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Attraction-Repulsion Model-Based Subpixel
Mapping of Multi-/Hyperspectral Imagery

Xiaohua Tong, Xue Zhang, Jie Shan, Member, IEEE, Huan Xie, and Miaolong Liu

Abstract—This paper presents a new subpixel mapping method
based on subpixel attraction-repulsion. The proposed method is
formulated as an optimization problem with respect to attrac-
tion-repulsion among subpixels and is used to reconstruct a finer
spatial resolution image from a lower resolution one. A compre-
hensive experiment is conducted to demonstrate the performance
of the proposed method, by comparing it with the other three
existing subpixel mapping methods, i.e., linear optimization, pixel
swapping and spatial attraction model methods. In the experi-
ment, both a synthetic image with known fractional abundances
and an EO-1 Hyperion hyperspectral image of Shanghai were used
to evaluate performances of the subpixel mapping methods. The
experimental result shows that by using spatial dependence with
attraction between the same types of ground objects and repulsion
between different types of these objects, the proposed subpixel
mapping method achieves a better performance on subpixel map-
ping than the other three methods.

Index Terms—Attraction-repulsion model, endmember, spec-
tral mixture model, subpixel mapping.

I. INTRODUCTION

W ITH the emergence of more Earth observation satellites,
remote sensing imagery has been increasingly used in

many applications, including land cover detection, environmen-
tal monitoring, and mineral exploration. A common problem
associated with the application of satellite images, however,
is the frequent occurrence of mixed pixels [1]. Mixed pixels
may be attributed to the presence of small subpixel objects, for
example, small areas of wetland in a dry land environment, or
to the mixed spectral response of edge pixels, such as along the
contact line between two spectrally different land cover types
[2], [3]. These mixed pixels pose a difficult problem for land
cover mapping and greatly restrict image recognition accuracy,
as their spectral characteristics are not representative of any
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single land cover type. Therefore, it is important to enhance im-
age spatial resolution, principally by software methods, while
retaining spectral feature information within the constraints of
current hardware technology [4].

To identify mixed pixels, many subpixel level classifiers have
been proposed using spectral mixture analysis. This analysis
assigns a pixel to several land cover types, in proportion to
the area of the pixel that each type covers. Many researchers
have addressed this spectral mixture problem. Among the most
common techniques for subpixel-based soft classification are
independent component analysis [5], [6], the conventional spec-
tral angle mapper [7], linear spectral mixture analysis [8]–[18],
nonlinear spectral mixture analysis [19], [20], Gaussian mix-
ture discriminated analysis [21], and artificial neural networks
[22]–[24].

As a subpixel-based soft classification, spectral unmixing
estimates the proportions of land cover types within each pixel.
The result is a series of fraction abundance images of each land
cover type. Although spectral unmixing can locate all types of
land cover in each pixel with varying proportions, it does not
indicate how those types are spatially distributed within the
pixel. As a result, there will be a loss of spatial information
in remote sensing imagery. This loss can severely hamper
the accuracy of image processing. It is essential that subpixel
mapping determine the most likely locations of the fraction
abundance of each land cover type within the pixel [25]. Sim-
plified methods termed “hard classification” [26], [27] may
be used to convert the fraction abundance into a traditional
land cover image, wherein the pixel would be assigned to a
specific land cover type according to the dominance occupancy
by fraction abundance. However, this would result in loss of
spatial detail in the same way as traditional hard classifiers,
which ignore much ground object information in a one-class-
per-pixel land cover image [28].

Atkinson [28], [29] introduced the concept of subpixel map-
ping using the pixel swapping algorithm as an alternative
solution to the problem. Taking the fraction abundance image
as initial data, subpixel mapping can retrieve an appropriate
spatial location for land cover fractions from soft classification
[30]. This approach divides pixels into several smaller units
and assigns a land cover to units at the subpixel level, and
spatial dependence between pixels in the original image is
applied to locate a subpixel of a specific land cover. At the
same time, the number of subpixels is assigned to the corre-
sponding proportion of endmember fraction in a mixed pixel.
The spectral mixture analysis-based subpixel location method
can also perform super-resolution mapping of land cover at a
spatial resolution finer than the pixel size of the original image.
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Following Atkinson, many researchers have proposed subpixel
mapping methods that improve image resolution, which are
reviewed as follows.

1) Spatial dependence-based algorithms. Several research-
ers obtained subpixel mapping images based on spatial
dependence between subpixels and pixels, by creating
new rules to assign the subpixel to a specific land cover
type at the location, or by improving the Atkinson’s pixel
swapping algorithm. Based on the assumption of spa-
tial dependence, Verhoeye and de Wulf [25] proposed a
subpixel mapping method with linear optimization tech-
nique, to assign several fraction values to subpixels and to
generate a land cover map at the subpixel level. Verhoeye
and de Wulf’s approach is also regarded as a geostatistics
method. Mertens et al. [31] presented a subpixel mapping
algorithm based on the spatial attraction model to produce
hard classifications at higher resolution. In the algorithm,
spatial dependence was assumed to be a neighborhood
of pixels attracting subpixels, and the attraction between
subpixel or pixel was used to assign subpixel location
to maximize the attractive interaction. Makido et al. [32]
proposed three improved pixel swapping-based methods
to achieve the spatial distribution of multiple land cover
classes in subpixel images: 1) Sequential categorical
swapping, a modification of a binary pixel swapping algo-
rithm, locates each class in turn to maximize internal spa-
tial correlation. 2) Simultaneous categorical swapping,
which simultaneously examines all pairs of cell-class
combinations within a pixel to determine the most appro-
priate pairs of subpixels to swap. 3) Simulated annealing
to swap cells. Comprehensive experiments showed that
the simulated annealing-based pixel swapping approach
has greater flexibility than 1) or 2), although its con-
vergence is relatively slow. Makido and Shortridge [33]
improved the pixel-swapping optimization algorithm of
Atkinson for mapping subpixel land cover images. Two
different simulation models were used to develop spa-
tially correlated binary class raster images. These images
were then resampled to generate a series of represen-
tative medium-resolution class images. The relationship
between subpixel image resolution and spatial correlation
was analyzed to locate the subpixels. Shen et al. [34]
proposed a novel pixel-swapping algorithm to reduce
computation time and to improve subpixel mapping ac-
curacy. That algorithm has an initialization based on a
subpixel/pixel spatial attraction model, and locates the
subpixels of multiple land cover types.

2) Fuzzy algorithms. Many efforts have been made to map
subpixel images with fuzzy classifiers or fuzzy algorithms
integrated with the pixel-swapping method. Foody [35]
presented an image sharpening-based fuzzy subpixel soft
classifier that acquires the subpixel distribution of land
covers. Thornton et al. [36] proposed a supervised fuzzy
c-means algorithm within the pixel swapping algorithm,
to generate subpixel imagery at fine spatial resolution.
In this method, mathematical morphology was used to
suppress error in the subpixel mapping.

3) Geostatistics approaches. As stated above, Verhoeye and
de Wulf [25] proposed a geostatistics approach with lin-
ear optimization technique to achieve the subpixel map-
ping image. Kasetkasem et al. [37] used a Markov
random field model-based approach to generate super-
resolution land cover maps from remote sensing data.
They showed significant improvement in the accuracy of
land cover maps with finer spatial resolution, compared to
that achieved by the linear optimization of Verhoeye and
Wulf [25]. Boucher and Kyriakidis [38], [39] proposed a
super-resolution land cover mapping based on the geosta-
tistical method of kriging and stochastic simulation indi-
cators. They also used a cokriging indicator to estimate
pixel probability at higher spatial resolution, and their
method was used for a specific land cover type, based
on fraction abundances with lower spatial resolution.
Debella-Gilo and Kääb [40] evaluated the performance
of two fundamentally different approaches to achieve a
subpixel precision of normalized cross-correlation, by
measuring surface displacements of mass movements
from repeat optical images. They first interpolated image
intensities to a desired subpixel resolution, using bicubic
interpolation prior to the actual displacement matching.
The image pairs were then correlated at the original image
resolution, and peaks of the correlation coefficient surface
were located at the desired subpixel resolution using three
techniques—bicubic interpolation, parabola fitting, and
Gaussian fitting.

4) Image fusion methods. Image fusion of spatial and spec-
tral information is also an effective approach to map
subpixel images. Gross and Schott [41], [42] proposed
an image sharpening method based on an accurate image
fusion algorithm that integrates spectral and spatial infor-
mation of an image, thereby attaining higher resolution
images from lower resolution hyperspectral images.

5) Intelligent algorithms. There are also many artificial
intelligence methods to obtain subpixel images. Tatem
and Nguyen [43]–[47] improved Hopfield artificial neu-
ral networks to acquire subpixel location information.
Mertens et al. [48] presented a genetic algorithm, com-
bined with the assumption of spatial dependence, to
assign a location to every subpixel. The algorithm was
tested on synthetic and degraded real imagery, obtain-
ing greater accuracy than with the conventional hard
classifications. The method of Mertens et al. [30] uses
wavelets and artificial neural networks. Their wavelet
multi-resolution analysis facilitates the link between dif-
ferent resolution levels, and a higher resolution image is
constructed after estimation of detailed wavelet coeffi-
cients with neural networks.

6) Sensor response model-based approaches. As an alterna-
tive to image-based methods, some approaches are based
on geometrical models of sensors to map subpixel im-
ages. Ruiz and Lopez [49] used the point spread function
[50] of the SPOT sensor to obtain the spatial location
of urban land cover subpixels, based on de-convolution
filtering. Kaiser and Schneider [51] performed spatial
subpixel analysis to enhance images of fine-structured



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TONG et al.: ATTRACTION-REPULSION SUBPIXEL MAPPING OF MULTI-/HYPERSPECTRAL IMAGERY 3

Fig. 1. Study area and experimental imagesa. (a) Study area. (b) Hyperion image from 2006 (a false color image composed of R:203, G:53, B:23).
(c) Partial Hyperion image taken from (b). (d) Partial QuickBird image corresponding to (c).

landscapes, based on geometric description of object
boundaries that intersect pixels and thus lead to mixed
pixels. They found that the spectrum value of any mixed
pixel depends on sensor spatial response, as well as
corresponding geometric characteristics of land cover
distribution.

With regard to the aforementioned approaches, there are
some shortcomings for existing subpixel mapping methods, as
follows. 1) Spatial dependence simply accounted for the attrac-
tive relationship between the same ground objects, which is
regarded as subpixel attractiveness in [28], [29], and [34] and
as subpixel/pixel attraction by Mertens et al. [31]. However,
the repulsion between different ground objects should also be
considered as a spatial dependence relationship. 2) Sensitivity
to the scale factor of subpixel mapping. When the scale factor
of subpixel mapping increases, the spatial location of subpix-
els tends to be incorrect, particularly at a larger scale factor,
resulting in unsustainable mapping accuracy. 3) Sensitivity
to initialization of the location of subpixels. Because of the
sensitivity to the random initialization procedure that begins
the location of subpixels, stability and accuracy of the subpixel
mapping degrades.

Therefore, a new subpixel mapping method based on sub-
pixel attraction-repulsion is presented here. In contrast to the
traditional subpixel mapping methods, the proposed method
makes use of spatial dependence with not only attraction be-
tween the same kinds of ground objects, but also repulsion
between different kinds of these objects. In the study, both a
synthetic image with known fractional abundances and an EO-1
Hyperion hyperspectral image of Shanghai are used to evaluate
performance of the proposed method, through comparison with
the other subpixel mapping methods. Like these other methods,
the proposed one is capable of processing multiple fractions
of land cover types for representing ground truth in detail.
Moreover, the proposed method can achieve a subpixel image
with robust accuracy at multiple scale factors, particularly in
the case of a larger scale factor.

II. STUDY AREA AND DATA USED

The city of Shanghai, on the eastern Yangtze River estuary,
was chosen as the study area [Fig. 1(a)]. This is a typical
urban area with a mixture of land cover types, i.e., water,
vegetation, impervious surface, soil, and shade. Vegetation type
can be subdivided into high moisture and low moisture, and
impervious surface type into high albedo impervious and low
albedo impervious.

In the study, one strip of a Hyperion hyperspectral image
[Fig. 1(b)] from November 8, 2006 was used. Its size is 1091 ×
3461 pixels, with spatial resolution of 30 m by 30 m. A total
of 155 “stable” bands out of the 242 bands in the image
were used for subpixel mapping. The selected bands avoided
most residual atmospheric noise effects [52]. The test data
presented in Fig. 1(c) are a subset of the entire image strip in
Fig. 1(b), covering an area of 192 × 268 pixels. In addition,
one QuickBird multi-spectral image [Fig. 1(d)] with spatial
resolution 2.4 m, obtained in September 2006, was used as a
reference map and geo-registered to the Hyperion image. All
experimental data are labeled in Fig. 1(a).

III. METHODOLOGY

Fig. 2 shows the entire methodology for the study. There are
three main parts, as follows: 1) Subpixel mapping based on the
subpixel attraction-repulsion model; 2) accuracy assessment of
subpixel mapping based on the schematic diagram explanation,
visual comparison and quantitative assessment; and 3) analysis
of impact of the spectral mixture model on the accuracy of
subpixel mapping.

Assuming that the number of land cover types is C, the idea
of the proposed subpixel mapping method and its operational
rules are addressed as follows.

A. Achieving Fraction Abundance of Land Cover Type

The source of fraction abundance images used for subpixel
mapping is obtained from the result of spectral mixture analysis
of land covers in Tong et al. [53].
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Fig. 2. Methodology of the study.

B. Initialization of Subpixels

The number of subpixels for each land cover type is calcu-
lated based on the obtained fraction abundance in each pixel,
and it remains constant throughout the subpixel location and
adjustment process. The scale factor ς = n (i.e., each pixel
is divided into n× n = n2 subpixels) also remains constant
during algorithm processing. Therefore, the spatial resolution
of the generated subpixel image with specific scale factor can
be computed as S/ς , where S is spatial resolution of the original
image, from which the fraction abundance is achieved. Initially,
subpixel positions are located either in sequence [Fig. 3(b)(1)],
or randomly [Fig. 3(b)(2)].

In Fig. 3, the quality of a single subpixel is assumed to be 1,
and the total subpixel quality of each land cover type in a pixel
is equivalent to the number of subpixels for that land cover type
in the pixel.

C. Calculation of Attraction-Repulsion Between
Two Subpixels

Based on the computed number of subpixels and their
initialization, attraction-repulsion between two subpixels, or

Fig. 3. Initialization of subpixel mapping. (a) Fraction abundance, and
(b) initial location of subpixels (in case with scale factor ς = 5);
(b)(1) denotes initial location in sequence, and (b)(2) initial random location.

that between a subpixel and pixel, is calculated according
the pixel neighborhood. A neighborhood of 3 × 3 pixels is
used for the attraction-repulsion computation, and subpixels
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Fig. 4. Definition of distance calculation between subpixels in a pixel, and
between pixels and subpixels (ς = 5). Adapted from Mertens et al. [31].

of other pixels outside this neighborhood are not consid-
ered in this computation. The attraction-repulsion calcula-
tion between subpixels (pixels) follows the rule that the
same materials attract each other, while different ones repel.
Therefore, the attraction-repulsion between two subpixels is
expressed by

p12 = k · m1m2

r212
(1)

where p12 is the attraction or repulsion, m1 and m2 are qualities
of two subpixels (pixels), respectively, r12 is the distance
between two subpixels within the same pixel, or the distance
between a subpixel in one pixel and a subpixel(s) in another
pixel, and k is the attraction-repulsion factor.

1) Distance Calculation Between Two Subpixels: The dis-
tance calculation is critical in the attraction-repulsion model.
For a given scale factor ς , there are generally two cases for
calculating distance between two subpixels. Fig. 4 shows the
definition of distances when ς = 5. The first case is when the
two subpixels are within the same pixel; their distance is defined
as that between their center points, for example the distance be-
tween A and B in Fig. 4. The second case is that when the sub-
pixels are within two different pixels; their distance is defined
as that between the center point of the current subpixel within
one pixel and the average position of the subpixels within the
other pixel, for example the distances between A and C, D, E
in Fig. 4.

In the figure, the unit length of a subpixel is defined as
L = 1/n for the scale factor ς = n(n = 5). Therefore, points
A and B are center points of the two subpixels in the current
pixel (i, j), and points C, D, and E are average positions of
the subpixels in pixels (i− 1, j), (i+ 1, j + 1) and (i, j − 1),
respectively. Assuming in Fig. 4 that each pixel is divided into
n× n = n2 subpixels, the area of each subpixel is 1/n2, which
corresponds to the fraction abundance for a specific land cover

type. The average position of subpixels within the same pixel is
calculated by

⎧⎪⎨
⎪⎩

x̄ = 1
m

m∑
i=1

xi

ȳ = 1
m

m∑
i=1

yi

(2)

where (x, y) are coordinates of the average position, (xi, yi)
are coordinates of subpixels belonging to the same land cover
type within a pixel, and m is the number of subpixels. Thus,
coordinates of points A, B, C, D, and E in Fig. 4 are repre-
sented by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A : (i− 1 + 5/2n, j − 1 + 3/2n)
B : (i− 1 + 3/2n, j − 1 + 9/2n)
C : (i− 2 + 3/2n, j − 1 + 5/2n)
D : (i+ 3/n, j + 2/n)
E : (i− 1 + 41/10n, j − 1 + 13/10n).

(3)

Thus, the distances between point A and points B, C, D, and
Eare calculated by

d(s, t)2 = (xs − xt)
2 + (ys − yt)

2 (4)

where (xs, ys) are the coordinates of point A, and (xt, yt) are
the coordinates of points B, C, D, or E, as represented in (3).

2) Calculation of Attraction-Repulsion Values: In the pro-
cess of subpixel mapping based on the attraction-repulsion
model, attraction-repulsion values are iteratively calculated to
adjust the location of each subpixel. When calculating the
attraction-repulsion value p between two subpixels, k in (1) is
set to 1 for subpixels of the same land cover types, and −1 for
subpixels of different land cover types.

D. Location for Subpixels

Based on the aforementioned rule, subpixels are iteratively
adjusted at different positions within a pixel to make the total
attraction-repulsion value (P ) maximal

maxP =

N×M∑
k=1

Pk (5)

Pk =

N×M∑
t �=k

pkt (6)

where N is the number of image pixels in a pixel neighborhood,
M is the number of subpixels in each pixel, Pk is the resultant
attraction-repulsion value of the kth subpixel, and pkt is the
attraction-repulsion value between subpixels k and t, as com-
puted by (1). If the total attraction-repulsion values for all pixel
neighborhoods are maximized, then the final subpixel image
would be the objective image result with improved spatial
resolution. Moreover, in the process of subpixel mapping based
on the attraction-repulsion model, subpixel location adjustment
includes a series of iterations for subpixel swapping. Fig. 5
shows a schematic diagram of the process of subpixel mapping,
for four land cover fractions.
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Fig. 5. Process of subpixel mapping in a 3 × 3 pixel scene, adapted from
Atkinson [28]. (a) Fraction abundance of four land cover types, (b) location of
subpixels for each fraction in subpixel mapping, and (c) location of subpixels
in pixel neighborhood, through subpixel mapping.

During the process of swapping subpixels in the current
pixel, assume that ximax is the position of the subpixel corre-
sponding to the maximum resultant attraction-repulsion value
Pmax(i) for the ith land cover type, and xjmin is the position of
the subpixel corresponding to the minimum resultant attraction-
repulsion value Pmin(j) for the jth land cover type. Thus, based
on (1), ximax and xjmin are calculated by

ximax={x∈xik|Pmax(i)=max (Pk(i)) , k=1, 2, . . . , Si} (7)

xjmin={x∈xjk|Pmin(j)=min (Pk(j)) , k=1, 2, . . . , Sj} (8)

where Pk(i) and Pk(j) are resultant attraction-repulsion values
for the kth subpixel of the ith and jth land cover types in the
current pixel, respectively; and Si and Sj are the numbers of
subpixels of the ith and jth land cover types.

Accordingly, positions of the two subpixels corresponding
to the maximum and minimum resultant attraction-repulsion
values (xmax and xmin) of all subpixels, for all land cover types
in the current pixel, are calculated by

xmax={x∈ximax|Pmax=max (Pmax(i)) , i=1, 2, . . . , C} (9)

xmin={x∈xjmin|Pmin=min (Pmin(j)) , j=1, 2, . . . , C} (10)

where C is the number of land cover types.

Assuming that land cover types at positions xmax and
xmin are a and b; thus, the two subpixels at xmax and xmin

are swapped if Pxmax
(b) + Pxmin

(a) > Pxmax
(a) + Pxmin

(b)
(where a �= b). Otherwise, the subpixels are not swapped. Po-
sitions of the two subpixels with the second maximum and
minimum resultant attraction-repulsion values in the current
pixel are subsequently labeled and attained, for executing the
next adjustment process. The adjustment process is repeated
until a total of C adjustments are conducted for the current
pixel (C is the number of land cover types); the process then
transfers to the next pixel in the neighborhood. The termination
rule in a neighborhood can be customized by setting the maxi-
mum number of iterations for each neighborhood, or specified
based on convergence, for which the optimum total attraction-
repulsion value satisfying (5) is pre-defined. Therefore, when
the total attraction-repulsion values of all pixel neighborhoods
are maximal, as presented in (5), the optimal subpixel image is
obtained, and each subpixel is located with the best position.

E. Evaluation and Experiments

To evaluate performance of the proposed subpixel mapping
method, we compare the proposed method with the three ex-
isting ones. Those three are as follows. 1) The linear optimiza-
tion subpixel mapping method of Verhoeye and de Wulf [25].
2) Atkinson’s pixel-swapping subpixel mapping algorithm [28],
[29], [34]. 3) The spatial attraction model-based subpixel map-
ping method of Mertens et al. [31]. Fig. 1(c) shows a subset of a
Hyperion hyperspectral image used in the comparison. In addi-
tion, a synthetic image was used to evaluate performance of the
four subpixel mapping methods. Moreover, three approaches
were used to assess the error of these four methods—the
schematic diagram, visualization assessment, and quantitative
analysis. Error assessment of the four methods based on the
Hyperion hyperspectral image was done in two ways. The first
is use of a QuickBird multi-spectral image as reference data,
and the second is based on the pyramid mixture model.

Errors of the four subpixel mapping methods at multiple
scale factors were evaluated with the reference data set, using
a stratified, systematic random sampling method [54]. When
a subpixel mapping is conducted at a scale factor, e.g., ς = 2,
spatial resolution of the mapped image would be 15 m. A total
of 50 sample units were collected from the mapped image for
error assessment, and each sample unit was 3 × 3 pixels. The
QuickBird image with spatial resolution 2.4 m was resampled
to 5 m resolution, and a corresponding sample unit of 9 ×
9 pixels was obtained from the reference image covering the
same area as the mapped image. For each sample unit, a pixel
at a given position in the mapped image is scaled to determine
ground truth land cover type, by comparing pixels at the same
position in the reference image. The reference image was
generated from a hard classification of the resampled QuickBird
image, and the fraction abundance of each land cover type
in the pixel was calculated in the sample unit. These fraction
abundance images were used as input for subpixel mapping,
and the hard-classified image from the QuickBird image used
as reference data for assessing the error of subpixel mapping.
Therefore, with the given spatial samples and located subpixels
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in the mapped images, overall accuracy (A) of the subpixel
mapping method and its root mean square (RMS) errors (ε) are
calculated by

A =

C∑
k=1

Ak/C (11)

ε =

C∑
k=1

(εk − ε)/C (12)

where C is the number of land cover types, Ak and εk = 1−
Ak are percentages of correct location and wrong location of
subpixels for the kth land cover type, and ε =

∑C
k=1 εk/C is

the average percentage of wrong location of subpixels for all
land cover types. Similarly, for any scale factor (from ς = 2 to
ς = 8), error assessment of subpixel mapping is conducted by
comparing the mapped image with the reference one.

The overall accuracy in (11) indicates the total precision
of subpixel location. The RMS error in (12) measures the
difference between location values of subpixels based on the
four subpixel mapping methods and actual values observed
from spatial sampling units in the reference image. It is clear
that the percentage of correct location in subpixel mapping
increases overall accuracy and simultaneously decreases RMS
error.

IV. RESULTS AND DISCUSSION

A. Error Assessment of Subpixel Mapping Based on
Schematic Diagram

In this section, two cases in terms of scale factor are il-
lustrated with schematic diagrams, to assess performance of
the proposed subpixel mapping method by comparison with
the other three methods. The first case is for scale factor
ς = 3 (Case I), the second for ς = 5 (Case II). Fig. 6 shows
a comparison of schematic diagrams between the proposed
attraction-repulsion model and the attraction model [31], for the
two cases.

In Fig. 6, two 3 × 3 pixel neighborhoods were used for both
cases. Subpixels in the center pixel of both neighborhoods were
located through swapping position or assigning with a land
cover type. In both cases, because no unique accurate solu-
tions could be achieved using the linear optimization subpixel
mapping method, we only compared the pixel swapping, spatial
attraction model and our proposed attraction-repulsion model-
based methods. Determination metrics of final neighborhood
status shown in Fig. 6 were calculated using the three sub-
pixel mapping methods. Table I shows these metrics for the
three methods, in the two cases. In the table, P attactiveness

is the determination metric of the pixel swapping method,
P attaction is that of the spatial attraction model method, and
P attaction−repulsion is that of our method.

Fig. 6(a)(1) and (b)(1) show results based on the pixel
swapping and spatial attraction model methods, which only
account for spatial dependence of the attractive relationship.
Fig. 6(a)(2) and (b)(2) show results based on the proposed
method that considers spatial dependence of both attractive and

Fig. 6. Comparison of schematic diagrams between proposed attraction-
repulsion model and attraction model, in two scale factor cases (ς = 3 and
ς = 5). (a) Case I: Comparison between attraction model and attraction-
repulsion model as ς = 3; (b) Case II: Comparison between attraction model
and attraction-repulsion model as ς = 5.

TABLE I
DETERMINATION METRICS OF THREE SUBPIXEL MAPPING

METHODS IN THE TWO CASES

repulsive relationships. In Case I, as shown in Fig. 6(a)(1), the
subpixel A1 labeled “3” is located closer to those five subpixels
labeled “3” in a left pixel, aiming to achieve a greater attraction
between the current pixel and its neighborhood pixels based on
the attraction model method. However, repulsion of subpixel
A1 labeled “3” from the four subpixels labeled “2” in the left
pixel is neglected, causing isolation of the subpixel A2 labeled
“2” from the four subpixels labeled “2” in the left pixel. Using
the proposed method, as shown in Fig. 6(a)(2), the subpixel
A2 labeled “2” is grouped with the four subpixels labeled “2”
in the left pixel. In Case II, as shown in Fig. 6(b)(1), the
subpixel C labeled “4” is located much closer to the subpixels
labeled “4” in the right pixel, based on the attraction model
method. However, this result isolates subpixel C from the four
subpixels labeled “4” in the left pixel and produces a hole
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within the subpixels labeled “3” to maximize attraction between
the current pixel and its neighborhood pixels. Therefore, as
shown in Fig. 6(b)(2), using the proposed method, subpixel D
labeled “4” is grouped with the homogeneous four subpixels
labeled “4” in the left pixel.

From the results in Fig. 6 and Table I, we see that the result
in Fig. 6(a)(2) and (b)(2) describes stronger spatial dependence
than that in Fig. 6(a)(1) and (b)(1). The reason for this trend is
that the proposed subpixel mapping method groups subpixels
of the same land cover type together as much as possible.
Therefore, with introduction of attraction and repulsion among
subpixels, the proposed method yields the results in Fig. 6(a)(2)
and (b)(2) of gathering subpixels. Both the pixel swapping
and spatial attraction model methods achieve the results in
Fig. 6(a)(1) and (b)(1) of isolating subpixels from the sets
of the same kind, toward maximizing the attraction correla-
tion. Consequently, the proposed method is better than both
pixel swapping and spatial attraction model methods, in terms
of retrieving the spatial dependence of ground truth in such
circumstances.

B. Error Assessment of Subpixel Mapping Using
Synthetic Data

In this section, performance of the proposed method is
demonstrated through comparison with the other three based on
a synthetic image. In this image, all fractional abundances are
known in advance. The synthetic data was first achieved from
hard classification of an artificial image, and it was degraded to
one with lower spatial resolution. Area proportions of each land
cover type in a pixel were then calculated, and the pixel size
adjusted for a specific resolution. The proportions were treated
as fraction abundance values, resulting from a soft classification
of the synthetic image with lower spatial resolution. These
fraction abundance images were finally used as inputs to the
subpixel mapping methods, for generating subpixel mapping
images. In addition, the original artificial image was used as
reference data for evaluating performance of the four subpixel
mapping methods. Fig. 7 shows the result of subpixel mapping
images generated by the four methods, based on synthetic data
with scale factor ς = 4. Table II shows overall accuracy and
RMS error of the subpixel mapping using the four methods,
based on synthetic data at different scale factors (ς = 2, 3, 4, 5,
6, 7, and 8).

From the results in Fig. 7 and Table II, we see that:
1) The spatial attraction model method achieves a better sub-
pixel mapping image than the linear optimization method, in
terms of overall accuracy and RMS error. However, the gen-
erated images based on both methods are somewhat different
from the reference image. 2) The result of subpixel mapping
using the proposed method is the best in terms of overall
accuracy and RMS error, compared to the other three methods.
The subpixel mapping image based on the proposed method is
closest to the reference synthetic data. 3) The pixel swapping
method achieves the subpixel mapping image closest to the
reference data. However, because of some incorrect subpixel
locations, both overall accuracy and RMS error are lower than
those of our proposed method.

Fig. 7. Mapped subpixel images resulting from the four methods and synthetic
data (ς = 4). (a) Linear optimization method, (b) pixel swapping method,
(c) spatial attraction model method, and (d) our proposed method.

C. Error Assessment of Subpixel Mapping Using Hyperion
Hyperspectral Image

Varying scale factors cause different rounding errors, which
in turn affect the accuracy of subpixel mapping. In this section,
an experiment with different scale factor scenarios was con-
ducted, to analyze scale factor impact on the error of subpixel
mapping. Rounding error was produced in this mapping by
conversion of the number of subpixels from the floating pro-
portion values in the fraction image. Similar to the evaluation
process of subpixel mapping with synthetic data, the reference
image was attained from hard classification of the QuickBird
image, as shown in Fig. 1(d). Using the reference image, we
compared errors of subpixel mapping at different scale factors,
i.e., ς = 2, 3, 4, 5, 6, 7, and 8. The 10-EM model was adopted
for subpixel mapping, which refers to the spectral mixture
model with ten endmember fractions corresponding to ten land
cover types. These are: High moisture vegetation, medium
moisture vegetation, low moisture vegetation, water, shade,
high albedo impervious surface, medium albedo impervious
surface, low albedo impervious surface, dry soil, and wet soil.
Subpixel images were generated from the original image shown
in Fig. 1(c) using the aforementioned four subpixel mapping
methods based on the fraction abundance images. Among
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TABLE II
OVERALL ACCURACY AND RMS ERROR OF SUBPIXEL MAPPING USING THE FOUR METHODS BASED ON SYNTHETIC DATA

Fig. 8. Mapped subpixel images using the four methods (ς = 2). (a) Linear
optimization method, (b) pixel swapping method, (c) spatial attraction model
method, and (d) our proposed method.

these, three representative mapped subpixel images, with scale
factor ς = 2, 5 and 8, are presented in Figs. 8–10, respectively.

Visualization quality was compared between the generated
images, via the number of isolated pixels and degree of error
measure [29], [34]. From the results in Figs. 8–10, we see
that: 1) For all four subpixel mapping methods, the larger the
scale factor, the poorer the quality of the mapped subpixel
image. 2) When ς = 2, the subpixel image mapped by the
linear optimization method shows the worst clarity of features.
The subpixel image mapped by the proposed method shows
no significant difference with those mapped by both the pixel
swapping and spatial attraction model methods. 3) When ς = 5,
both linear optimization and pixel swapping subpixel mapping
methods produce mapped images with somewhat ambiguous
features, although the latter is better than the former. The sub-
pixel image mapped by the spatial attraction model method is
similar to that mapped by the proposed method. However, there
is some scattering of subpixels in the former image. 4) When
ς = 8, subpixels in the images mapped by the linear optimiza-
tion, pixel swapping, and spatial attraction model methods are
distributed with great disorder, particularly those generated by

Fig. 9. Mapped subpixel images using the four methods (ς = 5). (a) Linear
optimization method, (b) pixel swapping method, (c) spatial attraction model
method, and (d) our proposed method.

the pixel swapping method. However, the image mapped by the
proposed method shows much greater clarity of features.

Error of the four subpixel mapping methods at different scale
factors was quantitatively evaluated, with the result shown in
Table III. Based on this result, Fig. 11 shows curves of overall
accuracy for subpixel mapping based on the four methods, at
different scale factors.

From the results in Fig. 11 and Table III, it is observed
that: 1) When ς = 2, the linear optimization method gives
the worst subpixel mapping of the four methods, in terms
of overall accuracy and RMS error. Both pixel swapping and
spatial attraction model methods show better performance than
the linear optimization method, in the case of ς = 2. How-
ever, the proposed method yields the best subpixel mapping
result. When the scale factor increases from ς = 2 to ς = 5,
overall accuracy of the mapping declines smoothly for all
methods. 2) When ς = 5, the linear optimization method shows
the worst mapping performance. The proposed method attains
the best mapping result, although the spatial attraction model
outperforms both the pixel swapping and linear optimization
methods. When the scale factor increases from ς = 5 to ς = 8,
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Fig. 10. Mapped subpixel images using the four methods (ς = 8). (a) Linear
optimization method, (b) pixel swapping method, (c) spatial attraction model
method, and (d) our proposed method.

TABLE III
RESULTS OF OVERALL ACCURACY AND RMS ERROR OF

SUBPIXEL MAPPING, BASED ON THE FOUR METHODS

AT DIFFERENT SCALE FACTORS

Fig. 11. Curves of overall accuracy for subpixel mapping, based on the four
methods at different scale factors.

overall mapping accuracy using the proposed method declines
smoothly, whereas this accuracy declines much faster with
the other three methods, particularly with linear optimization.
3) When ς = 8, the linear optimization, pixel swapping and spa-
tial attraction model methods perform subpixel mapping with
decreased overall accuracy. The linear optimization method is

Fig. 12. Pyramid mixture model.

particularly poor, with overall accuracy 24.6% and RMS error
0.5685. However, the proposed method still gives the best result
in terms of overall accuracy and RMS error.

Therefore, both visual assessment of image quality and quan-
titative comparison of subpixel mapping accuracy reveal that:
1) For all four subpixel mapping methods, the larger the scale
factor, the lower the accuracy of the mapping result. 2) The
proposed method yields much better results than the other three
methods for all scale factors, particularly the larger one.

Error assessment using the reference image can evaluate the
performance of all subpixel mapping approaches. However, the
error assessment with reference data (QuickBird multi-spectral
image), which is dependent on reference image precision, must
deal with geometric correction and geo-registration, as well
as with dissimilarity between the reference image and reality.
This dissimilarity can be caused by various factors, such as
the weather at image acquisition time. In the following sec-
tion, error assessment based on the pyramid mixture model is
proposed for evaluating performance of the subpixel mapping
approaches.

D. Error Assessment of Subpixel Mapping Based on
Pyramid Mixture Model

From the schematic diagram of the pyramid mixture model
(Fig. 12), the original experimental image shown in Fig. 1(c)
was first produced, with pixel mixing toward a lower resolution
image along the direction of the dashed line in the figure. The
pixel mixing procedure involved taking any four adjacent pixels
of 2 × 2 window size in the original image to derive a new
mixed pixel, for each band of the image. The derived image has
half the width and height of the original, and the mixed pixel
value in the derived image is the mean spectral value of the
four adjacent pixels in the original. Afterwards, the image was
conducted spectral unmixing along the direction of the solid
line shown in Fig. 12. The spectral unmixing method [53] was
used to obtain fraction abundance images based on the 7-EM
model, in which the seven fraction abundances are high mois-
ture vegetation, low moisture vegetation, water, shade, high
albedo impervious surface, low albedo impervious surface, and
soil. Subsequently, the fraction abundance image was used for
subpixel mapping at scale factor ς = 2, based on the proposed
and other three methods. This generated subpixel images of the
same size as the original. The pyramid mixing and unmixing
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Fig. 13. Pyramid mixture model-derived mixed image, with spatial resolution
60 m × 60 m.

Fig. 14. Fraction abundance images and error image based on mixed image
derived from pyramid mixture model. (a) High moisture vegetation, (b) low
moisture vegetation, (c) water, (d) shade, (e) high albedo impervious surface,
(f) low albedo impervious surface, (g) soil, and (h) error image.

model was used to assess error of the subpixel mapping, by
comparing the mapped subpixel image with the original. Fig. 13
shows the mixed image of spatial resolution 60 m × 60 m,
as derived from the original experimental image [Fig. 1(c)].
Fig. 14 shows seven fraction abundance images based on the
mixed image derived from the pyramid mixture model.

With these fraction abundance images, error for each indi-
vidual land cover type, overall accuracy of spectral unmixing,
and RMS error were computed. Table IV shows the spectral
unmixing error for the derived mixed image.

Table IV shows that the spectral unmixing accuracy of each
individual land cover type in spectral unmixing is over 80%.
Accuracies of water and high moisture vegetation, up to 92.6%
and 91.8%, respectively, indicate that the fraction abundance
of all endmembers is suitable for subsequent subpixel mapping
application.

Based on the seven fraction abundance images (Fig. 14), the
subpixel number in each pixel was known for every land cover

TABLE IV
ERROR OF SPECTRAL UNMIXING FOR DERIVED MIXED IMAGE

Fig. 15. Mapped images from pyramid mixture model-derived mixed image,
using the four methods (ς = 2). (a) Linear optimization method, (b) pixel
swapping method, (c) spatial attraction model method, and (d) our proposed
method.

type. Subpixel mapping images of the derived mixed image
were generated using the linear optimization, pixel swapping,
spatial attraction model, and our proposed methods. Fig. 15
shows images generated by these four methods.

Spatial resolution of the image in Fig. 15 is 30 m × 30 m,
the same as that of the original experimental image. We see in
this figure that feature clarity in the images mapped by both the
pixel swapping and spatial attraction model methods is much
better than that of the linear optimization method and is similar
to that of the proposed method at scale factor ς = 2.

Based on subpixel mapping with the derived mixed image
generated by the pyramid mixture model, overall accuracy and
RMS error were obtained for evaluating the four mapping
methods, using the spatial sampling units. Each sample pixel
in the mapped image (ς = 2) was also scaled from the position
in the derived mixed image to the same position in the original
experimental image. The ground truth land cover type at this
position can thus be determined by man-machine interaction.
Table V shows the error assessment for the four methods.

From Table V, we see that: 1) Overall accuracy and RMS
error of subpixel mapping using the linear optimization method
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TABLE V
ERROR ASSESSMENT FOR THE FOUR SUBPIXEL MAPPING METHODS

BASED ON THE PYRAMID MIXTURE MODEL(ς = 2)

are worse than those using the pixel swapping method for
ς = 2. 2) The spatial attraction model method yields a better
mapping result than the pixel swapping method. 3) The
proposed method produces the best result, with overall accu-
racy 0.8157.

Through comparison of the four methods, we conclude that
the linear optimization method is the poorest overall in sub-
pixel mapping. Atkinson’s pixel swapping method has greater
accuracy. The spatial attraction model method of Mertens et al.
(2006) [31] shows much improvement over these two.
Nevertheless, comparison of visualization quality and quan-
titative assessment of subpixel mapping images demonstrates
that the proposed method performs best in subpixel image
mapping, relative to the other three methods. This comparison
also indicates that the method based on the pyramid mix-
ture model can effectively measure performance of subpixel
mapping, when ground truth samples and contemporaneous
high-resolution images are unavailable.

E. Visualization Comparison of Subpixel Mapping Using
Hyperion Hyperspectral Image With Larger Size

To illustrate performance of the proposed method on a larger
size image, an entire strip of an EO-1 Hyperion hyperspec-
tral image from 2006 [Fig. 1(b)] was used in a compari-
son. Spectral unmixing was done using the aforementioned
10-EM model. Three scale factors, ς = 2, ς = 5, and ς = 8,
were considered. Subpixel images with improved spatial res-
olution were achieved. These mapped images are shown in
Figs. 16–18.

From the results in Figs. 16–18 (enlarged figures), we see
that the proposed subpixel mapping method outperforms the
other three methods, in terms of overall accuracy. The proposed
method can still achieve increased overall accuracy even with a
larger image size, particularly at a larger scale factor.

F. Impact of Spectral Mixture Model on Error of
Subpixel Mapping

In subpixel mapping, many factors such as the spectral
mixture model affect the algorithm and location accuracy.
Therefore, in this section, the impact of the spectral mixture
model on subpixel mapping accuracy is addressed. Fraction
abundance images can be obtained precisely, based on spectral
mixture analysis using endmembers combining various land
cover types. This analysis, determined by the spectral mixture
model defined as n-EM with n endmembers, can affect subpixel
mapping accuracy. To investigate this potential effect, a sub-
pixel mapping experiment was conducted by creating different

Fig. 16. Mapped images for entire strip of Hyperion hyperspectral image of
2006 (ς = 2). (a) Linear optimization method, (b) pixel swapping method,
(c) spatial attraction model method, and (d) our proposed method.

Fig. 17. Mapped images for entire strip of Hyperion hyperspectral image of
2006 (ς = 5). (a) Linear optimization method, (b) pixel swapping method,
(c) spatial attraction model method, and (d) our proposed method.
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Fig. 18. Mapped images for entire strip of Hyperion hyperspectral image of
2006 (ς = 8). (a) Linear optimization method, (b) pixel swapping method,
(c) spatial attraction model method, and (d) our proposed method.

spectral mixture models with different endmember sets. These
sets were used to do the subpixel mapping, and corresponding
subpixel images were generated from the original experimental
image using the proposed method at scale factor ς = 8. Fig. 19
shows these resultant subpixel images.

From the result in Fig. 19, we see that there are significant
differences between the resultant subpixel mapping images.
The subpixel image generated using the 3-EM model is the
worst at subpixel mapping [see Fig. 19(a)], whereas images
generated using the 4-EM to 6-EM models [Fig. 19(b)–(d)]
show dramatic improvements in quality. However, image
quality from the 6-EM and subsequent models varies little
[Fig. 19(d)–(h)]. Fig. 19 shows the relationship between the
subpixel mapping accuracy and different n-EM spectral mix-
ture models.

From the results in Figs. 19 and 20, we see that: 1) The
various n-EM spectral mixture models can affect the error of
subpixel mapping, thereby generating subpixel images with dif-
ferent errors. Generally, the larger the number of endmembers
in the spectral mixture model, the higher the overall mapping
accuracy and quality of subpixel images. 2) Overall accuracy
of subpixel mapping using the 3-EM model is the poorest,
at 47.9%. This accuracy using the 10-EM model is the best,
with close to 68% at scale factor of ς = 8. Overall accuracies
increase rapidly from the 3-EM to 6-EM models and smoothly
from the 6-EM to 10-EM models. This result shows an inflec-
tion point near the exact number of endmembers in the image
(e.g., 5-EM). As shown in Fig. 20, before this inflection point,

Fig. 19. Subpixel images generated by proposed method, based on different
spectral mixture models with different endmember sets (ς = 8). (a) Mapped
image (3-EM). (b) Mapped image (4-EM). (c) Mapped image (5-EM).
(d) Mapped image (6-EM). (e) Mapped image (7-EM). (f) Mapped image
(8-EM). (g) Mapped image (9-EM). (h) Mapped image (10-EM).

Fig. 20. Relationship between overall accuracy of subpixel mapping and
different n-EM spectral mixture models.

overall mapping accuracy increases rapidly; after this point,
overall accuracy increases much more smoothly and slowly.
The reason for this pattern might be that more endmembers
in the spectral mixture model can represent more plentiful and
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realistic features of land cover types in the subpixel image,
relative to ground truth. On the contrary, fewer endmembers
may be unable to represent ground truth well, with scarce
features of land cover type in the image.

Therefore, for a linear spectral mixture model with only lim-
ited independent endmembers (e.g., one to three endmembers)
in the image, many pixels associated with complicated ground
objects may not be well represented by such few endmember
spectra. This results in a low accuracy in generating the sub-
pixel mapping image. For a linear spectral mixture model with
increased endmembers (e.g., five), most pixels in the image can
be represented linearly by the endmembers, and the spectral
unmixing result would be more accurate. This would improve
the accuracy of subpixel mapping. However, when there are
more than five endmembers in a linear spectral mixture model,
image accuracy increases slowly with endmember number in
that model.

V. CONCLUSION

To address the disadvantages of traditional subpixel mapping
methods that simply describe spatial dependence relying on
attractive correlation, this paper presents a new subpixel map-
ping method, based on attraction-repulsion between subpixels.
The proposed method yields more accurate subpixel mapping,
based on spectral mixture analysis. Through a comprehen-
sive comparison (based on a schematic diagram, visualization
assessment, and quantitative analysis) of the proposed method
and three traditional methods, the following conclusions are
reached.

1) The proposed subpixel mapping method can better re-
trieve the spatial dependence of ground truth, using
attraction-repulsion correlation between subpixels. The
proposed method makes use of spatial dependence with
attraction between the same kinds of ground objects, plus
repulsion between different kinds of these objects. With
the introduction of repulsion, the proposed method per-
forms better in grouping subpixels of the same land cover
type together, rather than isolating subpixels from the
sets of the same land cover type. Moreover, the proposed
method is capable of processing multiple fractions of land
cover types for representing ground truth in more detail,
based on the attraction and repulsion. Therefore, this
method achieves better performance in subpixel mapping
than the other three methods (linear optimization, pixel
swapping, and spatial attraction model). The method
can generate a subpixel image with better visualization
quality than the other three, and it performs more accurate
subpixel mapping in subpixel locations.

2) Relative to the other methods, the proposed method can
obtain better outcomes with more robust accuracy at all
scale factors, particularly larger ones. As the scale factor
increases, subpixel mapping accuracy decreases with all
four mapping methods.

3) The pyramid mixture model is an effective way to eval-
uate performance of subpixel mapping, particularly in
the case where ground truth samples or contemporaneous
high-resolution reference images are unavailable.

4) Analysis of the impact of different n-EM spectral mixture
models on subpixel mapping accuracy shows that the
larger the number of endmembers in the spectral mixture
model, the higher the overall accuracy of subpixel map-
ping and quality of the subpixel image. In addition, there
is an inflection point near the exact number of endmem-
bers in the image (e.g., 6-EM); after this point, subpixel
mapping accuracy increases smoothly but slowly.

With improved spatial resolution of subpixel mapping based
on the proposed method, the derived images can be used for
precise classification of land cover types. Subpixel mapping
has been extended from its current use on raster imagery to
a vector data application, for refining location estimates of
ground control points [55]. The enhancement of image spatial
resolution from subpixel mapping cannot match improvement
from hardware-based techniques. However, given certain hard-
ware, the subpixel mapping approach could be used in many
fields that require higher spatial resolution imagery. Finally,
there are some limitations of the proposed algorithms. For
example, the approach is based on spatial dependence between
subpixels; thus, it might be suitable only for mapping ground
objects larger than the size of a pixel. As a result, many small
objects within a pixel might be estimated incorrectly. Therefore,
future research will focus on a method that can locate objects
smaller than a pixel.
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