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Abstract—In interconnected power systems, dynamic model re-
duction can be applied to generators outside the area of interest
(i.e., study area) to reduce the computational cost associated with
transient stability studies. This paper presents a method of de-
riving the reduced dynamicmodel of the external area based on dy-
namic response measurements. The method consists of three steps,
namely dynamic-feature extraction, attribution, and reconstruc-
tion (DEAR). In this method, a feature extraction technique, such
as singular value decomposition (SVD), is applied to the measured
generator dynamics after a disturbance. Characteristic generators
are then identified in the feature attribution step for matching the
extracted dynamic features with the highest similarity, forming a
suboptimal “basis” of system dynamics. In the reconstruction step,
generator state variables such as rotor angles and voltage magni-
tudes are approximated with a linear combination of the charac-
teristic generators, resulting in a quasi-nonlinear reduced model
of the original system. The network model is unchanged in the
DEAR method. Tests on several IEEE standard systems show that
the proposed method yields better reduction ratio and response er-
rors than the traditional coherency based reduction methods.

Index Terms—Dynamic response, feature extraction, model re-
duction, orthogonal decomposition, power systems.

NOMENCLATURE

Time.

Rotor angle of synchronous machine.

Rotor speed of synchronous machine.

Mechanical power.

Electrical power.

Inertia constant of synchronous machine.
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Damping ratio of synchronous machine.

Degree of characteristic generators in the super set.

Metric for response error.

Optimal orthogonal bases.

Approximation using optimal orthogonal bases.

Set of characteristic generators.

Set of rotor angles of non-characteristic generators.

Coefficient matrix between and .

Dimensionality of original space.

Dimensionality of reduced space.

First columns of .

Coefficient matrix connecting and .

Reduction ratio.

I. INTRODUCTION

I N interconnected power systems, dynamic model reduction
(DMR) for generators outside the area of interest has been

investigated to reduce the expensive computational cost of tran-
sient stability studies [1]–[15]. DMR holds promise to repre-
sent the real system with proper degrees of approximation while
maintaining relevant dynamic properties, which enables faster
simulations of system responses to disturbances. Successful im-
plementation of DMR is critical for online dynamic security as-
sessments in whichmany scenarios need to be considered as part
of contingency analysis. This approach ensures outage preven-
tion and outage recovery where strategic islanding may be nec-
essary to assure dynamic stability in real-time, wide-area control
and protection.
DMR generally consists of identifying and aggregating gen-

erators to be reduced, followed by reconfiguring the network
model [16]. “Coherency” is the most common concept adopted
in the identification step. Coherency has the advantage of re-
taining the physical structure of the system compared to other
means, such as the technique known as “model equivalencing”
[2], [3]. Depending on the methods used to identity a group, co-
herency-based reduction techniques can be classified into three
types, which are described below.
Type I relies on analyzing linearized models of systems

around an operating point. When grid topology changes (e.g.,
lines are tripped) following a large disturbance, the identifica-
tion results obtained for the pre-fault system may not be valid
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for the post-fault system. Type II identifies coherency groups
by analyzing the results of offline dynamic simulations. These
methods are more reliable and usually yield a higher reduc-
tion ratio; but the resulting reduced model has very limited
applicability in real time because both the system topology and
operation point will be different from the offline studies. Type
III methods rely on online measurements and computation,
taking advantage of advanced hardware, including phasor
measurement units, broadband communications, and fast com-
puters, and with the potential to address issues associated with
the other approaches.
Coherency-based methods can perform well if most genera-

tors only have strong participation in local oscillation modes.
However, coherency can be blurred when multiple inter-area
modes exist, resulting in performance deterioration (in terms of
reduction ratios and response errors) by the coherency-based re-
duction methods. Most coherency methods for model reduction
also do not consider voltage variations on the coherency gener-
ators, as pointed out by Joo et al. [14].
In this paper, a new DMR method is proposed. Similar to

the Type III methods, the proposed method is based on dy-
namic phasor measurement data of generators, but attempts to
avoid the weaknesses of coherency identification. The proposed
method is composed of the three steps: dynamic-feature extrac-
tion, attribution, and reconstruction (DEAR). In the extraction
step, a feature extraction technique, such as singular value de-
composition (SVD), is applied to the measured generator dy-
namics following a disturbance. In the feature attribution step,
characteristic generators that have responses matching the ex-
tracted features (e.g., the orthogonal components from SVD)
with the highest similarity are then identified. Characteristic
generators form a suboptimal “basis” of system dynamics. In
the reconstruction step, all generator state variables, such as
rotor angles and voltage magnitudes, are approximated with a
linear combination of the characteristic generators. Non-charac-
teristic generators are thus eliminated from numerical integra-
tion. The characteristic generator set usually contains a much
smaller number of machines than the original system, and can
be adjusted to meet the accuracy requirement.
The system derived from the proposed DEAR method is a

quasi-nonlinear reduced model of the original system, in the
sense that the nonlinear properties of the characteristic gener-
ators and the network are still retained while the nonlinear dy-
namics of other generators are eliminated. The accuracy in ap-
proximating the original systemwould be acceptable for a wider
range of operating points compared to reduction approaches
based on model linearization. Another advantage of the DEAR
method is that the network model is unchanged in the reduced
model, which simplifies the model reduction process compared
to most coherency-based approaches. Retaining the original net-
work model also allows for specific generators outside the char-
acteristic generator set to remain in the reduced model if so de-
sired. These properties make the online DMR using the DEAR
method much more convenient and flexible.

II. APPLICATION OF DYNAMIC MODEL REDUCTION

NERC standards require that transmission operators maintain
reliable operation of the system under the most severe single
contingency [24]. In the NERC studies, the model of the entire

interconnection1 is used, with more detailed information of a
transmission company’s own system (called the internal area
or the study area), but less detailed modeling is conducted for
the rest of the transmission network (called the external area).
Because the planning studies are performed on offline models,
a number of assumptions have to be made as to the status of
transmission lines and devices, generator dispatch patterns,
and loads at each bus. Real-time system conditions are often
quite different from these assumptions and sometimes render
the results of the planning studies inapplicable. To overcome
this problem, many transmission operators perform online
transmission analyses to achieve faster evaluation of reliability
and produce corrective strategies.
Stability studies are the most time-consuming of all types of

transmission studies and are part of the extensive dynamic se-
curity assessment (DSA). In online and offline applications in-
volving stability studies, DMR can be performed on the model
of the external area to reduce the computational burden. A large
number of control and protection schemes responding a distur-
bance can be tested in the study area with a reduced external
area model, thus improving the efficiency of both planning and
operation of the transmission network.
The goal of DMR is to reduce the number of variables and

equations used to represent the external area as much as pos-
sible, while keeping the responses of internal generators and
other relevant devices unchanged to the degree possible. De-
scriptions of the proposed DEAR method for DMR and valida-
tion of its effectiveness on IEEE standard test systems are dis-
cussed in the rest of this paper.

III. DEAR METHOD FOR DYNAMIC MODEL REDUCTION

A. Basic Idea

Application of the method to larger systems and higher-order
machine models are discussed later in this section. For clarity,
the classical model for a three-machine system shown in (1) is
used as an example to describe the basic idea:

(1)

Fig. 1 shows the rotor angles of generators, , , and ,
after disturbance.
As the first step, the dynamic feature of this simple system is

identified, which has only one oscillation frequency and speed
of decay. In the second step, generator G1 is selected as the char-
acteristic generator because its dynamics are quite representa-
tive (we do this by observation in this simple example). In the
third step, the angle variable is used to represent and .
In fact, , , and satisfy the relation in

(2)

1The transmission planning coordinator is responsible for maintaining the
model for the entire interconnection and improving its accuracy. For example,
the Western Electricity Coordinating Council performs this function in the
Western interconnection.
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Fig. 1. Illustration of rotor angle dynamics in a three-machine system.

Fig. 2. Diagram of the DEAR method.

where , are constants and will be evaluated
through (21). Ignoring errors represented by “ ” in (2) and in-
serting it into (1), the original system can be simplified as (3):

(3)

Four differential equations were eliminated in (3) compared to
(1) for this simple example. The network model will be kept
the same when performing numerical integration for the system
because no aggregation is needed in the reduction of generator
state variables. We follow the same procedure for the DMR of
generators in larger systems, as described in detail below and
illustrated in Fig. 2:
Step 1) Dynamic-feature extraction—Analyze the dynamic

response vectors of the original system for a distur-
bance, and find the optimal orthogonal bases of these
responses.

Step 2) Feature attribution—Identify generators with re-
sponses that are highly similar to the optimal
orthogonal bases and designate those units as the
characteristic generators.

Step 3) Feature reconstruction—Use linear combinations of
the characteristic generators to approximate non-
characteristic generators.

B. Dynamic-Feature Extraction: Finding the Optimal
Orthogonal Bases

In this subsection, we discuss the concept of optimal orthog-
onal bases of a system’s dynamic responses and how to identify
them.

For convenience, the classical generator model is assumed,
and rotor angles, , are the state variables. The magnitude of the
generator internal voltage, , is assumed to be constant.
Suppose are the rotor angles

of the system to be reduced. The term is an -dimen-
sional row vector representing the dynamic of rotor angle
following a disturbance. Its elements are time series:

.
Define

(4)

Here, is an matrix. Suppose
is the set of optimal orthogonal

bases. Here, , and is an -dimensional row vector.
“Optimal” means that for any , can be approximated
by a linear combination of , and the errors between the
approximation, , and the actual responses are minimized. In
other words, given any , we need to find an optimal ,
such that

(5)

where is an matrix, and

(6)

is minimized.
In this paper, we adopt the SVD algorithm to solve the above

problem. Through SVD we get

(7)

where is an unitary matrix, is an rectangular
diagonal matrix with nonnegative real numbers on the diagonal,
and is an unitary matrix. The first 2 rows of con-
stitute the optimal orthogonal bases, which can be used to ap-
proximate . The diagonal elements of (i.e., singular values of
) in descending order are scaling factors indicating the strength
or energy of the corresponding row vectors of .
Define

(8)

where is the first columns of . As a result,
can be approximated by . For any , the SVD
algorithm can guarantee that (6) is minimized.
Remark 1: Although there may exist thousands of modes in

the mathematic model of a large-scale power system, usually
only a small fraction of them are noticeably excited by a dis-
turbance. We refer to these modes as “dominant modes,” and
the rest as “dormant modes”. Usually, “dominant modes” have
strong oscillation energy (shown as the “features” in system dy-
namics), while “dormant modes” have weak energy and are hard
to observe. Here, SVD is used to extract the features composed
of those “dominant modes,” which correspond to the first di-
agonal elements of matrix in (7), unlike how it is used in tra-
ditional linear system model reduction methods (e.g., balanced

2The value is selected according to the accuracy requirement in the reduced
model. Larger values result in lower reduction ratios but a more accurate ap-
proximation of the original system and vice versa.
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truncation [19] or Hankel norm reduction [20]). More details
about the SVD algorithm can be found in Berrar et al. [21] and
Antoulas [22].

C. Feature Attribution: Determine Characteristic Generators

The optimal orthogonal basis vectors found in the feature
extraction step will result in minimal errors when used to ap-
proximate . If each of these basis vectors exactly matches the
dynamic angle response of one of the generators, then the angle
dynamics of the other generators must have very minimal en-
ergy impact (because their corresponding singular values are
smaller). This means we can just keep these generators in the
model and ignore the other generators. Although this will not
happen in a real system because generators usually participate
in multiple oscillation modes, we still will try to match an op-
timal basis with the generator whose dynamic response has the
highest similarity to this “oscillation pattern,” and will call the
generator a characteristic generator. We then will use the set of
characteristic generators as sub-optimal bases to represent the
entire system.
To determine the characteristic generators, we need to find

a subset of such that this subset has the
highest similarity to , the optimal orthogonal set. In other
words, we need to find

(9)

such that is highly similar to .
According to the last subsection, any can be approximated

by a linear combination of the optimal orthogonal bases:

...

(10)

Here, is the optimal orthogonal basis and is normalized [8].
A larger indicates a higher degree of co-linearity between
the two vectors ( and ). For example, if , it
indicates that the similarity between and is higher than that
between and . will have the highest similarity to , if
the inequality in (11) holds:

(11)

By doing so, a rotor angle response of the highest similarity can
be identified for each optimal orthogonal basis. As a result, in
(9) is determined.
Remark 2: The same characteristic generator can appear two

or more times in (9) when using the criteria in (11). For example,
if has the highest similarity to both and , then we will
have two entries in (9). In that case, delete one of the entries,
and thus, .
Remark 3: From an engineering perspective, some genera-

tors may be of particular interest, and detailed information about
them is preferred. Dynamic equations for these generators can
be kept in the reducedmodel without being approximated if they
are not identified as characteristic generators.

D. Feature Reconstruction: Model Reduction Using the Linear
Combination of Characteristic Generators

According to (7)–(10), can now be arranged as (12):

(12)

where is an matrix defined in (4), is an matrix
defined in (9) representing rotor angle dynamics of character-
istic generators, and is an matrix representing the
dynamics of non-characteristic generators; is an matrix
and can be calculated from (8); and is an square ma-
trix; is an matrix.
Normally, is invertible.We have two different approaches

to finding the approximate linear relations between and .
The first approach is to solve the following over-determined
equation:

(13)

where is an matrix and can be determined by the

least-squares method, namely, . Another

approach is to use the approximate linear relations in (12). Ac-
cording to (12), we have

(14)

and

(15)

Pre-multiplying on both sides of (14) yields

(16)

Substituting (16) into (15) yields

(17)

Equation (13) or (17) establishes the approximate linear
relations between the rotor angle dynamics of characteristic
generators and that of non-characteristic generators. The
dynamics of all generators in the original system then can
be reconstructed by using only the dynamic responses from
characteristic generators.

E. Generalization to High Order Models

In classical models, it is assumed that the magnitude of the
generator internal voltage is constant, and only its rotor angle
changes after a disturbance. In reality, with the generator ex-
citation system, also will respond dynamically to the dis-
turbance. The dynamics of can be treated in the same way
as rotor angle in the DEAR method to improve the reduced
model, except that the set of characteristic generators needs to
be determined from . This way, both and of non-character-
istic generators will be represented in the reduced model using
those of the characteristic generators.
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Fig. 3. Extracted dynamic features in the three-machine system.

F. Online Application of the DEAR Method

For offline studies, the DEAR process can be performed at
different conditions and operating points of the target system
(external area) to obtain the corresponding reduced models. For
online applications, however, computational cost may be very
high if SVD has to be calculated every time the system config-
uration changes. A compromise can be made by maintaining
a fixed set of characteristic generators, which is determined
by doing SVDs for multiple scenarios offline and taking the
super-set of the characteristic generators from each scenario.
During real-time operation of the system, the approximation
matrix from (13) used for feature reconstruction is updated
(e.g., using the recursive least-square method) based on a few
seconds’ data right after a disturbance. This way, SVD is not
needed every time after a different disturbance occurs.

IV. CASE STUDIES
A. Case 1

First, we test the proposed approach on the simple three-ma-
chine system in (1), which has the angle dynamics , , and
shown in Fig. 1.
1) Dynamic-Feature Extraction: Let .

Using (7), we obtain (1,:), (2,:), and
(3,:), which are shown in Fig. 3. The relationship

between and is

(18)

where

and is calculated by .
As can be seen from , the second and third columns of

have much smaller elements than the first column. Therefore,
is the most significant dynamic feature of . In (8), if we let
, then we have

(19)

Fig. 4. Actual and reconstructed rotor dynamics of and .

2) Feature Attribution: Notice that the three elements of
(i.e., the first column of ) are

. The generator with has the highest similarity to
according to (11), and can be chosen as the characteristic

generator.
3) Feature Reconstruction: According to (14) and (15), we

have

(20)

Substituting (20) into (17) yields

(21)

The reconstructed dynamics of and are compared to the
original data, which are shown in Fig. 4 in which dotted lines
represent reconstructed dynamics; solid lines represent original
dynamics. It can be seen that and are restored very well in
the reduced model.

B. Case 2

Chow et al. compared the performance of different model re-
duction methods on the NPCC 48-machine system, including
Podmore’s method, inertial aggregation, slow coherency and
optimum aggregation [5]. The DEAR method is applied to this
same system to compare with the above methods.
In the NPCC system model [5], generators 1 to 9 comprise

the New England system, which is designated to be the internal
system, while the other generators comprise the external system.
The disturbance is a six-cycle, short-circuit fault that occurs at
Medway located outside the Boston area. The disturbance is
cleared by removing the line from Medway to Sherman Road.
Several reduced models were obtained in [5] by applying dif-
ferent DMRmethods. To evaluate performance of these reduced
models, Chow et al. [5] defined the two metrics shown in (22)
and (23), where and represent the rotor angle dy-
namics of generator obtained from the original system and the
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Fig. 5. Time response of machine 1 for the Medway Disturbance.

Fig. 6. Time response of machine 4 for the Medway Disturbance.

reduced system, respectively. The performance comparison re-
sults are given in Figs. 5 and 6 and [5, Table 2]. Here we evaluate
the DEAR method with these same two metrics:

(22)

(23)

Using the DEAR method, by analyzing rotor angle data in
the time interval of , generators 10, 23, 24, 25,
29, 30, 36, 39, 40, 41, 43, 44, and 45 are identified as charac-
teristic generators; generator 48 is the reference machine; and
the other generators can be removed from the dynamic equa-
tions. As a result, 14 machines are maintained in the reduced
dynamic model for the external system. Note that the reduced
model has the same reduction ratio used by Chow et al. [5]. The
responses of two internal generators in the study area following
the same disturbance are compared between the reduced model
and the original model, shown in Figs. 5 and 6, respectively.
Solid lines represent the responses of the original model, and
dashed lines represent the responses of the reduced model. Per-
formance in terms of differences between the original model’s
response and that of the reduced model are compared between
the DEAR method and the methods in [5, Table 2]. The results
are shown in Table I, which suggests the better performance of
the DEAR method.

C. Case 3

In this subsection, the IEEE 145-bus, 50-machine system [18]
in Fig. 7 is investigated. There are 16 and 34 machines in the
internal and external areas, respectively. Generator 37 at Bus
130 in the internal area is chosen as the reference machine. All
generators are modeled using classical models. A three-phase,
short-circuit fault (F1) is configured on Line 116–136 at Bus

TABLE I
ERROR FUNCTIONS FOR MACHINES 1 AND 4

Fig. 7. IEEE 50-machine system.

No. 116 at . The fault lasts for 60 ms, and then the line
is tripped to clear the fault.
Post-fault rotor angle dynamics in the time interval of

are analyzed to perform model reduction, using in-
ertial aggregation [5] (one of the coherency-based reduction
method) and the DEAR method, so that their performance can
be compared.
Many methods are available for coherency identification. In

this paper, the principle component analysis method presented
by Anaparthi et al. [8] and Moore [17] is chosen to identify co-
herency groups, and the Matlab clustering toolbox is used to aid
the analysis. Clustering results according to the rotor angle dy-
namics in the external area are shown in Fig. 8. In Fig. 8, the hor-
izontal axis represents generator numbers, and the vertical axis
scales distances between generator groups. Here the distance is
defined in the three-dimensional Euclidean space expanded by
the first three columns of the matrix in (8).
Depending on the distance selected between clusters, dif-

ferent number of coherency groups can be obtained. For
example, at a distance larger than 9, two groups are formed
(level-2 clustering). Generators 23, 30, and 31 comprise one
group, and the other generators comprise another group. Sim-
ilarly, there are 10 generator groups at level 10, which are
shown in the following: Group 1 (generators 30, 31); Group 2
(generator 23); Group 3 (generators 9, 10); Group 4 (generators
16); Groups 5 (generators 7, 13, 15); Group 6 (generator 3);
Group 7 (generators 32, 36); Group 8 (generators 8, 18, 25, 33,
34, 35); Group 9 (generators 2, 6); Group 10 (generators 1, 4, 5,
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Fig. 8. Coherent groups clustering.

Fig. 9. Dynamic responses of the 10 coherency groups in the IEEE 50-machine
system.

11, 12, 14, 17, 19, 20, 21, 22, 24, 26, 27). Fewer groups result
in a simpler system. The normalized (i.e., subtracted by the
mean value of the data and divided by its standard deviation)
angle dynamics of the 10 groups at level 10 are shown in Fig. 9,
where coherency can be observed between generators in the
same group. These coherent machines are then aggregated
using the inertial aggregation method reported by Chow et al.
[5]. Finally, we obtain a reduced system with 10 aggregated
generators for the external system.
Following the DEAR procedure described in Section III, the

optimal orthogonal bases are first obtained by (7) and (8) and
by setting . These 10 basis vectors are shown as the
blue solid lines in Fig. 10.3 Then, the corresponding 10 charac-
teristic generators are identified using (11). The rotor angle dy-
namics of these characteristic generators are shown as dashed
red lines in Fig. 10. An approximate linear relation between the

3To compare the similarity on the same scales, the amplitudes of the optimal
orthogonal bases are multiplied by 10 when shown in Fig. 10.

Fig. 10. Optimal orthogonal bases (blue solid lines) and dynamic responses of
corresponding characteristic generators (red dashed lines) in the IEEE 50-ma-
chine system.

Fig. 11. Rotor angle dynamics of Generator 42 (on Bus 136) following fault
F1.

characteristic generators and the non-characteristic generators
then is established to get the reduced model. Notice that, in this
case, has the highest similarity to orthogonal bases and
. Therefore, the set of characteristic generators contains only

9 elements, which is .
With the reduced models developed using both coherency

aggregation and the DEAR method, the performance of these
two methods can be compared. Under the forgoing disturbance,
the dynamic response of generator G42 (connected to the
faulted line) from these two reduced models and from the
original model are shown in Fig. 11.
The blue solid line is from the original model. The red dashed-

dotted line is from the reducedmodel by coherency aggregation,
and the black dotted line is by the DEAR method. The reduced
model by the DEARmethod appears to have smaller differences
from original model, and outperforms the coherency aggrega-
tion method.
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Fig. 12. Performance comparison between the coherency aggregation method
and the proposed DEAR method.

Another important metric for evaluating the performance of
model reduction is the reduction ratio, which is defined as

(24)

where is the total number of state variables of the reduced
model of the external system and is that of the original
model.
Using the metric in (23), the mismatch between the black

dotted line and the blue solid line in Fig. 11 is 0.1630, and the re-
duction ratio defined by (24) is , both
of which represent the performance of the proposed method.
The mismatch between the red dashed-dotted line and the blue
solid line in Fig. 11 is 0.4476 and ,
both representing the performance of the coherency aggrega-
tion method. Therefore, it can be concluded that the proposed
method performs better under the metric defined in (23), even
under a slightly higher reduction ratio.
We now investigate if the same conclusion can be drawn

under different reduction ratios and for generators other than
G42 shown in Fig. 11.
Define a comprehensive metric shown in (25) for all the in-

ternal generators. Here, is the set of all the generators in the
internal system; and is the total number of these generators:

(25)

A performance comparison of the proposed method and the tra-
ditional coherency aggregation is shown in Fig. 12, in which the
horizontal axis represents the reduction ratio defined in (24), and
the vertical coordinates represent the error defined in (25). It is
apparent that the proposed DEARmethod consistently performs
better than the coherency method.
To demonstrate the basic idea of a super set of characteristic

generators in Section III-F, three faults (three-phase fault lasting
for 60 ms) are configured on Line 116–136, Line 116–143 and
Line 115–143, respectively. Choose the size of the character-
istic generator set for each fault scenario to be 9 here. Define

as the number of times each generator appears as a charac-
teristic generator after analyzing the system dynamic response
to a fault. For example, Generator 2 is a characteristic generator

TABLE II
OF CHARACTERISTIC GENERATORS

Fig. 13. Rotor angle dynamics of Generator 42 (on Bus 136) following fault
F4.

in all the three fault scenarios; it, therefore, has a of 3.
of each characteristic generator is shown in Table II.
Select as a threshold, i.e., generators with

are chosen to form the super set of characteristic generators. The
following generators are selected: generator 2, 15, 18, 23, 30, 3,
4, 22, and 36.
With the super set, three different coefficient matrices in

(13) can be obtained for the three faults, denoted by , ,
and . Then a rough estimation of a generalized can be ob-
tained by, e.g., letting . When another
three phase fault takes place, for example, F4 on Line 141-143,
measurement data for the first three seconds after fault clearance
can be used to refine the coefficient matrix . Applying the re-
cursive least square method, is replaced by the more accu-
rate coefficients in . We thus get a new reduced model, rep-
resented by the super set of characteristic generators and the co-
efficient matrix , without performing SVD. The performance
of the new reduced model is illustrated in Fig. 13 using the rotor
dynamics of Generator 42.

D. Case 4

Pyo et al. [23] present a coherency aggregation method that
can handle higher-order models with excitation systems, and
apply the method using the IEEE 39-bus system. Here the
DEAR method is applied on the same system to compare the
performance.
In the IEEE 39-bus system [23] shown in Fig. 14, there are

four and six generators in the internal and the external area, re-
spectively. In [23], four machines remain in the external system
after reduction (G2 at Bus 31 and G3 at Bus 32 are aggre-
gated; G4 at Bus 33 and G5 at Bus 34 are aggregated). After
a three-phase fault at Bus 2, which lasts 100 ms and is cleared
by removing the line between Bus 2 and Bus 3, the performance
of the reduced model is shown in dashed-dotted lines in Fig. 15,
in which the solid lines represent the dynamics from the orig-
inal model. By analyzing generator rotor angle data from the
time interval of , generators G2, G4, G5, and G7
at Bus 36 are identified as characteristic generators; generators
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Fig. 14. Diagram of the IEEE 39-bus system.

Fig. 15. Dynamic response of internal generators in the IEEE 39-bus system
(Generator 10 at Bus 39 is chosen as a reference).

TABLE III
ERROR FUNCTIONS FROM (22) AND (23) FOR MACHINES G1 AT BUS 30,
G8 AT BUS 37, AND G9 AT BUS 38 IN THE IEEE 39-BUS SYSTEM

G3 and G6 at Bus 35 are replaced by the linear combination
of the above characteristic generators. Under the same reduc-
tion ratio, the performance of the DEAR method is shown as
the dotted lines in Fig. 15. Using the metrics in (22) and (23),
the errors of the reduced models are given in Table III. As can
be seen from Table III, the proposed method shows a better per-
formance than the coherency-based method.

Fig. 16. Dynamic response of Generator 9 under fault duration of 40 ms.

Fig. 17. Dynamic response of Generator 9 under fault duration of 70 ms.

Fig. 18. Dynamic response of Generator 9 under fault duration of 80 ms.

To test the performance of the proposed method under the
scenario of system instability, a three-phase fault at Bus 26,
which lasts for 40 ms, 70 ms and 80 ms, respectively, is cleared
by removing the line between Bus 26 and Bus 25. Figs. 16–18
show the responses under different fault durations. The system
goes from stable to unstable as fault duration increases.
As can be seen from Figs. 16–18, the reduced model can track

the trajectories of the original model very well in both stable and
unstable scenarios.
To test the performance under first swing instability sce-

narios, we configured a three phase short circuit fault at Bus 30
(the terminal bus of G1). After the fault being cleared, the line
between bus 30 and bus 2 trips and G1 disconnects from the
system. Fig. 19 shows the performance of the reduced model
in this scenario. As can be seen from Fig. 19, trajectories of the
reduced model and the original model can still match well.
Another test was set up to check the performance under mar-

ginal stability scenarios. We added one more line4 between Bus
2 and Bus 30 shown in Fig. 20, so that after one line is tripped
following the three phase short circuit fault, the other line still
keeps G1 connected. The system is unstable if the fault lasts
for 270 ms, which is shown by the dash line (rotor angle differ-
ence between G1 and G9) in Fig. 21. The solid line in Fig. 21
is the response when the fault lasts for 240 ms, which is con-
sidered as a marginal stability scenario. The performance of the
reduced model under the marginal stability scenario is shown in
Figs. 22 and 23. The response curves still match well, although
the mismatches look larger than Figs. 16–19.

4The added line has the same parameters as the existing one.
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Fig. 19. Performance under the first swing instability (Generator 10 at Bus 39
is chosen as a reference).

Fig. 20. Double-line connection between Bus 30 and Bus 2.

Fig. 21. Scenarios of marginal stability and instability.

V. CONCLUSIONS

A measurement-based dynamic model reduction method that
simplifies the external (target) systems through dynamic-fea-
ture extraction, attribution, and reconstruction is proposed. The
new method is named DEAR method. The network model is
unchanged in the DEAR method, which makes online appli-
cations relatively easier and more flexible (e.g., generators of
interest can be retained in the reduced model). Tests on sev-
eral IEEE standard systems show that the DEAR method yields
better reduction ratios and smaller response errors than the tra-
ditional coherency-based aggregation methods. The paper also

Fig. 22. Response of rotor angles in the scenario of marginal stability (Gener-
ator 10 at Bus 39 is chosen as a reference).

Fig. 23. Response of rotor speeds in the scenario of marginal stability (Gener-
ator 10 at Bus 39 is chosen as a reference).

shows that the DEAR method works well under stable, margin-
ally stable and unstable conditions.
This paper also demonstrates the online application of DEAR

method using a super set of characteristic generators and online
refinement of the coefficient matrix through a simple case. Per-
formance of the reduced model under both stable and unstable
conditions is verified. Further investigation on the robustness of
the method against fault locations, topology and operation point
changes will be carried out in the future work.
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