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Abstract—This paper presents a new class of thin, dexterous con-
tinuum robots, which we call active cannulas due to their potential
medical applications. An active cannula is composed of telescop-
ing, concentric, precurved superelastic tubes that can be axially
translated and rotated at the base relative to one another. Active
cannulas derive bending not from tendon wires or other exter-
nal mechanisms but from elastic tube interaction in the backbone
itself, permitting high dexterity and small size, and dexterity im-
proves with miniaturization. They are designed to traverse narrow
and winding environments without relying on “guiding” environ-
mental reaction forces. These features seem ideal for a variety of
applications where a very thin robot with tentacle-like dexterity is
needed. In this paper, we apply beam mechanics to obtain a kine-
matic model of active cannula shape and describe design tools that
result from the modeling process. After deriving general equations,
we apply them to a simple three-link active cannula. Experimental
results illustrate the importance of including torsional effects and
the ability of our model to predict energy bifurcation and active
cannula shape.

Index Terms—Continuum robot, flexible manipulator, medical
robot, snake-like robot.

I. INTRODUCTION AND BACKGROUND

ROBOTIC dexterity at the “meso scale”—from hundreds
of micrometers to tens of centimeters—remains a chal-

lenge. Construction of traditional actuated serial-link chains at
this scale requires intricate fabrication, integration, and instru-
mentation. Continuously flexible (“continuum”) robots [1]–[6]
provide an alternative, although most designs require wires [5],
[7], [8], flexible push rods [9], pneumatic actuators [4], [6], or
other external actuation mechanisms that limit miniaturization.

Here, we describe a new class of miniature continuum robots,
which we call active cannulas, that have the potential to bridge
this gap and impact a wide range of applications in confined,
tortuous environments. For example, in interventional medicine,
such devices may provide minimally invasive access to challeng-
ing or currently unreachable surgical sites.
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Minimally invasive surgery (MIS) has profoundly changed
interventional medicine in recent years, reducing trauma and
speeding healing. However, many possible intervention sites
lack viable minimally invasive alternatives because current rigid
(and generally straight) instruments cannot reach them. These
sites may require navigating entry pathways that are narrow or
contain complex 3-D bends. Accessing them requires the surgi-
cal tool to “turn corners” and maintain dexterity after doing so.
These constraints render confined surgical sites off limits to cur-
rent commercial surgical robots, as well as manual MIS tools.
Standard clinical designs for both are characterized by relatively
large diameters (typically 5–10 mm), rigid shafts, and (in the
case of manual tools) lack of end-effector dexterity. While opti-
mal port placement seeks to allow reasonable workspace volume
with port constraints [10], [11], there is little flexibility in port
placement when accessing surgical sites through natural orifices
(e.g., throat or nostrils), which often offer the least invasive entry
paths. This motivates a move away from straight rigid tools to-
ward actively shapable flexible instruments like active cannulas.

Active cannulas are MIS devices that can be thinner or more
dexterous than existing medical continuum robots, laparoscopic
robots, or manual laparoscopic tools. They are a new class of
miniature continuum robots that derive bending actuation not
from tendon wires or other external mechanisms, but from elas-
tic interaction of curved tubes that form the “backbone” of the
device. This makes them sufficiently flexible and shapable to tra-
verse bends and corners to access confined anatomical locations.

A number of clinical applications may substantially benefit
from active cannulas, and similar designs have been proposed
for fetal surgery [12], steering needles in soft tissues [13], [14]
and cardiac applications [14], transnasal skull base and trans-
gastric surgery [15]–[17], and minimally invasive access deep
within the lung [18]. Several specific clinical areas in which
active cannulas could improve surgical outcomes are described
in detail in [19].

A. Related Work

Active cannulas are composed of precurved superelastic com-
ponent tubes that can extend telescopically and rotate axially
with respect to one another (Fig. 1). Beam-mechanics-based
models accounting for the effects of both translation and rota-
tion of telescoping, concentric elastic tubes were first presented
by our group [15], [18], and Sears and Dupont [14]. Developed
concurrently and independently, these models are strikingly sim-
ilar: under similar assumptions, both describe the equilibrium
conformations of concentric precurved elastic tubes as a func-
tion of base angles of rotation. One difference between the two
studies is torsion, which is assumed negligible in [14] but is
included in transmission (the straight segments beginning at the
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Fig. 1. Prototype active cannula made of superelastic Nitinol tubes. The inset
line drawing indicates the active cannula’s degrees of freedom.

actuators and ending at the start of precurvature) in [15]. Without
torsional compliance, the kinematics of an active cannula can
be expressed in closed form. Including torsion in transmission
leads to transcendental equations that must be solved numer-
ically. While a framework for multilink forward and inverse
kinematics without torsion has been formulated [20], it has not
yet been experimentally validated. Thus, our objectives in the
following sections are to derive a multilink kinematic frame-
work that includes torsion, determine model parameters via cal-
ibration, and experimentally assess the accuracy and descriptive
capability of models with and without torsion.

Our research builds on several other recently published de-
signs. Loser developed a steerable needle composed of two fully
overlapping precurved cannulas that could be rotated (but not
translated) with respect to one another to change needle curva-
ture [13]. Another design with some similarity to active cannulas
was proposed by Furusho et al., who describe a “curved multi-
tube” (CMT) also with two curved cannulas that rotate but do
not translate, through which a needle is deployed [12], [21], as
well as a conceptual design sketch of a device similar to the
steerable needle of [22] described shortly. CMT modeling has
thus far assumed infinite flexural rigidity of each outer tube
compared to all those inside it, as well as infinite torsional rigid-
ity, and we relax both of these assumptions. Similarly, Okazawa
et al. describe a steerable needle with a stiff outer cannula and
a single flexible curved interior wire that can extend and ro-
tate to control steering magnitude and direction as the needle is
pushed into tissue [22], and Daum patented a deflectable needle
assembly that deploys a curved “catheter” through a rigid outer
cannula [23].

While the location of actuation (at the base, outside the body)
is similar to both catheters and steerable needles [24]–[27], ac-
tive cannulas employ a fundamentally different means of steer-
ing than either. Specifically, catheters use blood vessel reaction
forces to direct them down desired branches, and needles rely on
reaction forces from surrounding tissue to steer; in contrast, ac-
tive cannulas require no tissue reaction forces, deriving steering
from internal moments that tubes apply on each other.

B. Contributions

In this paper, we describe active cannula design, modeling,
and experiments, providing an archival unification of technical

results previously published in conference proceedings [15],
[18], as well as broadening the background and discussion.
We explore the hypothesis that overall cannula shape locally
minimizes stored elastic energy and examine the significance
of modeling torsional effects in addition to bending effects.
The energy model enables analytical prediction of a bifurcation
in the energy landscape as a function of actuator positions,
which matches experimental observations and provides a means
for calibration. Additionally, the model predicts feature and tip
positions of our prototype active cannula, providing another
independent calibration method. We experimentally show close
agreement of the two calibration methods and validate that fitted
parameter values lie near expected ranges derived from tube
physical characteristics.

Using the energy model, we present a framework for com-
puting the forward kinematics of multilink active cannulas via
energy minimization. Experimental results validate the kine-
matic framework and demonstrate that modeling torsional ef-
fects is essential to predict active cannula bifurcation behavior
and physical shape.

II. CANNULA DESIGN AND MECHANICS

The active cannula shown in Fig. 1 is made of three pre-
curved elastic tubes, with a largest section diameter of 2.4 mm,
tapering to a smallest section diameter of 0.8 mm.1 While pro-
totype active cannulas discussed in this paper are all made from
Nitinol2 (e.g., Fig. 1), we note that active cannulas may be made
of a variety of elastic materials, including plastics. Desirable
characteristics are materials that can sustain high strain without
damage, and have high torsional rigidity compared to their flex-
ural rigidity. Nitinol is one such material and has been reported
to sustain recoverable strains of as much as ε = 11% [28], al-
though most estimates are approximately 8%.

Forward kinematics for an active cannula is a description
of complete device shape in terms of joint variables, namely
component tube linear positions and rotations. This requires a
model of how precurved tubes cause one another to bend. To
simplify analysis, we consider circular precurvature; however,
other variable curvature shapes may be suited to specific appli-
cations or surgical interventions and may even be customized
individually to achieve specific goals. The modeling process
provides various design insights, including curvature limits to
prevent plastic deformation of cannula component tubes. The
one “link” model developed shortly maps the axial rotation an-
gles of concentric curved tubes to their common equilibrium
curvature and bending plane.

A. Modeling Assumptions

The main (experimentally validated) assumptions in the
model presented next are that tubes can be considered to

1Note that active cannulas can be made significantly smaller in diameter than
this first prototype by reducing individual tube diameters and the tolerances
between tubes.

2While the active cannula prototypes described in this paper exploit
Nitinol’s superelastic properties only, we note that appropriate heat transmission
mechanisms could also be included to activate shape memory effects.
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directly apply moments to one another, and that (due to circular
component tube precurvatures) those moments can be consid-
ered constant along the length of a link. Other modeling assump-
tions include linear elasticity (constant Young’s modulus) and
the dominance of bending effects over the shear effects induced
by bending.3 Finally, we assume that all torsional compliance is
lumped into the long, straight transmission.

B. Active Cannula Features

Features of the active cannula design that seem particularly
appealing are that miniaturization enhances dexterity (smaller
tube diameters permit larger precurvatures, as discussed in
Section II-D) and that compliance is tunable through design
(adjusting individual tube stiffnesses by choosing wall thick-
ness, diameters, preformed shapes, or material properties) as
well as configuration. Compliance (whether intentionally tuned
or not) is inherent in the design and is expected to enhance active
cannula safety, reducing potential tissue damage in the event of
inadvertent cannula/tissue contact.

It is often convenient to model snake-like robots as a mathe-
matical curve (e.g., a series of circular arcs [30] or more general
curves). Robot kinematics is approximated, more or less accu-
rately depending on the robot and the configuration, as the curve.
However, with the active cannula’s circular precurvatures, and
provided model assumptions drawn from experimental observa-
tion in this paper and in [14] and [15] are accurate, no approxi-
mation is needed. The active cannula will actually be a series of
circular arcs. Further, when representing many other continuum
robot designs as a mathematical curve, it can be quite challeng-
ing to fully describe the effect of physical joint limits, and the
robot may inadvertently damage itself [31]. An appropriately
designed active cannula (Section II-D and II-E) is not subject
to this danger since it combines both elastic elements and force
transmission elements directly into the extensible backbone.
Active cannulas have no joint limits and can be designed to
preclude self-damage everywhere in their configuration spaces.
Any joint limits that are present are an artifact of a specific
actuation unit design, and actuation units can, in principle, be
constructed to allow as much motion as desired.

C. Precurvature Limits

The selection of the initial curvature to be preset into each
tube is an important design consideration. Without specific clin-
ical requirements, smaller radii of precurvature are generally
desirable since they enable the cannula to negotiate tighter turns
within anatomy. However, if the radii of precurvature are chosen
too small, the cannula may damage itself (plastically deforming
one or more of its component tubes) at certain positions in its
configuration space.

While some medical interventions may not require access
to the full configuration space (for example, one or more tubes
may not be required to perform 360◦ rotations) and, thus, permit
smaller radii of curvature, it is generally desirable to design

3This is a common assumption for thin beams [29, ch. 8] and permits the use
of (2) to relate tangent angle to bending moment.

tube precurvatures to eliminate the possibility of active cannula
self-damage. This can be accomplished by ensuring that the
maximum strain in all component tubes is maintained within
the elastic region for all possible robot configurations.

Material recoverable strain is expected to be the primary con-
sideration in choosing active cannula precurvatures, rendering
Nitinol, with its large recoverable strain, a good material from
which to make active cannula tubes. The relationship between
material strain limits and maximum precurvature for a single
tube, such that it can fully straighten without plastic deforma-
tion, is

κ =
2ε

D(1 + ε)
(1)

where ε is the strain and D is the tube outer diameter, as derived
in [15] and [19]. Note that the curvature of the tube is inversely
proportional to D. Thus, smaller tubes can sustain higher preset
curvatures. This means that as the design is miniaturized, it will
be able to reach around tighter corners, enhancing its dexter-
ity. Tradeoffs for enhancing dexterity in this manner may be a
reduction in stiffness or size of the central working channel.

Other design considerations may necessitate choosing a cur-
vature somewhat less than this maximum value. For example,
finite torsional stiffness means that there may be a bifurcation
in the energy landscape as described in Sections III–IV; this bi-
furcation leads to a “snapping” of the active cannula, and it may
be desirable to avoid this either by design of tube precurvatures
or by restricting the joint angles to bifurcation-free ranges.

Another possible design criteria for curvatures is to choose
them to preclude cannula self-damage. Generally, one or more
tubes in the active cannula will have to bend back upon itself
(further than straight) to “negative curvature.” To evaluate the
design implications of this (Section II-E), we must first examine
the effect of precurved coplanar tubes on one another.

D. In-Plane Beam Mechanics

If several precurved tubes are placed concentrically, their
curvatures will “interfere” with one another, causing bending
and making the combined shape different from the natural rest
shapes of individual tubes. It is this interference effect, combined
with both rotation and extension–retraction of the tubes, that we
use to change the shape of the active cannula. To describe the
complete shape of the active cannula, we must first develop
a model for the shape of a single “link” composed of several
overlapping concentric curved tubes. Each link will be a circular
arc with an associated curvature and plane.

Fig. 2 shows the effect of concentric tubes of different precur-
vatures on one another in the planar case. Here, the tubes have
not been axially rotated with respect to one another and their
natural curvature planes are aligned. The Bernoulli–Euler beam
equation describes the instantaneous curvature of an initially
straight beam with respect to arc length as

κ =
dφ

ds
=

M

EI
(2)

where φ is the angle measured from the tangent vector, s is the
arc length, M is the moment applied to a differential element,
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Fig. 2. (Left) Parallel spring position equilibrium. (Middle) Analogous curved
tube equilibrium. Dashed lines indicate natural tube curvatures, solid lines show
the effect of placing tubes inside one another. (Right) Photograph of experiment.
Initially straight wire and initially curved tube shapes are superimposed on a
photograph of the combined wire and tube.

E is the modulus of elasticity (Young’s modulus), and I is the
cross-sectional moment of inertia.

Using circular preset tube curvatures permits an idealization
of the beam equation. Because the curvature is constant for each
tube, the tube will apply a constant moment on the tubes exterior
to or within it, namely

M = EI ∆κ. (3)

If the tubes are axially aligned so that they naturally curve
in the same plane, (3) is analogous to Hooke’s law for a lin-
ear spring, i.e., “F = K ∆X ,” as illustrated in Fig. 2. In the
analogy, the bending stiffness EI of a tube corresponds to the
spring constant, the moment M corresponds to the linear force,
and curvature κ is a “position” variable. Just as we can describe
the equilibrium position of linear springs of different lengths
and stiffnesses when connected in parallel by a force balance,
we can describe the resultant curvature of two overlapping tubes
whose natural planes of curvature are aligned by

κ =
E1I1k1 + E2I2k2

E1I1 + E2I2
or κ =

∑n
i=1 EiIiki∑n
i=1 EiIi

(4)

for n tubes, where ki’s are the preformed curvatures of the
individual tubes. This model is verified experimentally in
Section II-F.

E. Design Implications of Tube Interaction

Rotating one tube 180◦ with respect to the other is analogous
to attaching a linear spring to the other side of the wall, so
that its initial position is now −x (−k for the tube). Thus, the
equilibrium position of the more compliant of the two springs
will, in general, be on the opposite side of zero from where it
begins. For the tubes, this corresponds to bending further than
straight (further than zero curvature). We can define ∆κmax,i

for tube i as ∆κmax,i = ki − κ when all other tubes are rotated
180◦ with respect to the tube in question. The ∆κmax values for
each tube must be kept at or below the bound in (1), to prevent
the possibility of plastic deformation in any tube for all possible
active cannula configurations.

F. In-Plane Experimental Validation

We experimentally validated the in-plane beam mechanics
model (4) using curved Nitinol tubes and straight wires, as

TABLE I
VERIFICATION OF BERNOULLI–EULER BASED BEAM MECHANICS MODEL

shown in Fig. 2. Table I illustrates our results. The Nitinol tubes
were plastically deformed to an initial curvature k1 . The wires
were initially straight, with k2 = 0. Photographs of each tube
were taken against a 5-mm grid both before and after wires
were inserted. The best-fit circle was then determined manu-
ally by examining the photographs and adjusting the diameter
of a fitting circle until it closely matched the curvature in the
photograph. We estimated that the error associated with fitting
a circle in this way was within 10% of the actual circle radius.
It would be preferable to have Nitinol preshaped by the manu-
facturer in the desired circular shape, but this would have added
significant cost at the very small quantities used in this study. It
is also possible to heat set a curvature into straight Nitinol tubes
after purchase, but this is a delicate process. Nitinol requires
a specific heat-time profile that is strongly dependent on small
changes in composition of the alloy to set a shape while retain-
ing superelasticity. However, we do expect heat-shaping to be
the most desirable long-term method of creating precurvature
in Nitinol tubes.

G. Axial Tube Rotation

When curved tubes are rotated axially, their natural planes of
curvature are no longer aligned and the direction of the bending
moments they apply changes. In addition to bending moments,
a torsional moment is also generated by such motion. We will
begin in this section by considering bending only and proceed
to incorporate torsion into the model in Section II-H.

1) Intuition: If two precurved tubes with same stiffness (EI)
and initial curvature k are placed within one another and rotated
90◦ with respect to one another, one would expect the plane of
the combined tubes to be directly between their natural planes,
at 45◦. One would also expect them to straighten out somewhat
since at 180◦ they would be completely straight. This is illus-
trated in Fig. 3. If the tubes do not have the same stiffness, then
the combined plane should shift toward the stiffer tube.

2) Beam Mechanics Model With Rotation: Intuition can be
formalized in terms of the beam mechanics described earlier.
Tubes whose natural planes are rotated with respect to one an-
other exert a moment on one another about their respective
x-axes, which is caused by their initial precurvature about this
direction. Fig. 3 shows a cross-sectional view of the tubes in-
side one another. The tubes are rotated by angles θi , and the
equilibrium plane angle is φ.

As before, each tube applies M = EI(∆κ), but now this
moment has two component projections on the base frame x and
y axes. Assuming torsional rigidity, the component projections
are the same for the x- and y-axes of any copy of the base frame
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Fig. 3. (Left) If two concentric curved tubes are axially rotated with respect
to one another, they will reach a minimum energy equilibrium between their
individual or “natural” planes. They will also begin to straighten from the
curvature they would exhibit with aligned natural planes. (Right) Cross-sectional
view of tubes at link base. We assume that the curved sections are torsionally
rigid, so this is also the cross section along the entire link. When transmissional
torsion is included, actuator inputs αi ’s are not, in general, equivalent to link
base angles Θi for each tube.

slid along the link in the z-direction. Summing the moments
about x and y yields

χ =
∑

i EiIiki cos θi∑
i EiIi

and γ =
∑

i EiIiki sin θi∑
i EiIi

(5)
respectively.

Assuming infinite torsional rigidity, (5) would be sufficient
to describe the shape of a complete active cannula made up of
several such links (as described in Section III). However, since
these are superelastic tubes, torsional deformation will occur.
It will be particularly important in the straight transmission
sections of the tubes that lie between the actuators and the first
curved link, since these transmissions are long relative to the
curved sections.

H. Flexural and Torsional Elastic Energy

If transmissional torsion between actuators and the first
curved link is included in the model, link-base tube angles (θi)
will no longer be the same as actuator input angles (αi). The
cross section of the tubes will then be as shown in Fig. 3 (right).

To determine link base angles, we will use a minimum energy
strategy (Section III-B). Doing so requires expressing the total
energy of the cannula using both bending and torsional terms.
The elastic energy of a beam of length ( in pure bending is

Ubend =
∫ (

0

M(s)2

2EI
ds. (6)

When the moment is constant along the length of the beam, this
reduces to

Ubend =
EI(

2
∆κ2 . (7)

Torsional energy for a beam is given by

Utors =
∫ L

0

τ(s)2

2GJ
ds (8)

where τ is torque applied, G is the shear modulus, and J is
the polar moment of inertia. When torque is constant along the

Fig. 4. “Links” or regions of unique overlap of a three–tube cannula composed
of tubes like those in the upper image of Fig. 5. Links start and end at transition
points, and the jth link is between Tj and Tj+1 . In this configuration, the
largest tube transitions from straight to the left of T1 to curved to the right. The
same is true of the middle tube at T2 and the smallest tube at T4 .

length of the beam (as it is for the straight transmission sections),
and the angle between ends of the beam is α− θ, this reduces
to

Utors =
GJ

2L
(α− θ)2 . (9)

In contrast to bending moments, torsional moments generated
by tube interaction will not be constant along the curved links, as
they are in the straight transmissions. These energy relationships
facilitate the energy method used for kinematics in the next
section.

III. KINEMATICS VIA MINIMUM ENERGY

The kinematics of continuum and hyperredundant robots are
often decomposed into two mappings. One is from actuator
(joint) space to arc parameters (curvature, plane, and length of
each section), while the other is from arc parameters to Carte-
sian positions of the robot. We follow a similar strategy in the
analysis of the active cannula. The first mapping (Section III-A
and III-B) is generally robot-specific since the type of actuators
and design of the robot strongly influence how actuators af-
fect arc parameters. The mapping from arc parameters to shape
(Section III-C), on the other hand, is common to all robots that
can be modeled as piecewise constant curvature.

The shape of an active cannula is defined by a sequence of
unique overlap regions (“links”) between transition points Tj ,
as shown in Fig. 4. Each of these links remains circular both
by assumption and observation [14], [15], although the bending
plane and curvature change as tubes are axially rotated. Thus,
an active cannula is piecewise-constant curvature, consisting of
a series of constant curvature links, where each is tangent to
adjacent links.

A. Determining Link Lengths

The first step in describing the shape of an active cannula
is determining the number of links and link lengths. These are
defined by component tube transition point locations, which are
functions of tube preshaped geometry (Fig. 5) and translational
“joint” positions of tube bases. These combine to create a se-
quence of links between transition points as shown in Fig. 4. For
the three–tube active cannula illustrated (where each tube has a
straight transmission followed by a single circular arc), there are
five curved links. More generally, n tubes result in 2n − 1 links
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Fig. 5. (Top) Tubes used in all active cannula studies to date (including this
paper) consist of a straight transmission of length L, with a constant curvature
section of length d at one end. (Bottom) Our models presented here are, in
principle, general enough to account for piecewise circular/straight tubes with
multiple transition points.

Fig. 6. Arc parameters of a curved link consist of curvature (κj ), equilibrium
plane angle (φj ), and arc length ((j ), as shown.

(or 2n, if an initial straight link is included). The length of some
links reaches zero when transition points align. It is straightfor-
ward to determine the lengths of the links in the cannula, given
actuator displacements and component tube geometries.

For the example in Fig. 4, the lengths of the m (in this case
five) regions of overlap (j , j ∈ {1, . . . , m} are given by the
actuator translational positions of the n tubes ρi , i ∈ {1, . . . , n},
and the lengths of the curved portion di of each tube are given
as

(1 = ρ2 − ρ1

(2 = ρ1 + d1 − ρ2

(3 = ρ3 − ρ1 − d1

(4 = ρ2 + d2 − ρ3

(5 = ρ3 + d3 − ρ2 − d2 . (10)

A general procedure that is easily amenable to software imple-
mentation for determining all (j is to sort transition points in
terms of arc length, with link lengths given by differences be-
tween adjacent transition points. We also note that if component
tubes themselves have more than one transition point, additional
active cannula links result.

B. From Joint Space to Arc Parameters

Active cannula joint space is parametrized by axial trans-
lations ρ and rotations α applied at the base of each tube,
namely q = (α1 , ρ1 , . . . ,αn , ρn ). In what follows, the subscript
i ∈ {1, . . . , n} refers to tube number, while j ∈ {1, . . . , m}
refers to link number. Cannula links are circular segments de-
scribed by the arc parameters curvature, plane, and arc length
(κj ,φj , (j ), as shown in Fig. 6. The mapping from q to # was
described in the previous section, while the mapping from q

to (κ,φ) can be accomplished by generalizing the single-link
model described previously, as follows.

Attach a coordinate frame Tj at the base of the link by sliding
a copy of the cannula base frame along the backbone (without
rotation about z) to the base of the link. The model then yields
x and y curvature components for the link in the link frame as

χj =
∑

i EiIiki,j cos θi,j∑
i EiIi

and γj =
∑

i EiIiki,j sin θi,j∑
i EiIi

respectively. The sums over i ∈ Λj only include the tubes that
overlap the jth link. Since the intrinsic (preformed) curvature
is piecewise constant along each tube, ki,j denotes the intrin-
sic curvature of the ith tube in the jth link. Note that these
values change as a function of the actuator translations be-
cause the overlapping regions change as described before, i.e.,
ki,j is a function of ρ. Ei is the elastic modulus, Ii is the
cross-sectional moment of inertia, and θi,j is the axial ith tube
angle about the jth link frame z-axis. There is a direct re-
lationship between curvature components and arc parameters,
namely

φj = tan−1
(
γj

χj

)
and κj =

√
χ2

j + γ2
j . (11)

Neglecting torsional compliance completely (i.e., assuming
infinite torsional rigidity), θi,j = θi,0 ≡ αi for all j, which re-
sults in a direct symbolic mapping (11) from actuator space
to arc parameters for each link. However, when transmissional
torsion is included, θi,1 no longer equals actuator input αi be-
cause the straight transmission will “wind up” as torque is ap-
plied at the actuators. Since transmissions are generally long
compared to curved sections, we assume that tubes can be
modeled as infinitely torsionally stiff beyond T1 , implying that
θi,j = θi,1 ≡ ψi for all j > 1. With these definitions, applying
(7) and (9) in all directions for all tubes yields the key modeling
result of this paper, an expression for the total elastic energy
stored in the system

U(ψ1 , . . . ,ψn ) =
n∑

i=1

GiJi

2Li
(αi − ψi)2

︸ ︷︷ ︸
transmission torsion

+
m∑

j=1

∑

i∈Λj

EiIi(j
2

(χj − ki,j cos(ψi))2

︸ ︷︷ ︸
x-direction bending

+
m∑

j=1

∑

i∈Λj

EiIi(j
2

(γj −ki,j sin(ψi))2

︸ ︷︷ ︸
y-direction bending

(12)

where G is the shear modulus, J is the polar moment of inertia,
L is the length of straight transmission between actuator and
curved section of tube, and, as mentioned previously, i ∈ Λj are
the tubes that are present in the jth link.
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We assume that actuator inputs influence the system quasi-
statically in the sense that as we move the actuators, the system
remains at a local minimum energy. Thus, the angles at the end
of the straight transmission (ψ1 , . . . ,ψn ) are always assumed
to be at a local minimum of (12).

The forward kinematics is calculated by finding local minima
of (12). As we describe in Section IV, there can be multiple such
minima, and the particular minimum of (12) in which the robot
finds itself depends on the path traversed through joint space to
reach current joint angles.

C. End-Effector Pose

The shape of the cannula is defined by the arc parameters and
the product of exponentials formula. The joint twists associated
with arc parameters are

ξφ = [ vT
φ ωT

φ ] = [ 0 0 0 0 0 1 ]T

ξj (q) = [ vT
j ωT

j ] = [ 0 0 1 κj (q) 0 0 ]T (13)

where v and ω are linear and angular differential motions. Thus,
ξφ corresponds to rotation of a link and ξj corresponds to trans-
lation along a link. Then, as described in [32, ch. 2], the full
kinematics of the mechanism can be described by the product
of exponentials formula

g(q) =
m∏

j=1

e
(
ξ̂φ (∆φ j (q))

)
e

(
ξ̂j (q)(j (q)

)

(14)

where ∆φj = φj − φj−1 and g ∈ SE(3) is the transformation
from cannula base to tip. Thus, each cannula link contributes a
pair of exponentials to the overall kinematics, and the pairs are
written left to right in order of increasing link number.

IV. THREE–LINK CASE

For the remainder of this paper, we consider the specific case
of three links (two tubes), which corresponds to the prototype
with which we perform experimental validation and parameter
fitting in Section V-C and D. For n = 2, we have m = 2n − 1 =
3 regions of overlap, only the middle of which contains two
curved tubes. In this case, the energy (12) is

U(ψ1 ,ψ2) =
c1

2
(α1 − ψ1)2 +

c2

2
(α2 − ψ2)2

+ (2c3

(
k1

2k2
− cos(ψ1 − ψ2) +

k2

2k1

)
+
(1
2

c4k
2
1

(15)

where c1 = G1J1/L1 , c2 = G2J2/L2 , c3 = (E1I1E2I2k1k2)/
(E1I1 + E2I2), and c4 = (E1I1E2I2)/(E1I1 + E2I2). To find
the critical points of U , we set the gradient with respect to ψ to
zero

∇U =
[
−c1(α1 − ψ1) + (2c3 sin(ψ1 − ψ2)
−c2(α2 − ψ2) − (2c3 sin(ψ1 − ψ2)

]
= 0 (16)

where the unknowns are (ψ2 ,ψ1) and (α1 ,α2) are the inputs,
which can be simplified to

ψ1 − α1 = (2b1 sin(α2 + b2α1 − (1 + b2)ψ1) (17)

Fig. 7. Contour plots of the energy landscape as the angular difference between
the tube bases is increased. Angular difference between the base inputs of the two
tubes is listed in the upper right corner of each plot. For small angular differences,
there is only one global minimum. As the angular difference approaches 180◦,
two appear. Beyond 180◦, the new minimum becomes the global minimum,
and eventually the only minimum. These plots are for the “partial overlap”
experiment in Section V and are made using nominal parameter values.

where

b1 =
c3

c1
and b2 =

c1

c2
. (18)

The transcendental equation (17) has the same form as the well-
known Kepler equation from celestial mechanics [33]. In our
experimental results (Section V), we use a fifth-order Taylor
expansion of the sine term about the most recent available pre-
vious value of ψ1 . We note that, in practice, on a robotic system,
a close approximation for the true value of ψ1 about which to
expand is readily available, because generally the robot will
only move a small amount between computer servo cycles. We
choose the real root of the resulting polynomial that is clos-
est to the previous value as the solution. While this procedure
worked well for our data set (there always appeared to be one,
and only one, noncomplex root), a more careful solution of
(16) that is guaranteed to find all possible critical points as well
as resolve the path-dependence issue is a topic left to future
study.

A. Bifurcation and “Snapping”

For small actuator angle differences (α2 − α1), there is a
unique global minimum of the (12) with respect to ψ. As the
difference between actuator input angles approaches 180◦, a bi-
furcation in the energy landscape in the torsion angles (ψ1 ,ψ2)
introduces two spurious critical points: a saddle and local min-
imum (see Fig. 7). As the actuator input difference approaches
180◦ from below, the new minimum deepens, and the minimum
in which the system rests rises, until at (α2 − α1) = 180◦, the
heights of the minima are equal. Just beyond an actuator dif-
ference of 180◦, the spurious minimum actually becomes the
global minimum, but the system remains in the original local
minimum due to the “torsional windup” history effect. As the
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Fig. 8. Contour plot of the energy function at the bifurcation point. The *
denotes the position of the system [from (20) and (21)] just before the energy
landscape bifurcates, and the cannula “snaps” to a new minimum.

input angle difference continues to increase, the system remains
in the local minimum until it reaches another bifurcation, at
which point, the local minimum disappears, leaving only the
global minimum above 180◦. At this point, the system “snaps”
to the global minimum, releasing built-up torsional energy.

There are at least three reasons that this bifurcation effect is
important to study and model. First, in surgery and other prac-
tical applications it is likely to be undesirable (and potentially
dangerous) for the cannula to rapidly and forcefully move to a
new location, so it is important to be able to predict when bi-
furcation will occur. Second, as will be described in Section V,
bifurcation provides a calibration method independent of posi-
tion sensing. Third, bifurcation is a structural prediction of the
model that can be verified experimentally in the laboratory.

At a bifurcation point, the local minimum and saddle merge.
This effect happens when the Hessian is singular (concavity
changes) while simultaneously the gradient is zero (critical
point). This is illustrated in Fig. 8. The Hessian is singular
when

det
(
∂2U

∂ψ2

)
= c1c2 + (c1 + c2)(2c3 cos(ψ1 − ψ2) = 0.

(19)
Combining this with the zero gradient constraint (16), it is pos-
sible (for a fixed α1) to solve for the ψ1 , ψ2 , and input α2 at
which the bifurcation occurs. Without loss of generality, assum-
ing α1 = 0, these are given by

ψ1 =
1
c1

√

((2c3)2 −
(

c1c2

c1 + c2

)2

(20)

ψ2 = ψ1 + cos−1
(
− c1c2

(2c3(c1 + c2)

)
(21)

α2 =

√

((2β)2 + cos−1

(
1
(2β

)
(22)

where the bifurcation parameter β = −c3/c2 − c3/c1 . In
Section V-C, we experimentally determine input angles that

Fig. 9. Manual actuation mechanism. Both tube and wire have input circular
handles etched to encode rotation and the support structure features a linear ruler
etched to encode translation. Spring pin locking mechanisms hold the wheels at
desired linear and angular positions.

Fig. 10. Experimental photograph from one of the stereo cameras showing
the cannula with fiducial markers.

cause bifurcation and use the closed-form expression of (22) to
facilitate bifurcation parameter fitting.

V. EXPERIMENTS AND PARAMETER FITTING

Two types of experiments were undertaken to evaluate the
ability of the model discussed in Sections III and IV to capture
cannula shape, bifurcation behavior, and endpoint position. A
second goal of these experiments was to calibrate the active
cannula, estimating model parameters.

A. Materials and Sensing

We used a simple manual actuation mechanism to examine
the theoretical predictions developed in previous sections. The
device provides acrylic disc handles affixed to tube bases as
shown in Fig. 9. Radial lines etched on the discs every 10◦ enable
manual axial rotation to desired angles. The linear translations
of the discs can be set using a 1-mm resolution ruler etched onto
the acrylic support structure. Spring-loaded locking pins can fix
wheel positions in both degrees of freedom.

Acrylic handles were affixed to the base of a 2.39-mm-
outside-diameter (OD) and 2.01-mm-inside-diameter (ID) Niti-
nol tube, and 1.60-mm-diameter Nitinol wire. The tube has a
93.5 mm straight transmission and a 92.3 mm curved section
created via plastic deformation with a curvature of 0.0099/mm.
The wire has a 218.5 mm straight transmission and an 85-mm-
long circular curved section created via plastic deformation with
a curvature of 0.0138/mm. The specific tube dimensions used
in this experiment were selected to enable a workspace wherein
the cannula is easily viewable by off-the-shelf optical cameras.

Fiducial markers (bands of black tape) were placed along
the cannula for stereo triangulation, as shown in Fig. 10. The
positions of these fiducials were sensed using a stereo vision
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system composed of two calibrated XCD-X710 (Sony, Inc.)
firewire cameras running at a resolution of 1024 × 768 pixels.
One source of error in this data collection procedure is the
accuracy of manual point selection in images, which is estimated
at 2 pixels or 0.6 mm. Another is fiducial size (they are not
perfect points), causing small differences in intended selection
locations. We estimate fiducial dimensions to introduce error of
no more than the diameter of the wire itself (1.6 mm). Thus,
our overall vision system measurement error is estimated at
approximately 2.2 mm.

B. Parameter Estimates From Physical Quantities

Writing model parameters in terms of basic material prop-
erties and measured dimensions is the first step in determin-
ing reasonable physical expectations of parameter values. This
can be accomplished by combining (18) with the formula for
cross-sectional inertia of a circular section (I = (π/64)(OD4 −
ID4)), and the relationships between shear and bending quanti-
ties (J = 2I and E = 2G(1 + ν), where ν is Poisson’s ratio),
to produce

b1 =
E2I2L1k1k2(1 + ν1)

E1I1 + E2I2
, b2 =

E1I1L2(1 + ν2)
E2I2L1(1 + ν1)

.

(23)
Expected parameter ranges for b1 and b2 can be deduced from
the uncertainty in each quantity upon which they depend. Nitinol
dimensions are specified by the manufacturer (Nitinol Devices
and Components, Inc.) to ±0.0010 in, while the elastic modulus
E is reported as 41–75 MPa. Poisson’s ratio is not quoted, but is
often taken to be approximately 0.35 for Nitinol. It has also been
noted that plastic deformation can increase Poisson’s ratio for
Nitinol to 0.5 or more [34], so we will assume a range of 0.30–
0.55. Measurement errors in straight transmission lengths are
estimated to be 1 mm, and measurement accuracy of curvature
was estimated at 10% (Section II-F). Applying error propaga-
tion, the variance in parameters b can be determined by4

Ωb = Jbς Ως JT
bς (24)

where Ως is a diagonal matrix of variances in each quan-
tity upon which b depends (denoted by the ς) and Jbς is the
Jacobian between parameters and quantities containing error
(Jbς = ∂b/∂ς). The square roots of the diagonal entries of Ωb

yield the variance in parameter values, based on the uncertainty
in the physical quantities upon which they depend. These yield
a b1 range of 3.36–7.06 and a b2 range of 3.14–8.45. A simi-
lar calculation for the bifurcation parameter (β = −b1(b2 + 1))
yields a range for β of −41.45 to −29.41. These ranges provide
a basis for comparison with fitted parameter values produced by
the calibration procedures described shortly.

C. Bifurcation Point Experiment

To experimentally determine the bifurcation parameter β for
the cannula, the tube was fixed in place, and the wire was rotated

4For the sake of estimating parameter variances, we assume that physical
parameter ranges are equally scaled variances.

TABLE II
SAMPLE EXPERIMENTAL BIFURCATION ANGLES FOR VARIOUS LENGTHS OF

CURVED TUBE/WIRE OVERLAP

until the bifurcation angle was reached, at which time, the can-
nula visibly “snapped” to the new global minimum. This was
done for 12 linear translational positions in 5 mm increments
for (2 from 82.3 to 27.3 mm. A sampling of this data is shown
in Table II. Note that the input angle at which bifurcation occurs
is always more than 180◦ and is often significantly more. This
illustrates the torsional windup that occurs in active cannulas,
even with the relatively short transmission of our prototype. The
β-parameter was fit to this data using Matlab’s nlinfit, which
computes a nonlinear regression using least squares. Using this
procedure, we estimated β at−44.91, with a 95% confidence in-
terval of ±2.02, which is near (though slightly below) the range
described in Section V-B. In Section V-D, we explain how un-
modeled effects should be expected to increase the magnitude of
the experimental β in this type of experiment, but we first deter-
mine β again in Section V-D through a different procedure that
uses data more uniformly distributed over cannula workspace.

An important feature of active cannula bifurcation behavior is
that it ceases to occur for some values of β. For a given cannula
with fixed curvatures, this corresponds to a minimum length of
curved tube overlap. Below this length, the energy landscape
always has a single global minimum, and thus, it is not possible
to simultaneously satisfy (16) and (19). Using β = −44.91,
the predicted (2 from (22) is 22.3 mm (the value at which
cos−1 (1/(2β) becomes undefined). Minima at slightly larger (2
values will be very near one another (and very near 180◦), and
friction will also mask very small bifurcation motions. These
effects cause a first discernible experimental cannula bifurcation
at (2 = 27.3 mm, which is only slightly higher than the value
predicted above.

It is also possible to view the point at which bifurcation ceases
as a design tool. Cannula curvatures can be selected so that
bifurcation is prevented even for complete overlap. For fixed
curvatures, we will further explore (2 prediction in comparison
to calibrated parameter values using shape data.

D. Shape Experiment

Using the stereo camera system described before and with
the base of the tube fixed, cannula shape information was cap-
tured for multiple input angles at two distinct linear positions
of the base of the wire. One, called the “full overlap” position,
caused (1 = 10 mm (tube curved, wire straight), (2 = 82.3 mm
(both curved), and (3 = 2.7 mm (tube ended, only curved wire
present). The other, called the “partial overlap” position, caused
(1 = 48.0 mm, (2 = 44.3 mm, and (3 = 40.7 mm, with the same
tube and wire combinations in each link. For the full overlap
case, 15-input angles were applied at 20◦ increments from 0◦ to
280◦. For the partial overlap case, 11 input angles were applied
at 20◦ increments from 0◦ to 200◦.
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Using data collected from these experiments, we fit b1 and
b2 . The transformation between the stereo camera coordinate
frame and a frame fixed at the base of the cannula was first es-
timated using point cloud registration [35]. Images of a 15-mm
checkerboard pattern (with corners at known physical locations
with respect to the cannula base frame) were captured. Sixteen
corners on the checkerboard were triangulated with the stereo
vision system. Since the points were coplanar, this registration
was only expected to provide a rough estimate of the frame
transformation. Thus, six “nuisance parameters” (a 3-vector for
position and a 3-vector for orientation with magnitude of rota-
tion encoded as length) describing the cannula base frame were
included in the calibration procedure and initialized with the
results from the point cloud registration.

Before fitting parameters, we experimentally investigated our
expectation that cannula tip positions are both repeatable and
symmetric with respect to input angle. We collected additional
tip position data for negative α2 values from zero to −180◦

for partial overlap, and zero to −240◦ for full overlap, in 60◦

increments. Reflecting tip positions about the y–z plane for com-
parison to positive α2 inputs of the same magnitudes, we found
an average tip position difference of only 2.39 mm. Considering
sensitivity to frame transformation error, these results appear to
be within our measurement uncertainty.

Parameter fitting was accomplished using Matlab’s fmincon,
with angular nuisance parameter bounds set to ±0.349,5 from
initial estimates. The objective function was the sum of Eu-
clidean distances from experimental to theoretical tip positions
(14), outer tube endpoints (14) (up to link m − 1), and positions
of fiducial bands nearest the cannula base (a fixed distance along
the straight cannula transmission between T0 and T1). The op-
timization rapidly converged to b1 = 7.92 and b2 = 4.11 from
a wide range of initial b1 and b2 values. Nuisance parameters
showed only small changes during optimization, with cannula
base frame orientation moving 4.4◦ while position of the base
tape fiducial translated 1.1 mm. These small changes in nui-
sance parameters are reasonable given the coplanar data used to
compute our initial frame transformation estimate. Average tip
error was reduced from 10.1 mm (22.10 mm maximum) with
no fitting to 3.0 mm (8.76 mm maximum) with fitting. Given es-
timated measurement error of 1 mm in individual tube straight
and curved lengths, and the 2.2 mm estimated sensing error,
average tip error of 3 mm appears reasonable.

Furthermore, the fitted b2 was within the range determined
in Section V-B, while b1 was near it. The energy bifurcation
parameter they imply (β = −40.49) is also now within its es-
timated parameter range. Small differences in β compared to
the bifurcation experiment (which produced β = −44.91) are
the results one would expect from unmodeled torsional defor-
mation (in the curved regions) and unmodeled friction. Both
would serve to increase the magnitude of the bifurcation ex-
periment estimate of β. In that experiment, all data were from
regions in joint space where the highest possible cannula in-

5This is equivalent of ±20◦ converted to radians. However, since magnitude
is also encoded in these variables, this bound cannot be strictly thought of as an
angle.

ternal forces occur. This contrasts the shape experiment, which
used data more uniformly distributed over the joint space. If ef-
fects of friction and unmodeled torsion cause a 5.4% reduction
in each experimental bifurcation angle (see Table II), this would
account for the difference in β. Further, β = −40.49 generates
the prediction that bifurcation will cease at (2 = 24.7 mm, only
2.6 mm less than the experimental value ((2 = 27.3 mm found
in Section V-C), and somewhat closer than (2 = 22.3 mm from
the bifurcation experiment.

E. Importance of Torsion

As we have described in this paper, including torsion in active
cannula models leads to transcendental equations. Because of
this (as outlined in Section I-A), models have been proposed
in the literature that assume infinite torsional rigidity and treat
active cannula kinematics as a pure beam bending problem.
While this is analytically attractive, our experimental results
indicate that assuming infinite torsional rigidity precludes accu-
rate prediction of active cannula shape. Without torsion, there is
only one model parameter present in the kinematic model (11),
namely the ratio of tube flexural rigidities (B = E1I1/E2I2).
The feasible range for B using the tolerances described in
Section V-B is 0.630–4.33.

Applying the same fitting procedures described in Section V-
D to the torsionless case, we first obtained a prefitting tip error of
24.78 mm (54.32 mm maximum). We then fit model and frame
nuisance parameters and found convergence over a wide range
of initial values to B = 3.98, nuisance angle = 36.93◦, and
nuisance distance = 1.11 mm. Average tip error was reduced to
13.60 mm (31.48 mm maximum). Thus, tip errors remain large
for the torsionless model even with calibration. Further, the
angular nuisance parameters changed significantly during op-
timization, resulting in highly inaccurate predictions of overall
cannula shape throughout the workspace.

To explore the possibility that nuisance parameters were not
well suited for torsionless calibration, we also applied calibra-
tion procedures to the torsionless model while holding the nui-
sance parameters fixed at values known to give approximately
correct frame transformations. Fixing nuisance parameters at
the initial frame estimate from the point cloud registration, we
optimized B alone and determined a value of 3.59. This resulted
in average tip error of 23.50 mm (53.94 mm maximum). The
other approximately correct set of nuisance parameters available
are the calibrated values found for the torsion-included model in
Section V-D. Holding nuisance parameters fixed at these values,
we determined B = 3.98. This resulted in an average tip error
of 22.20 mm (52.39 mm maximum).

Thus, all efforts to calibrate torsionless active cannula mod-
els result in large tip errors. This indicates that active cannula
models that do not include torsion are structurally insufficient
for making accurate predictions of our experimental active can-
nula shape. They also cannot predict bifurcation behavior since
infinite torsional rigidity implies that tube angles are equal to
base input angles at all points along the cannula. Results are
illustrated visually in Fig. 11 for a parameter value in the mid-
dle of the physically expected range and using the initial frame
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Fig. 11. Experimental data and model predictions of the partial and full overlap
conditions at the final input angles before bifurcation (200◦ and 280◦, respec-
tively). Note that these are also the input angles with the greatest overall tip
error for each case. These results show that torsion is a vital part of an accurate
active cannula kinematic model.

estimate. If the cannula design was modified to use a different
material with higher torsional rigidity for straight transmissions,
the torsionless model may be more successful. However, doing
so would be challenging from a prototype manufacturing stand-
point. For our current all-Nitinol prototype, inability to account
for torsional windup in the torsionless model makes it inaccu-
rate, except in a small neighborhood of (α2 − α1) = 0.

VI. DISCUSSION

We envision applying the basic framework presented in this
paper to a diverse family of both robotic and manual surgical
devices, each customized to different application requirements.
These may be specified in a variety of ways, including desired
workspaces, forces, or end-effectors. The design and modeling
results presented in this paper will facilitate future efforts to
customize active cannulas for each new application, as described
in [19, Sec. 4.8].

Some future applications of active cannulas will require coor-
dinated motion of all degrees of freedom simultaneously. This
is facilitated by a robotic actuation unit, and one design for such
a device can be found in [19, Sec. 4.2]. In many applications, it
will be important to match the workspace of the cannula to appli-
cation requirements, and the forward kinematic results provided
in this paper can be used to describe active cannula workspace,
given component tube geometries. The inverse question of syn-
thesizing individual geometries from a required workspace vol-
ume is an open question for future research. Similarly while
inverse kinematics has been studied under the assumption of
infinite torsional rigidity [20], future work will be necessary to
generalize inverse kinematics to include torsional effects and
possibly other unmodeled effects.

Examples of such unmodeled effects include torsion in curved
sections, frictional effects, and the implications of the model-
ing assumptions made in Section II-A. All such effects likely
contribute to the small differences (average 3 mm) between
model predictions and experimental results. Of these effects,
the authors hypothesize that unmodeled torsion in the curved

sections is the most significant. This is based primarily on qual-
itative observation of the prototype cannula used in this paper,
which does not exhibit significant hysteresis or stick-slip behav-
ior, even without lubrication. However, it is possible that with
active cannulas of different designs (e.g., smaller diameters or
intratube tolerances), frictional effects may become more pro-
nounced and active cannula models may require enhancements
to account for it.

The model described in this paper without further enhance-
ments is likely to be accurate enough for some medical tasks.
An example is thermal ablation in the liver, which does not
require high accuracy. In higher accuracy applications, model-
based controllers may also be applied that are robust to modeling
errors [36]. Similarly, in teleoperated tasks, the human opera-
tor can compensate for modeling errors. Cardiac access (the
motivation for the catheter-based industrial robots mentioned
earlier [8]) is one medical procedure where continuum robots
can be operated under teleoperateive control. Medical appli-
cations requiring greater accuracy (e.g., microsurgery on the
retina) will require future modeling enhancements.

VII. CONCLUSION

This paper provides design, modeling, analysis, and experi-
mental results that are foundational steps toward realizing the
potential of active cannulas in medicine and other applications.
Analysis relating tube elastic deformation limits to precurva-
tures and tools to characterize and (if desired) prevent bifur-
cation behavior are among the design contributions presented.
Beam-mechanics-based models of cannula link shape were de-
rived and generalized into a framework for forward kinematics
of multilink cannulas. This framework is closed form in the
torsionless case, and it was shown how torsion can be included
through energy minimization. The importance of torsion and
the accuracy of the model were evaluated experimentally and
parameters were fit through two complementary calibration pro-
cedures that agree well with expected parameter ranges calcu-
lated from material property tolerances and physical geometry.
Experimental results lead to the conclusion that when modeling
active cannulas, torsion must be taken into account to describe
cannula shape well and to make models structurally capable of
predicting observed bifurcation behavior.

This poses some interesting future challenges. One is to solve
various robotics problems for active cannulas (e.g., motion plan-
ning and inverse kinematics) in an analytically more complex
setting without the aid of closed-form kinematics. Another is
to approach the problem from a design perspective and explore
tube materials that will increase torsional stiffness while main-
taining bending flexibility.
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