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Sparse Generalized Eigenvalue Problem Via
Smooth Optimization
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Abstract—In this paper, we consider an -norm penalized for-
mulation of the generalized eigenvalue problem (GEP), aimed at
extracting the leading sparse generalized eigenvector of a matrix
pair. The formulation involves maximization of a discontinuous
nonconcave objective function over a nonconvex constraint
set, and is therefore computationally intractable. To tackle the
problem, we first approximate the -norm by a continuous
surrogate function. Then an algorithm is developed via itera-
tively majorizing the surrogate function by a quadratic separable
function, which at each iteration reduces to a regular generalized
eigenvalue problem. A preconditioned steepest ascent algorithm
for finding the leading generalized eigenvector is provided. A
systematic way based on smoothing is proposed to deal with the
“singularity issue” that arises when a quadratic function is used
to majorize the nondifferentiable surrogate function. For sparse
GEPs with special structure, algorithms that admit a closed-form
solution at every iteration are derived. Numerical experiments
show that the proposed algorithms match or outperform existing
algorithms in terms of computational complexity and support
recovery.

Index Terms—Minorization-maximization, sparse generalized
eigenvalue problem, sparse PCA, smooth optimization.

I. INTRODUCTION

T HE generalized eigenvalue problem (GEP) for matrix pair
is the problem of finding a pair such that

(1)

where is called the generalized eigen-
value and is the corresponding generalized
eigenvector. When is the identity matrix, the problem in (1)
reduces to the simple eigenvalue problem.
GEP is extremely useful in numerous applications of high

dimensional data analysis and machine learning. Many widely
used data analysis tools, such as principle component analysis
(PCA) and canonical correlation analysis (CCA), are special in-
stances of the generalized eigenvalue problem [1], [2]. In these
applications, usually (i.e., is symmetric
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and is positive definite) and only a few of the largest gen-
eralized eigenvalues are of interest. In this case, all general-
ized eigenvalues and generalized eigenvectors are real and
the largest generalized eigenvalue can be formulated as the fol-
lowing optimization problem

(2)

or equivalently

(3)

Despite the simplicity and popularity of the tools based on
GEP, there is a potential problem: in general the eigenvector is
not expected to have many zero entries, which makes the result
difficult to interpret, especially when dealing with high dimen-
sional data. An ad hoc approach to fix this problem is to set the
entries with absolute values smaller than a threshold to zero.
This thresholding approach is frequently used in practice, but it
is found to be potentially misleading, since no care is taken on
how well the artificially enforced sparsity fits the original data
[3]. Obviously, approaches that can simultaneously produce ac-
curate and sparse models are more desirable.
This has motivated active research in developing methods

that enforce sparsity on eigenvectors, and many approaches
have been proposed, especially for the simple sparse PCA case.
For instance, Zou, Hastie, and Tibshirani [4] first recast the
PCA problem as a ridge regression problem and then imposed
-norm penalty to encourage sparsity. In [5], d’Aspremont et

al. proposed a convex relaxation for the sparse PCA problem
based on semidefinite programming (SDP) and Nesterov’s
smooth minimization technique was applied to solve the SDP.
Shen and Huang [6] exploited the connection of PCA with
singular value decomposition (SVD) of the data matrix and ex-
tracted the sparse principal components (PCs) through solving
a regularized low rank matrix approximation problem. Journée
et al. [7] rewrote the sparse PCA problem in the form of an
optimization problem involving maximization of a convex
function on a compact set and the simple gradient method was
then applied. Although derived differently, the resulting algo-
rithm GPower turns out to be identical to the rSVD algorithm
in [6], except for the initialization and post-processing phases.
Very recently, Luss and Teboulle [8] introduced an algorithm
framework, called ConGradU, based on the well-known con-
ditional gradient algorithm, that unifies a variety of seemingly
different algorithms, including the GPower method and the
rSVD method. Based on ConGradU, the authors also proposed
a new algorithm for the -constrained sparse PCA formulation.
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Among the aforementioned algorithms for sparse PCA,
rSVD, GPower and ConGradU are very efficient and require
only matrix vector multiplications at every iteration, thus can
be applied to problems of extremely large size. But these
algorithms are not well suited for the case where is not the
identity matrix, for example, the sparse CCA problem, and
direct application of these algorithms does not yield a simple
closed-form solution at each iteration any more. To deal with
this problem, [9] suggested that good results could still be
obtained by substituting in the identity matrix for and, in [8],
the authors proposed to substitute the matrix with its diagonal
instead. In [10], [11], an algorithm was proposed to solve the
problem with the general (to the best of our knowledge, this
is the only one) based on D.C. (difference of convex functions)
programming and minorization-maximization. The resulting
algorithm requires computing a matrix pseudoinverse and
solving a quadratic program (QP) at every iteration when is
symmetric and positive semidefinite, and in the case where
is just symmetric it needs to solve a quadratically constrained
quadratic program (QCQP) at each iteration. It is computation-
ally intensive and not amenable to problems of large size. The
same algorithm can also be applied to the simple sparse PCA
problem by simply restricting to be the identity matrix, and
in this special case only one matrix vector multiplication is
needed at every iteration and it is shown to be comparable to
the GPower method regarding the computational complexity.
In this paper, we adopt the MM (majorization-minimization

or minorization-maximization) approach to develop efficient
algorithms for the sparse generalized eigenvalue problem. In
fact, all the algorithms that can be unified by the ConGradU
framework can be seen as special cases of the MM method.
Since the ConGradU framework is based on maximizing a
convex function over a compact set via linearizing the convex
objective, and the linear function is just a special minorization
function of the convex objective. Instead of only consid-
ering linear minorization function, in this paper we consider
quadratic separable minorization that is related to the well
known iteratively reweighted least squares (IRLS) algorithm
[12]. By applying quadratic minorization functions, we turn the
original sparse generalized eigenvalue problem into a sequence
of regular generalized eigenvalue problems and an efficient
preconditioned steepest ascent algorithm for finding the leading
generalized eigenvector is provided. We call the resulting algo-
rithm IRQM (iteratively reweighted quadratic minorization); it
is in spirit similar to IRLS which solves the -norm minimiza-
tion problem by solving a sequence of least squares problems.
Algorithms of the IRLS type often suffer from the infamous
“singularity issue”, i.e., when using quadratic majorization
functions for nondifferentiable functions, the variable may
get stuck at a nondifferentiable point [13]. To deal with this
“singularity issue”, we propose a systematic way via smoothing
the nondifferentiable surrogate function, which is inspired
by Nesterov’s smooth minimization technique for nonsmooth
convex optimization [14], although in our case the surrogate
function is nonconvex. The smoothed problem is shown to be
equivalent to a problem that maximizes a convex objective
over a convex constraint set and the convergence of the IRQM
algorithm to a stationary point of the equivalent problem is

proved. For some sparse generalized eigenvalue problems with
special structure, more efficient algorithms are also derived
which admit a closed-form solution at every iteration.
The remaining sections of the paper are organized as follows.

In Section II, the problem formulation of the sparse general-
ized eigenvalue problem is presented and the surrogate func-
tions that will be used to approximate -norm are discussed. In
Section III, we first give a brief review of the MM framework
and then algorithms based on theMM framework are derived for
the sparse generalized eigenvalue problems in general and with
special structure. A systematic way to deal with the “singularity
issue” arising when using quadratic minorization functions is
also proposed. In Section IV, the convergence of the proposed
MM algorithms is analyzed. Section V presents numerical ex-
periments and the conclusions are given in Section VI.
Notation: and denote the real field and the complex

field, respectively. and denote the real and imagi-
nary part, respectively. denotes the set of (non-
negative, strictly positive) real vectors of size .
denotes the set of symmetric (positive semidefinite, positive def-
inite) matrices defined over . Boldface upper case letters
denote matrices, boldface lower case letters denote column vec-
tors, and italics denote scalars. The superscripts and
denote transpose and conjugate transpose, respectively. de-
notes the ( -th, -th) element of matrix and denotes the
-th element of vector . denotes the -th row of matrix

denotes the -th column of matrix . is a column
vector consisting of all the diagonal elements of . is a
diagonal matrix formed with as its principal diagonal. Given a
vector denotes the number of non-zero elements
of . denotes an

identity matrix. denotes the sign function, which
takes if , respectively.

II. PROBLEM FORMULATION

Given a symmetric matrix and a symmetric positive
definite matrix the main problem of interest is the
following -norm regularized generalized eigenvalue problem

(4)

where is the regularization parameter. This formulation is
general enough and includes some sparse PCA and sparse CCA
formulations in the literature as special cases.
The problem (4) involves the maximization of a non-concave

discontinuous objective over a nonconvex set, thus really hard
to deal with directly. The intractability of the problem is not
only due to the nonconvexity, but also due to the discontinuity
of the cardinality function in the objective. A natural approach
to deal with the discontinuity of the -norm is to approximate
it by some continuous function. It is easy to see that the -norm
can be written as



SONG et al.: SPARSE GENERALIZED EIGENVALUE 1629

Fig. 1. Three surrogate functions that are used to approximate
.

Thus, to approximate wemay just replace the problematic
by some nicer surrogate function where

is a parameter that controls the approximation. In this paper, we
will consider the class of continuous even functions defined on
, which are differentiable everywhere except at 0 and concave

and monotone increasing on and . In partic-
ular, we will consider the following three surrogate functions:
1)
2) /
3) .
The first is the -norm-like measure (with ) used in [15],
[16], which is shown to perform well in promoting sparse so-
lutions for compressed sensing problems. The second is the
penalty function used in [11] for sparse generalized eigenvalue
problem and when used to replace the -norm in basis pursuit,
it leads to the well known iteratively reweighted -norm min-
imization algorithm [17]. The last surrogate function is used in
[18] for feature selection problems, which is different from the
first two surrogate functions in the sense that it has the addi-
tional property of being a lower bound of the function .
To provide an intuitive idea about how these surrogate functions
look like, they are plotted in Fig. 1 for fixed .
By approximating with , the original

problem (4) is approximated by the following problem

(5)

With the approximation, the problem (5) is still a nonconvex
nondifferentiable optimization problem, but it is a continuous
problem now in contrast to the original problem (4). In the
following section, we will concentrate on the approximate
problem (5) and develop fast algorithms to solve it based on the
MM (majorization-minimization or minorization-maximiza-
tion) scheme.
Note that for simplicity of exposition, we focus on real-valued

matrices throughout the paper. However, the techniques devel-
oped in this paper can be adapted for complex-valued matrix
pair , with being an Hermitian matrix and

being an Hermitian positive definite matrix. One approach
is to transform the problem to a real-valued one by defining

In this approach, the cardinality is considered for the real and
imaginary part of the vector separately. A more natural ap-
proach is to consider directly the complex-valued version of the
-norm regularized generalized eigenvalue problem

where the -norm can still be written as
, but with being the modulus of now.

Notice that the three surrogate functions used to
approximate are all functions of , by taking
as the modulus of a complex number, the surrogate functions
are directly applicable to the complex case. The quadratic
minorization function that will be described in Section III
can also be constructed similarly in the complex case and
at each iteration of the resulting algorithm we still need to
solve a regular generalized eigenvalue problem but with
complex-valued matrices.

III. SPARSE GENERALIZED EIGENVALUE
PROBLEM VIA MM SCHEME

A. The MM Method

The MM method refers to the majorization-minimization
method or the minorization-maximization method, which is
a generalization of the well known expectation maximiza-
tion (EM) algorithm. It is an approach to solve optimization
problems that are too difficult to solve directly. The principle
behind the MM method is to transform a difficult problem into
a series of simple problems. Interested readers may refer to [19]
and references therein for more details (recent generalizations
include [20], [21]).
Suppose we want to minimize over . Instead of

minimizing the cost function directly, the MM approach
optimizes a sequence of approximate objective functions that
majorize . More specifically, starting from a feasible point

, the algorithm produces a sequence according to the
following update rule

(6)

where is the point generated by the algorithm at iteration
, and is the majorization function of at .
Formally, the function is said tomajorize the function

at the point provided

(7)

(8)

In other words, function is a global upper bound for
and coincides with at .
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It is easy to show that with this scheme, the objective value
is decreased monotonically at every iteration, i.e.,

(9)

The first inequality and the third equality follow from the prop-
erties of the majorization function, namely (7) and (8) respec-
tively and the second inequality follows from (6).
Note that with straightforward changes, similar scheme can

be applied to maximization. To maximize a function , we
need to minorize it by a surrogate function and max-
imize to produce the next iterate . A function

is said to minorize the function at the point
if majorizes at . This scheme refers to
minorization-maximization and similarly it is easy to shown that
with this scheme the objective value is increased at each itera-
tion.

B. Quadratic Minorization Function

Having briefly introduced the general MM framework, let
us return to the approximate sparse generalized eigenvalue
problem (SGEP) in (5). To apply the MM scheme, the key
step is to find an appropriate minorization function for the
objective of (5) at each iteration such that the resulting problem
is easy to solve. To construct such a minorization function, we
keep the quadratic term and only minorize the penalty
term (i.e., majorize ). More
specifically, at iteration we majorize each of the surrogate
functions at with a quadratic function

, where the coefficients and are deter-
mined by the following two conditions (for ):

(10)

(11)

i.e., the quadratic function coincides with the surrogate function
at and is also tangent to at . Due to the

fact that the surrogate functions of interest are differentiable and
concave for (also for ), the second condition
implies that the quadratic function is a global upper bound of
the surrogate function . Then the objective of (5), i.e.,

is minorized by the quadratic function
, which can be written more

compactly as

(12)

where .
Example 1: To compute the quadratic function

that majorizes the surrogate function
at , we have the following two equations corresponding
to (10) and (11) respectively:

(13)

(14)

Fig. 2. The function with and its quadratic majoriza-
tion function at .

By solving (13) and (14), we can get the quadratic majorization
function

(15)

which is illustrated in Fig. 2 with and .
In fact, the idea of majorizing some penalty functions by

quadratic separable functions is well known in robust regres-
sion [22]. It was first proposed to solve the absolute deviations
curve fitting problem (i.e., regression with -norm cost func-
tion) via iteratively solving a series of weighted least squares
problems and the resulting algorithm is known as the iteratively
reweighted least squares (IRLS) algorithm [12]. Later the idea
was applied in signal processing for sparse signal reconstruc-
tion in [15], [23]. Recently, the IRLS approach has also been
applied in Compressed Sensing [16]. Algorithms based on this
idea often have the infamous singularity issue [13], that is, the
quadratic majorization function is not defined at

due to the nondifferentiability of at .
For example, considering the quadratic majorization function
of in (15), it is easy to see that the
coefficient is not defined at . To tackle this
problem, the authors of [13] proposed to define the majorization
function at the particular point as

which implies that once , the next iteration will also be
zero, i.e., . This may impact the convergence of the
algorithm to a minimizer of the objective, if the corresponding
element of the minimizer is in fact not zero. Another common
approach for dealing with this singularity issue is to incorpo-
rate a small , for example, for the quadratic majorization
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TABLE I
SMOOTH APPROXIMATION OF THE SURROGATE FUNCTIONS AND THE

QUADRATIC MAJORIZATION FUNCTIONS AT

Fig. 3. The function with and its smooth approximation
with .

function of in (15), replace the co-
efficient by

which is the so called damping approach used in [16]. A poten-
tial problem of this approach is that although is small, we have
no idea how it will affect the convergence of the algorithm, since
the corresponding quadratic function is no longer a majorization
function of the surrogate function.

C. Smooth Approximations of Non-Differentiable Surrogate
Functions

To tackle the singularity issue that arose during the construc-
tion of the quadratic minorization function in (12), in this sub-
section we propose to incorporate a small in a more sys-
tematic way.
The idea is to approximate the non-differentiable surrogate

function with a differentiable function of the following
form

which aims at smoothening the non-differentiable surrogate
function around zero by a quadratic function. To make the
function continuous and differentiable at
the following two conditions are needed

, which lead to .
Thus, the smooth approximation of the surrogate function that
will be employed is

(16)

where is a constant parameter.
Example 2: The smooth approximation of the function

is

(17)

The case with and is illustrated in Fig. 3.
When , the smooth approximation (17) is the well known
Huber penalty function and the application of Huber penalty as
smoothed absolute value has been used in [24] to derive fast
algorithms for sparse recovery.
With this smooth approximation, the problem (5) becomes

the following smoothed one:

(18)

where is the function given by (16). We now majorize
the smoothed surrogate functions with quadratic func-
tions and the coefficients of the quadratic majorization func-
tions are summarized in Table I (we have omitted the coefficient

since it is irrelevant for the MM algorithm). Notice that the
quadratic functions are now well defined. Thus,
the smooth approximation we have constructed can be viewed
as a systematic way to incorporate a small to deal with
the singularity issue of IRLS type algorithms.
Although there is no singularity issue when applying the

quadratic minorization to the smoothed problem (18), a natural
question is if we solve the smoothed problem, what can we say
about the solution with regard to the original problem (5). In
the following, we present some results which aim at answering
the question.
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Lemma 3: Let be a continuous even function defined
on , differentiable everywhere except at zero, concave and
monotone increasing on with . Then the
smooth approximation defined by (16) is a global lower

bound of and is a global upper
bound of .

Proof: The lemma is quite intuitive and the proof is
omitted.
Proposition 4: Let be the objective of the problem (5),

with as in Lemma 3 and be the objective of the
smoothed problem (18) with as in (16). Let be the op-
timal solution of the problem (5) and be the optimal solution
of the smoothed problem (18). Then

and .
Proof: See Appendix A.

Proposition 4 gives a suboptimality bound on the solution
of the smoothed problem (18) in the sense that we can solve
the original problem (5) to a very high accuracy by solving the
smoothed problem (18) with a small enough (say ,
and is used in our simulations). Of course, in general
it is hard to solve either problem (5) or (18) to global maximum
or even local maximum, since both of them are nonconvex.
But from this point, there may be advantages in solving the
smoothed problem with the smoothing parameter decreasing
gradually, since choosing a relatively large at the beginning
can probably smoothen out some undesirable local maxima, so
that the algorithm can escape from these local points. This idea
has been used with some success in [16], [24]. A decreasing
scheme of will be considered later in the numerical simula-
tions.

D. Iteratively Reweighted Quadratic Minorization

With the quadratic minorization function constructed and the
smoothing technique used to deal with the singularity issue, we
are now ready to state the overall algorithm for the approximate
SGEP in (5).
First, we approximate the non-differentiable surro-

gate functions by smooth functions , which
leads to the smoothed problem (18). Then at iteration
, we construct the quadratic minorization function

of the objective
via majorizing each smoothed surrogate function at

by a quadratic function and solve the following
minorized problem (with the constant term ignored)

(19)

which is to find the leading generalized eigenvector of
the matrix pair , where

and are given in Table I.
The method is summarized in Algorithm 1 and we will refer
to it as IRQM (Iterative Reweighed Quadratic Minorization),
since it is based on iteratively minorizing the penalty function
with reweighted quadratic function.

Algorithm 1: IRQM — Iteratively Reweighed Quadratic
Minorization algorithm for the sparse generalized eigenvalue
problem (5).

Require:
1: Set , choose
2: repeat
3: Compute according to Table I.
4: leading generalized eigenvector of the matrix

pair
5:
6: until convergence
7: return

At every iteration of the proposed IRQM algorithm, we
need to find the generalized eigenvector of the matrix pair

corresponding to the largest general-
ized eigenvalue. Since a standard approach for this
problem is to transform it to a standard eigenvalue problem via
the Cholesky decomposition of . Then standard algorithms,
such as power iterations (applied to a shifted matrix) and
Lanczos method can be used. The drawback of this approach is
that a matrix factorization is needed, making it less attractive
when this factorization is expensive. Besides, as some
become very large, the problem is highly ill-conditioned and
standard iterative algorithms may suffer from extremely slow
convergence.
To overcome these difficulties, we provide a preconditioned

steepest ascent method, which is matrix factorization free and
employes preconditioning to deal with the ill-conditioning
problem. Let us derive the steepest ascent method without
preconditioning first. The key step is to reformulate the leading
generalized eigenvalue problem as maximizing the Rayleigh
quotient

(20)

over the domain , where . Let
be the current iterate, the gradient of at is

which is an ascent direction of at . Let
, the steepest ascent method searches along the

line for a that maximizes the Rayleigh quotient
. Since the Rayleigh quotient is

a scalar function of , the maximum will be achieved either at
points with zero derivative or as goes to infinity. Setting the
derivative of with respect to equal to 0, we
can get the following quadratic equation

(21)

where
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Algorithm 2: Preconditioned steepest ascent method for
problem (19).

Require:
1: Set , choose
2: Let
3: repeat
4:
5:
6:
7: , with chosen to maximize

8:
9:
10: until convergence
11: return

Let us denote and
, by direct computation we have

According to Cauchy-Schwartz inequality, it is easy to see that
, thus , which implies that

the (21) has one or two real roots. By comparing the Rayleigh
quotient at the roots of (21) with (the
Rayleigh quotient corresponding to ), we can determine
the steepest ascent. It is worth noting that the coefficients of
the (21) can be computed by matrix-vector multiplications and
inner products only, thus very efficient.
Though the per-iteration computational complexity of this

steepest ascent method is very low, it may converge very slow,
especially when some become very large. To accelerate
the convergence, we introduce a preconditioner here. Precon-
ditioning is an important technique in iterative methods for
solving large system of linear equations, for example the widely
used preconditioned conjugate gradient method. It can also be
used for eigenvalue problems. In the steepest ascent method,
to introduce a positive definite preconditioner , we simply
multiply the residual by . The steepest ascent method
with preconditioning for the leading generalized eigenvalue
problem (19) is summarized in Algorithm 2. To use the algo-
rithm in practice, the preconditioner remains to be chosen.
For the particular problem of interest, we choose a diagonal
as follows

In other words, we apply a preconditioner only when some ele-
ments of become relatively large. Since the preconditioner
we choose here is positive definite, the direction is

still an ascent direction and the algorithm is still monotonically

increasing. For more details regarding preconditioned eigen-
solvers, the readers can refer to the book [25].
In practice, the preconditioned steepest ascent method usually

converges to the leading generalized eigenvector, but it is not
guaranteed in principle, since the Rayleigh quotient is not con-
cave. But note that the descent property (9) of the majorization-
minimization scheme depends only on decreasing
and not on minimizing it. Similarly, for the minorization-max-
imization scheme used by Algorithm 1, to preserve the ascent
property, we only need to increase the objective of (19) at each
iteration, rather than maximizing it. Since the steepest ascent
method increases the objective at every iteration, thus when it
is applied (initialized with the solution of previous iteration) to
compute the leading generalized eigenvector at each iteration of
Algorithm 1, the ascent property of Algorithm 1 can be guaran-
teed.

E. Sparse GEP With Special Structure

Until now we have considered the sparse GEP in the general
case with and derived an iterative algorithm
IRQM. If we assume more properties or some special structure
for and , then we may derive simpler and more efficient
algorithms. In the following, we will consider the case where

and . Notice that although
this is a special case of the general sparse GEP, it still includes
the sparse PCA problem as a special case where .
We first present two results that will be used when deriving

fast algorithms for this special case.
Proposition 5: Given
, let

and

. Then the problem

(22)

admits the following solution:
• If , such that or , then

where is given by the solution of the scalar
equation

• Otherwise,

Proof: See Appendix B.
Proposition 6: Given with and
, then the problem

(23)
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admits the following solution:
• If , then

(24)

• Otherwise,

where is the largest integer that satisfies the following
inequality

(25)

Proof: See Appendix C.
Let us return to the problem. In this special case, the smoothed

problem (18) reduces to

(26)

The previously derived IRQM algorithm can be used here, but
in that iterative algorithm, we need to find the leading gener-
alized eigenvector at each iteration, for which another iterative
algorithm is needed. By exploiting the special structure of this
case, in the following we derive a simpler algorithm that at each
iteration has a closed-form solution.
Notice that, in this case, , the first term in the

objective is convex and can be minorized by its tangent plane
at . So instead of only minorizing the second

term, we can minorize both terms. This suggests solving the
following minorized problem at iteration :

(27)

where is the solution at iteration and is computed
according to Table I. The problem is a nonconvex QCQP, but by
letting and , we know from Proposition 5
that it can be solved in closed-form. The iterative algorithm for
solving problem (26) is summarized in Algorithm 3.

Algorithm 3: The MM algorithm for problem (26).

Require:
1: Set , choose
2: repeat
3:
4: Compute according to Table I.
5: Solve the following problem according to Proposition 5

and set the solution as :

6:
7: until convergence
8: return

In fact, in this special case, we can apply the MM scheme to
solve the original problem (4) directly, without approximating

i.e., solving

(28)

First, we define a new variable and using
the fact , the problem can be rewritten
as

(29)

where .
Now the idea is to minorize only the quadratic term by its tan-

gent plane, while keeping the -norm. Given at iteration
, linearizing the quadratic term yields

(30)

which has a closed-form solution. To see this, we first define
and sort the entries of vector according to the absolute

value (only needed for entries with ) in descending
order, then Proposition 6 can be readily applied to obtain the
solution. Finally we need to reorder the solution back to the
original ordering. This algorithm for solving problem (28) is
summarized in Algorithm 4.
It is worth noting that although the derivations of Algorithms

3 and 4 require to be symmetric positive semidefinite, the
algorithms can also be used to deal with the more general case

. When the matrix in problem (26) or (28) is not posi-
tive semidefinite, we can replace with ,
with such that , where
is the smallest eigenvalue of matrix and is the smallest
entry of . Since the additional term in the ob-
jective is just a constant over the constraint set, it is easy to see
that after replacing with the resulting problem is equiva-
lent to the original one. Then the Algorithm 3 or 4 can be readily
applied.

Algorithm 4: The MM algorithm for problem (28).

Require:
1: Set , choose
2: Let
3: repeat
4:
5: Sort with the absolute value in descending order.
6: Compute according to Proposition 6:

7: Reorder
8:
9: until convergence
10: return
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IV. CONVERGENCE ANALYSIS

The algorithms proposed in this paper are all based on
the minorization-maximization scheme, thus according to
Subsection III.A, we know that the sequence of objective
values evaluated at generated by the algorithms is
non-decreasing. Since the constraint sets in our problems are
compact, the sequence of objective values is bounded. Thus,
the sequence of objective values is guaranteed to converge to
a finite value. The monotonicity makes MM algorithms very
stable. In this section, we will analyze the convergence property
of the sequence generated by the algorithms.
Let us consider the IRQM algorithm in Algorithm 1, in

which the minorization-maximization scheme is applied to the
smoothed problem (18). In the problem, the objective is neither
convex nor concave and the constraint set is also nonconvex.
But as we shall see later, after introducing a technical assump-
tion on the surrogate function , the problem is equivalent
to a problem which maximizes a convex function over a convex
set and we will prove that the sequence generated by the IRQM
algorithm converges to the stationary point of the equivalent
problem. The convergence of the Algorithm 3 can be proved
similarly, since the minorization function applied can also be
convexified. First, let us give the assumption and present some
results that will be useful later.
Assumption 1: The surrogate function is twice dif-

ferentiable on and its gradient is convex on
.

It is easy to verify that the three surrogate functions listed
in Table I all satisfy this assumption. With this assumption, the
first result shows that the smooth approximation we have
constructed is Lipschitz continuously differentiable.
Lemma 7: Let be a continuous even function defined

on , differentiable everywhere except at zero, concave and
monotone increasing on with . Let Assump-
tion 1 be satisfied. Then the smooth approximation de-
fined by (16) is Lipschitz continuously differentiable with Lip-

schitz constant .
Proof: See Appendix D.

Next, we recall a useful property of Lipschitz continuously
differentiable functions [26].
Proposition 8: If is Lipschitz continuously

differentiable on a convex set with some Lipschitz constant
, then is a convex function on for
every .
The next result then follows, showing that the smoothed

problem (18) is equivalent to a problem in the form of maxi-
mizing a convex function over a compact set.
Lemma 9: There exists such that

is convex and the problem

(31)

is equivalent to the problem (18) in the sense that they admit the
same set of optimal solutions.

Proof: From Lemma 7, it is easy to see that
is Lipschitz continuously differentiable. As-

sume the Lipschitz constant of its gradient is , then ac-
cording to Proposition 8,
is convex. Since is positive definite, . By
choosing we have that
is convex. The sum of the two convex functions, i.e.,

, is convex.
Since the additional term is just a constant over

the constraint set , it is obvious that any solution of
problem (31) is also a solution of problem (18) and vice versa.
Generally speaking, maximizing a convex function over

a compact set remains a hard nonconvex problem. There is
some consolation, however, according to the following result
in convex analysis [27].
Proposition 10: Let be a convex function. Let

be an arbitrary set and be its convex hull.
Then

where the first supremum is attained only when the second
(more restrictive) supremum is attained.
According to Proposition 10, we can further relax the con-

straint in problem (31) to , namely, the
problem

(32)

is still equivalent to problem (18) in the sense that they admit
the same set of optimal solutions.
Let us denote the objective function of problem (32) by

and define , then a point is
referred to as a stationary point of problem (32) if

(33)

Theorem 11: Let be the sequence generated by the
IRQM algorithm in Algorithm 1. Then every limit point of the
sequence is a stationary point of the problem (32), which
is equivalent1 to the problem (18).

Proof: Denote the objective function of the problem (18)
by and its quadratic minorization function at by

, i.e., . Denote
and .

According to the general MM framework, we have

which means is a non-decreasing sequence.
Assume that there exists a converging subsequence
then

Letting we obtain

1The equivalence of the problem (32) and (18) is in the sense that they have
the same set of optimal solutions, but they may have different stationary points.
The convergence to a stationary point of problem (32) does not imply the con-
vergence to a stationary point of problem (18).
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It is easy to see that we can always find such that
is convex and is still a

global maximizer of over . Due to Lemma 9, we
can always choose large enough such that

is also convex. By Proposition 10, we have

i.e., is a global maximizer of over the convex set
. As a necessary condition, we get

Since by construction, we obtain

implying that is a stationary point of the problem (32),
which is equivalent to the problem (18) according to Lemma
9 and Proposition 10.
We note that in the above convergence analysis of Algorithm

1, the leading generalized eigenvector is assumed to be com-
puted exactly at each iteration. Recall that the Algorithm 2 is not
guaranteed to converge to the leading generalized eigenvector
in principle, so if it is applied to compute the leading general-
ized eigenvector, the convergence of Algorithm 1 to a stationary
point is no longer guaranteed.

V. NUMERICAL EXPERIMENTS

To compare the performance of the proposed algorithms with
existing ones on the sparse generalized eigenvalue problem
(SGEP) and some of its special cases, we present some experi-
mental results in this section. All experiments were performed
on a PC with a 3.20 GHz i5-3470 CPU and 8 GB RAM.

A. Sparse Generalized Eigenvalue Problem

In this subsection, we evaluate the proposed IRQM al-
gorithm for the sparse generalized eigenvalue problem in
terms of computational complexity and the ability to extract
sparse generalized eigenvectors. The benchmark method con-
sidered here is the DC-SGEP algorithm proposed in [10],
[11], which is based on D.C. (difference of convex functions)
programming and minorization-maximization (to the best of
our knowledge, this is the only algorithm proposed for this
case). The problem that DC-SGEP solves is just (5) with the
surrogate function , but
the equality constraint is relaxed to .
The DC-SGEP algorithm requires solving a convex quadrat-
ically constrained quadratic program (QCQP) at each it-
eration, which is solved by the solver Mosek2 in our ex-
periments. In the experiments, the stopping condition is

for both
algorithms. For the proposed IRQM algorithm, the smoothing
parameter is set to be .
1) Computational Complexity: In this subsection, we com-

pare the computational complexity of the proposed IRQM Al-
gorithm 1 with the DC-SGEP algorithm. The surrogate function

/ is used for both algorithms

2Mosek, available at http://www.mosek.com/

Fig. 4. Average running time versus problem size. Each curve is an average of
100 random trials.

in this experiment. The preconditioned steepest ascent method
given in Algorithm 2 is applied to compute the leading gener-
alized eigenvector at every iteration of the IRQM algorithm. To
illustrate the effectiveness of the preconditioning scheme em-
ployed in Algorithm 2, we also consider computing the leading
generalized eigenvector by invoking Algorithm 2 but without
preconditioning, i.e., setting . The data matrices
and are generated as and ,
with and the entries of both and
independent, identically distributed and following . For
both algorithms, the initial point is chosen randomly with
each entry following and then normalized such that

. The parameter of the surrogate function
is chosen to be 1 and the regularization parameter is .
The computational time for problems with different sizes are

shown in Fig. 4. The results are averaged over 100 independent
trials. From Fig. 4, we can see that the preconditioning scheme
is indeed important for the efficiency of Algorithm 2 and the
proposed IRQM algorithm is much faster than the DC-SGEP
algorithm. It is worth noting that the solver Mosek which is
used to solve the QCQPs for the DC-SGEP algorithm is well
known for its efficiency, while the IRQM algorithm is entirely
implemented inMatlab. The lower computational complexity of
the IRQM algorithm, compared with the DC-SGEP algorithm,
attributes to both the lower per iteration computational com-
plexity and the faster convergence. To show this, the evolution
of the objective function for one trial with is plotted in
Fig. 5 and we can see that the proposed IRQM algorithm takes
much fewer iterations to converge. One may also notice that the
two algorithms converge to the same objective value, but this
does not hold in general since the problem is nonconvex.
2) Random Data With Underlying Sparse Structure: In this

section, we generate random matrices and
such that the matrix pair has a few sparse generalized
eigenvectors. To achieve this, we synthesize the data through the
generalized eigenvalue decomposition
and , where the first columns of
are pre-specified sparse vectors and the remaining columns are
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Fig. 5. Evolution of the objective function for one trial with .

Fig. 6. Chance of exact recovery versus regularization parameter . Parameter
is used for the surrogate functions.

generated randomly, is the vector of the generalized eigen-
values.
Here, we choose and , where the two sparse

generalized eigenvectors are specified as follows

and the generalized eigenvalues are chosen as

Fig. 7. Chance of exact recovery versus regularization parameter . Parameter
is used for the surrogate functions.

Fig. 8. Chance of exact recovery versus regularization parameter . Parameter
is used for the surrogate functions.

We generate 200 pairs of as described above and em-
ploy the algorithms to compute the leading sparse generalized
eigenvector which is hoped to be close to . The
underlying sparse generalized eigenvector is considered
to be successfully recovered when

. For the proposed IRQM algorithm, all the
three surrogate functions listed in Table I are considered and
we call the resulting algorithms “IRQM-log”, “IRQM-Lp” and
“IRQM-exp”, respectively. For all the algorithms, the initial
point is chosen randomly. Regarding the parameter of the
surrogate function, three values, namely 1, 0.3 and 0.1, are com-
pared. The corresponding performance along the whole path of
the regularization parameter is plotted in Figs. 6, 7 and 8, re-
spectively.
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From Fig. 6, we can see that for the case , the best
chance of exact recovery achieved by the three IRQM algo-
rithms are very close and all higher than that achieved by the
DC-SGEP algorithm. From Figs. 7 and 8, we can see that as
becomes smaller, the best chance of exact recovery achieved by
IRQM-exp, IRQM-log and DC-SGEP stay almost the same as
in the case (in fact decrease a little bit when ),
but the performance of IRQM-Lp degrades a lot. This may be
explained by the fact that as becomes smaller, the surrogate
function tends to the function much faster than the
other two surrogate functions. So when for example, it
is much more pointed and makes the algorithm easily get stuck
at some local point. In this sense, the log-based and exp-based
surrogate functions seem to be better choices as they are not so
sensitive to the choice of .
3) Decreasing Scheme of the Smoothing Parameter : As

have been discussed in the end of Section III.C, choosing
a relatively large smoothing parameter at the beginning
and decreasing it gradually may probably lead to better
performance than the fixed scheme. In this section, we
consider such a decreasing scheme and compare its per-
formance with the fixed scheme in which the smoothing
parameter is fixed to be . The decreasing scheme
that we will adopt is inspired by the continuation approach
in [24]. The idea is to apply the IRQM algorithm to a suc-
cession of problems with decreasing smoothing parameters

and solve the intermediate problems
with less accuracy, where is the number of decreasing steps.
More specifically, at step , we apply the IRQM
algorithm with smoothing parameter and stopping crite-
rion
and then decrease the smoothing parameter for the next step
by with . At each step
the IRQM algorithm is initialized with the solution of the
previous step. The initial smoothing parameter is chosen as

, where is the random initial point and
the minimum smoothing parameter is set as
which is the parameter used in the fixed scheme. The number
of decreasing steps is set to in our experiment.
The remaining settings are the same as in the previous sub-

section and the log-based surrogate function with parameter
is used for the IRQM algorithm. The performance of

the two schemes are shown in Fig. 9. From the figure, we can see
that the decreasing scheme of the smoothing parameter achieves
a higher chance of exact recovery.

B. Sparse Principal Component Analysis

In this section, we consider the special case of the sparse
generalized eigenvalue problem in which the matrix is the
identity matrix, i.e., the sparse PCA problem, which has re-
ceived most of the recent attention in the literature. In this case,
the matrix is usually a (scaled) covariance matrix. Although
there exists a vast literature on sparse PCA, most popular
algorithms are essentially variations of the generalized power
method (GPower) proposed in [7]. Thus we choose the GPower
methods, namely and , as the benchmarks
in this section. The Matlab code of the GPower algorithms
was downloaded from the authors’ website. For the proposed

Fig. 9. Chance of exact recovery versus regularization parameter . The log-
based surrogate function with parameter is used.

Algorithm 3, the surrogate function is chosen to be
such that the penalty function is just the -norm, which is the
same as in . We call the resulting algorithm “ ”
and the Algorithm 4 is referred to as “ ” in this section.
Note that for GPower methods, direct access to the original

data matrix is required. When only the covariance matrix is
available, a factorization of the form is needed (e.g.,
by eigenvalue decomposition or by Cholesky decomposition).
If the data matrix is of size , then the per-iteration
computational cost is for all the four algorithms under
consideration.
1) Computational Complexity: In this subsection, we

compare the computational complexity of the four algo-
rithms mentioned above, i.e.,
and . The data matrix is generated ran-
domly with the entries independent, identically distributed
and following . The stopping condition is set to be

for all the
algorithms. The smoothing parameter for algorithm is
fixed to be . The regularization parameter is chosen
such that the solutions of the four algorithms exhibit similar
cardinalities (with about 5% nonzero entries).
The average running time over 100 independent trials for

problems with different sizes are shown in Fig. 10. From the
figure, we can see that the two -norm penalized methods are
faster than the two -norm penalized methods and the proposed

is the fastest among the four algorithms, especially for
problems of large size. For the two -norm penalized methods,
the proposed is slower than , which may re-
sult from the fact that minorizes both the quadratic term
and the penalty term while keeps the penalty
term. It is worth noting that the is specialized for
penalty, while Algorithm 3 can also deal with various surrogate
functions other than the penalty.
2) Random Data Drawn From a Sparse PCA Model: In this

subsection, we follow the procedure in [6] to generate random
data with a covariance matrix having sparse eigenvectors. To



SONG et al.: SPARSE GENERALIZED EIGENVALUE 1639

Fig. 10. Average running time versus problem size. Each curve is an average
of 100 random trials.

achieve this, we first construct a covariance matrix through the
eigenvalue decomposition , where the first
columns of are pre-specified sparse orthonormal

vectors. A data matrix is then generated by drawing
samples from a zero-mean normal distribution with covari-

ance matrix , that is, .
Following the settings in [7], we choose and

, where the two orthonormal eigenvectors are specified
as follows

The eigenvalues are fixed at and
for .
We randomly generate 500 data matrices and

employ the four algorithms to compute the leading sparse eigen-
vector , which is hoped to recover . We con-
sider the underlying sparse eigenvector is successfully re-
covered when . The chance of successful re-
covery over a wide range of regularization parameter is plotted
in Fig. 11. The horizontal axis shows the normalized regular-
ization parameter, that is for and

for and . For algo-
rithm, we use where is the operator
norm induced by and . From the figure, we can see
that the highest chance of exact recovery achieved by the four
algorithms is the same and for all algorithms it is achieved over
a relatively wide range of .
3) Gene Expression Data: DNA microarrays allow mea-

suring the expression level of thousands of genes at the same
time and this opens the possibility to answer some complex bi-
ological questions. But the amount of data created in an exper-
iment is usually large and this makes the interpretation of these
data challenging. PCA has been applied as a tool in the studies
of gene expression data and their interpretation [28]. Naturally,

Fig. 11. Chance of exact recovery versus normalized regularization parameter.

sparse PCA, which extracts principal components with only a
few nonzero elements can potentially enhance the interpreta-
tion.
In this subsection, we test the performance of the al-

gorithms on gene expression data collected in the breast
cancer study by Bild et al. [29]. The data set contains 158
samples over 12625 genes, resulting in a 158 12625 data
matrix. Fig. 12 shows the explained variance versus cardi-
nality for five algorithms, including the simple thresholding
scheme. The proportion of explained variance is computed as

where is the
sparse eigenvector extracted by sparse PCA algorithms,
is the true leading eigenvector and is the data matrix. The
simple thresholding scheme first computes the regular principal
component and then keeps a required number of entries
with largest absolute values. From the figure, we can see that
the proportion of variance being explained increases as the
cardinality increases as expected. For a fixed cardinality, the
two GPower algorithms and the two proposed MM algorithms
can explain almost the same amount of variance, all higher than
the simple thresholding scheme, especially when the cardinality
is small.

VI. CONCLUSION

We have developed an efficient algorithm IRQM that allows
to obtain sparse generalized eigenvectors of a matrix pair. After
approximating the -norm penalty by some nonconvex surro-
gate functions, the minorization-maximization scheme is ap-
plied and the sparse generalized eigenvalue problem is turned
into a sequence of regular generalized eigenvalue problems. The
convergence to a stationary point is proved. Numerical experi-
ments show that the proposed IRQM algorithm outperforms an
existing algorithm based on D.C. programming in terms of both
computational cost and support recovery. For sparse generalized
eigenvalue problems with special structure (but still including
sparse PCA as a special instance), two more efficient algorithms
that have a closed-form solution at every iteration are derived
again based on the minorization-maximization scheme. On both
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Fig. 12. Trade-off curves between explained variance and cardinality.

synthetic random data and real-life gene expression data, the
two algorithms are shown experimentally to have similar per-
formance to the state-of-the-art.

APPENDIX A
PROOF OF PROPOSITION 4

Proof: From Lemma 3, it is easy to show that

(34)

Since problems (5) and (18) have the same constraint set, we
have

(35)

From the fact that is a global maximizer of problem (5), we
know

(36)

Combining (34), (35) and (36), yields

Thus,

Since is concave and monotone increasing on ,
it is easy to show that , for any . Hence

(37)

Since is continuous and monotone increasing on
and we have . Together with (37),
we can conclude that

Since and are constants, the proof is complete.

APPENDIX B
PROOF OF PROPOSITION 5

Proof: First notice that the problem (22) is a nonconvex
QCQP but with only one constraint, thus the strong duality holds
[30], [31]. The optimality conditions for this problem are

(38)

(39)

(40)

Let us define

(41)

and

(42)

Then the third optimality condition (40) is just since
. Let us consider the optimality condition

in two different cases:
1) . In this case, , from
the first optimality condition (38) we get

(43)

Substituting it into the second optimality condition (39),
yields

(44)

and it is easy to see that the left hand side is monotonically
decreasing for . If , such that

, then the left hand side of (44) tends to as
. Notice that the left hand side goes to 0 as

, thus we are guaranteed to find a
satisfying (44). In practice, we may use bisection method
to find the value of . If , there still
exists a that satisfies (44) if and only if

(45)

If (45) does not hold, it implies .
2) . In this case, we cannot compute via (43)
anymore. Then to obtain , we first notice from (38) that

(46)
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Then, according to (39), for , they just need to
satisfy the following equation

(47)

When , (47) has infinite number of solu-
tions and we may choose arbitrary one.

APPENDIX C
PROOF OF PROPOSITION 6

Proof: The problem (23) can be rewritten as

The inner maximization has a closed-form solution

then the problem becomes

It’s easy to see that the optimal is the largest integer that
satisfies the following inequality

(48)

By squaring both sides of this inequality, we get

which means is a necessary condition for (48) to be
satisfied. Thus, in practice to find the largest integer that sat-
isfies (48) we only need to check for all ’s with . If

, it is easy to see that the solution of the problem
(23) is given by (24).

APPENDIX D
PROOF OF LEMMA 7

Proof: From the way is constructed, it is continu-
ously differentiable. It remains to show that the gradient

is Lipschitz continuous. From the fact that is concave and
monotone increasing on , we know that is non-in-
creasing on and . Since is an even
function, is odd. Thus, is non-increasing on

linearly increasing on and non-increasing on
. In addition, when and

when . With having these properties, to show
the Lipschitz continuity of , it is sufficient to show that

is Lipschitz continuous on and respec-
tively.

On , which is Lipschitz continuous

with Lipschitz constant .
On , from Assumption 1 we know

that is convex and differentiable on . Since
is also non-increasing, we can conclude that and
is non-decreasing on . Thus, on is
bounded by and the Lipschitz continuity of on

follows.
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