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Abstract—We utilize a for-profit aggregator-based residential
demand response (DR) approach to the smart grid resource
allocation problem. The aggregator entity, using a given set of
schedulable residential customer assets (e.g., smart appliances),
must set a schedule to optimize for a given objective. Here, we
consider optimizing for the profit of the aggregator. To encour-
age customer participation in the residential DR program, a
new pricing structure named customer incentive pricing (CIP) is
proposed. The aggregator profit is optimized using a proposed
heuristic framework, implemented in the form of a genetic algo-
rithm, that must determine a schedule of customer assets and the
CIP. To validate our heuristic framework, we simulate the opti-
mization of a large-scale system consisting of 5555 residential
customer households and 56 642 schedulable assets using real-
pricing data over a period of 24-h. We show that by optimizing
purely for economic reasons, the aggregator can enact a beneficial
change on the load profile of the overall power system.

Index Terms—Aggregator, appliance scheduling, customer
incentive pricing (CIP), cyber-physical systems (CPSs), heuristic
optimization, smart grid.

I. INTRODUCTION

ACCORDING to the U.S. Department of Energy, since
1982, the growth in peak electricity usage has exceeded

the growth in transmission capacity by almost 25% each
year [1]. Furthermore, electricity sales in the residential sector
in the U.S. are expected to grow 24% from the 2011 reference
case to 2040 [2]. Given these trends, peak energy demands are
expected to exceed the available transmission capability. This
can be dealt with by increasing transmission capability, creat-
ing distributed generation (DG), or curtailing load. As shown
in [1], it is unlikely that additional spending will be allocated
for increasing transmission capability, leading to research in
the areas of DG and, in the case of this paper, curtailing load
during peak hours.
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In addition to the physical considerations, there is also an
economical motivation. By curtailing load during peaks, elec-
tricity costs could be drastically reduced by eliminating the
need for peaking power plants. From [3], “a 5% reduction in
peak demand during the California energy crisis of 2000–2001
would have reduced the highest wholesale prices by 50%.”
We attempt to reduce peak demands by intelligently coordi-
nating the scheduling of customer appliances away from the
peak time, alleviating the peak demand, and offering a benefit
to all parties.

Given both the physical and economical motivations, an
aggregator-based residential demand response (DR) program
is presented. The aggregator is a proposed for-profit entity in
a deregulated market structure that interfaces a DR market
(DRX) and a set of customers. The aggregator will possess
information about the schedulable assets of the participat-
ing customers. In many, if not all energy markets, there is
a minimum power rating required to bid into the market
(e.g., 0.1 MW in the PJM market [4]). By aggregating the
customer assets, the aggregator is able to enact a noticeable
change on the overall system by scheduling the assets of many
customers and bidding the aggregation of their assets, where
a single customer would not be able to do so.

This provides the customer the opportunity to participate in
the deregulated electricity market, through the aggregator. As
presented in [5], incentives can influence customer behavioral
changes. To encourage customers to participate with the aggre-
gator on a daily basis, we propose a new day-ahead price for
electricity offered by the aggregator, in the form of customer-
incentive pricing (CIP), to offset the customers’ inconvenience
of the aggregator controlling their assets. Additionally, if
the inconvenience of rescheduling the load is not worth the
reduced price, the customer may refuse the aggregator and
instead pay the utility company for electricity.

The aggregator-based residential DR program, denoted
smart grid resource allocation (SGRA), is formally stated as
given a set of customers and information about their respec-
tive assets, subject to customer constraints (i.e., availability of
customer assets and customer incentive requirements), how
can the aggregator find the CIP and schedule of assets to
maximize aggregator profit? We demonstrate that by optimiz-
ing solely for the profit of the aggregator, we can enact a
change on the peak load of the system because this is where
most of the profit can be made due to the high cost of peak
generators.
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To solve the SGRA problem, we borrow concepts from
resource allocation in computing where tasks must be allo-
cated to machines to optimize a performance metric, such as
completing all tasks as quickly as possible. It has been shown,
in general, that such problems are NP-complete [6]–[8] and,
as such, use heuristic optimization to find near-optimal solu-
tions. Similarly in this paper, we use heuristic optimization
techniques to find near-optimal solutions to the SGRA prob-
lem in a time frame that is reasonable with the large number
of assets considered for use as a day-ahead scheduler.

Related prior work on demand side management in smart
grid has occurred in the areas of optimization and aggrega-
tion of end-user resources. The optimization of scheduling
end-user resources has been approached as linear program-
ming [9], [10], dynamic programming [11], and mixed inte-
ger programming [12]. Heuristic-based methods also have
been used in the form of particle swarm optimization [13],
evolutionary algorithms [14], and multiagent systems [15].
However, increasing DR technologies and allowing retail cus-
tomers direct access to wholesale market prices may increase
the price-elasticity of demand, leading to increased volatility
in power systems [16]. Aggregators are an intermediary entity
that offer centralized coordination of many entities [17]–[20].
This paper differs in that we schedule many more distributed
residential customer assets and introduce a new time-variant
customer pricing mechanism in the form of CIP, existing in
conjunction with the utility price, to encourage customer par-
ticipation. Active distribution networks with full integration
of demand and distributed energy resources is an aggregator
framework that benefits in a market from the active partic-
ipation of residential and commercial consumers [21], [22].
Our framework differs from [21] and [22] in our market
approach, specifically CIP, and the aggregator-customer-utility
relationship.

According to the California Energy Commission (CEC),
residential loads are not easily controlled and need to be com-
posed of a large portfolio of assets to provide a strategic
DR product [23]. The CEC identified strategies to fulfill its
DR requirements including: direct DR participation with the
independent system operator (ISO), new market and auction
mechanisms (e.g., our proposed DRX), improving customer
willingness to participate, and the introduction of time-variant
pricing. This paper directly addresses each of these strate-
gies, offering direct DR participation through the customer-
aggregator-DRX relationship (see Fig. 1) and encouraging
customer participation with the time-variant CIP mechanism.

In this paper, we theorize that by using an aggregator placed
between the customer and bulk power market the volatility in
the power system can be reduced. In [24], we hypothesized
the use of a heuristic approach to the SGRA. In this paper,
we design and implement the heuristic framework using a
simulation test bed of 5555 customers to simulate the schedul-
ing of over 56 000 consumer devices centrally controlled by
the aggregator. In this paper, we make the following unique
contributions.

1) A new customer pricing structure is proposed in the
form of CIP to encourage customer participation in
residential DR.

Fig. 1. Architecture and communication for the cyber-physical system (CPS)
of the proposed aggregator-based residential DR program.

2) A heuristic optimization framework is designed to
implement and solve the SGRA problem.

3) An analysis of our heuristic framework using actual
electricity pricing data and a large-scale simulation
test system consisting of 5555 customers and 56 642
schedulable assets is conducted.

4) An aggregator-based approach for a residential DR
program for use in scheduling customer assets in a
large-scale manner.

In our simulation study, by optimizing for profit, the aggre-
gator was able to reduce the peak load of the 5555 participating
customers by 12.5%. We demonstrate that this change benefits
the customer of the aggregator (in the form of reduced cost of
electricity for schedulable loads), the aggregator (in the form
of a profit), and also those customers not participating with
the aggregator (because the overall system peak is lowered as
a common good).

The rest of this paper is organized as follows. Section II
describes the system model and the enabling technologies. In
Section III, a heuristic framework and genetic algorithm (GA)
implementation are presented. The setup for the simulation
study is discussed in Section IV. Section V examines the
simulation results. Section VI concludes this paper.

II. SYSTEM MODEL

A. CPS

The proposed CPS for the aggregator-based residential DR
program is shown in Fig. 1. On the right of Fig. 1 is the tradi-
tional power system and market structure that flows from the
ISO to the distribution system operator for delivering electric-
ity to the residential customer. The left-hand side of Fig. 1
encapsulates our proposed residential DR program. The DRX
is an ancillary market in a fully deregulated market structure
that provides DR services to the ISO. The aggregator inter-
faces the DRX and the residential customer, and provides the
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positive attributes (e.g., load shifting and distributed storage)
of the aggregated customer assets (e.g., DG and electric
vehicles) to the ISO. Each participating customer has a home
energy management system (HEMS) that controls the assets,
connected to a smart meter. The aggregator coordinates the
use of the participating customer assets and brings the result
(e.g., load reduction) to the DRX for market exchange. The
aggregator and customer interactions will be expanded on in
the following subsections.

For realizing the market interactions in Fig. 1, several
enabling technologies are first expected to penetrate the elec-
tric power system, and are assumed to exist in this paper.
As previously mentioned, the retail electricity market must
be fully deregulated, allowing for the customer to choose
between suppliers. The control and communication infrastruc-
ture, including the requisite cyber-security, for the exchange
of information and coordination of customer assets must be
developed and implemented. Lastly, the customer must be
willing to participate with proper incentive.

B. Aggregator

The aggregator is a for-profit market entity engaged in inter-
acting with the customer and the bulk power market in a fully
deregulated market structure. As shown in Fig. 1, the aggrega-
tor is situated between the DRX and the customer (in a fully
deregulated market structure). Note that the DRX can exist in
conjunction with existing deregulated market structures. The
aggregator energy management system interacts with each of
the customer HEMSs. In this paper, we are only considering
one aggregator entity, but it is expected that several aggrega-
tors may exist within the same distribution area. The existence
of an aggregator would depend on legislative policies, but this
is beyond the scope of this paper.

The aggregator coordinates a set of participating customers,
each with a set of schedulable assets. In this paper, we are
currently only considering schedulable loads in the form of
smart appliances, but this approach could be extended to
other types of assets such as DG, thermal loads (e.g., elec-
tric water heaters [25] and heating-ventilation-air-conditioning
systems [26]), and electric vehicles (in the form of vehicle-to-
grid [27] or scheduling vehicle charging cycles [13]).

The scheduling problem is proposed as a day-ahead opti-
mization. To make decisions, the aggregator requires informa-
tion about the customer loads, the forecast utility pricing, and
the forecast spot market pricing in the bulk electricity mar-
ket. Using this information, the aggregator must find the CIP
and schedule of loads to maximize its profit. Because it is a
day-ahead optimization, there are constraints on the execution
time of the optimization technique used. This time constraint
and the complexity of the scheduling problem (i.e., the class of
problems is, in general, NP-complete) due to the large number
of customer assets leads to the use of heuristics. Other objec-
tives could be considered, such as minimizing the peak load,
or considering multiple objectives in the form of a multiob-
jective optimization using Pareto-fronts [28]. In this paper, we
solely optimize for the aggregator profit to demonstrate that a
purely economic motivation will affect the desired change of
reduced peak demand on the entire system.

Fig. 2. Money flow with respect to the aggregator, customer, spot
market, and utility. The customer has a choice of electricity provider.
Customers {1 . . . y} pay the CIP to the aggregator for their schedulable loads.
Customers {y + 1 . . . Y} decide the CIP is not worth the inconvenience and
purchase electricity from the utility company. The solid arrows represent the
money flowing in the system. The dashed red arrow indicates the possible
need for a relationship between the aggregator and utility company, which is
beyond the scope of this paper.

CIP is a proposed pricing structure that the aggregator
would offer all customers to allow the rescheduling of their
loads. That is, instead of paying the utility company, the cus-
tomer pays the aggregator the CIP for electricity. The customer
paying the CIP for electricity to the aggregator at the time the
asset has been rescheduled to is one part of the profit of the
aggregator. The sum of these payments over all customers and
all rescheduling events is denoted S. The other two compo-
nents to the aggregator profit are: 1) the aggregator selling a
negative load to the spot market where the assets have been
rescheduled from (denoted N); and 2) the aggregator buying
spot market electricity where the assets have been rescheduled
to (denoted B). This exchange is outlined in Fig. 2. The aggre-
gator would, perhaps, need to enter into a leasing agreement
with the utility company for the use of the distribution assets,
but modeling this and other potential fixed costs are beyond
the scope of this paper.

C. Customer

Each customer under agreement with the aggregator has
a set of schedulable loads. In this paper, we are only con-
sidering flexible, noninterruptible smart appliances according
to the definitions given in [29]. Each customer load has an
availability window associated with it. The availability win-
dow describes the times during the day that a customer will
allow their schedulable load to be rescheduled. In addition
to the availability window, each customer has a pricing point
that must be met on each load to allow it to be rescheduled.
That is, if the price reduction to be received from a resched-
uled load at the given CIP is not worth the inconvenience to
the customer, the customer may choose to not have their load
rescheduled and instead pay the utility company for electricity
for that load. This is shown in Fig. 2 as the set of customers
(y + 1) to Y interacting with the utility instead of the aggre-
gator. Only those loads that are agreed for DR between the
customer and aggregator utilize the CIP. The base load and
those loads not agreed upon will utilize the status quo of the
utility company, e.g., real-time price and time-of-use. This
choice of supplier is a powerful new tool for the customer
and offers the customer an avenue to participate in the spot
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market (through the aggregator entity), which may reduce the
customer electricity bill and offer freedom of choice.

III. HEURISTIC FRAMEWORK

A. Overview

We solve the SGRA problem using a heuristic optimization
framework, borrowed from concepts in resource allocation in
computing, that finds near-optimal solutions to problems. We
use heuristic optimization methods because, in general, the
class of problems is NP-complete. In this paper, the heuristic
framework is designed to be a day-ahead optimization, using a
resolution of 15-min intervals. This implies that a given heuris-
tic would need to have a runtime of less than 24-h to be useful.
This also gives each vector 96 entries (96 15-min intervals for
a complete 24-h period).

B. Schedulable Loads

To reschedule load, the aggregator requires information on
the set of schedulable loads. These schedulable loads repre-
sent a subset of the system load. For each schedulable load i,
the aggregator receives information from the customer on the
following:

1) δi, the runtime duration (in 15-min intervals);
2) pi, the average power rating (in kW);
3) ti_start, the customer scheduled start time;
4) (Ai_start, Ai_dur), a two-tuple that represents the

customer-defined availability window for load i deter-
mined by the availability window start time, Ai_start,
and the availability window duration, Ai_dur.

In this paper, we assume that the aggregator knows the exact
time a load will run (i.e., from ti_start for δi time intervals) if
it is not rescheduled by the aggregator (i.e., the start time is
deterministic). In our future work, this will be represented as a
probability distribution based upon historical runtimes (i.e., the
start time is stochastic), leading to a stochastic SGRA problem.

C. Aggregator

Let λ be the CIP vector containing 96-elements, where
each element λt gives the aggregator determined CIP at time
interval t. In addition to the information about the schedulable
loads, the aggregator possesses information on the following:

1) γ (i,λ, t), a binary function that represents whether the
customer will allow load i to be rescheduled to time t
with CIP λ(γ = 1) or not (γ = 0);

2) s(t), the forecast spot market price of electricity in the
bulk electricity market (in cents/kWh);

3) r(t), the forecast price of electricity from the utility
company (in cents/kWh).

Because the customer also has access to the forecast util-
ity price (e.g., real-time price and time-of-use), if the CIP, λ,
does not offer enough of a reduction in pricing to justify
the inconvenience of rescheduling the load, the customer
has the opportunity to refrain from participation, as repre-
sented by the binary function, γ . Therefore, the position of
the aggregator is to find the following:

1) L, the set of loads the aggregator is rescheduling;
2) ti_resch, the rescheduled start time for load i;
3) λ, the CIP vector.

So as to maximize profit, given in the following subsection.
Let I be the total number of schedulable loads. The cardinality
of L is less than or equal to I (i.e., |L| ≤ I) because the
aggregator has information about all I schedulable customer
loads, but it does not necessarily have to reschedule all loads.

D. Objective Function

The monetary exchange, representing the aggregator profit,
is shown in Fig. 2. For the aggregator, let S be the total income
received for selling electricity to customers, given by (1), N be
the total income received for selling negative load to the spot
market given by (2), and B be the total cost paid to the spot
market for buying electricity given by (3). The exact payment
received from N would depend on policy, such as the outcome
of FERC Order 745 [30] and its future iterations; however, we
are not addressing energy policy in this paper. We assume that
the aggregator is a well-behaved agent that does not manip-
ulate the market (such as by misrepresenting the sum of the
negative load) and is paid the difference from a deterministic
baseline load. The calculations for S, N, and B are given as

S =
∑

i∈L

⎡

⎣γ (i,λ, ti_resch)

ti_resch+δi−1∑

t=ti_resch

λtpi

4

⎤

⎦ (1)

N =
∑

i∈L

⎡

⎣γ (i,λ, ti_resch)

ti_start+δi−1∑

t=ti_start

s(t)pi

4

⎤

⎦ (2)

B =
∑

i∈L

⎡

⎣γ (i,λ, ti_resch)

ti_resch+δi−1∑

t=ti_resch

s(t)pi

4

⎤

⎦. (3)

The forecast aggregator profit P is given as

P = N + S − B. (4)

The heuristic optimization problem is set up as follows:

max
ti_resch∀i∈L,λ=(λ1,...,λ96)

P (5)

subject to

Ai_start ≤ ti_resch ≤ Ai_start + Ai_dur ∀i ∈ L (6)

and

ti_resch ∈ Z ∀i ∈ L (7)

λt ∈ R t = 1, . . . , 96. (8)

IV. SIMULATION SETUP

A. Overview

The following section describes parameters and models
that are used to conduct the simulation study for analysis.
The heuristic framework introduced above can be used with
any optimization technique, utility pricing mechanism, cus-
tomer behavior model, and set of customer smart appliances.
Although the results show a profit for the aggregator in the
considered distribution system, this does not indicate that
an aggregator entity would be profitable in all distribution
systems; however, the proposed framework can be used to
determine this profitability using relevant data.
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Fig. 3. Chromosome structure for the GA. The genes λ1, . . . , λ96 represent
the CIP vector, one element for each 15-min interval in the 24-h period. The
genes t1_sch, . . . , tI_sch represent the schedule for the I customer loads that
are schedulable.

B. GA

In this research, a Genitor [31] version of GA is used to
implement the heuristic framework. We use a GA as an exam-
ple global search heuristic, but any optimization method can be
used with the described framework. GAs have been shown to
work well in many optimization problems, such as resource
allocation in computing [32]–[34], economic dispatch [35],
and unit commitment [36]. If multiple objectives are used, the
GA can easily be extended to generate Pareto fronts, e.g., with
NSGA-II [28], [37].

The implemented chromosome structure is broken into two
parts, each with its own gene type, shown in Fig. 3. The first
portion of the chromosome is dedicated to the CIP vector, λ,
containing 96 genes representing the price (in cents/kWh)
for the corresponding 15-min interval. The second portion of
the chromosome represents the schedule of loads, containing
one gene for each of the I customer schedulable loads. Let
ti_sch be a real value in the interval [0, 1] representing the
scheduled start time of load i. To obtain the time interval
that each load i is scheduled, the following equation is used:
ti_resch = Ai_start + ti_schAi_dur. If ti_resch = ti_start, then the load
is not being rescheduled (i.e., i /∈ L). The [0, 1] representa-
tion of ti_sch is used to avoid violating the customer-defined
availability constraints of the loads given in (6).

The Genitor version of the GA has a few defining charac-
teristics. In the initial population, no duplicates are allowed to
prevent premature convergence. The Genitor is a steady-state
algorithm that maintains a ranked list of chromosomes [in this
paper, ranked by (4)], leading to implicit elitism, i.e., between
generations, the best solutions are kept. In each generation, two
parents are selected using the linear bias function (as defined
in [31]) leading to the creation of two new children. The linear
bias selection function requires a linear bias parameter that is
a real value in the interval (1, 2]. A linear bias parameter of
1.5 means the best-ranked solution has a 50% greater chance
of being selected than the median solution.

After two chromosomes are selected using the linear bias
function, two search operators are applied: 1) crossover; and
2) mutation. The former uses a two-point crossover performed
on each of the two portions of the chromosome separately.
After the crossover is performed, two new children are created.
Within each child, every gene has a probability of mutation
that will randomly generate a new value for that gene. These
two new children are then evaluated in terms of the objective
function [given in (5)], inserted into the sorted population,
and the worst two chromosomes are trimmed, leading to a
fixed population size. The complete algorithm is shown as
pseudocode in Fig. 4.

A parameter sweep was used to determine the best param-
eters to use for the GA in the scope of this problem.

Fig. 4. Genitor algorithm.

Fig. 5. Real-time [38] and spot market pricing [39] from July 9, 2011.
(a) Day-ahead forecast price. (b) Actual price.

The population size was 100, the linear bias parameter was 1.4,
and the probability of mutation was 0.01. The stopping crite-
ria was defined as 500 000 total iterations or 10 000 iterations
without an increase in the objective function.

Let ω be a real value in the interval [0, 1]. To seed the CIP
vector, λ, in 50 chromosomes in the initial population, we use
the seeding function, denoted σ(t, ω), for each time-window
t = 1, . . . , 96, given by (9). The schedule for the customer
load was randomly generated for each seed. The 50 seeds
were generated using values ω = n/49, n = 0, . . . , 49

σ(t, ω) =
{

ωs(t) s(t) ≥ r(t)
ωr(t) s(t) < r(t).

(9)

The rest of the chromosomes in the initial population are
randomly generated. For each gene in the CIP vector, repre-
senting the cost in cents/kWh at time t, a random value is
generated in the interval [0, max(r(t), s(t))]. For each gene
in the schedule, representing the scheduled time of load i,
a random value in the interval [0, 1] is generated.

C. Pricing Data

The utility pricing and spot market pricing information used
in the simulation were real data from Saturday July 9, 2011,
obtained from ComEd residential real-time pricing [38] and
PJM [39], respectively. This data is given as 24 one-hour inter-
vals. The day-ahead forecast pricing is given in Fig. 5(a) and
the actual pricing is given in Fig. 5(b). The data in Fig. 5(a)
is used by the GA to determine λ and the schedule of loads.
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In Section V, we will evaluate the aggregator profit using the
actual price data in Fig. 5(b) with the solution obtained using
the forecast price data.

D. Customer

1) Customer Overview: In our simulation study, 5555
customers were considered. Each customer has a baseline load
and a set of schedulable loads, as described in Section IV-D3.
When the aggregator wants to reschedule a customer load, the
customer may veto (i.e., γ = 0) using the process described
in the following subsection. In this case study, 56 642 loads
were available to be rescheduled from the 5555 customers.

2) Customer Behavior: A key assumption in the proposed
DR methods is customer participation. We model the behav-
ior of each customer for determining whether or not they will
allow the aggregator to reschedule their smart appliances using
the proposed α-model. In the α-model, each schedulable load
i has an associated threshold metric for “customer comfort”
in percent, αi. Let ci_0 be the original cost of running load
i at the utility real-time price and ci_sch be the rescheduled
cost of running load i at the CIP offered by the aggrega-
tor. For the owner of load i to allow it to be rescheduled
(i.e., γ = 1), the inequality ci_sch ≤ αici_0 must hold. This
new model allows flexibility for the customer on a load-by-
load basis. Additionally, the customer is always guaranteed
(if its loads are used by the aggregator), to save 1 − αi times
the cost of running load i compared to paying the real-time
price. The user inconvenience of the rescheduling of loads is
captured through the γ value as opposed to the time dependent
models in [40] and [41]. The customer γ values are private,
and the aggregator is assumed to operate without receiving
this information explicitly.

We use the coefficient-of-variation-based method to gener-
ate the α values for each load i, similar to generating task
execution times for a heterogeneous suite of machines [42].
We offer an analogous method of generating load α val-
ues for a heterogeneous suite of customers. Let μa be the
desired average load α value for all loads, σa be the desired
coefficient-of-variation of the load types, and σc be the desired
coefficient-of-variation of the customers within a load type.
For each load type k (given from the rows of Table I), we
sample from a Gamma distribution with mean μa and stan-
dard deviation σa to obtain the mean α value for load type k,
denoted μa,k. For each customer that owns load type k, obtain
αi by sampling a Gamma distribution with mean μa,k and stan-
dard deviation σc. This gives similar α values for each type
of load, and thus similar customer behavior. This approach
was taken because it is assumed that customers will act sim-
ilar regarding the use of load types (e.g., more flexible with
laundry and less flexible with the TV).

A parameter sweep was performed on the input values
μa, σa, and σc. A representative result is shown in Section V
using the inputs μa = 0.75, σa = 0.10, and σc = 0.05. In
general, the magnitude of the CIP is sensitive and positively
correlated to μa (i.e., as μa increases, the CIP proportionally
increases with respect to the real-time price). Values of σa and
σc are positively correlated with the noise level of the CIP.

TABLE I
SCHEDULABLE SMART APPLIANCES

3) Customer Loads: Two types of loads are assumed to
be available for each customer in this paper: 1) baseline
and 2) schedulable (smart) appliances. The baseline load is
divided into thermal, modeled as air conditioning [43] and
electric water heaters [25], and other nonschedulable loads.
The nonschedulable loads are probabilistically generated for
each customer based on the data in [15].

A probabilistic model for 18 generic schedulable appliance
types is given in Table I. The penetration level gives the prob-
ability that an appliance is present for a given customer; if it is
present, the rated power of the appliance, as well as the start
hour, is obtained from a normal distribution. Values in Table I
were chosen so that the total load reflects actual energy use
of an average household. Similar to the nonschedulable loads,
a set of schedulable loads corresponding to each customer is
generated probabilistically using the data in Table I.

Each probabilistically generated load i has an associated
availability window, (Ai_start, Ai_dur), that describes the time-
window that the customer has allocated for load i to be
scheduled. Recall that ti_start is the originally scheduled starting
time for load i. Let U(δi, 96) be a uniform random vari-
able in the interval [δi, 96]. In this paper, to generate the
availability window for each load i, an interval of duration
U(δi, 96) is generated around the starting time ti_start. That is,
Ai_dur = U(δi, 96) and Ai_start = ti_start − Ai_dur/2.

V. RESULTS

A total of 56 642 schedulable loads (i.e., I = 56 642) from
the 5555 customers were randomly generated using the data
from Table I. The schedulable customer loads correspond
to 11.2% of the total energy used by the 5555 customers.
To capture the algorithm in steady state, a 2-h window was
added to the start and end of the simulation. Any appli-
ance load that occurs within these windows did not contribute
toward the objective function (i.e., only the 24-h window
was used for the objective function calculation). The GA
ran for 375 000 iterations before terminating, taking 113 min
on an Intel i7 4900MQ processor running at 2.8 GHz using
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a C++ implementation in Ubuntu Linux. The final objective
value, i.e., forecast aggregator profit, was P = $813.92 [based
on Fig. 5(a)]. When evaluated for the actual real-time and spot
market pricing, the schedule determined by the GA resulted
in an aggregator profit of $947.90 [based on Fig. 5(b)]. This
increase in profit from forecast to actual is because the actual
spot market pricing at the peak period was much larger than
forecast (as shown in Fig. 5), leading to an increase in profit
from the N component of the profit function. From a customer
standpoint, the total savings of all 5555 customers was $460.31
and $794.93 when using the forecast and actual data, respec-
tively, for the 24-h period under consideration. The increase in
savings is also due to the large increase in peak real-time price
that the customer no longer has to pay. For the settlement of
the customer DR, the aggregator uses the actual spot market
price data. The total customer savings implies an average sav-
ing of $0.14 per customer with a range of savings between
$0.02 and $0.33. This range is indicative of the possible mon-
etary benefits from the customer being more flexible with their
loads (in the availability of the load and the customer α values)
and bringing more energy (i.e., a greater number of assets) to
the aggregator to participate in DR. Although the average daily
savings may appear small, in this paper, we are focusing on the
viability of the aggregator.1 In general, the aggregator makes
less profit and the customer saves more when the μa value is
decreased, and vice-versa.

Fig. 6 shows the change in the load before and after the opti-
mization occurs. Fig. 6(a) compares the system load before
and after the optimization. As hypothesized, if the aggrega-
tor entity optimizes purely for economic reasons, the overall
change in the system peak load may be beneficial, as is the
case in this paper. The aggregator-based residential DR pro-
gram was able to reduce the peak of the participating 5555
customers by 12.5%, resulting in a 2.66 MW reduction at
4:45 P.M. In Fig. 6(b), the portion of the load that is schedu-
lable is shown. The area under the curve is 11.2% of the
total system energy, with 19.4% of the total load reschedula-
ble at the peak. This figure shows in greater resolution when
the rescheduling of customer loads occurs. Over half of the
schedulable load at the peak is moved off-peak. The reason this
value is not higher is due to the customer availability windows
described in Section III-B. Because of this constraint, not all
of the load can be moved to off-peak hours. Fig. 6(c) explicitly
shows the difference in load between the system before and
after the DR. The green shaded regions with the “/” hash-
ing are the areas that the load was reduced, corresponding
to the reduction in the peak. In the other areas, shaded red
with “\” hashing, the load was increased, corresponding to the
load moving to off-peak hours. The large negative difference
in load directly corresponds to the component of aggregator
profit obtained by selling negative load, N, to the spot market.
The positive difference in load is the portion of the load that
contributes to the S − B component of the aggregator profit
function.

1Monetary benefits, however, are not the only reason that early adopters
may want to participate. It has been shown that often customers are motivated
by altruistic reasons, such as environmental benefits (i.e., “being green”) [44].

Fig. 6. Change in load from before and after the aggregator DR action.
(a) Overall system load of the 5555 customers. (b) Schedulable load.
(c) Difference in load (i.e., after minus before).

The customer pricing incentive obtained by the optimiza-
tion, is shown in Fig. 7. Fig. 7(a) shows the incentive pricing
compared to the forecast real-time and spot market prices. The
CIP is lower than the forecast real-time price and, in general,
the actual real-time price [Fig. 7(b)]. This indicates the cus-
tomer receives a competitive, and reduced, rate of electricity
for participating with the aggregator [including a hedge against
the risk of large price spikes in the real-time price, such as at
4 P.M. in Fig. 7(b)].

To estimate the response of the spot market to the aggregator
DR, a pseudo-spot-market-response is emulated. A sixth-order
polynomial was fit to the PJM forecast spot market price for
July 9, 2011 describing the spot market price (in cents/kWh)
as a function of the load (in MW). The coefficients of the poly-
nomial are given in the appendix. The adjusted R2 value for
the polynomial to the data is 0.987, indicating a close fit. The
l2-norm of the difference between the price determined by the
polynomial and the original forecast price is 0.516 cents/kWh.
Note that this is a simple model for quantifying the changes
the DR has on the market for July 9, 2011, and should not be
generalized as a predictive tool.

The difference in system load due to the DR action
[i.e., Fig. 6(c)] was added to the forecast PJM clearing
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Fig. 7. Real-time and spot market pricing compared to the CIP. CIP compared
to the (a) day-ahead forecast price and (b) actual price.

Fig. 8. Results of the pseudo-market-response derived from the sixth-order
polynomial regression model. (a) Predicted change in forecast spot market
price as a result of the DR. (b) Spot market price that will make aggregator
break-even (no profit).

load (available in [39]) and the polynomial fit was used to
determine the resultant spot market price. The change in
spot market price due to the DR is visualized in Fig. 8(a).
The l2-norm of the difference between the emulated pseudo-
spot-market-response and the forecast spot market price is
0.517 cents/kWh. When compared to the original l2-norm of
0.516, this indicates the change in spot market price from
the DR from one aggregator entity is small. However, when
many aggregators exist within the purview of a single ISO,
this market response will need to be investigated further.

To determine the breakeven point for the profit of the aggre-
gator with the given DR, the forecast price was scaled until
P = $0. A scalar value, β, was applied in a positive manner
at the times the load was increased and a negative manner at
the times the load was decreased, the red and green areas in
Fig. 6(c), respectively. This was done to increase the cost from
the B term in the red shaded areas and to decrease the profit

from the N term in the green shaded areas. The breakeven
price was determined with β = 1.141, given in Fig. 8(b).

VI. CONCLUSION

We proposed an aggregator-based residential DR approach
for scheduling residential customer assets. A CIP structure was
proposed to compensate the customer for the inconvenience of
rescheduling their assets. This new pricing structure gives the
customer a near real-time choice of electricity supplier in a
fully deregulated market scenario. A heuristic framework was
designed to perform an optimization on the profit of the aggre-
gator. To validate the heuristic framework, a system comprised
of 5555 customer households and 56 498 schedulable loads
was simulated using a GA implementation of the framework.
The CIP found by the GA was, in general, lower at all times
than the customer would pay via real-time pricing. Despite
this, the aggregator was able to make a profit by selling neg-
ative peak load to the spot market. This showed an example
of optimizing for purely economical reasons in the form of
aggregator profit, and enacting an overall change on the system
peak load. This change benefits the customer of the aggrega-
tor (in the form of reduced cost of electricity for schedulable
loads), the aggregator (in the form of a profit), and also those
customers not participating with the aggregator (because the
overall system peak is lowered as a common good).

APPENDIX

MARKET RESPONSE APPROXIMATION

Let sp(x) be the predicted spot market price in cents/kWh
for a given load x in MW. The sixth-order polynomial approx-
imation of sp(x) for ComEd within PJM for July 9, 2011, is
given in (10). Note that the regression fit is empirical over the
domain x = [69 200, 112 000] MW and should not be used for
loads outside of these values

sp(x) = 1.84 × 10−26x6 − 9.60 × 10−21x5

+ 2.07 × 10−15x4 − 2.38 × 10−10x3

+ 1.52 × 10−5x2 − 0.516x + 7230
for 69 200 ≤ x ≤ 112 000.

(10)
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