utilizes these principles and makes improvement for better re-
solving the specific problems raised in a power system.
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Fig. 3. Oscillation example and estimated phasors by the DFT-based algo-
rithm. (a) Voltage waveform and amplitude estimate. (b) Phase angle estimate.
(c) TVE.

A. Lipschitz Exponent

The local regularity of a function can be mathematically mea-
sured with Lipschitz Exponent (i.e., LE , which is defined
as follows [21]).

Definition 1: A function is described to be
Lipschitz at point , if a constant and a polynomial
exist so that , and the following is held:

(1)

Based on the above definition, one can easily prove that for a
positive integer , if is LE , then is times
differentiable at point while the polynomial is the first

terms of the Taylor series of at . LE indicates the
differentiability of a function. Furthermore, if the LE of

Fig. 4. Example of a sinusoidal waveform containing various components.

TABLE I
SPECIFIC FUNCTIONS AND THEIR LIPSCHITZ EXPONENTS

satisfies , then we learn that is times
differentiable at , but its th derivative is singular at this point
and the LE characterizes its regularity.

Fig. 4 shows a sinusoidal waveform containing some com-
ponents, including noise, step edge, and ramp edge at different
locations , which can be easily found in voltage
and current measurements of the real power system. Mathe-
matical functions, which represent these signal components
and heir corresponding local Lipschitz regularities, are given
in Table I. Ideally, the voltage and current waveforms are
pure sinusoidal. They are usually contaminated by a variety
of noise, among which the impulse noise and white noise
are the two most common kinds. Sometimes step and ramp
edges may occur in voltage and current waveforms due to the
electromagnetic transients during faults and switch operations.
From Table I, we know that the different functions can be dis-
criminated with their LEs. The following sections will present
the method for estimating the exponents approximately.

B. Wavelet Function and Transform Coefficient

The wavelet transform has proven to be an effective mathe-
matical tool to analyze the regularity of a signal because of its
remarkable capability of the localization in time and frequency
domain. A wavelet is defined as a function whose
Fourier transform satisfies the admissibility condition

(2)

In time domain, this condition implies

(3)

Denote and as the scaling factor and time shifting factor,
respectively. A set of wavelet functions can be derived by di-
lating and translating the mother wavelet

(4)
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Definition 2: The wavelet transform of a function with
regard to time shift and scale is defined as

(5)
where is denoted as the transform coefficient. Let the
scale factor change along the dyadic sequence of

, and we have the dyadic wavelet function and
its dyadic wavelet transform coefficient . For sim-
plicity, we designate for the rest of this paper.

It has been proven that the input signal can be perfectly re-
constructed with the dyadic transform coefficient. Besides, it
obtains efficient numerical implementations. The component of
interest in the input signal, the singularity in this paper, can
be exposed over the transform coefficient by selecting a proper
wavelet and transform scales.

C. Measuring Signal Regularity With the Wavelet Transform

Assume the wavelet holds vanishing moments (i.e., times
differentiable). That is, for all positive integer , sat-
isfies

(6)

Theorem 1: Let be a positive integer and . If is
Lipschitz at , then a constant exists so that for all point
in a neighborhood of and any scale , the wavelet transform
of with regard to (with vanishing moments) holds

(7)

Theorem 2: and its wavelet transform is well defined
over , and let . Suppose that a scale exists and
a constant , so that for and , all of the mod-
ulus maxima of , denoted as , belong to
a cone defined by

(8)

Then, at all points, , , and is uniformly
Lipschitz in a neighborhood of . Let be a non-integer.
The function is Lipschitz at , if and only if a constant

exists so that each modulus maxima is in the cone defined by
(8)

(9)

The proof of the above theorems has been given by Mallat
[21]. He pointed out that the maxima of the wavelet transform
modulus can reflect the locations of the irregular structures. If
we rewrite (9), then

(10)

From (10), one can see that the Lipschitz regularity at point
is the maxima slope of straight lines that remain above

on a logarithmic scale .

The dyadic wavelet transform for scale and
can be obtained from (10)

(11)

(12)

Subtracting (12) from (11), the LE can be approximately es-
timated by the following equation:

(13)

Equation (13) shows that the Lipschitz of a signal at any
point can be approximately estimated by its modulus maxima
of the dyadic wavelet transform over adjacent scales. Based on
LE, one can identify the types of singularities. For example, if

(i.e., 0) it implies
the signal is discontinuous at this point, such as step change; if

(i.e., 0), it implies that
the signal is more singular than discontinuity at this point, such
as Dirac and white noise; if
(i.e., ), it means the signal is at least continuous such as a
ramp, or smooth such as sinusoid.

D. Modulus Maxima Detection and Localization

In mathematics, the inflection points of a function correspond
to the local extrema of the first derivative of the function or to the
zero crossings of the second derivative of the function. Based
on this, Canny developed a computational approach for edge
detection using smooth functions [23].

Let be the original signal and be the smoothed one by
function ; for example, the Gaussian function whose integral
is equal to one and it converges to 0 at infinity. In the sense of
filtering , where stands for the convolution operator.
Suppose that is twice differentiable and define and as
the first- and second-order derivative of , respectively. In this
case, the detection of edges is equivalent to locating the inflec-
tion points of the smoothed , that is, to find the local extrema
of or zero crossings of . Both local extremum and
zero crossing give location information of the inflection point
and detecting them is a similar procedure. However the local
extremum approach has some important advantages. An inflec-
tion point of can either be a maximum or a minimum of the
absolute value of . The maximum is a sharp variation point
of , which is the point of interest, whereas the minimum corre-
sponds to slow variation. With a second derivative operator , it
is difficult to distinguish these two types of zero crossings. On
the contrary, with the first derivative , one can easily detect
the sharp variation points by only locating the local maxima of

, which is the modulus of . Besides, finding a max-
imum point is much easier than locating a zero crossing point.

In the frequency domain, the smooth function features a
low-pass filter while its first derivative is a band-pass filter.
The function can be considered to be a wavelet because its
integral is equal to zero by definition. Let be the function
dilated by scale factor . The wavelet transform of under scale

is given by

(14)
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From the above discussion, we know that the inflection points
with sharp variations can be detected and localized by the mod-
ulus maxima of the wavelet transform.

E. Step Identification With LE

After detecting the disturbance points, one needs to further
identify their types because the sharp variations may either be
step or noise. As we discussed the types, regularities in math-
ematical terms can be characterized by LE which can be esti-
mated by the evolution across scales of the wavelet transform
modulus maxima .

To achieve this goal, we construct a cubic order B-Spline
function as the smooth function and its first-order derivative as
the wavelet function (i.e., a quadratic B-Spline wavelet). This
wavelet possesses desirable properties, such as the compact
support, symmetry, and biorthogonality [24]. It has a simple
analytical form in the frequency domain. The filter length for
scaling function and wavelet function are 4 and 2, respectively.
This feature results in an efficient numerical implementation for
the multi-scale decompositions. For example, if one performs
wavelet transform in two scales, multiplications and
summations will be required, where is the length of input
data.

In Fig. 5, four types of singularities—Dirac, white noise, step,
and ramp are shown in (a) designated as p1–p4, respectively.
Their transform coefficients of quadratic B-Spline wavelet from
scale 1 to 3 are given in (b)–(c). From Fig. 5, we can observe
that for the Dirac and white noise, the maxima of wavelet trans-
form coefficient decrease along the evolution of scales while for
the step and ramp, they increase along the evolution of scales.
This can be clearly seen by the ratios of the wavelet transform
modulus maxima for adjacent scales given in Table II, where

stands for the modulus maximum under scale .
The LE estimates by (13) are given as well. It should be pointed
out that magnitude steps in voltage and current waveforms are
usually smoothed to appear as a ramp due to their traveling along
the transmission lines. As a result, the LE will fall into the range
between 0 and 1. For simplicity, let us designate such singular-
ities as steps for the rest of this paper.

F. Implementation and Threshold

Let be the samples of the input signal and be the
length of the observing data window. Suppose is prop-
erly processed using the low-pass filter to comply with the Sam-
pling Theorem. The process of disturbance detection will be per-
formed to each observing data window (denoted as ) be-
fore directly estimating the phasor over it. The implementation
procedure for disturbance detection is as follows.

1) Detect the singularity of the input signal to see if
any disturbance occurs within this window span.
Perform wavelet transform using the quadratic
B-Spline wavelet in scale 1 to obtain the coefficient

. Under normal conditions,
the signal is sinusoidal; thus, the coefficient
has no local modulus maxima. If there is no modulus
maximum, the process is terminated and data will be
handed over to the next process, such as phasor estima-
tion; If the modulus maxima exist, then

Fig. 5. Singularities and their coefficients of wavelet transform across scales.

TABLE II
RATIOS OF THE WAVELET TRANSFORM MODULUS MAXIMA AND LES.

there are singularities within the window and locations
can be found by as well.

2) Identify the type of singularities. The singularities can
be either the real transient disturbances (abrupt steps) or
the noise caused by a variety of interferences brought
into the measurements. To further distinguish them, the
wavelet transform coefficients in scale 2 are computed,
and the modulus maxima are found.

If 1, the singu-
larity is a step, and the data will be turned over to the process of
the step handler.

If 0.5 0.707, the
singularity is a noise; then, the process is terminated and data
are turned over to the process for phasor estimation.

IV. ADAPTIVE SCHEME FOR PHASOR ESTIMATION

Typically, PMUs generate synchrophasors at submultiples of
the nominal power system frequency. One cycle period of the
input signal is commonly used as the length of the data window
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Fig. 6. Adaptive phasor estimation approach.

Fig. 7. Occurrence of a step change in a data window.

for phasor computations. The samples of voltages and currents
in a window span are obtained at the same rate as the output
phasors. And the position of window is either centered or sided
(at the beginning or the end) at fixed points corresponding to
timestamps. The abrupt steps in input signals may affect the ac-
curacy of phasor outputs, particularly when the data window
crosses the step point. This paper proposes an adaptive phasor
estimation approach for achieving accurate phasor measurement
under transients. As shown in Fig. 6, the approach consists of
identifying disturbance, applying adaptive window, and imple-
menting a new phasor estimation algorithm. The technique for
detecting the transient disturbances has been discussed. This
section will introduce an adaptive data window for avoiding
or minimizing the impact of disturbances and presents a signal
model for accurately estimating phasors during transients.

A. Adaptive Data Window

Suppose that the occurrence of a step change within a span
of data window has been identified and localized. Let be
the length of the window. As shown in Fig. 7, the window for
time stamp (denoted as window ) contains a step change in
waveform. The phasor computed over this window will repre-
sent neither the past (normal) state nor the present (faulty) state
because it contains partial samples of both states. Since the po-
sition of the step change within this window has been estimated,
we can use the data either before or after the step point.

To use the data before the singular point, the partial data with
the length of in window , combining the data with the length
of , which is usually stored in a buffer with continuous
sampling, forms the window . It should be pointed out that the
amplitude of the phasor estimated over the window represents
the past state while the phase angle starts showing the transition
due to the selection of angle reference.

To use these data after the singular point window, is formed
by the partial data with the length of in window combing
the data with the length of in the next sampling window. In this
case, the amplitude and phase angle will represent the present
state. The phasor output will be delayed because of the wait due
to acquiring data in the next sampling window.

Which data window will be used in the algorithm can be de-
termined by the specific requirements of the applications. For
example, some applications that require the least output latency

may use the window ; some applications that require a rapid
detection of the disturbance state, but can tolerate the delay to
a certain level, may use the window . How to select the data
window for a specific application will not be discussed in this
paper. Nevertheless, a simple rule will be followed and it will
be used in the algorithm for the rest of this paper: if the singular
point occurs in the first half of the window, as shown in Fig. 7,
window will be used for computing the phasor; if the singular
point occurs in the second half of the window, window will be
used. Based on this rule, the maximum delay for using window

will be a half cycle (i.e., times the sampling interval).

B. Phasor Estimation Algorithm

The conventional DFT-based algorithms usually assume a si-
nusoidal signal model with constant amplitude and phase angle
over the observation window. This assumption is not very rig-
orous for the signals during power system transients. For better
describing the signal in transient state, a model with changing
amplitude and phase angle is employed

(15)

where is the nominal frequency, and the amplitude and
phase angle are functions of time. Rewrite (15) as

(16)

For an observation interval, the and
are the envelopes of the nominal frequency

components and , respectively. Using
the quadratic expansion to approach the envelopes spanning
the observation interval, we have

(17)

where , , , , , and are the coefficients of quadratic
form.

According to the synchrophasor standard [13], the amplitude
and phase angle are computed over the observation

window at the timestamp , which is the point 0 in the
window. This is also the reference point for computing the phase
angle. From (15), we have , .

Let , then the frequency at the reference
point can be represented with

(18)

Estimating the quadratic coefficients in (17) can be achieved
by resolving the linear regression problem. Suppose that the
solution depends linearly on the data

, that is, linear equations in , unknown coeffi-
cients , with . Rewrite this in matrix form
as . The fitting variables are determined in the
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least square error sense by solving the quadratic minimization
problem .

For (17), the matrix is

. The corresponding fitting
variable vector is , where stands for
the transpose. For a -sample window, the matrix is a
matrix while the fit data is a vector. The position of
the phase reference in a given observation window can be de-
termined by assigning time vector . If the timestamp is located
in the center of the window, let ;
if the timestamp is located at the beginning or the end of the
window, assign or ,
respectively.

After obtaining the fit coefficients, the amplitude and phase
angle over the observation window can be computed by the fol-
lowing equations:

(19a)

(19b)

(19c)

And the rate of change of frequency . The deriva-
tion of the above equations is given in the Appendix.

C. Model Accuracy Studies

Equation (17) uses the quadratic form to approach the en-
velope of the slow changing in an observation interval. The
adequacy of such approximation is investigated to ensure the
model is capable of representing the voltage and current signals
measured from the real system. The new synchrophasor stan-
dard C37.118.1-2011 defines dynamic signal models and cor-
responding specification requirements [25]. This paper uses the
signal models and test conditions defined in the standard draft
to study the accuracy of a phasor estimation algorithm.

Two types of signals representing the power oscillation and
frequency ramp are given as follows.

D. Power Oscillation

(20)

where is the constant amplitude, is the modulation fre-
quency, and and are the modulation factors for amplitude
and phase angle, respectively.

E. Frequency Ramp

(21)

where is the rate of frequency change and is the initial
phase.

TABLE III
RESULTS FOR ACCURACY STUDIES

Fig. 8. Implementation flowchart for the adaptive approach.

0.1% white noise (SNR 60 dB) is added to the test signals. We
use one cycle as the observation interval for the phasor measure-
ment. The TVE and the frequency error are used to measure
the estimation accuracy. Abundant scenarios that may be ob-
served in the real system are studied as summarized in Table III.
The test conditions are more severe than these required by the
standard.

Due to the limited space in this paper, only the maximum
value of TVE and frequency error, which correspond to the most
rigorous conditions, are given in Table III. For example, as re-
lated to type “ ,” the most rigorous condition is 12 Hz,

0.2. The typical TVE and frequency error are at
the level of 0.01% and 1 MHz, respectively. The results demon-
strate that the model approach is adequate for representing the
power signal under transient conditions.

V. IMPLEMENTATION

The adaptive phasor estimation approach has been imple-
mented for real-time use in the synchrophasor measurement test
system, which was developed on a PC-based PXI platform (by
National Instruments) and used for PMU calibration and testing
[26]. The system consists of a controller, time synchronization
clock, and data acquisition modules. It is capable of performing
synchronous sampling for eight channels at up to 500 kHz. The
implementation flowchart of the adaptive scheme is shown in
Fig. 8, where the “valid” means that the input samples within
the observation window have discontinuity caused by electro-
magnetic disturbance instead of noise.

Solving the quadratic minimization problem
is equivalent to solving , That

is

(22)

Let’s designate as , and as . If we rewrite
(22), we have

(23)
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Fig. 9. Voltage waveform under fault and power swing conditions.

where is a 6 6 matrix, and is a 6 1 vector. Then, the fit-
ting variables can be estimated by solving (23). For efficient
implementation, the coefficient matrix can be calculated in
advance and decomposed into LU matrices for fast computa-
tion. It has been proven that the matrix is nonsingular.

For a given size of data window , the disturbance check re-
quires about multiplications and summations while phasor
estimation requires multiplications and sum-
mations. The computational burden is very low. We have
demonstrated that the adaptive approach can be realized in
real-time.

VI. APPLICATION STUDIES

We use voltages and currents generated from the time domain
program Alternate Transients Program (ATP)/Electromagnetic
Transients Program (EMTP) to evaluate the performance of
the adaptive phasor estimator under transient conditions. The
power system model is a 230 kV power network created by
IEEE Power Engineering Society’s Power System Relaying
Committee (PSRC) [27]. The files recording voltage and cur-
rent waveforms are read by the program and fed to algorithms.
Two scenarios are considered: one is a transmission-line fault
followed by tripping of faulted line that caused a power swing;
another is an out of step due to a loss of load. We use 1.92
kHz sampling frequency and one cycle data window. For better
illustrating the relationship between amplitude estimates and
input waveforms, the peak value instead of the rms value is
used. The estimates from three algorithms are compared: the
adaptive phasor estimator (denoted as APE), the DFT-based
algorithm, and the four-parameter algorithm (denoted as FPA)
in [17].

A. Power Swing After Three-Phase Fault

We use one phase voltage (from the secondary side of the in-
strument transformer) as the input fed to the phasor estimation
algorithms. As shown in Fig. 9, two disturbances occurred at
and which stand for the three phase fault and the clearance
of fault, respectively, and oscillations followed. The estimated
amplitude, phase angle, frequency, and TVE in the vicinity of

and for the three algorithms are given, respectively, in
Figs. 10–13 at an appropriate zoom. One can see that the DFT
and FPA suffer step effects when exposed to the disturbances,
particularly for the frequency estimation. In Fig. 13, the TVEs

Fig. 10. Amplitude estimates of three algorithms at � and � .

Fig. 11. Phase estimates of three algorithms at � and � .

exceed 10% during transitions. The proposed method is capable
of detecting the disturbances and computing phasors with adap-
tive windows. In this case, the phasor estimates can follow the
input changes very well. The maximum TVEs for DFT, FPA,
and APE during oscillation are 2.42%, 0.89%, and 0.12%, re-
spectively.

B. Out of Step Caused by Loss of Load

One phase current (from the secondary side of the instru-
ment transformer) is fed to the phasor estimation algorithms.
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Fig. 12. Frequency estimates of three algorithms at � and � .

Fig. 13. TVE of three algorithms at � and � .

Fig. 14 shows the current waveform measured during distur-
bances. The estimated amplitude, phase angle, frequency, and
TVE by the three algorithms are given in Fig. 15. Compared
to the DFT-based algorithm, both the four-parameter algorithm
and the proposed phasor estimation method can follow the input
during oscillations. The maximum TVEs for DFT, FPA, and
APE after are 4.2%, 1.3%, and 0.086%, respectively. This
proves that the proposed dynamic phasor model achieves better
accuracy than that of the four-parameter model. From the TVE

Fig. 14. Current waveform under the out-of-step condition.

Fig. 15. Estimated amplitude, phase, frequency, and TVE for three algorithms.

results in Fig. 15, we can observe that the adaptive method suc-
cessfully detected and localized the discontinuous point and

so that their effects on outputs were eliminated.
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VII. CONCLUSIONS

An adaptive approach for estimating phasor under power
system transient conditions in real-time is proposed in this
paper. The conclusions are as follows.

• The wavelet method is able to identify and localize the
disturbance while discriminating from various noise within
a given data window.

• The effect of electromagnetic transients can be eliminated
by using the adaptive data window.

• The quadratic polynomial model achieves better accuracy
during power oscillations.

• The proposed approach can be implemented for real-time
synchrophasor estimation. It can also be used as the
reference algorithm for testing devices performing syn-
chrophasor measurements.

• The proposed algorithm for disturbance detection can be
used to indicate the phasor quality so that the power system
applications are able to be aware of whether the phasors
they use or the results based on the phasors are valid or
not.

APPENDIX

From (16) and (17), we have

(24a)

(24b)

For 0, they are equivalent to ,
. Then, we obtain

(25)

Take the first derivative on both sides of (24a) and (24b). For
0, we have

(26a)

(26b)

Substituting , , and
eliminating , we obtain

(27)
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