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Abstract—Accurate load forecasting can make both economic
and reliability benefits for power system operators. However, the
cyberattack on load forecasting may mislead operators to make
unsuitable operational decisions for the electricity delivery. To
effectively and accurately detect these cyberattacks, this paper
develops a machine learning based anomaly detection (MLAD)
methodology. First, load forecasts provided by neural networks
are used to reconstruct the benchmark and scaling data by
using the k-means clustering. Second, the cyberattack template
is estimated by the naive Bayes classification based on the
cumulative distribution function and statistical features of the
scaling data. Finally, the dynamic programming is utilized to
calculate both the occurrence and parameter of one cyberattack
on load forecasting data. A widely-used Symbolic Aggregation
approXimation (SAX) method is compared with the developed
MLAD method. Numerical simulations on the publicly load data
show that the MLAD method can effectively detect cyberattacks
for load forecasting data with a relatively high accuracy. Also, the
robustness of MLAD is verified by thousands of attack scenarios
based on Monte Carlo simulation.

Index Terms—Anomaly detection, cyberattack, dynamic pro-
gramming, load forecasting, machine learning.

I. INTRODUCTION

ACCURACY and correctness of load forecasting data can
benefit both the economic and reliable operations of

power systems. Power system operators highly depend on the
load forecasting information to make operational decisions
and plans under various power grid conditions. However, with
the rapid adoption of modern technologies and the increasing
capability of the attackers in recent years, more and more
cyberattacks have been found and severely affect the reliability
and security of power systems [1]. A recent representative
blackout occurred against the Ukrainian power grid in Decem-
ber 2015 and caused serious power outages [2]. The malware
is used by attackers to tamper the computer system of a power
company and arbitrarily open breakers [3]. The restoration
efforts are also delayed by attackers so as to induce this severe
blackout which received worldwide attention [4].

Though current techniques have significantly improved the
accuracy of load forecasting data, the operators may still make
fallacious decisions when the forecasting data is tampered by
highly skilled adversaries in a coordinated manner. From the
prospective of time series data, there are three types of cy-
berattacks for load forecasts, namely point attacks, contextual
attacks, and collective attacks [5]. From the prospective of
the attackers’ capability, there are five types of cyberattacks,
namely pulse attack, scaling attack, ramping attack, random
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attack [6], and smooth-curve attack [7], which are described
in the following statements.

The current detection methods mainly rely on identifying
anomalies caused by cyberattacks for load forecasting data.
Mohammadpourfard et al. [8] developed an unsupervised
anomaly detection algorithm to identify cyberattacks in power
systems that are affected by sustainable energy sources or
system reconfigurations. Moghaddass and Wang [9] developed
a real-time anomaly detection framework to detect the occur-
rence of anomalous events and abnormal conditions at both
lateral and customer levels. Zhao et al. [10] proposed a false
data injection detection method based on short-term state fore-
casting considering the temporal correlation. Chen et al. [11]
presented a two-stage identification and restoration method
for the inaccurate measurement and abnormal disturbance to
improve the load forecasting accuracy.

Machine learning techniques have been widely used in
the anomaly detection community. Buczak and Guven [12]
described a focused literature survey of machine learning
methods for cyber security anomaly detection. Ghafoori et
al. [13] developed a semisupervised machine learning tech-
nique to clean suspected anomalies from unlabeled training
sets including applications to the datasets of shuttle, breast
cancer, human activity recognition, etc. In terms of the power
system area, Wang et al. [14] trained a machine learning model
to detect PMU data manipulation anomalies. Esmalifalak et
al. [15] developed two machine-learning-based techniques for
stealthy attack detection in the smart grid. However, there are
very few applications to load forecasting by using machine
learning techniques as detection methods.

As a widely-used anomaly detection method, a heuristically
ordered time series based Symbolic Aggregation approXima-
tion (SAX) [16] intends to identify the most unusual discords
or sub-sequences in a sequence of given load forecasting
data [7]. Though the SAX method performs consistently well
to detect anomalies, it can raise more false alarm which
may still confuse the practitioners for the application. In
addition, since SAX detects an anomaly as the sub-sequence
of load forecasts, it cannot provide any detailed information
into this identified sub-sequence which is more helpful for
practitioners, such as the specific occurrence and parameter of
one cyberattack.

To bridge the gap between the SAX detection method and
an informed method, this paper seeks to address two critical
questions for load forecasting cyberattacks. Is it possible to
determine the accurate start- and end-time information of one
attack? Can the practitioners estimate the attack parameter if
it is a parametric attack? To this end, this paper develops
a novel machine learning based anomaly detection (MLAD)
method to effectively identify cyberattacks for load forecasting
data. This developed methods aims to improve the probability
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and success ratio of detection. The main contributions of
this paper include: (i) determining the attack template by
using a supervised machine learning method based on the
reconstructed scaling data and (ii) estimating the specific
occurrence and parameter information of one cyberattack.

The organization of this paper is as follows. In Section II,
the templates of cyberattacks and load forecasts are briefly
introduced. Section III presents the detailed methodology
of MLAD, including data reconstruction in Section III-A,
template determination in Section III-B, and dynamic pro-
gramming in Section III-C. Section IV describes the evaluation
metrics to validate the effectiveness of MLAD. Case studies
and result analysis performed on the publicly load data are
discussed in Section V. Concluding remarks are summarized
in Section VII.

II. TEMPLATES OF CYBERATTACKS OF LOAD FORECASTS

A. Research Motivations

Load forecasting results are highly needed by power system
operators and/or market participants to project upcoming grid
conditions and make informed operational decisions. However,
in recent years, there is a lack of understanding of how
adversaries perform cyberattacks on load forecasting data and
impact evaluations accordingly. As the cyber adversaries are
increasingly skillful and sophisticated, it is more challenging
to detect and mitigate those attacks that can do serious harm to
power system operations. Thus, it is important to identify load
forecasts tampered with by cyber adversaries before mitigation
can be done [17].

B. Cyberattack Templates

In this section, we are not aiming to develop new adversary
models of cyberattack templates. The adversary models used
in this paper are motivated by the particular adversary models
referred in [6] and [7]. Inspired by existing adversary models
for attacking automatic generation control (AGC), we assume
that smart attackers could migrate these adversary models to
those on load forecasting data in this paper. The cyber attacks
for load forecasting are divided into five categories: pulse,
scaling, ramping, random, and smooth-curve [6], [7], which
are briefly described as follows. Note that this paper does not
aim to develop new attack templates.

1) Pulse Attack: Load forecasts are modified to
higher/lower values at a specific point during the entire
duration of an attack. The attack parameter is set as λP.

ṗF
t = (1 + λP)× pF

t , for t = tP (1)

where tP is the occurrence time of one pulse attack. pF
t is

the original load forecast that is not tampered with any cyber
attack. ṗF

t is the load forecast tampered with cyber attacks.
2) Scaling Attack: Scaling attacks involve modifying the

values in a specified duration multiplied by a scaling attack
parameter λS.

ṗF
t = (1 + λS)× pF

t , for ts < t < te (2)

where ts and te represent the start- and end-time of one cyber
attack, respectively.

3) Ramping Attack: There are two types of ramping attacks.
Type I ramping attack only considers up-ramping anomaly.
The values in the specified range are multiplied by a ramping
function λRt.

ṗF
t = λR × (t− ts)× pF

t , for ts < t < te (3)

Type II ramping attack considers both up- and down-
ramping anomalies. This attack is more challenging to detect
for operators.

ṗF
t = [1 + λR × (t− ts)]× pF

t , for ts < t < b ts + te
2
c (4)

ṗF
t = [1 + λR × (te − t)]× pF

t , for b ts + te
2
c < t < te (5)

where b·c indicates the floored value which is used to present
the approximate intermediate point between ts an te.

4) Random Attack: This attack involves the addition of
positive values returned by a uniform random function to load
forecasts.

ṗF
t = pF

t + λRA × rand (t) , for ts < t < te (6)

where rand is a uniformly distributed random number gener-
ator that can be achieved by a built-in function in MATLAB.
λRA is a scale factor and defined as half of the maximum of
load forecast value, i.e., λRA = max

(
pF
t

)
/2. The start- and

end-time of one random attack is assumed to be randomly set
by attackers.

5) Smooth-Curve Attack: Smooth-curve attacks are imple-
mented by replacing the set of contiguous start and end points
in the original forecasting data. In this paper, a polynomial
fitting is used to generate a smooth curve and replace the
original forecasting data with neighboring points.

C. Load Forecasts

There have been large amounts of load forecasting meth-
ods published in the current literature. However, it is very
challenging to take advantage of each of them. Alternatively,
if we can find a representative forecasting method that can
be easily implemented by users and validate the effectiveness
of this generic method for anomaly detection, advanced load
forecasting methods must also be applicative. Based on this
motivation, we choose a widely-used neural network (NN)
method to perform load forecasting [18]. Note that this paper
does not aim at developing new methods of load forecasting,
which has been done in most papers. The input data sets of
NN include: temperature and dew point (measuring humidity)
forecast at time t+1, the hour number of time t+1 in the day
(i.e., hour 1, 2, · · · , 24), days of the week (Monday through
Sunday are presented by number 1, 2, · · · , 7), working days
(yes or no), the load at the same hour of the previous day,
the load at the same hour of the previous week, and the
average load in the 24 hours prior to time t+1. When cyber
attackers tamper the essential input and output data of load
forecasting, different attack templates may present depending
on the capability of attackers, which has been described in
Section II-B.
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III. MACHINE LEARNING BASED ANOMALY DETECTION

The developed MLAD method mainly consists of three
steps. The first step is to reconstruct the benchmark data corre-
sponding to load forecasts. The second step is to determine the
exact attack template based on the series of scaling data. The
third step is to identify the specific occurrence and parameter
information of one cyberattack.

A. Unsupervised Machine Learning Based Load Data Prepro-
cessing

After generating the load forecasts mentioned in Sec-
tion II-C, it is still challenging for operators to know whether
these forecasts are attacked since the real load data is still
unknown for the coming days (weeks or months). Thus, a
benchmark series of load data is first reconstructed corre-
sponding to the predicted load data. Since load data cannot
be labeled with natural groupings and patterns, the data re-
construction is attributed to an unsupervised machine learning
problem. There are several types of unsupervised machine
learning algorithms, such as k-means, mixture models, and
hierarchical clustering. Compared with mixture models and
hierarchical clustering, the k-means clustering method is easy
to implement [19]. With a large number of real load data,
the k-means clustering method is computationally faster than
the hierarchical clustering and mixture models. In addition,
it can also produce tighter clusters than other unsupervised
algorithms. Hence, the k-means clustering method is chosen
as the unsupervised machine learning algorithm in this section
and used to reconstruct the benchmark load data.

Given the training set of 24-dimensional daily load
(p1,p2, · · · ,pj , · · · ,pn) in n days, the k-means clustering
can partition n daily load into k load cluster sets, i.e.,
S = (s1, s2, · · · , si, · · · , sk). The objective is to minimize the
within-cluster sum of squares [20], given by:

min
S

k∑
i=1

∑
pj∈si

‖pj − µi‖2 (7)

where µi is the mean of load data in the ith load cluster set si
and i = 1, 2, · · · , k. k is the total number of load cluster sets,
which is predefined by operators. pj is the load data vector
in the jth day and j = 1, 2, · · · , n. n is the total number of
training days. The denotation of pj ∈ si means that the jth
day’s load data vector pj is the element of the ith load cluster
set si.

Based on k clusters, the closest cluster is found for each
load forecast scenario by minimizing the Euclidean distance,
given by:

pB
j = min

(
‖pF

j − si‖
)

(8)

where
[
pB
1 pB

2 · · · pB
n

]T
is the reconstructed benchmark

series, and pB
t ∈

[
pB
1 pB

2 · · · pB
n

]T
. Based on the load

forecasts and the reconstructed benchmark, the scaling data
xt at time t can be calculated as:

xt = pF
t/p

B
t (9)

where pF
t is generated by the NN method in Section II-C.
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Fig. 1. An example of three statistical features (x5%, x68%, and x95%)
of two CDFs of scaling data. Orange curves: data with scaling attacks; blue
curves: data with ramping attacks.

The scaling data is used to determine the specific attack
template in the second step, as shown in Section III-B, and
detect the accurate information of one attack in the third step,
as shown in Section III-C.

B. Supervised Machine Learning Based Cyber Attack Tem-
plates Classification

Since cyber attacks are classified into five templates (or
classes) with clear labels, this is taken as a supervised machine
learning (classification) problem. There are several types of
supervised machine learning algorithms, such as linear dis-
criminant, logistic regression, perceptron, etc. The naive Bayes
classifier is easy to implement with a low model size [21].
It requires a small amount of training load data with cyber
attacks to estimate its parameters. A naive Bayes classifier
can converge more quickly than discriminative models, which
significantly shortens the training time. Also, it is not sensitive
to irrelevant features. Thus, a naive Bayes classifier is chosen
as the supervised machine learning algorithm in this section
and trained by the measured statistical characteristics of the
scaling data. Based on the widely used 68–95–99.7 rule
(three-sigma rule) [22], five statistical features are adapted as
predictors of the multi-class naive Bayes model, i.e., x0.3%,
x5%, x68%, x95%, and x99.7%. The cumulative distribution
function (CDF) of the scaling data is used to generate main
statistical features due to its monotonicity. Fig. 1 shows an
example of three statistical features (x5%, x68%, and x95%) of
two CDFs of the scaling data. Fig. 1a shows how the scaling
values in the x-axis are generated from single CDF curves for
scaling attack (orange curve) and ramping attack (blue curve).
Fig. 1b shows how the training samples of three representative
statistical features are generated from CDF clusters, where
CDFs with scaling attacks (orange curves) and ramping attacks
(blue curves) are taken as an example. Essentially, the discrete
statistical features are used to approximately represent the
continuous CDF curves. Thus, the naive Bayes classifier only
has five input variables (i.e., five statistical features of CDF
curves: x0.3%, x5%, x68%, x95%, and x99.7%), which makes it
easy to implement. To quantitatively present the difference of
CDF curves with different attacks, some samples of statistical
features for five types of cyber attacks are shown in Table I. As
can be seen, the difference of statistical features with the same
type of attacks is significantly small, while it differs between
different types of attacks, such as pulse and ramping attacks.
Thus, this observation can be used to train the naive Bayes
classifier and thereby determine the specific template used to
launch a cyber attack on the testing data. As can be seen, these
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TABLE I
SOME SAMPLES OF STATISTICAL FEATURES FOR FIVE CYBER ATTACKS

Examples of
Cyber Attacks

Statistical Features as Predictors
of the Naive Bayes Classifier

x0.3% x5% x68% x95% x99.7%
Pulse 0.9088 0.9435 1.0098 1.0524 1.1556
Pulse 0.9089 0.9434 1.0099 1.0525 1.1555

Ramping 0.9312 0.9572 1.0183 1.6486 2.2378
Ramping 0.9313 0.9573 1.0189 1.6413 2.2574
Scaling 0.9119 0.9446 1.0153 1.1962 1.2347
Scaling 0.9117 0.9442 1.0169 1.1938 1.2165
Random 0.9276 0.9541 1.0188 1.4024 1.6326
Random 0.9285 0.9598 1.0173 1.2362 1.7018

Smooth Curve 0.9291 0.9503 1.0145 1.0679 1.4309
Smooth Curve 0.9279 0.9474 1.0148 1.0586 1.4107

statistical features have different values in the x-axis and can
be used as predictors of the naive Bayes model. To accurately
characterize the irregular and multimodal distribution of the
scaling data, Gaussian mixture model (GMM) is used to fit the
distributions [23], and generates both the CDFs and statistical
features. Based on predictors generated by the CDF of GMM,
the naive Bayes classifier is constructed from the probability
model with the objective of the maximum posterior probability
P̂ (·), given by:

arg max
a∈Λ

P̂ (A = a|x0.3%, x5%, x68%, x95%, x99.7%)

=
π (A = a)

∏
j∈Φ P (X = xj |A = a)∑

a∈Λ π (A = a)
∏

j∈Φ P (X = xj |A = a)

(10)

⇒ arg max
a∈Λ

π (A = a)
∏
j∈Φ

P (X = xj |A = a) (11)

Λ = {Pulse, Scaling,Ramping,Random, Smooth} (12a)
Φ = {0.3%, 5%, 68%, 95%, 99.7%} (12b)

where Φ is the set of statistical features and Λ is the set of at-
tack templates. π(A = a) is the prior probability of the attack
template a. P (X = xj |A = a) is the conditional probability
of the jth statistical feature xj given attack template a. Since
values of the feature xj and labels of the attack template a
are all given, the denominator in (10) is effectively constant.
Hence, the objective function is equivalent to only maximizing
the numerator in (10), which is the joint probability model
in (11). Fig. 2a shows an example of the posterior probability
regions for three cyberattacks using the naive Bayes classifier.
As can be seen, the rectangles (ramping attacks), triangles
(random attacks), and circles (scaling attacks) can be distinctly
classified by using the naive Bayes classifier.

C. Dynamic Programming

1) Methodology Description: Dynamic programming
method is used to detect the exact occurrence (start and end
points) of one cyber attack and its specific parameters by
solving an objective function. The simultaneous detection of
such information is much challenging by using other methods.
For example, the signal processing methods, such as wavelet
decomposition [24] and empirical model decomposition [25],
can only roughly detect the occurrence of a disturbance.
The parameters of cyber attacks, such as the scaling attack
parameter λS and the ramping attack parameter λR, remain
unidentified by practitioners. Essentially, these methods
transform the original data to a predefined metric, such as the
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Fig. 2. Examples for illustration. (a) An example of three statistical features
(x5%, x68%, and x95%) of two CDFs of scaling data. Orange curves: data
with scaling attacks; blue curves: data with ramping attacks. (b) An example
of the scaling data for the ramping attack template.

normalized wavelet energy (NWE) [26], based on a relatively
narrow sliding window. During this transformation process,
the detailed information of the original data may be lost.
Thus, to detect both the occurrence and parameters of a cyber
attack, dynamic programming method is chosen and briefly
introduced in this section. Dynamic programming is a method
for solving a complex problem by breaking it down into a
collection of simpler subproblems [27]. The time intervals
must comply with the anomaly rules described as follows.

The anomaly rule under cyberattacks is predefined by prac-
titioners and required for the developed MLAD method based
on the scaling data. Fig. 2b shows an example of the scaling
data for the ramping attack template. Generally, one cyber
attack consists of one upward stroke (the red dash line) and
one downward stroke (the green dash line). For pulse, scaling,
and ramping (Type II) attacks, there are one significant upward
stroke (SUS) and one significant downward stroke (SDS). For
random and smooth-curve attacks, there may exist multiple
upward and downward strokes. Given that the total number of
SUS and SDS is M , the key of the MLAD method is to detect
the initial SUS (ST1) and the terminal SDS (STM ). Assuming
that the set of strokes is S = {ST1, · · · , STm, · · · , STM},
where STm = (sm, em) represents the mth significant stroke
with the corresponding start point (sm) and end point (em),
the magnitude rule Rmag checks whether the scaling data has
increased (or decreased) by a specified threshold Trmag, and
defined as:

Rmag = 1, if |xsm − xem | > Trmag (13)
where xsm and xem indicate the scaling data at time sm and
em, respectively.

Based on the predefined anomaly rule, time intervals that
satisfy the magnitude rule are rewarded by a score function;
otherwise, their score is set to zero. An increasing length score
function S is designed based on the length of time intervals.
Given a time interval (i, j) of discrete time points of scaling
data and a time point k located into this interval (i.e., i < k <
j), the score function should conforms to a super-additivity
property, given by:

S(i, j) > S(i, k) + S(k, j), ∀k : i < k < j (14)

There are a family of score functions that can satisfy this
property. In this paper, the score function presented in [28],
[29] is adopted and given by:

S(i, j) = (i− j)2 ×Rmag(i, j) (15)
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where R(i, j) represents the magnitude rule in (13). Then, an
objective function J is constituted according to the dynamic
programming, given by:

J(i, j) = max
i<k<j

[S(i, k) + J(k + 1, j)] (16)

Based on (14)–(16), the process of solving the optimization
problem can proceed recursively as follows. Time intervals
of the scaling data under normal operations without any sig-
nificant strokes are S =

{
ST1, · · · , STm, · · · , STM

}
, where

STm indicate the mth non-stroke and STm = (sm, em). For
the mth non-strokes, the magnitude rule, score function, and
objective function of the dynamic programming can respec-
tively be calculated as:

Rmag (i, j) = 0, ∀i, j : sm < i < j < em (17)

S (i, j) = 0, ∀i, j : sm < i < j < em (18)

J∗ (sm, em) = 0, ∀m : 1 ≤ m < M (19)

For the mth time interval with SUS or SDS, i.e., STm =
(sm, em), the magnitude rule, score function, and objective
function of the dynamic programming can respectively be
calculated by:

Rmag (i, j) = 1, ∀i, j : sm < i < j < em (20)

S (i, j) = (i− j)2, ∀i, j : sm < i < j < em (21)

J∗(sm, em)= max
sm<k1<em

S(sm, k1)+J (k1+1, em)

= max
sm<k1<em

S(sm, k1)+ max
k1+1<k2<em

S(k1+1, k2)

+· · ·+ max
ki−1+1<ki<em

S(ki−1+1, ki)+J(ki+1, em)

= max
sm<k1<k2<···<ki−1<ki<em

S(sm,k1)+S(k1+1,k2)

+· · ·+S(ki−1+1, ki)+S(ki, em)
(22)

Assuming that a given scaling data series
{xs1 , · · ·, xsm , · · ·, xs1 , · · ·, xsm , · · ·, xeM } starts without
strokes at the beginning and can be presented as
Θ =

{
ST1, · · ·, STm, ST1, · · ·, STm, · · ·, STM

}
, the solution

to (16), J∗ (sm, eM ), for the mth compression interval
without strokes is obtained by the recursive process using the
dynamic programming until ki = eM − 1. Considering (18)
and (19), the objective J∗ (sm, eM ) can be transformed to
the objective J∗ (sm+1, eM ) of the (m + 1)th compression
interval with strokes, given by:

J∗ (sm, eM ) = max
sm<k1<k2<···<ki−1<ki<eM

J (ki, eM )

= J∗ (sm+1, eM )
(23)

Considering the super-additivity in (14),
the final detected anomalies of scaling data
{xs1 , · · ·, xsm , · · ·, xs1 , · · ·, xsm , · · ·, xeM } is solved as:

J∗ (s1, eM ) =
∑M

m=1 S (sm, em) (24)

Finally, the application of dynamic programming will yield
the set of SUS and SDS of cyberattacks for load forecasting
data, i.e., S = {ST1, · · · , STm, · · · , STM}.
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Fig. 3. Flowchart of the developed MLAD methodology. Part I: unsupervised
machine learning (k-means clustering); Part II: supervised machine learning
(naive Bayes classification); and Part III: dynamic programming.

2) Discussion of Computational Complexity Reduction: To
efficiently solve the dynamic programming based problem, the
predefined magnitude rule Rmag in (13) can significantly re-
duce the computational complexity of dynamic programming.
This is because both the score function and the objective func-
tion of time intervals (or sub-intervals) that cannot conform
to the magnitude rule Rmag are calculated as zero, which
are formulated in (17)–(19). That is to say, only these time
intervals that can conform to the magnitude rule Rmag can be
assigned with a specific nonzero score by the score function
that is formulated in (20)–(22). Finally, only very few intervals
with strokes (usually one or two strokes) are assigned with a
score, namely the cyber attacks to be detected. Though the
number of steps k may be relatively large, the number of
cyber attacks is significantly small. It means that most of time
intervals without cyber attacks are assigned with zero values.
Thus, during this recursive process of dynamic programming,
its computational complexity can be significantly reduced.

3) Determination of Magnitude Threshold: The magnitude
threshold Trmag in (13) can be automatically determined from
the historical load dataset under the normal condition. First,
practitioners can readily gather the maximum magnitude of
increment MNorm

max from the normal scaling dataset. However,
the maximum magnitude MNorm

max may change along with the
corresponding normal scaling dataset that practitioners choose.
Thus, a tolerance value is added and defined as a small
proportion of the maximum magnitude MNorm

max of the normal
scaling dataset. Finally, we can get the formulation of the
magnitude threshold, given by:

Trmag = MNorm
max + φmag ×MNorm

max︸ ︷︷ ︸
Tolerance V alue

(25)

where φmag is the tolerance coefficient of the magnitude
threshold. Based on the experimental experience, φmag can
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be chosen in the range of 10%–20%. This formulation can
guarantee that the normal increment of load scaling data is
not contained by the defined magnitude threshold Trmag.

D. Procedure of the Developed MLAD Method

To accurately detect the occurrence of cyberattacks, the
flowchart of the developed MLAD methodology is shown in
Fig. 3. Three major steps are briefly summarized, including:
• Step 1: The load forecast data pF

t is generated by NN and put
into the k-means clustering model, which has been trained
by the training set of load data, to reconstruct the benchmark
data pB

t and the scaling data xt.
• Step 2: Statistical features of the scaling data are used

as inputs of the naive Bayes classifier to determine the
specific template of one attack. For each estimated attack
template, parameters of the dynamic programming have
been predefined by practitioners.

• Step 3: Dynamic programming is used to estimate the final
occurrence and parameter of one cyber attack by maximiz-
ing the objective function. Evaluation metrics introduced in
the following section are calculated to evaluate the detection
performance.

IV. EVALUATION METRICS OF DETECTION PERFORMANCE

A. Metrics I: Numerical Detection Errors

To numerically evaluate the performance of different de-
tection methods for cyberattacks, two metrics are used for
comparison, namely mean absolute percentage error (MAPE)
and root mean square error (RMSE), and given by:

MAPE =
1

NS

NS∑
i=1

∣∣∣∣Ai −Di

Ai

∣∣∣∣× 100% (26)

RMSE =
1

Dmax

√√√√ 1

NS

NS∑
i=1

(Ai −Di)
2 × 100% (27)

where NS is total number of possible attack scenarios. Ai and
Di is the actual and detected information (start-time, end-time,
and attack parameters) of the ith attack scenario, respectively.
Smaller MAPE and RMSE indicate that the corresponding
method produces more accurate detected information of cy-
berattacks.

B. Metrics II: Visualized Detection Performance

Table II provides a measure of skill based on a contingency
table [30] for comparison. Assuming that sets of Ω1, Ω2, Ω3,
Ψ1, Ψ2, and Ψ3 are shown in Fig. 4, where Ω1 : t ∈ ts ± φ1;
Ω2 : t ∈ (ts − φ2, ts − φ1); Ω3 : t ∈ (ts + φ1, ts + φ2);
Ψ1 : t ∈ te ± φ1; Ψ2 : t ∈ (te + φ1, te + φ2); Ψ3 : t ∈
(te − φ2, te − φ1). ts and te are the real start- and end-time of
one attack respectively, and ts ∈ Ω, te ∈ Φ. True positive (TP)
is the number of detected attacks of which both the start- and
end-time are within a smaller tolerance φ1, and TP ∈ Ω1∩Ψ1,
which means the start-time must be located into Ω1 and the
end-time must be located into Ψ1; false positive (FP) is the

TABLE II
CONTINGENCY TABLE FOR REAL AND DETECTED ATTACKS

Real (YES) Real (NO) Total

Detected (YES) TP(hit) FP(false alarm) TP+FP

Detected (NO) FN(miss) TN(inaccurate) FN+TN

Total TP+FN FP+TN NS=TP+FP+FN+TN

Time

Fig. 4. Start- and end-time of one real attack with different tolerances.

number of detected attacks of which the start-time is pre-
detected or the end-time is post-detected within tolerance
values, and FP ∈ (Ω1 ∩Ψ2) ∪ (Ω2 ∩Ψ1) ∪ (Ω2 ∩Ψ2); false
negative (FN) is the number of detected attacks of which
the start-time is post-detected or the end-time is pre-detected
within tolerance values, and FN ∈ (Ω1 ∩Ψ3)∪ (Ω3 ∩Ψ1)∪
(Ω3 ∩Ψ3); and true negative (TN) is the number of attacks
that are inaccurately detected in excess of a larger tolerance
φ2, and TN = NS − TP − FP − FN . FP attacks can cause
false alarms for users with redundant operations. FN attacks
are missed by the detection method with insufficient operations
for users. The performance diagram is visualized by metrics
including the probability of detection (POD), critical success
index (CSI), frequency bias score (FBIAS), and success ratio
(SR), given by:

POD = TP/ (TP + FN) (28)

CSI = TP/ (TP + FN + FP ) (29)

FBIAS = (TP + FP ) / (TP + FN) (30)

SR = TP/ (FP + TP ) (31)

Detailed information about the performance diagram and
metrics can be found in [31].

V. CASE STUDIES AND RESULTS

The raw load data are obtained directly from ISO New
England [32]. Hourly load data is sampled on the NEPOOL
region (courtesy ISO New England) from 2004 to 2007 and
tested on out-of-sample data from 2008. The pulse, scaling,
ramping (Type II only), random, and smooth-curve attack
templates are used to tamper the load data on the sliding
window of 14 days (336 points) in the test data. The SAX
method developed in [16] is chosen to compare the perfor-
mance of the developed MLAD method. Different sliding
window sizes (ns) of SAX are set from 24 to 34 hours.
The number of symbols of SAX is set as 4. The cluster
number k is set as 100. For the simplicity of comparison,
three representative versions of SAX, i.e., SAX-I, SAX-II,
and SAX-III, are defined as benchmark methods to validate
the effectiveness of the developed MLAD method. Parameters
of three benchmark SAX methods are shown in Table III.
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TABLE III
PARAMETERS OF THREE BENCHMARK SAX METHODS

Benchmark SAX Methods SAX-I SAX-II SAX-III

Sliding Window Size ns [h] 30 32 34
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Fig. 5. Scaling attack for comparing SAX (a) with MLAD (b).
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Fig. 6. Ramping attack for comparing SAX (a) with MLAD (b).

A. Performance Evaluation of The Proposed Method

Fig. 5–Fig. 7 compare the detection results of multiple rep-
resentative cyberattacks using SAX (left column) and MLAD
(right column). Fig. 5 compares the detection results of one
scaling attack. The latter part of the scaling attack cannot be
detected by SAX. Fig. 6 compares the detection results of one
Type II ramping attack. The front part of the scaling attack
cannot be detected by SAX. Fig. 7 compares the detection
results of one random attack. Similar with the scaling attack,
SAX cannot detect the front part of the random attack. Overall,
SAX cannot accurately detect a complete cyberattack. This
is because the SAX method only identifies a sub-sequence
of the sliding window size (ns) as anomalies, which may
always include some normal data points and neglect some
anomaly data points. The MLAD method can accurately detect
cyberattacks for load forecasting data. Another interesting
finding is that MLAD is also capable of detecting both the up-
and down-ramping anomalies for the Typer II ramping attack
as seen in Fig. 6b. The up-ramping anomalies are marked with
black rectangles, and down-ramping anomalies are marked
with blue rectangles.

B. Robustness Analysis Using Monte Carlo Simulation

The Monte Carlo simulation coupled with Latin hypercube
sampling (LHS) [33] is used for the robustness analysis of
the developed MLAD method. LHS is often used to con-
struct computer experiments for Monte Carlo integration. First,
LHS generates five positive integer dlhs(5)e, where d·e indi-
cates rounding towards plus infinity. Each integer represents
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Fig. 7. Random attack for comparing SAX (a) with MLAD (b).

a cyberattack template: 1→pulse, 2→scaling, 3→ramping,
4→random, and 5→smooth-curve. A cyberattack is chosen by
randomly sampling a positive integer. Second, for each attack
scenario, an attack randomly tampers the load forecasting data
at any time in 14 days (336 points). The total number of attack
scenarios is set as 3,000. Table IV shows the accuracy rate
of detected attack templates using naive Bayes classification.
For pulse attacks, 98.92% of real pulse attacks are accurately
detected and 1.08% of those are confused with smooth curve
attacks. For scaling attacks, 93.46% of real scaling attacks
are accurately detected and 6.54% of those are confused with
random attacks. For ramping attacks, 100% of real ramping
attacks are accurately detected. For random attacks, 96.28% of
real random attacks are accurately detected; 0.53% of those are
confused with scaling attacks; and 3.19% of those are confused
with ramping attacks. For smooth-curve attacks, 76.31% of
real smooth-cure attacks are accurately detected and 23.69%
of those are confused with random attacks. As can be seen,
smooth-curve attacks are the most challenging to detect. This
is mainly because this attack template is very secretive and
presents a smooth curve together with neighboring data points
at the beginning and end of the load forecasting data.

Table V compares the MAPE values of the SAX and MLAD
methods for cyberattacks’ occurrence. Three types of SAX
methods with the best performance are used for comparison:
SAX-I (ns=30), SAX-II (ns=32), and SAX-III (ns=34). As
can be seen, SAX cannot be used to detect any pulse attacks
as their ultrashort discretized duration (1 point) does not
significantly affect the relatively long sliding window (28∼32
points). This similar phenomenon has also been verified in [7].
However, MLAD can accurately detect the occurrence of pulse
attacks with the smallest MAPE value of 0.005%, which is
mainly due to the confusion of smooth-curve attacks shown in
Table IV. For scaling, ramping, and random attacks, MLAD
can detect the start- and end-time of cyberattacks with the
smallest MAPE (1%∼3%), compared with three types of SAX
methods (8%∼32%). For the smooth-curve attack, MLAD can
still work better than SAX methods, though the MAPE value
of MLAD is relatively larger than that for other attacks. Also,
this observation verifies that smooth-curve attacks are the most
challenging to detect since the start- and end-time of these
attacks are disguised very well.
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TABLE IV
DETECTED ATTACK TEMPLATES IN 3,000 SCENARIOS USING NAIVE BAYES CLASSIFICATION

Real Attack Templates Detected Attack Templates
Pulse Attack Scaling Attack Ramping Attack Random Attack Smooth Curve Attack

Pulse Attack 98.92% 0 0 0 1.08%
Scaling Attack 0 93.46% 0 6.54% 0

Ramping Attack 0 0 100% 0 0
Random Attack 0 0.53% 3.19% 96.28% 0

Smooth Curve Attack 0 0 0 23.69% 76.31%
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Fig. 8. Performance diagram for comparison of SAX-I (ns=30), SAX-II (ns=32), and MLAD with three load forecasting errors (i.e., three NRMSEs).

TABLE V
MAPE VALUES OF DIFFERENT DETECTION METHODS FOR

CYBERATTACKS’ OCCURRENCE

Attack Templates Detection Methods

SAX-I SAX-II SAX-III MLAD

Pulse Attack - - - 0.005%
Scaling Attack 16.49% 20.83% 21.29% 1.43%

Ramping Attack 8.42% 11.86% 14.76% 3.12%
Random Attack 28.41% 30.29% 32.66% 1.44%

Smooth Curve Attack 15.28% 20.69% 24.12% 10.45%

Note: SAX-I: ns=30; SAX-II: ns=32; and SAX-III: ns=34.

C. Impacts of Load Forecasting Accuracy on Anomaly Detec-
tion Performance

To analyze the impacts of load forecasting accuracy on
the anomaly detection performance of different methods, the
normalized root mean square errors (NRMSE) is used to rep-
resent the load forecasting accuracy. A smaller NRMSE value
indicates a higher load forecasting accuracy. Three NRMSEs,
i.e., 1.68%, 3.36%, and 5.04%, are used for comparison and
analysis. An interesting advantage of the developed MLAD
method is that it can be used to estimate parameters of
both scaling and ramping attacks. Though SAX methods have
been widely used to detect collective anomalies, it intends
to only identify a sub-sequence from the attacked load fore-
casting data. However, the detailed information among this
identified sub-sequence, especially for the attack parameter,
is still unknown for practitioners using SAX. When using
MLAD, as the initial SUS (ST1 = (s1, e1)) and the terminal
SDS (STM = (sM , eM )) have been accurately detected by
dynamic programming, the estimated attack parameter λ̃ can

be calculated by:

λ̃ =
1

2NS

NS∑
i=1

[
xe1,i − xs1,i
e1,i − s1,i

+
xeM ,i − xsM ,i

eM,i − sM,i

]
(32)

Table VI illustrates the sensitivity of estimated parameters
of both scaling and ramping attacks under three NRMSE
conditions. As can be seen, estimated parameters of both
scaling attack (λ̃S) and ramping attack (λ̃R) present rela-
tively high accuracies. The MAPE metrics are in the range
of 9.26%∼17.92% and 9.59%∼14.45%, respectively. The
RMSE metrics are in the range of 6.62%∼13.36% and
9.23%∼10.80%, respectively. In addition, the accuracy of
estimated parameters increases with the decrease of load
forecasting errors, which means the estimation accuracy is
sensitive to the load forecasting performance. In other words,
the improvement of load forecasts can significantly enhance
the accuracy of estimated attack parameters.

Fig. 8 shows the visualized performance diagram for com-
parison of SAX and MLAD with different NRMSEs. Two
types of SAX with the best performance are chosen for
comparison, i.e., SAX-I (ns=30) and SAX-II (ns=32). For
a performance diagram shown in Fig. 8, 1) the left axis
represents the value of POD; 2) the bottom axis represents
SR; 3) the diagonal dashed lines represent FBIAS; and 4)
the dashed curves represent CSI. For a better performance,
the points should be close toward the top right corner of the
performance diagram. Four sets of thresholds are predefined
based on different values of the smaller tolerance φ1 and the
larger tolerance φ2, i.e., Thr.-1: φ1=5, φ2=10; Thr.-2: φ1=4,
φ2=9; Thr.-3: φ1=3, φ2=8; and Thr.-4: φ1=2, φ2=7.

Fig. 8 demonstrates the good detection performance of
the developed MLAD method compared with SAX methods.



IEEE TRANSACTIONS ON SMART GRID, 2018 9

TABLE VI
PARAMETER ESTIMATION OF SCALING AND RAMPING ATTACKS WITH

THREE LOAD FORECASTING ERRORS USING MLAD

Real
Parameters Metrics Forecast Errors (NRMSE)

1.68% 3.36% 5.04%

Scaling Attack
(λS=0.2)

λ̃S 0.2035 0.2198 0.2238
MAPE 9.26% 16.43% 17.92%
RMSE 6.62% 12.74% 13.36%

Ramping Attack
(λR=0.1)

λ̃R 0.1036 0.1042 0.1061
MAPE 9.59% 11.91% 14.45%
RMSE 9.23% 9.70% 10.80%

The rectangles (detected by MLAD) are closer to the top
right corner than circles (detected by SAX-I) and triangles
(detected by SAX-II). For different load forecasting errors,
the developed MLAD method performs better than any SAX
method. Specifically, when using MLAD, the mean SR value
(bottom x-axis) with three NRMSEs is 0.88, whereas the
mean SR values using SAX-I and SAX-II are 0.72 and 0.58,
respectively. Moreover, when using MLAD, the mean POD
value (left y-axis) with three NRMSEs is 0.96, whereas the
mean POD values using SAX-I and SAX-II are 0.79 and
0.76, respectively. This phenomenon shows that the developed
MLAD method is robust to the load forecasting accuracy
which can be easily achieved by most current load forecasting
techniques.

In addition, for most cases in Fig. 8, the pink points with
the largest threshold (Thr.-1) are closer to the top right corner,
whereas the blue points with the smallest threshold (Thr.-4)
are closer to the bottom left corner. As larger thresholds can
generate wider ranges of sets of Ω1, Ω2, Ω3, Ψ1, Ψ2, and Ψ3

in Fig. 4, more detected points are counted as true positive
points. This observation can verify the effectiveness of the
performance diagram.

D. Impacts of Advanced Load Forecasting Method

To guarantee the universality and generalization of the
developed MLAD, the widely used conventional NN is taken
as a representative example of load forecasting methods since
it can be readily implemented by practitioners who are not
experts in the load forecasting research area. That is to say, if
the developed MLAD could be applicable to the conventional
NN forecasting method with a relatively larger RMSE, it
should be readily applicable to the advanced load forecasting
method with a relatively smaller RMSE. To validate this, an
advanced similar day-based wavelet neural network (SIWNN)
method is used to improve the load forecasting performance.
Detailed information about SIWNN can be found in [34]. The
information of training and testing data is the same as that of
the conventional NN method.

Table VII illustrates the performance of two load forecasting
methods (conventional NN and SIWNN) based on estimated
parameters of both scaling and ramping attacks. As can be
seen, when using the improved SIWNN forecasting method,
estimated parameters of both scaling attack (λ̃S) and ramping
attack (λ̃R) present relatively high accuracies with smaller

TABLE VII
PARAMETER ESTIMATION OF SCALING AND RAMPING ATTACKS WITH

TWO LOAD FORECASTING METHODS USING MLAD

Real
Parameters Metrics Methods

Conventional NN SIWNN

Scaling Attack
(λS = 0.2)

λ̃S 0.2137 0.2065
MAPE 15.41% 10.22%
RMSE 10.68% 8.54%

Ramping Attack
(λR=0.1)

λ̃R 0.1049 0.1023
MAPE 12.24% 8.96%
RMSE 11.23% 8.78%

MAPE and RMSE values. While using the conventional NN
forecasting method, estimated parameters present relatively
low accuracies. For the scaling attack, the MAPE metric is
reduced by 33.68% [=(15.41%-10.22%)/15.41%] after using
SIWNN. For the ramping attack, the MAPE metric is reduced
by 26.8% [=(12.24%-8.96%)/12.24%] after using SIWNN.
This observation shows that the improved SIWNN method can
enhance the accuracy of estimated attack parameters.

VI. DISCUSSION

The aforementioned research mainly considers cyber attacks
performed on load forecasting results through the anomaly
detection model. However, it is possible that adversaries may
tamper with the anomaly detection model and subsequently
the detection result itself. Under this circumstance, a layered
defense model can be added into the developed architecture of
assessing the impact and evaluate the response to cybersecurity
issues, as shown in Fig. 9. In the layered defense step, the
anomaly detection output is compared with the forecast output.
If there is any evident difference, it means the anomaly
detection model is manipulated and remedial actions should be
taken on procedures of load forecasts, anomaly detection, and
grid operations. Then, an alternative anomaly detection model
is enabled and used to replace the manipulated one. Otherwise,
if there is no difference, the anomaly detection model is cyber-
secure while remedial actions should be taken on procedures
of load forecasts and grid operations. It should be recognized
that any detection means is breakable, no matter how well
designed, and the attacked data may be passed to and used in
the grid operation. It is important to have additional layers of
defenses to minimize the impacts in the operation stage if this
happens, e.g., the attacked data may be crosschecked using
state estimation information or PMU measurements.

Forecasting Models
Grid Operations

Forecast 
Output

Development of 
Remedial Actions

Operational
Status of Grid

Forecast 
Input

Remedial Actions

Expected 
Grid Status

Cyberattacks Anomaly 
Detection
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Actions

Anomaly 
Detection

Layered 
Defense

Fig. 9. An architecture of assessing the impact and evaluate the response to
cybersecurity issues.
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VII. CONCLUSION

This paper develops a machine learning based anomaly
detection (MLAD) method for load forecasting under cyber-
attacks. The predicted load data is first used to reconstruct the
benchmark and scaling data by using the k-means clustering.
The naive Bayes classification is then used to determine the
specific attack template. Finally, the dynamic programming is
utilized to calculate both the occurrence and the parameter
of one cyberattack on load forecasting data. Compared with
the widely-used SAX method, the effectiveness and robustness
of the developed MLAD method is verified by numerical
simulations on the publicly load data. Some universal and
common lessons are shown as follows:

(i) The detailed occurrence and parameter information of the
cyberattacks could be detected with a considerably high
accuracy by using MLAD.

(ii) The developed MLAD method is robust to the load
forecasting errors with a relatively high success ratio.

(iii) The improvement of load forecasts can significantly en-
hance the accuracy of estimated attack parameters.

The developed MLAD method is not able to find the specific
derivations of the cyberattacks, e.g., the broken topology
of the forecasting model, falsified parameters of forecasting
methods, or attacked pre-processing techniques. In the future,
this research can also be further improved by analyzing the
sensitivities of different load forecasting methods with the load
data tampered with cyber attacks.
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