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Abstract—This paper considers the voltage control problem in
wind farms, with the goals of maintaining feasible voltage pro-
file and adequate reactive power (VAR) reserves by coordinating
the reactive power outputs of wind turbines (WTs) and static
synchronous compensators (STATCOMs). Rather than a conven-
tional centralized and offline fashion, we propose a distributed
online voltage control scheme based on dual decomposition. First,
the optimal voltage control problem is formulated based on the
branch flow model. Then, thanks to the sparsity of the constraints
in this problem, a distributed solution framework is developed
based on the dual decomposition and its online implementation
is achieved through voltage feedback. To pursue fast convergence
of the distributed algorithm and consequently facilitate the on-
line implementation, the fast gradient method is generalized and
then applied to solve the dual problem. The effectiveness of the
proposed voltage control scheme is numerically validated under
both static and dynamic cases.

Index Terms—dual ascent (DA), distributed control, reactive
power (VAR), voltage control, wind turbine (WT), wind farm

NOMENCLATURE

A. Abbreviations

ADMM Alternating direction method of multipliers
DA Dual ascent
DFIG Doubly-fed induction generator
Ef-DA Enhanced fast dual ascent
f-DA Fast dual ascent
FSC Full-scale converter
Gf-DA Generalized fast dual ascent
PCC Point of common coupling
QP Quadratic programming
s-DA Standard dual ascent
STATCOM Static synchronous compensator
VAR Reactive power
WT Wind turbine

B. Variables

pi, qi Active/reactive power injections at node i
Pij , Qij Active/reactive power flows over branch (i, j)
qci Reactive power command at node i
q∗i Reactive power value at node i obtained by

primal update
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qmin, qmax Vectors of min/max VAR limits
qmid Vector of middle reactive power level
t Time stamp/iteration step
v Vector of squared voltage magnitude
v?, q? Optimal value of voltage and reactive power
vi, v

m
i Squared voltage magnitude at node i and its

instantaneous measurement
v∗i Squared voltage magnitude value at node i

obtained by primal update
λmin,λmax Dual vectors associated with voltage limits
µmin,µmax Dual vectors associated with VAR limits
ω Dual vector associated with the power flow
ωNi

Subvector of ω associated with i
ν Compact representation of all dual vectors
ηmin,ηmax Auxiliary vectors associated with λmin,λmax

ξmin, ξmax Auxiliary vectors associated with µmin,µmax

χ Auxiliary vector associated with ω
ν? Optimal dual vector

C. Parameters

Ā Graph incidence matrix of network
A Reduced graph incidence matrix
gij , bij Parallel conductance/susceptance at node i
Hv Weighting matrix associated with voltage
Hq Weighting matrix associated with VAR
IN N ×N identity matrix
L,L Lipschitz constant and its generalization
N Number of nodes
rij , xij Resistance/ reactance of branch (i, j)
Tγ Time period of γ updating
vmin,vmax Vector of min/max voltage limit
vr Vector of voltage reference
X Diagonal branch reactance matrix
Λ Diagonally scaled step size matrix in s-DA
0N N ×N zero matrix
1N N × 1 vector with all entries being 1

D. Sets

E Set of branches
N Set of nodes
Ni Set of neighbors of node i in cyber layer
N+
j Set of adjacent downstream nodes of node j

I. INTRODUCTION
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AS modern wind farms tend to be large-scale, they could
run as relatively autonomous systems including genera-

tion, collection and grid integration. In recent years, a number
of wind turbine (WT) trip-off failures occurred in the large-
scale wind bases in Northern and Northwestern China due
to over-/under-voltage problems, suggesting that voltage con-
trol/management is an essential issue for the secure and eco-
nomical operation of wind farms [1]–[2].

Generally, transmission system operators only specify the
voltage/reactive power (VAR) requirements at the point of
common coupling (PCC). Therefore, several simple PCC volt-
age/VAR control schemes of wind farms have been proposed
in [3]–[6], wherein the voltage, VAR or power factor at the
PCC is controlled using the proportional-integral or droop con-
trol, and the total required VAR is then proportionally (or
equally) dispatched to each WT. Obviously, such methods are
unable to tackle the over-/under-voltage issues at each WT ter-
minal bus. This motivates the studies on optimization-based
control, which not only optimize the voltage profile but also
achieve some specific farm-level goals, e.g, reducing losses,
minimizing active power curtailment and keeping VAR re-
serves, by optimally coordinating multiple voltage regulation
devices, e.g., on-load-tap-changing transformers, static VAR
compensators, static synchronous compensators (STATCOMs)
as well as modern WTs [7]–[15].

For centralized voltage control, a central farm controller
is usually designed as a supervisor for device-level con-
trollers, with a relatively slow sampling rate. The decentral-
ized (purely local) and distributed control are appealing to the
wind farm control since a wind farm naturally consists of a
number of WTs that act highly autonomously. Several dis-
tributed/decentralized voltage control methods for wind farms
have been proposed in [16]–[19]. Most of them aim to achieve
an equilibrium without pursuing specific optimality. Addition-
ally, the decentralized methods might cause VAR oscillations
and voltage flicker due to interactions among independent con-
trol loops [20]. Considering the similarity of network topology
between distribution systems and wind farms, some existing
voltage control algorithms for distribution systems could also
work for wind farms. We refer the readers to [21]–[23] for
more comprehensive surveys on that topic, especially for the
distributed control and optimization algorithms with compu-
tational and robust superiorities. Additionally, recently, some
reinforcement learning-based control methods, e.g., [24]–[26],
were proposed to better adapt to various operating conditions,
which generally rely on massive offline or online training.

In those optimal control methods, optimization problems are
mostly solved in an offline way, namely, all the variables are
iteratively updated in the cyber layer until they converge and
then the final solution is applied to the physical networks [7]–
[15]. Therefore, they might not be able to track fast voltage
fluctuations caused by the high variability of renewables or
loads. This motivates the recently increasing interest of online
feedback-based optimization (see [22, Sec.IV] and references
therein for related works). The so-called online algorithms ap-
ply each update to physical networks without waiting for con-
vergence and are thus able to catch up with voltage fluctuations
at a fast timescale.

Dual-based methods, e.g. dual ascent (DA) and alternating
direction method of multipliers (ADMM) [27], are widely used
to develop distributed optimization and control algorithms for
power systems [22]–[23]. Especially, the authors in [28]–[30]
have contributed valuable research on online voltage control
based on the dual methods. A known drawback of DA with
conventional gradient methods is that it often suffers from
slow convergence. However, convergence speed is of great im-
portance for online algorithms since it is closely related with
the tracking capabilities. In [31], DA was improved for dis-
tributed voltage control by combining with an accelerated gra-
dient method; however, it was designed under an offline case
and the theoretic convergence analysis was not provided.

In this context, we propose a distributed online voltage con-
trol (DOnVC) scheme and address its application in wind
farms. The VAR outputs of WTs and STATCOM are adjusted
to maintain the voltage profile across the wind farm network
while optimizing VAR reserves. A distributed solution frame-
work is established based on dual decomposition and then its
online implementation is achieved by sharing information with
immediate neighbors. To pursue a fast convergence of the dis-
tributed algorithm, the fast gradient method [32] is general-
ized and used to efficiently solve the dual problem. Compared
with the existing works, the main contributions of this paper
are summarized as follows:

• First, the proposed algorithm builds on the mildest re-
quirements for sensing, measurement and communica-
tion. This DOnVC scheme only uses local voltage mea-
surement as feedback and exchanges it with immediate
neighbors without the need of other operation information
that are necessary for some offline algorithms. Besides,
a central coordination is not required.

• Second, the fast gradient (projection) method is general-
ized and then applied to solve the dual problem, signif-
icantly improving the convergence performance of DA.
Beyond an analysis of sufficient conditions for conver-
gence, we further explore the convergence rates not only
for dual function, but also for primal sequences (voltage
and VAR) and primal infeasibility via the primal-dual re-
lation. Numerical comparisons with traditional DA and
ADMM are provided to demonstrate the faster conver-
gence rate of the proposed algorithm in this problem,
implying a better tracking capability.

• Third, in addition to the fast tracking capability, the online
feedback strategy can compensate for the model errors
due to its closed-loop nature, even though the algorithm
establishes on a linearized power flow model, which im-
plies good robustness.

The reminder of this paper is organized as follows. Section
II presents the wind farm model. In Section III, the voltage
control problem is formulated. Section IV presents the dis-
tributed solution framework, followed by convergence analy-
ses in Section V. Section VI outlines the online implementation
strategy of the distributed voltage control algorithm. Numeri-
cal results are given in Section VII, followed by conclusions.
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Fig. 1. Layout of French Fécamp offshore wind project [9].

II. MODELLING OF A WIND FARM

A. Network

A typical layout of a wind farm is illustrated in Fig. 1. Con-
sider a radial power collector system consisting of N+1 nodes
denoted by set N

⋃
{0}, N := {1, . . . , N} and N branches

denoted by E . Node 0 denotes the connection point with ex-
ternal grids, thereby treated as a slack bus of the collector
system. Such a radial network can be modelled by the branch
flow model [33], which is as, ∀(i, j) ∈ E ,

Pij =
∑
k∈N+

j

Pjk − pj + rij
P 2
ij +Q2

ij

vi
+ gjvj , (1a)

Qij =
∑
k∈N+

j

Qjk − qj + xij
P 2
ij +Q2

ij

vi
− bjvj , (1b)

vi = vj + 2 (rijPij + xijQij)−
(
r2ij + x2ij

) P 2
ij +Q2

ij

vi
. (1c)

This yields a compact model as,

Mv = q + b (2)

where q := [q1, . . . , qN ] and v := [v1, . . . , vN ]. M :=
[mij ] = (1/2)AX−1AT ∈ RN×N is the weighted Laplacian
matrix. X := diag({Xl}) ∈ RN×N with Xl = xij where
(i, j) denotes the lth branches in E . A := [aij ] ∈ RN×N
is the reduced incidence matrix of the network graph1. Vec-
tor b ∈ RN is a function of p, q and v0, which reflects the
impacts of active power injections of WTs, external grids and

1First, let Ā ∈ {0,±1}N×(N+1) be the full incidence matrix of the net-
work graph and then, let aT0 be the first row of Ā and thus Ā = [a0,AT ]T .

nonlinear nature of ac power flow relation. It can be computed
with the knowledge of real-time measurements of v and q.

Remark 1 (Sparsity of Matrix M ): The weighted Laplacian
matrix M is determined by the physical electrical network.
mij =

∑
l ailX

−1
ll ajl is non-zero only for the nodes i and j

which are adjacent nodes because ailajl = 0,∀l ∈ E definitely
holds for nodes i and j which are not adjacent. Thus, M
is inherently sparse for the radial power collector network.
This key feature indicates the power flow constraint in the
coming voltage control problem is sparsely coupling, so that
the dual decomposition can be applied to solve the problem
in a distributed fashion, only relying on information exchange
between immediate neighbors.

B. VAR Capability of Wind Farm

In this work, modern WTs (Type 3 and Type 4) and STAT-
COMs are considered to provide VAR support. For a full-
scale-converter (FSC)-WT, the VAR capability depends on the
capacity limit of the GSC [34]. For a doubly-fed induction
generator (DFIG)-WT, both the stator and grid-side converter
(GSC) can provide VAR support [35]. The VAR limit of stator
side depends on the stator and rotor current limits consider-
ing the heating due to the winding Joule losses, as well as the
steady state stability limit (see [36] for details). The VAR ca-
pability of GSC is limited by the converter capacity. Further,
we assume that the GSC has the higher priority in providing
VAR support in this study. Once the required VAR exceeds the
capability limit of the GSC, the DFIG is controlled to provide
the extra VAR. Moreover, in the control loop of the GSC, the
active power current has the higher priority compared with



IEEE TRANSACTIONS ON POWER SYSTEMS 4

the VAR current, which aims to stabilize the dc voltage of the
back-to-back dc system. The voltage source converter-based
STATCOM has a similar structure and control loops with the
GSC of WTs and therefore, its VAR limit depends on the
converter capacity. Then, the VAR limit at each node can be
uniformly represented by,

qmin,i ≤ qi ≤ qmax,i, ∀i ∈ N (3)

where qmin,i and qmax,i denote the min/max VAR limits.
In this paper, for a WT, active power is considered to have

higher priority than reactive power. Thus, the VAR capabilities
of WTs are closely related to their active power outputs and
should be estimated in real time for online control. Without
loss of generality, we assume that all the WTs operate at the
maximum power point tracking mode.

C. Cyber Layer

We assume each WT and STATCOM corresponds to an in-
telligent agent in the cyber layer. Each agent has computation,
sensing and communication capabilities and can also actuate
WTs or STATCOM by setting their power output reference
signals. However, the agents are only allowed to communi-
cate with neighbors via communication networks that could
be very similar to the power networks due to the special lay-
out of wind farms. Besides, it is assumed that agent i is aware
of its neighbor set Ni.

III. PROBLEM FORMULATION

We first present the static voltage control problem (primal
problem (P)) formulation with the aim of minimizing the volt-
age deviations and maintaining adequate VAR reserves by op-
timally commanding VAR outputs of WTs and STATCOM,
which can be compactly formulated as,

minimize
v,q

f(v, q) :=
1

2
||v − vr||2Hv

+
1

2
||q − qmid||2Hq

(4a)
subject to Mv = q + b (4b)

vmin ≤ v ≤ vmax (4c)
qmin ≤ q ≤ qmax (4d)

where the middle VAR level is defined by qmid :=
(qmin + qmax)/2. The diagonal weighting matrices Hv :=
diag{hv,1, . . . , hv,N} and Hq := diag{hq,1, . . . , hq,N} are
defined to be positive definite so that f is strictly convex.

The first term in (4a) is to minimize the voltage deviations
from the references. Not only the voltage at the PCC but also
the WT terminal voltages are optimized since they should be
kept within a secure range otherwise the WT will be tripped
by its protection system. Since the protection configuration
is typically set as [0.9,1.1] p.u., vr = 1.021N provides ad-
equate downward and upward margins for possible voltage
deviations. Another potential benefit of a flat voltage profile
is that it could also result in network loss reduction [37]. The
second term in (4a) is designed to drive the VAR output of
each unit to its middle level. The reasons are twofold. First,
to tackle potential large disturbance of the system, VAR re-
serves should be maintained. Second, qmid generally equals

zero (for FSC-WTs and STATCOMs) or approximates to zero
(for DFIG-WTs). This results in VAR reduction from WTs and
STATCOM and thus reduces inner losses and network losses.

Remark 2 (Voltage Constraint Concerns): In above formula-
tion, we give a general problem formulation including voltage
constraints, which can be removed if needed. There may be a
concern that the existence of voltage constraints may lead to
primal infeasibility in some cases, e.g., when VAR capabili-
ties of WTs are very small due to the high production or a
voltage rise/drop suddenly occurs caused by external systems.
However, interestingly, the proposed iteration-based algorithm
could still asymptotically drive the system towards a better
operating point instead of being invalid or even unstable.

IV. DISTRIBUTED SOLUTION FRAMEWORK

In this section, the static problem (P) will be used for de-
veloping the distributed online control algorithms to adapt to
time-varying system operating conditions. To facilitate algo-
rithm design and theoretic analysis, we assume b which cap-
tures the uncontrollable disturbances is fixed but this is not
required when applying our method.

A. Dual Problem

The Lagrangian function of problem (P) is given by,

L(v, q,λ,µ,ω) = f(v, q) + ωT (Mv − q − b)
+ λTmax(v − vmax) + λTmin(vmin − v)

+ µTmax(q − qmax) + µTmin(qmin − q) (5)

Accordingly, from ∇{v,q}L = 0, we have

d(ν) := inf
v,q
L = −1

2
νTΦH−1ΦTν − (ΦH−1g + z)Tν (6)

where

ν :=


λmax

λmin

µmax

µmin

ω

 ,Φ :=


IN 0N
−IN 0N
0N IN
0N −IN
M −IN

 , z :=


vmax

−vmin

qmax

−qmin

b


H :=

[
Hv

Hq

]
, g := −

[
Hv

Hq

] [
vr
qmid

]
.

Then, the dual problem (D) is given by

maximize
λmax,λmin,µmax,µmin≥0,ω

d(ν). (7)

Given that f is strictly convex and the constraint is convex,
d is differentiable and its gradient is

∇d(ν) = Φ

[
v∗(ν)
q∗(ν)

]
− z (8)

where
{v∗(ν), q∗(ν)} := arg min

v,q
L(v, q,ν)

which has the closed-form solution as,

v∗(ν) =vr −H−1v
(
λmax − λmin +MTω

)
(9a)

q∗(ν) =qmid −H−1q (µmax − µmin − ω) . (9b)
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B. Generalized Fast Dual Ascent

The traditional gradient methods, e.g., steepest descent, can
be used to solve problem (D), referred to as standard dual
ascent (s-DA) [27, Ch.7]. However, as mentioned before, it
suffers from slow convergence if the dual is ill-conditioned.
Therefore, we propose to exploit the fast gradient method [32],
provided a tight Lipschitz condition of ∇d can be found.

By (6), we have∥∥∥−∇d(ν(1)) +∇d(ν(2))
∥∥∥
2
≤
∥∥ΦH−1ΦT

∥∥
2

∥∥∥ν(1) − ν(2)
∥∥∥
2

(10)

which holds for any ν(1),ν(2). This implies −d has a Lipschitz
continuous gradient with constant L = ‖ΦH−1ΦT ‖2, which
motivates us to use the fast gradient (projection) method [32]
for solving problem (D), and is referred to as fast dual ascent
(f-DA). As per the descent lemma [27, Prop. B.3], this yields
a quadratic lower bound of d with the scalar L. The basic
idea of fast gradient method is maximizing this bound in each
update instead of directly maximizing d. However, to better
capture the shape of d for faster convergence, a tighter bound
in this problem can be obtained by generalizing the Lipschitz
constant ‖ΦH−1ΦT ‖2 to ΦH−1ΦT , which yields

d(ν(1)) ≥d(ν(2))

+∇d(ν(2))T (ν(1) − ν(2))− 1

2

∥∥∥ν(1) − ν(2)
∥∥∥2
L

(11)

holds for any ν(1),ν(2) and any L � ΦH−1ΦT ∈ R5N×5N .
The right-hand side provides such a (generalized) lower bound
for d. The fast gradient method based on this bound is used
to solve problem (D), and is referred to as generalized fast
dual ascent (Gf-DA), of which the update rule is presented
in Algorithm 1 with a compact expression.

C. Distributed Implementation

Observe that in Gf-DA, (S3) and (S4) are naturally decom-
posable. Hence, the challenges would be how to establish a
distributed implementation of (S1) and (S2) and how to choose
matrix L, which will be detailed as follows.

First, rewrite the Lagrangian as,

L(v, q,ν) =

N∑
i=1

Li(vi, qi, λmax,i, λmin,i, µmax,i, µmin,i,ωNi
)

=

N∑
i=1

{
fi(vi, qi) + ωTNi

MNi
vi − ωiqi − ωibi

+λmax,i(vi − vmax,i) + λmax,i(vmin,i − vi)

+ µmax,i(qi − qmax,i) + µmin,i(qmin,i − qi)
}

(12)

where ωNi
is the subvector of ω consisting of ωj , j ∈ Ni

⋃
{i}

and MNi
denotes the submatrix of M consisting of mji, j ∈

Ni
⋃
{i}. Observe that, the operation in (S1) can be performed

in parallel by minimizing the local Lagrangian function Li,
if ωj , j ∈ Ni, is known. Then, the gradient in (S2) can be
rewritten in a separable form (c.f. (8)),

∇λmax,i
d(ν) = v∗i (λmax,i, λmin,i, µmax,i, µmin,i,ωNi

)− vmax,i

∇λmin,i
d(ν) = vmin,i − v∗i (λmax,i, λmin,i, µmax,i, µmin,i,ωNi

)

Algorithm 1 Generalized Fast Dual Ascent for Problem (D)
Initialization: Set λ(1) = ξ(0),µ(1) = η(0) ≥ 0 and γ(1) = 1.
For t ≥ 1 Alternately update primal and dual variables by following

steps (S1)–(S4):

S1 : {v(t+ 1), q(t+ 1)} ← argmin
v,q

L(v, q,ν(t))

S2 :



ηmax(t)←
[
λmax(t) + [L−1]λmax · ∇λmaxd(ν(t))

]∞
0

ηmin(t)←
[
λmin(t) + [L−1]λmin · ∇λmind(ν(t))

]∞
0

ξmax(t)←
[
µmax(t) + [L−1]µmax · ∇µmaxd(ν(t))

]∞
0

ξmin(t)←
[
µmin(t) + [L−1]µmin · ∇µmind(ν(t))

]∞
0

χ(t)← ω(t) + [L−1]ω · ∇ωd(ν(t))

S3 : γ(t+ 1)←
1 +

√
1 + 4γ(t)2

2
, and ε(t) =

γ(t)− 1

γ(t+ 1)

S4 :



λmax(t+ 1)← ηmax(t) + ε(t)(ηmax(t)− ηmax(t− 1))

λmin(t+ 1)← ηmin(t) + ε(t)(ηmin(t)− ηmin(t− 1))

µmax(t+ 1)← ξmax(t) + ε(t)(ξmax(t)− ξmax(t− 1))

µmin(t+ 1)← ξmin(t) + ε(t)(ξmin(t)− ξmin(t− 1))

ω(t+ 1)← χ(t) + ε(t)(χ(t)− χ(t− 1))

where [∗]ba denotes the projection operation onto the constraint set
[a, b]; [L−1]λmax , [L−1]λmin , [L−1]µmax , [L−1]µmin and [L−1]ω
are the submatrices of L−1 consisting of the rows corresponding to
each dual vector.

∇µmax,i
d(ν) = q∗i (λmax,i, λmin,i, µmax,i, µmin,i,ωNi

)− qmax,i

∇µmin,i
d(ν) = qmin,i − q∗i (λmax,i, λmin,i, µmax,i, µmin,i,ωNi

)

∇ωi
d(ν) =

∑
j∈Ni

⋃
{i}

mijv
∗
j (λmax,i, λmin,i, µmax,i, µmin,i,ωNi

)

− q∗i (λmax,i, λmin,i, µmax,i, µmin,i,ωNi
)− bi

which can be computed in distributed manner as long as v∗i , q
∗
i

and v∗j , j ∈ Ni are available. Notice that, the above analysis
has been sufficient to achieve a distributed implementation of
s-DA.

For our Gf-DA, the last remaining work is the selection
of matrix L. According to (11), L = ΦH−1ΦT provides the
tightest bound, which guarantees the best convergence. Unfor-
tunately, this selection is not allowed since ΦH−1ΦT is not
invertible2. Hence, we first restrict L to be a diagonal matrix,
i.e., L := blkdiag(Lλmax

,Lλmin
,Lµmax

,Lµmin
,Lω) where

Lλmax
,Lλmin

,Lµmax
,Lµmin

,Lω ∈ RN×N represent the di-
agonal submatrices associated with λmax, λmin, µmax, µmin

and ω, respectively. Then, L can be computed by solving the
following semi-definite programming problem,

minimize
L

Trace(L) (13a)

subject to L � ΦH−1ΦT . (13b)

Then, the elements of L associated with unit i are selected to

2Obviously, there must be linear dependent rows in Φ. So, we have Φ =[
Φ̄T ,0T

]T via row transformations where matrix P is invertible. Then,

ΦH−1ΦT = P

[
Φ̄H−1Φ̄T 0

0 0

]
P T .

This indicates it is not invertible.
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TABLE I
CONVERGENCE RATES COMPARISON

Proposition Description s-DA Gf-DA

1 Dual
Function d(ν?)− d(ν(t)) ≤

C2

2ρ(Λ)t
d(ν?)− d(ν(t)) ≤

2CL

(t+ 1)2

2 Primal
Sequence

∥∥∥∥[v∗(t)q∗(t)

]
−
[
v?

q?

]∥∥∥∥
2

≤
√
C2√

σmin(H)ρ(Λ)
√
t

∥∥∥∥[v∗(t)q∗(t)

]
−
[
v?

q?

]∥∥∥∥
2

≤
2
√
CL√

σmin(H)(t+ 1)

3 Primal
Infeasibility

‖Mv∗(t)− q∗(t)− b‖∞ ≤
∥∥[M ,−IN

]∥∥
∞
√
C2√

σmin(H)ρ(Λ)
√
t

‖Mv∗(t)− q∗(t)− b‖∞ ≤
2
∥∥[M ,−IN

]∥∥
∞
√
CL√

σmin(H)(t+ 1)
v
∗(t)− vmax

vmin − v∗(t)
q∗(t)− qmax

qmin − q∗(t)



∞

0

≤
(

2
√
C2√

σmin(H)ρ(Λ)
√
t

)
14N


v
∗(t)− vmax

vmin − v∗(t)
q∗(t)− qmax

qmin − q∗(t)



∞

0

≤
(

2
√
CL√

σmin(H)(t+ 1)

)
14N

establish Li := diag(Lλmax,i , Lλmin,i , Lµmax,i , Lµmin,i , Lωi),
which should be stored by unit i. Since ΦH−1ΦT is only
system-dependent, L can be offline computed using (13).3

A simple example is provided in Appendix A for better
understanding and following the distributed Gf-DA algorithm.

D. Simplified and Enhanced Variant

In Gf-DA, all the constraints are relaxed so that a smooth
case is obtained with explicit d, which makes it easier to con-
duct some analyses. However, such relaxation requires updat-
ing and storing many dual variables. Inspired by the advanced
studies of gradient methods on non-smooth cases [39]–[40],
we further propose a simplified but enhanced version of Gf-DA
based on the equivalent problem of (4) with an extended-value
objective function (eliminating the inequality constraints) and
power flow constraint, referred to as Ef-DA. Then, the step
of updating primal variables v and q in (S1) will be re-
placed by the constrained minimization with the constraints
of VAR and voltage as in (4c) and (4d). In this way, the mul-
tipliers corresponding to voltage and VAR constraints, i.e.,
λmax,λmin,µmax and µmin are eliminated. The benefits of
Ef-DA are: i) the updates of dual variables are significantly
simplified with less computation and storage burdens and ii)
thanks to fewer Lagrange multipliers and the hard bounds on
v and q in each update, a faster convergence rate is expected.

V. CONVERGENCE ANALYSIS

For a generalized s-DA using a diagonally scaled step size
matrix Λ � 0 ∈ R5N×5N , a sufficient condition for conver-
gence on problem (D) is ρ(Λ) ≤ 2/ρ(ΦH−1ΦT ). This can
be proven by generalizing the descent lemma [27, Ch.3] to
a weighted case. As discussed before, a prerequisite for us-
ing Gf-DA to solve problem (D) is that such a quadratic upper
bound exists for any ν, indicating that for any L � ΦH−1ΦT ,
Gf-DA will converge when applied to solve problem (D).

Beyond the discussions on sufficient conditions, we further
compare the convergence rates of s-DA and fast-gradient-based
DA on this voltage control problem, including the convergence

3L can be also online computed in a distributed way based on the dis-
tributed version of the generalized Lipschitz condition.

rates not only on dual function, but also on primal variables
v and q which we are more concerned with.

Let {v?, q?} and ν? be the optimal solutions of primal prob-
lem (P) and dual problem (D), respectively. Let {v∗(t), q∗(t)}
be the primal sequence generated by the s-DA or Gf-DA. The
(weighted) initial gaps are given by,

C2 = ‖ν(0)− ν?‖22 , CL = ‖ν(0)− ν?‖2L .

Suppose, for s-DA, we have ρ(Λ) ≤ 1/ρ(ΦH−1ΦT ), and
for Gf-DA, we have L � ΦH−1ΦT . Then, Propositions 1–3
listed in Table I detail the convergence rates of s-DA and Gf-
DA on dual function, primal sequence and primal infeasibility,
respectively. The rigorous proofs are provided in Appendix B.

From Propositions 1–3, it can be concluded that i) Gf-DA
solves problem (D) with a convergence rate no worse than
O(1/t2), however, s-DA only achieves a rate of O(1/t); ii)
With the primal-dual relation, we further know that the pri-
mal sequence {v∗(t), q∗(t)} converges to the optimal solution
with rates of O(1/t) and O(1/

√
t), respectively; iii) Last but

not least, the primal infeasibility converges to zero with rates
of O(1/t) and O(1/

√
t), respectively. These analyses might

shed light on why the proposed method significantly improves
the convergence of dual ascent, which is helpful in tracking
system voltage variations. Besides, this will also reduce the
computation and communication burdens when applied offline.

Remark 3 (Convergence of f-DA and Ef-DA): The conver-
gence analysis for Gf-DA is applicable to the standard f-DA
by applying the l2-norm. Interestingly, the relationship in (11)
also holds for the dual function in Ef-DA, given that the re-
sulting equivalent primal problem of (4) satisfies several spe-
cific conditions [40]. Thus, the convergence analysis for Gf-
DA also works for Ef-DA and the selection method of L
can be used for Ef-DA. Besides, given that ΦH−1ΦT =
[M ,−IN ]H−1[M ,−IN ]T = MH−1v MT + H−1q is pos-
itive definite, the tightest upper bound for d can be achieved
by selecting L = ΦH−1ΦT , which is exactly the Hessian
matrix of −d and consequently, it can be found that the up-
date rule in (S2) tends to be a constrained version of the pure
form of Newton’s method [27, Ch. 2]. Hence, if the central-
ized coordination is allowed to perform the computation of χ,
a superlinear convergence is expected.
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VI. ONLINE IMPLEMENTATION

A. Estimation of bi

The update of ωi requires bi, which reflects the system op-
eration states. For an online and distributed implementation,
based on (2), bi can be estimated online by measuring vmi
and qi and sharing the instantaneous voltage measurements
vmi with neighbors, which is as follows:

bi(t) =
∑

j∈Ni
⋃
{i}

mijv
m
j (t)− qi(t), ∀i ∈ N . (14)

B. Estimation of qmax,i and qmin,i

VAR limits (qmax,i and qmin,i) of each WT are locally up-
dated online according to their VAR characteristics. As afore-
mentioned, they are quite different for different types of WTs.
For DFIG-WTs, the stator and rotor-side information are re-
quired to compute the VAR limits but for FSC-WT, only the
active power output is needed. The online update of VAR lim-
its is helpful to guarantee WTs operate within a secure range,
especially for preventing converters from overload.

C. Projection of qi

Since the VAR limit is relaxed in updates, to allow for an
online implementation, the reactive power command qci should
be projected to the feasible range at each control point, which
is as follows:

qci (t) = [q∗i (t)]
qmax,i(t)

qmin,i(t)
, ∀i ∈ N . (15)

D. Reset γ

Generally, the offline fast gradient method starts with γ = 1
and then γ is updated in each iteration. For an online imple-
mentation, we propose to reset γ ← 1 every Tγ time steps to
guarantee the tracking capability.

E. Algorithm Design

The detailed rules of DOnVC are presented in Algorithm 2.
The schematic diagram of the distributed controller for each
DFIG-WT is shown in Fig. 2 where the measurements of the
active power output of stator pmS,i, stator voltage V mS,i and active
power output of GSC pmC,i are locally obtained. The VAR com-
mands of stator qS,i and GSC qC,i are dispatched to the cor-
responding controllers, respectively. For FSC-WTs, the VAR
estimation method is different because of different VAR char-
acteristics and the inner VAR dispatch block does not exist.
For STATCOMs, both the VAR estimation and inner VAR dis-
patch are removed.

Remark 4 (Model Errors): Though we establish the algo-
rithms and also the convergence analyses under a fixed-point
condition (linear model), the closed-loop nature of online algo-
rithms with an up-to-date knowledge of b could asymptotically
mitigate the model errors caused by the linear approximation.
This will be numerically validated later.

Algorithm 2 Distributed Online Voltage Control Algorithm
For any agent i at time t
• Reset γ: If t mod Tγ = 0 then reset γ(t)← 1.
• Estimate VAR Limit: Locally update qmax,i, qmin,i.
• Share vmi : Receive vmj (t) and send vmi (t) to j ∈ Ni.
• Estimate Operation Point: Update bi as in (14).
• Share ωi: Receive ωj from j ∈ Ni and send ωi to j ∈ Ni.
• Update Primal Variables: Update vi and qi by,

v∗i (t+ 1)← vr,i −

∑
j∈Ni

⋃
{i}
mjiωj(t) + λmax,i(t)− λmin,i(t)

hv,i

q∗i (t+ 1)← qmid,i(t) +
ωi(t)− µmax,i(t) + µmin,i(t)

hq,i
.

• Share v∗i : Receive v∗j (t+ 1) from j ∈ Ni and send v∗i (t+ 1)
to j ∈ Ni.
• Update Dual Variables: Update ηmax,i, ηmin,i, ξmax,i, ξmin,i

and χi as

ηmax,i(t)←
[
λmax,i(t) +

v∗i (t+ 1)− vmax,i

Lλmax,i

]∞
0

ηmin,i(t)←
[
λmin,i(t) +

vmin,i − v∗i (t+ 1)

Lλmin,i

]∞
0

ξmax,i(t)←
[
µmax,i(t) +

q∗i (t+ 1)− qmax,i(t)

Lµmax,i

]∞
0

ξmin,i(t)←
[
µmin,i(t) +

qmin,i(t)− q∗i (t+ 1)

Lµmin,i

]∞
0

χi(t)← ωi(t) +

∑
j∈Ni

⋃
{i}
mijv

∗
j (t+ 1)− q∗i (t+ 1)− bi(t)

Lωi

and then update λmax,i, λmin,i, µmax,i, µmin,i and ωi as in
(S4) in Algorithm 1.

• Implement: Update the reactive power set-point as in (15).

Fig. 2. Schematic diagram of the proposed DOnVC with a DFIG-WT case.
(The red arrows represent the received information, the blue arrows represent
the sent information and the black arrows represent the local information. )

VII. NUMERICAL RESULTS

In this section, numerical simulations are performed to
demonstrate the proposed voltage control schemes. The static
performance is tested on the modified French Fécamp offshore
wind farm [9] with 83×6 MW FSC-WTs and 1×±30 MVar
STATCOM (see Fig. 1). The dynamic simulation is performed
on a wind farm with 20×5 MW DFIG-WTs and 1×±10 MVar
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Fig. 3. Convergence performance of different algorithms. (f? is the optimal
objective value computed using the IPM-based solver IPOPT; For s-DA, the
step size is 2/ρ(ΦH−1ΦT ); For f-DA, L = ρ(ΦH−1ΦT )IN ; The first
ADMM case (rose red) is with ρ = 1 and the second (blue) is with ρ = 10).

TABLE II
OBJECTIVE VALUES COMPUTED BY DIFFERENT ALGORITHMS

Problem Algorithm Value Solver
A1 NLP (P) IPM 0.0015216 IPOPT 3.12
A2 NLP (P) SQP 0.0015216 FMINCON
A3 NLP (P) Active Set 0.0015217 FMINCON
A4 QP IPM 0.0464197 CPLEX 12.9
A5 SOCP IPM 0.2284767 SeDuMi 1.3
A6 NLP (P) ADMM (feedback) 0.0015454 [29]
A7 NLP (P) Gf-DA (feedback) 0.0015218 —
A8 NLP (P) Ef-DA (feedback) 0.0015219 —
A9 NLP (P) Ef-DA (tightest L) 0.0015216 —

STATCOM [19]. Note that the power flow is computed using
the full ac power flow model instead of a linear approximation.

A. Static Performance

1) Convergence Rate: Let Φv = IN , Φq = 5IN , vmax =
1.0521N and vmin = 0.9521N the convergence performances
(i.e., relative error to optimal objective value) of f-DA, Gf-DA
and Ef-DA are compared with s-DA [28] and ADMM [29]
(see Fig. 3). Gf-DA and Ef-DA enjoy faster convergence than
others on this problem and a slight superiority of Ef-DA is ob-
served compared with Gf-DA. Particularly, s-DA shows very
slow convergence because the conventional gradient method
(steepest descent) often suffers from very slow convergence
when solving ill-conditioned problems. The Gf-DA and Ef-
DA can converge to the solutions within 10−2 error bound af-
ter about 400 iterations. However, ADMM and s-DA require
more than 1000 iterations. This implies the proposed algorithm
will save communication bandwidth in real-life implementa-
tions when achieving the similar control performance. Besides,
according to the results, Ef-DA with the tightest bound (i.e.,
L = ΦH−1ΦT ) can compute a solution with a relative error
of 10−5 using only 8 iterations, validating our previous anal-
ysis. Seen from Fig. 4, a larger penalty weighting for VAR
output results in a more stable but slower convergence speed.
So, there will be a trade-off between stability and convergence
rate in practical implementation.

0 200 400 600 800 1000
Iteration

10-4

10-2

100

102

Fig. 4. Convergence performance of Gf-DA with different weighting settings.

0 200 400 600 800 1000
Iteration

10-4

10-2

100

102

Permanent Noise
Temporary Noise
No Noise

(a)
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100

102
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No Failure

(b)

Fig. 5. Robust performance under a) measurement noise (A random noise fol-
lowing a normal distribution of N(0, 0.012) is considered on terminal voltage
of WT16 and the temporary noise only occurs during 300th–500th iteration.)
and b) communication link failure (A temporary communication link failure
between WT16 and WT17 is considered during 300th–500th iteration.).

2) Optimality: Table II reports the comparison of solution
quality computed by different methods. A1–A3 directly solves
the possibly non-convex original problem with full ac power
flow constraints using interior point method (IPM), sequential
quadratic programming method (SQP) and active-set method,
respectively. In A4, the approximate QP problem with linear
power flow constraints without voltage feedback is considered.
While it is much easier to solve, however, it fails to provide
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Fig. 6. Voltage control performance under a primal infeasible case.
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Fig. 7. Active power production of 20 DFIG-WTs.

a high-quality solution due to its open-loop nature. In com-
parison, ADMM (A6), Gf-DA (A7) and Ef-DA (A8, A9) with
online feedback can achieve the very close optimality as the
centralized algorithms A1–A3 due to the fact that they are
able to asymptotically compensate the model errors via the
feedback mechanism. For the SOCP relaxation-based method
[41], it is found that the gaps ||lij − (P 2

ij +Q2
ij)/vi|| for most

branches are unacceptable, indicating the relaxation is inexact
and thus it fails to get a high-quality solution in this problem.

3) Robustness: As shown in Fig. 5, the robustness of the
proposed algorithm is tested. In Fig. 5(a), the temporary noise
only causes oscillation during that period. The permanent noise
will lead to an increasing amplitude oscillation and then the
system become unstable due to the error accumulation. That
is, for real-life implementation, the measurement errors should
be guaranteed to fall within a tiny level. As for communication
link failures (see Fig. 5(b)), a “freeze” strategy [28]–[29] is
used, i.e., the exchanged information remains unchanged until
the new value comes. It can be observed that the proposed
algorithm is slightly affected during the failure period but the
convergence can still be guaranteed.

4) Primal Infeasibility: An extreme case is designed, in
which the total wind power production is 457 MW (> 90%)
and an over-voltage condition is created. The centralized solver
IPOPT reports that it fails to give an optimal solution. Hence,
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Fig. 8. Voltage profile of the wind farm network without control.
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Fig. 9. Voltage profile of the wind farm network with Gf-DA based control.

problem (P) is believed to be primal-infeasible. Seen from
Fig. 6, under such case, Gf-DA can still drive system voltages
towards a secure operation range and it finally converges to
an stable operation point where all bus voltages are corrected
within 1.02–1.04 p.u. (acceptable in practical operation). This
validates the previous remark regarding voltage constraints.

B. Dynamic Performance

The dynamic test is performed with Matlab/SIMULINK en-
vironment. The controllers are implemented using a function
block with a packaging triggered subsystem. The wind field
modeling considering turbulence and wake effects for the wind
farm was generated from SimWindFarm Toolbox [38]. The to-
tal simulation time is 15 min. Fig. 7 shows the active power
production of 20 WTs. Fig. 8 shows the voltage profile across
the network without any additional voltage/VAR control. It
can be seen that, some WT terminal voltages exceed 1.05 p.u.
and even reach 1.08 p.u., resulting in a high risk of being
tripped by the protection devices. In comparison, as shown in
Fig. 9, the proposed Gf-DA based DOnVC scheme is able to
regulate the voltages within the predefined range [0.95,1.05]
p.u. by coordinating the VAR outputs of WTs and STATCOM,
which is illustrated in Fig. 10.

The overall voltage control performance is presented in Fig.
11. The control periods of all these methods are set as 0.1 s. It
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Fig. 10. Reactive power outputs of STATCOM and 20 DFIG-WTs.
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Fig. 11. Overall voltage performance with different control strategies. (For
s-DA, the step size is 2/ρ(ΦH−1ΦT ); For Ef-DA, the tightest bound L =
ΦH−1ΦT is used; The weighting matrices are designed as Φv = IN and
Φq = IN for all cases.)

can be found that Gf-DA-based and Ef-DA (with centralized
coordination)-based voltage control schemes show much bet-
ter voltage control performance than the s-DA-based method,
though s-DA can alleviate the over-voltage issue in some de-
gree. This is due to the fact that Gf-DA and Ef-DA hold much
faster convergence than s-DA, indicating a good tracking ca-
pability, which is consistent with the previous discussions on
convergence. This further demonstrates the convergence rate
of algorithms is of great significance in online voltage control.

VIII. CONCLUSION

This paper has proposed a fast dual ascent-based distributed
online voltage control algorithm and addressed its application
in wind farms. The voltage control problem is established
based on a linearized branch flow model with sparse cou-
plings among nodes so that the dual decomposition method
can be used to develop a fully distributed solution algorithm.
To improve the convergence of dual ascent, the fast gradient
method is generalized and then applied to solve the dual prob-
lem. Theoretical convergence analyses on both sides of dual
and primal have been also provided in details. Besides, an
online implementation scheme via feedback was designed in

Fig. 12. An example with 3 units. (ωN1
= [ω1 ω2]T , ωN2

= [ω1 ω2 ω3]T

and ωN3
= [ω2 ω3]T ; MN1

= [m11m21]T , MN2
= [m12m22 m32]T

and MN3
= [m23m33]T )

order to achieve better tracking performance. Finally, numer-
ical results have validated the effectiveness of the proposed
DOnVC methods under both static and dynamic cases.

APPENDIX A
A SIMPLE EXAMPLE

As shown in Fig. 12, a simple example with 3 units labelled
by agents 1 , 2 and 3 , respectively, is provided to clarify
some details of the proposed distributed Gf-DA algorithm. The
distributed Gf-DA algorithm is achieved by alternately carry-
ing out the following steps.

Step 1 (Primal Update): With the latest updated dual vari-
ables λmax,i, λmin,i, µmax,i, µmin,i, and ωNi

, each distributed
controller i ∈ {1, 2, 3} solves v∗i and q∗i , respectively, by

{v∗1 , q∗1} := arg min
v1,q1

L1(v1, q1, :) (16)

{v∗2 , q∗2} := arg min
v2,q2

L2(v2, q2, :) (17)

{v∗3 , q∗3} := arg min
v3,q3

L3(v3, q3, :) (18)

where the closed-form solutions are solved by ∇Li(·) = 0.
Step 2 (Information Exchange—v∗i ): Each agent exchanges

the latest updated v∗i with neighbors:

1 =⇒ 2 : v∗1 1 ⇐= 2 : v∗2

2 =⇒ 3 : v∗2 2 ⇐= 3 : v∗3

Step 3 (Dual Update): After receiving the latest updated
primal variables from neighbors, each agent updates the as-
sociated dual variables and auxiliary variables as in the step
“Update Dual Variables” in Algorithm 2. Then, we obtain the
newly updated λmax,i, λmin,i, µmax,i, µmin,i, and ωi.

Step 4 (Information Exchange—ωi): Each agent exchanges
the updated ωi with neighbors:

1 =⇒ 2 : ω1 1 ⇐= 2 : ω2

2 =⇒ 3 : ω2 2 ⇐= 3 : ω3

APPENDIX B
PROOFS OF PROPOSITIONS 1–3

A. Proof of Proposition 1

Proof: The first part can be proven by generalizing the de-
scent lemma with Lipschitz constant ρ(ΦH−1ΦT ). The sec-
ond part can be obtained by generalizing the proof in [39],
i.e., replacing constant L with L-norm. We should also re-
mark that fast gradient methods-based DA does not guarantee
a monotone increase of d.
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B. Proof of Proposition 2

Proof: For any given ν, define

g(v, q;ν) := L(v, q,ν) (19)

which implies ν is parametric in g. Since f is strongly convex
with H � 0, so is the function g. Therefore, we have

g(v∗(ν), q∗(ν);ν)− g(v, q;ν) ≥ 1

2

∥∥∥∥[v∗(ν)
q∗(ν)

]
−
[
v?

q?

]∥∥∥∥2
H
(20)

with {v∗(ν), q∗(ν)} := arg min
v,q

g(v, q;ν). Then, by the def-

inition of g, for any λmax,λmin,µmax,µmin ≥ 0 and any ω,
we have,

g(v?, q?;ν)− g(v∗(ν), q∗(ν);ν)

=f(v?, q?) + ωT (Mv? − q? − b)
+ λTmax(v? − vmax) + λTmin(vmin − v?)
+ µTmax(q? − qmax) + µTmin(qmin − q?)
− f(v∗(ν), q∗(ν))− ωT (Mv∗(ν)− q∗(ν)− b)
− λTmax(v∗(ν)− vmax)− λTmin(vmin − v∗(ν))

− µTmax(q∗(ν)− qmax)− µTmin(qmin − q∗(ν))

=d(ν?)− d(ν) + ωT (Mv? − q? − b)
+ λTmax(v? − vmax) + λTmin(vmax − v?)
+ µTmax(q? − qmax) + µTmin(qmin − q?)
≤d(ν?)− d(ν) (21)

where the second equality holds thanks to the strong duality,
namely, d(λ?,µ?) = f(v?, q?), given that the Slater’s condi-
tion holds for problem (P). The counterpart of Ef-DA can be
easily conducted by removing the terms associated with VAR
and voltage limits in g, which establishes a strict equality re-
lation. Then, with (20), we can obtain,

1

2

∥∥∥∥[v∗(ν)
q∗(ν)

]
−
[
v?

q?

]∥∥∥∥2
H

≤ d(ν?)− d(ν) (22)

Then, we have,∥∥∥∥[v∗(ν)
q∗(ν)

]
−
[
v?

q?

]∥∥∥∥2
2

≤ 2

σmin(H)

(
d(ν?)− d(ν)

)
(23)

where σmin(·) denotes the smallest eigenvalue. Further with
Proposition 1, we finish the proof.

C. Proof of Proposition 3

Proof: For Gf-DA or Ef-DA, we have

‖Mv∗(t)− q∗(t)− b−Mv? + q? + b‖∞

≤
∥∥[M ,−IN

]∥∥
∞

∥∥∥∥[v∗(ν)
q∗(ν)

]
−
[
v?

q?

]∥∥∥∥
∞

≤
∥∥[M ,−IN

]∥∥
∞

∥∥∥∥[v∗(ν)
q∗(ν)

]
−
[
v?

q?

]∥∥∥∥
2

= max
i∈N

∑
j∈Ni

(1 + |mij |)


∥∥∥∥[v∗(ν)
q∗(ν)

]
−
[
v?

q?

]∥∥∥∥
2

. (24)

Then with Proposition 2, we can obtain the first row in Propo-
sition 3, which corresponds to the power flow constraint.

Further, only for Gf-DA, we have∥∥∥∥∥∥∥∥

IN 0N
−IN 0N
0N IN
0N −IN

[v∗(t)q∗(t)

]
−


IN 0N
−IN 0N
0N IN
0N −IN

[v?q?
]∥∥∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥∥∥

IN 0N
−IN 0N
0N IN
0N −IN


∥∥∥∥∥∥∥∥
∞

∥∥∥∥[v∗(t)q∗(t)

]
−
[
v?

q?

]∥∥∥∥
∞

≤
∥∥∥∥[v∗(t)q∗(t)

]
−
[
v?

q?

]∥∥∥∥
2

. (25)

Accordingly, we can obtain,
v∗(t)− vmax

vmin − v∗(t)
q∗(t)− qmax

qmin − q∗(t)

−

v? − vmax

vmin − v?
q? − qmax

qmin − q?

 ≤ ∥∥∥∥[v∗(t)q∗(t)

]
−
[
v?

q?

]∥∥∥∥
2

14N

(26)

which indicates,

v∗(t)− vmax

vmin − v∗(t)
q∗(t)− qmax

qmin − q∗(t)



∞

0

≤
∥∥∥∥[v∗(t)q∗(t)

]
−
[
v?

q?

]∥∥∥∥
2

· 14N . (27)

Then with Proposition 2, we finish the proof.
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