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Abstract—This paper presents a new mathematical framework
for the economic impact analysis of topology data attacks in
electricity markets with virtual bidding activities. The network
topology information is very important for system operators to
manage the grid in a secure manner. However, this network topol-
ogy can be manipulated by an adversary through the change of
the circuit breaker’s on/off status. This, combined with virtual
bids submitted by the attackers, could lead to financial miscon-
duct and potential profit for the attacker in the power market.
This paper aims at developing an analytical framework to eval-
uate the economic profit of an attacker who conducts topology
data attack and submits virtual bids accordingly. This frame-
work can be used for system operators as a cybersecurity tool to
quickly find the most profitable pair of virtual bidding buses and
the most influential transmission line on the change in profit once
topology data attack is initiated. Furthermore, the sensitivity of
the adversary’s profit with respect to the change in generator’s
marginal cost and susceptance for any targeted line is assessed in
the proposed framework. IEEE 14-bus system is used to validate
and test the proposed framework in various system operation
conditions and attack scenarios.

Index Terms—Power market, economic dispatch, virtual
bidding, power system network topology, topology data
attack.

I. INTRODUCTION

CYBER data attacks on power grids are becoming more
feasible as smart grid operations highly rely on large

volumes of heterogeneous sensor data collected by substation
intelligent electronic device (IED), phasor measurement unit
(PMU) and smart meter. While a variety of cyber data attack
methods have been proposed and tested in a real environment,
it is desirable for system operators to analyze the impact of
such attacks on the economical operations of smart grid. This
paper aims to develop a novel mathematical framework to
investigate how much an adversary profits from data attacks
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Fig. 1. Illustration of the relationship among SCADA, EMS and MMS.

through the manipulation of power system network topology
on real-time power market operations.

For real-time grid operations, energy management sys-
tem (EMS) is a key component in the control center of
Independent System Operators (ISOs). EMS is typically
integrated with a supervisory control and data acquisition
(SCADA) system that conducts data collection and control
at the supervisory level. SCADA system monitors real-time
grid conditions using two types of sensors: (1) analog sensor
for measuring voltage, power flow; and (2) discrete sensor for
identifying circuit breaker’s on/off status. Therefore, the accu-
racy of these sensor data is of vital importance for the well
functioning of real-time operation.

EMS assists market management system (MMS) to perform
reliable economic grid operations [1]. As shown in Fig. 1,
SCADA telemetry data is fed into state estimator (SE) in
EMS, which subsequently provides a base power flow and
network topology estimate to a subsystem of MMS, security
constrained economic dispatch (SCED). Finally, SCED calcu-
lates a real-time economic dispatch (i.e., an optimal generation
output P∗ and locational marginal price (LMP) at bus) while
considering all system operation constraints updated by SE
regularly.

Given the tight coupling between SE and SCED, malicious
discrete data change could lead to the malfunction of topology
processor and SE, thus generating a wrong network topol-
ogy. As a result, this results in the miscalculation of real-time
LMP. In this paper, the main concern is on the comprehen-
sive assessment of the financial risk caused by cyber threats
through covert topology change.
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TABLE I
CYBER DATA ATTACKS ON MARKET OPERATIONS

Recently, considerable efforts have been focused on the
analysis of the impact of cyber data attacks on power grid
operations. In particular, most of the work on the subject of
cyber data attack is related to false data injection (FDI) attack
problem. In this problem, an adversary manipulates the solu-
tion of power system state estimator through the injection
of false data into sensors while escaping bad data process-
ing algorithm, consequently resulting in an abnormal physical
and economical grid operations. A FDI attack problem in a
linearized DC state estimation has been first addressed in [2].
The vulnerability of DC state estimator to FDI attacks has
been investigated more rigorously, and the countermeasures
to defend such attacks based on the placement of phasor
measurement units (PMUs) has been proposed [3]–[5]. Novel
defending mechanisms using graphical methods against FDI
attacks have been developed. The attack problems have been
formulated in a variant Steiner tree problem in a graph [11] and
using covert topological information in a mixed integer linear
programming (MILP) framework in the same problem [12].
In [13] and [14], the impact of FDI attacks on a nonlinear AC
state estimation has been investigated, addressing much more
difficulty of AC state estimation-based attack than the attacks
against DC state estimation.

On the other hand, the strong coupling between SE and
SCED opens new vulnerable points for the FDI attacker to
manipulate the wholesale LMP for making a profit. Table I
summarizes representative literature for five types of FDI
attacks (A1)∼(A5) that lead to the misconduct of real-time
market operations. According to the type of the targeted
estimate, the above attacks are classified into two groups
manipulating: (i) power flow and/or injection estimate for
(A1)∼(A3); and (ii) topology estimate for (A4)∼(A5). In the
first group, (A1) attack makes a profit in virtual bidding mar-
ket whereas (A2) and (A3) attacks in real-time market. In
addition, (A3) attack is different from (A1) and (A2) attacks
in that the former attacks on look-ahead dispatch by manip-
ulating the ramping constraint of the generator embedded
in look-ahead dispatch, whereas the latter on static dispatch
without the generator’s ramping constraint. In the second
group, (A4) and (A5) attacks manipulate network topology
estimate and distort the results for real-time LMP and opti-
mal generation cost in SCED and optimal power flow (OPF),
respectively. More recently, a profitable virtual bidding-based
attack through the manipulation of transmission line rating
data has been proposed [15].

While much work, from an attacker’s perspective, has been
focused on the development of covert attack methods, a

framework for the study of the impact of such attacks on mar-
ket operations, from a system operator’s perspective, has not
been developed yet. Our recent work started to investigate the
impact of power flow/injection estimate perturbation on LMP
sensitivity [16]. The change of network topology estimate may
result in much more severe impact on real-time LMP result
than that of power flow/injection estimate. The adversary could
then leverage financial instruments such as virtual bidding to
take advantage of such topology attack in electricity market
transactions.

Virtual bidding is a financial instrument with which market
participants buy or sell virtual energy in day-ahead market, and
then sell or buy the same amount of virtual energy in real-time
market. No physical energy is delivered or consumed with vir-
tual bids. Virtual bidding is beneficial in that it provides price
convergence between day-ahead and real-time markets, miti-
gate market power, and hedge physical positions in day-ahead
market to manage exposure to real-time prices [17], [18].

Recently, through the statistical analysis of genera-
tor/transmission outages and weather patterns, some traders
with virtual bids have created artificial congestion in day-ahead
market to increase the value of Financial Transmission Right
(FTR) positions. The Federal Energy Regulatory Commission
(FERC) has treated this trade activity as the violation of the
Commission’s Anti-Manipulation Rule and has imposed heavy
penalties on them [19]. This type of market manipulation
through virtual bidding would be even more aggravated if a
topology attack is conducted.

The main contributions of this paper are suggested as
follows:

• Given the situation where the adversary with virtual
bids makes a profit by manipulating network topol-
ogy, we formulate a mathematical framework to quan-
tify the adversary’s profit from topology data attack.
The expression for the attack profit is a closed-form
solution with attack-free and attack-confined congestion
costs. Each congestion cost is written as a function of
marginal costs (i.e., energy costs of part-loaded marginal
unit) and distribution factors. This framework enables
system operators to quickly assess the profit of the
proposed attack without exhaustively running economic
dispatch.

• We present numerical results to demonstrate the per-
formance of our developed framework in four different
cases with varying marginal units and congestion pattern.
With the proposed attack performance metric, we find
the transmission line that maximizes the profit once it is
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deleted from the network and identify the most profitable
pair of virtual buses for any line exclusion.

• We investigate the impact of varying susceptance for
the targeted line and marginal cost on the attack profit.
The results from numerical examples may provide guide-
lines to maintain robust grid conditions against cyber data
attacks in light of a secure market operation.

The rest of the paper is organized as follows. Section II
reviews real-time power market pricing models along with
the introduction of LMP formulation. Section III provides a
problem statement. The proposed framework to quantify the
financial performance of virtual bidding-based topology data
attack is developed in Section IV. Section V presents the sim-
ulation results for the proposed framework in various system
operation conditions and attack scenarios. Finally, concluding
remarks are made in Section VI.

II. PRELIMINARIES

The main notations used throughout this paper are summa-
rized in Table II.

A. Real-Time Pricing Model

For real-time power market operations, there are two types
of real-time pricing models: (1) ex-ante model where LMPs
are computed before the actual deployment of dispatch orders;
and (2) ex-post model where LMPs are computed after the fact
using real-time estimates for settlement purposes.

1) The Ex-Ante Model [20]:

min
Pgi

Nb∑

i=1

CiPgi (1)

s.t. λs :
Nb∑

i=1

Pgi =
Nb∑

i=1

Ldi (2)

τ : P̂min
gi

≤ Pgi ≤ P̂max
gi

∀i = 1, . . . , Nb (3)

μ : Fmin
l ≤

Nb∑

i=1

Ŝli(z)(Pgi − Ldi) ≤ Fmax
l

∀l = 1, . . . , Nl (4)

where

P̂max
gi

= min
{

Pmax
gi

, P̂gi(z) + Ri�T
}

P̂min
gi

= max
{

Pmin
gi

, P̂gi(z) − Ri�T
}
.

2) The Ex-Post Model [21]:

min
Pgi

Nb∑

i=1

CiPgi (5)

s.t. λs :
Nb∑

i=1

Pgi =
Nb∑

i=1

P̂gi(z) (6)

τ : P̂min
gi

≤ Pgi ≤ P̂max
gi

∀i = 1, . . . , Nb (7)

μmax :
Nb∑

i=1

Ŝli(z)(Pgi − Ldi) ≤ F̂l(z) ∀l ∈ CL+ (8)

TABLE II
NOMENCLATURE

μmin :
Nb∑

i=1

Ŝli(z)(Pgi − Ldi) ≥ F̂l(z) ∀l ∈ CL− (9)

where

P̂max
gi

= P̂gi(z) + �Pmax
gi

, P̂min
gi

= P̂gi(z) + �Pmin
gi

.

In the above ex-ante and ex-post models, a hat symbol
represents estimate of a true parameter value as a function
of sensor data z. The objective functions are to minimize
the total generation costs in (1) and (5). (2) and (6) are the
system-wide energy balance equations. (3) and (7) are the
physical capacity constraints of each generator embedded with
its ramping limits (Ri�T) and incremental generation limits
(�Pmax

gi
,�Pmin

gi
), respectively. (4), (8) and (9) are the trans-

mission line constraints. The lagrangian multipliers associated
with the operation constraints are used to compute LMP at
any bus in the entire power system.

B. Distribution Factor Matrix and LMP Formulation

Let us define the matrix Mr = ArBAT
r as the (Nb −

1) × (Nb − 1) reduced node-to-node susceptance matrix that
explains the relationship between real power injections at
any bus except the slack bus and the phase angles. Here
B = diag(s1, s2, . . . , sNl) is the Nl × Nl diagonal branch
susceptance matrix and Ar is the (Nb − 1)× Nl reduced node-
to-branch incidence matrix without a slack bus. Then, the
Nl × (Nb − 1) distribution factor matrix can be defined as

Sd = BAT
r M−1

r . (10)

In this paper, we use the Nl × Nb extended distribution factor
matrix S = [0Nl Sd] with zero column vector corresponding
to the location of a slack bus 1.

Using the extended distribution factor matrix, the Nb × 1
real-time LMP vector λ is calculated as follows [22]:

λ(z) = λs(z)1Nb − ŜT(z)
[
μmax(z) − μmin(z)

]
. (11)
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Fig. 2. Illustration of topology data attack exploiting virtual bidding
transactions.

In equation (11), the first term and the second term imply the
energy component (i.e., LMP at slack bus) and the congestion
component (i.e., the congestion cost), respectively. It should
be noted that the corrupted z affects congestion component for
the distribution factor matrix with topology estimate Ŝ and the
shadow price vector, μmax and μmin, which in turn yields the
miscalculated LMP.

III. PROBLEM STATEMENT

We consider the situation where an adversary with vir-
tual bidding can exclude the transmission line without being
detected by system operators. This adversary could be a gen-
eration company, a load serving entity or a third party because
the bidders in virtual bidding (VB) market do not necessarily
own generator or serve load.

In Fig. 2, we suppose that the line l is congested in day-
ahead (DA) market. The adversary is assumed to successfully
manipulates network topology in real-time (RT) market, conse-
quently leading to the undetectable line k exclusion along with
the varying congested line l′. Let us denote two pairs of LMPs
at virtual buses m and n: the attack-free day-ahead LMPs
(λDA

l,m , λDA
l,n ) and attack-confined real-time LMPs (̃λk

l′,m, λ̃k
l′,n).

To make a profit, the adversary conducts the following two
pairs of virtual bidding transactions with the virtual power Pv

at two arbitrarily chosen buses:
• First virtual bidding (INC):

1) Sell Pv at bus m with λDA
l,m in DA market

2) Buy Pv at bus m with λ̃k
l′,m in RT market

• Second virtual bidding (DEC):
1) Buy Pv at bus n with λDA

l,n in DA market
2) Sell Pv at bus n with λ̃k

l′,n in RT market
First virtual bidding and second virtual bidding correspond to
a virtual supply offer and a virtual demand bid, known as an
increment offer (INC) and a decrement bid (DEC), respec-
tively. In short, the virtual bidding transaction is summarized
in Table III.

Then, the attack profit PF is written as the sum of two pairs
of virtual bidding transactions and finally regrouped with LMP

TABLE III
A PAIRED VIRTUAL BIDDING TRANSACTIONS

terms associated with each market:

PF = Pv

(
λDA

l,m − λ̃k
l′,m

)

︸ ︷︷ ︸
First VB

+ Pv

(
λ̃k

l′,n − λDA
l,n

)

︸ ︷︷ ︸
Second VB

= Pv

⎡

⎢⎢⎣
(
λDA

l,m − λDA
l,n

)

︸ ︷︷ ︸
DA Market

−
(
λ̃k

l′,m − λ̃k
l′,n

)

︸ ︷︷ ︸
RT Market

⎤

⎥⎥⎦. (12)

It should be noted that the bracket expression in equa-
tion (12) is defined and rewritten using equation (11) as

��k
l (m, n) =

(
λDA

l,m − λDA
l,n

)
−

(
λ̃k

l′,m − λ̃k
l′,n

)

= μl

(
SDA

l,n − SDA
l,m

)
− μl′

(
S̃k

l′,n − S̃k
l′,m

)
. (13)

Obviously, a positive ��k
l (m, n) assures the profitability for

the adversary (PF > 0) since the virtual power Pv is always
positive. As such, ��k

l (m, n) is chosen as a metric to quan-
tify an increasing/decreasing amount of the profit as well as
check the profitability with its sign through the manipulation
of network topology in virtual bidding market. In this paper,
this metric is defined as a virtual bidding profit signal (VBPS),
and our primary goal is to develop mathematical expressions
for VBPS that evaluate the profit obtained from virtual bidding
based-topology data attack.

Remark 1: Equation (13) includes no energy price λs (i.e.,
energy neutral) because energy prices at a pair of virtual bid-
ding buses in each power market are cancelled out with each
other. Due to this fact, closed-form VBPS expressions are
derived easily. These expressions with the closed-form shadow
price formula [23] are provided in the following section.

IV. THE PROPOSED FRAMEWORK FOR THE EVALUATION

OF VIRTUAL BIDDING PROFIT SIGNAL (VBPS)

This section presents an analytical framework to test and
evaluate the adversary’s VBPS introduced in Section III. The
main task for the development of the proposed framework is to
derive a closed-form equation for VBPS based on congestion
costs between virtual bidding buses m and n.

To this end, we first introduce our previous result (see, e.g.,
Proposition 1 in [23]), a closed-form formula of shadow price
μl for a single congested transmission line l:

μl = �C( j, i)

�Sl(i, j)
(14)

where �C( j, i) = Cj − Ci and �Sl(i, j) = Sl,i − Sl,j for
i, j ∈ GMU and l ∈ CL (CL = CL+ ∪ CL−). Equation (14)
illustrates the impact of marginal costs and distribution fac-
tors on the calculation of the shadow price without running
economic dispatch.
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(C1) GMU = G̃k
MU, CL+ = C̃Lk

+ : ��k
l (m, n) = �

(C1)
l,l

[
�CDA( j, i)
−�C( j, i)

]
,�

(C1)
l,l =

[
�SDA

l (n,m)

�SDA
l (i,j)

�S̃k
l (n,m)

�S̃k
l (i,j)

]
(15)

(C2) GMU �= G̃k
MU, CL+ = C̃Lk

+ : ��k
l (m, n) = �

(C2)
l,l

[
�CDA( j, i)
−�C(q, p)

]
,�

(C2)
l,l =

[
�SDA

l (n,m)

�SDA
l (i,j)

�S̃k
l (n,m)

�S̃k
l (p,q)

]
(16)

(C3) GMU = G̃k
MU, CL+ �= C̃Lk

+ : ��k
l (m, n) = �

(C3)

l,l′

[
�CDA( j, i)χCL+(l)
−�C( j, i)χ C̃Lk

+

(
l′
)
]
,�

(C3)

l,l′ =
[

�SDA
l (n,m)

�SDA
l (i,j)

�S̃k
l′ (n,m)

�S̃k
l′ (i,j)

]
(17)

(C4) GMU �= G̃k
MU, CL+ �= C̃Lk

+ : ��k
l (m, n) = �

(C4)

l,l′

[
�CDA( j, i)χCL+(l)
−�C(q, p)χ C̃Lk

+

(
l′
)
]
,�

(C4)

l,l′ =
[

�SDA
l (n,m)

�SDA
l (i,j)

�S̃k
l′ (n,m)

�S̃k
l′ (p,q)

]
(18)

Using equations (11) (with the shadow price related to only
a positive line congestion) and (14), equation (13) for VBPS
is rewritten as

��k
l (m, n) =

{
�CDA( j, i)

[
�SDA

l (n, m)

�SDA
l (i, j)

]}
χCL(l)

−
{

�C(q, p)

[
�S̃k

l′(n, m)

�S̃k
l′(p, q)

]}
χ C̃Lk

(
l′
)

(19)

where, for i, j ∈ GMU, p, q ∈ G̃k
MU, l ∈ CL+, and l′ ∈ C̃Lk

+,

�CDA( j, i) = CDA
j − CDA

i , �C(q, p) = Cq − Cp

�SDA
l (n, m) = SDA

l,n − SDA
l,m , �SDA

l (i, j) = SDA
l,i − SDA

l,j

�S̃k
l′(n, m) = S̃k

l′,n − S̃k
l′,m, �S̃k

l′(p, q) = S̃k
l′,p − S̃k

l′,q.

Here, χCL+(l) and χ C̃Lk
+
(l′) represent the characteristic func-

tions based on the sets CL+ and C̃Lk
+ for congested lines l

and l′, corresponding to DA and RT markets, respectively. For
example, if the line l is an element in the set CL+ in DA
market, χCL+(l) = 1, otherwise χCL+(l) = 0.

According to the varying locations of marginal unit (MU)
(i.e., a part-loaded generator) and congested line due to the
line k error, equation (19) is finally categorized into the four
different cases ((C1)∼(C4)) in matrix form (15)∼ (18), shown
at the top of this page. In (C1) and (C4), both marginal unit
and congested line are unchanged and changed with the line
exclusion, respectively, whereas either of marginal unit and
congested line is changed in (C2) and (C3). These matrix equa-
tions consist in two submatrices with different roles. The first
Nb(Nb − 1)/2 × 2 submatrix �l,l provides information about
the impact of topology change on VBPS for m = 1, . . . , Nb−1
and n = m+1, . . . , Nb. The second 2×1 submatrix associated
with marginal costs measures the impact of different marginal
costs on VBPS during topology change.

These formulated VBPS equations are the main results in
this paper. They can be used by system operators in the fol-
lowing beneficial ways. The attacker’s financial performance
can be quickly quantified in an online manner for each case
and compared with each other among different cases. In an
offline way, the results based on historical data provide some
guideline to maintain secure grid operations against a prof-
itable topology data attack in virtual power market, and help
to develop robust state estimation and economic dispatch
algorithms to potential cyber data attacks.

Remark 2: Network decongestion in both DA and RT mar-
kets is excluded in the attack scenario because the adversary
has no profit in such situation. Thus, for (C1) and (C2) the
network in DA market must be congested for the adversary to
make a profit. This implies that both χCL+(l) and χ C̃Lk

+
(l′)

equal to one. On the other hand, for (C3) and (C4) the net-
work in at least either of two markets must be congested.
Therefore, the corresponding characteristic functions are incor-
porated into equations (17) and (18), having the relationship
with χCL+(l) ∨ χ C̃Lk

+
(l′) = 1.

Remark 3: The developed VBPS formulation can be used to
examine the impact of not only the line exclusion but also the
line susceptance change on the profit. This is readily carried
out by modifying the element in the branch susceptance matrix
B̃ subject to the attack:

B̃ = diag(s1, s2, . . . , sk−1, sk + dsk, sk+1, . . . , sNl), (20)

which corresponds to the kth line susceptance perturbatoin
with s̃k = sk + dsk. Note that s̃k = 0 represents the kth line
exclusion.

V. SIMULATION RESULTS

In this section, a numerical study on IEEE 14-bus system in
Fig. 3 is presented to illustrate the proposed framework. The
simulation setup and scenario for the analysis of the proposed
approach along with performance metrics are also explained
in detail.

A. Simulation Setup and Performance Metric

IEEE 14-bus system is chosen as a test system to assess the
attacker’s performance:

• The attack-free IEEE 14-bus system consists in the five
generators (Table IV) and a total of twenty transmission
lines with their corresponding closed breakers as shown
in Fig. 3. The line index number k is specified near each
line.

• The networks in the day-ahead and real-time markets
are assumed to have at most a single transmission line
congestion.

Under this circumstance, the attack scenarios are tested with
the following assumptions:

• An adversary participates in the day-ahead and real-time
markets to conduct virtual bidding transactions.
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Fig. 3. Topology data attack with virtual bids in IEEE 14-bus system.

TABLE IV
GENERATOR PARAMETERS OF THE IEEE 14-BUS TEST SYSTEM

• With the knowledge of network topology, the adversary
changes the condition of network topology in real-time
market (i.e., the exclusion of a transmission line) to obtain
a larger VBPS. This topology data attack can be feasible
by manipulating the status of circuit breaker associated
with the targeted line from on to off [9].

• The aforementioned topology data attack is limited to
only a single line exclusion at a time in this paper.

• After attack, the network in real-time market has at most
a single line congestion.

• Fig. 3 illustrates the situation where the adversary
excludes the line 6-12 when the line 5-6 is congested,
consequently making a maximum VBPS at a pair of
virtual buses (5,12).

To evaluate the economic performance of topology data
attack in terms of VBPS, the following performance metrics
are used and calculated as:

kmax = arg max
k

��k
l (m, n) (21)

(mmax, nmax) = arg max
(m,n)

��k
l (m, n) (22)

where kmax and (mmax, nmax) represent the index of the most
influential transmission line on VBPS and the most profitable
pair of virtual bidding buses with respect to VBPS.

B. Effect of Different Attack Lines on VBPS

We consider the situation where the line 5-6 is congested in
both power markets. In this environment, it is assumed that the
adversary as a virtual bidder wishes to make a profit at arbi-
trarily chosen virtual bidding buses by deleting some target
line. Six different lines are selected to investigate their exclu-
sion impact on VBPS. Among the selected six lines, two lines
(the lines 12-13 and 1-5) are the most and least influential

Fig. 4. Impact of the varying line susceptance for different lines on VBPS
when the line 5-6 is congested.

ones on VBPS when they are excluded individually. In the
simulation study, it is verified that the selection of different
line sets do not violate our conclusion. To quantify and com-
pare the sensitivity of VBPS with respect to the change in the
susceptance for the selected attack line, the susceptance vector
is used with increasing elements with a step size of number
that is uniformly divided by forty from the true susceptance
value to zero.

Fig. 4 shows the impact of the varying susceptance for six
different lines on VBPS. The results in this figure are associ-
ated with (C1). In the x-axis, the fortieth step represents the
line exclusion, corresponding to that line with zero suscep-
tance. In this figure, we can verify kmax = 19 among these
six lines. In addition, the sensitivity of VBPS to the change in
each line susceptance is compared with each other. For exam-
ple, we observe that compared to the other lines’ sensitivities
the sensitivity for the line 1-2 increases slowly from 1 to 30
and fast from 31 to 40 in the x-axis.

Fig. 5 shows pairs of virtual bidding buses with a maxi-
mum profit, (mmax, nmax), for each line attack illustrated in
Fig. 4. A total of 91 pairs of virtual bidding buses (m =
1, . . . , 14, n = m + 1) are tested for six different line exclu-
sions in the simulation. For each line exclusion, all profits for
91 pairs of buses are calculated, compared with each other and
then a pair of buses with a maximum profit are selected using
equation (22). For the line 1-2, 1-5, 2-3, 2-4, 6-12 and 12-13
exclusions, the corresponding (mmax, nmax) are (2, 6), (5, 6),
(2, 3), (2, 4), (5, 12), (12, 13), respectively. We observe from
these results that the adversary could make a maximum profit
when he conducts virtual bidding at buses connected to the
ends of the congested line or the excluded line. Another obser-
vation is that (mmax, nmax) can change according to different
susceptance in the same attack line. For example, for the lines
1-2 and 1-5, (mmax, nmax) = (1, 2) and (mmax, nmax) = (1, 5)

are obtained at the susceptance steps in Fig. 4, [15, 29] and
[1, 2, 3, 5, 6, 9, 15, 16, 18, 21, 25, 27, 31, 34], respectively.
Obviously, these pairs of virtual bidding buses are differ-
ent from (mmax, nmax) = (2, 6) and (mmax, nmax) = (5, 6)

associated with the lines 1-2 and 1-5 exclusions.

C. Effect of Different Marginal Costs on VBPS

In this subsection, we examine the impact of varying
marginal costs on VBPS given a fixed attack line exclusion.
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Fig. 5. Pairs of virtual bidding buses with a maximum profit from topology
data attack illustrated in Fig. 4.

Fig. 6. Impact of the varying marginal cost of generator at bus 1 on VBPS
when the line 2-4 is congested.

Let us assume the line 2-4 is congested. Four randomly chosen
lines (1-2, 2-5, 3-4, 4-7) are considered to evaluate the change
of VBPS with increasing marginal cost. Marginal cost of gen-
erator at bus 1 is set to increase with a step size of 1.5$/MWh
from 20$/MWh to 50$/MWh. Fig. 6 shows two line exclusion
groups, {(2-5), (3-4)} and {(1-2), (4-7)}, which generally lead
to the increase and decrease of VBPS with increasing marginal
cost, respectively. This positive or negative direction of VBPS
due to varying marginal cost can be readily verified by check-
ing the elements in the matrix �l,l, which are computed by
distribution factors related to (mmax, nmax) and the locations
of marginal units (i, j) and (p, q).

Finally, the phenomena for the impact of the changing line
susceptance (Fig. 4) and marginal cost (Fig. 6) on VBPS are
normally unexpected by system operators without running eco-
nomic dispatch. It is therefore important for them to adopt
analytical framework such as shown in this paper to conduct
analysis of such impacts from cyber attacks on the prices.

D. Comparison of the Performance of Continuous and
Topology Data Attacks in Virtual Power Market

Fig. 7 shows LMP results for normal condition, continuous
data attack [6] and topology data attack in the ex-post real-time
market. A key observation from this figure is that topology
data attack obtains a greater maximum VBPS than continuous
data attack at buses 2 and 4. Indeed, continuous data attack
makes a positive VBPS by only changing real-time network
from congestion to decongestion. Therefore, VBPS is at most

Fig. 7. Ex-post LMP results when the line 2-4 is congested under normal
condition, continuous data attack and topology data attack.

the difference between the highest and lowest LMPs in day-
ahead market. Furthermore, the profit for this attack is obtained
only when the network is congested in day-ahead market. On
the other hand, topology data attack is not restricted to network
congestion condition for generating a positive VBPS.

E. Analysis of VBPS in Multiple Interval Dispatch

In this subsection, the proposed framework is tested and
analyzed under different loading conditions while the line
2-4 is congested. Fig. 8(a) provides 15-minute four load
patterns in different seasons from ERCOT. Based on this
load data, the frequency of (mmax, nmax) is computed for
randomly chosen four line exclusions (1-5, 2-4, 5-6, 6-11),
which is shown in Fig. 8(b). From this figure, we verify
kmax = 4 in terms of frequency for a maximum VBPS, lead-
ing to (mmax, nmax) = (2, 4) in (C4). We also observe that
(mmax, nmax) for each line exclusion are buses at the ends of
the excluded line or the congested line. Figs. 8(c), (d) show
VBPS at every dispatch interval in winter and spring load
profiles. In these figures, the maximum VBPS for the line 2-4
exclusion is larger than the other line exclusions. Therefore,
it is concluded that the line 2-4 is the most influential line on
VBPS in terms of frequency and an amount of VBPS. On the
other hand, the line 1-5 exclusion results in the least number
of frequencies and amount of VBPS.

Lastly, the applications of the proposed VBPS equations can
be summarized as follows.

1) Secure Virtual Power Market Operation Tool: the pro-
posed VBPS equations offer system operators with an
analysis tool to rapidly find the most (or least) influen-
tial transmission line on VBPS and the most (or least)
profitable pair of virtual bidding buses in response to
topology data attacks. The analysis results could be used
to make a resilient operating procedure against such
attacks in the light of secure virtual power market oper-
ations. In addition, the results for the effect of marginal
costs on VBPS may provide generation companies as
virtual bidders with some guideline to make their own
bidding strategies.

2) Sensor Upgrade and Protection: the simulation results
in the proposed framework show that the attacker could
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Fig. 8. Simulation results for (mmax, nmax), kmax and VBPS at multiple dispatch intervals with varying seasonal load.

make a maximum profit when he conducts virtual bid-
ding at buses connected to the ends of the congested line
and/or the excluded line. Based on these results, analog
and discrete sensors monitoring these lines should be
upgraded and protected with high priority to mitigate
the impact of the attacker’s data manipulation from a
cybersecurity perspective.

3) Enhancement of the Robustness of EMS/MMS
Applications: the proposed VBPS equations and
analysis results could be potentially integrated in the
applications for EMS/MMS (e.g., power system state
estimation, topology error processing and contingency
analysis) in order to support robust virtual bidding
market operations against topology data attacks.

VI. CONCLUSION

This paper presents a new approach to quantifying the eco-
nomic impact of topology data attack while virtual bidding
mechanism is conducted by the attacker. A closed-form frame-
work has been developed to quickly calculate the adversary’s
profit at any pair of virtual bidding buses obtained through any
transmission line exclusion in real time market. This frame-
work has been validated and tested in the IEEE 14-bus system
under various system operation conditions and attack scenar-
ios (e.g., the locations of marginal unit, congested line and
attack line) and different loading conditions. From a cyberse-
curity perspective in smart grid, this work is a first step toward
providing system operators with an analysis tool and coun-
termeasures to examine and mitigate financial risks of cyber
threats in real-time power market.

In the future, we plan to propose other type of topology data
attack (e.g., line parameter data attack) and test the feasibil-
ity of this attack. The financial risk analysis of the proposed
attacks would also be carried out in our developed framework
under realistic grid conditions and various attack scenarios.
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