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An Introduction to Copulas

These notes provide an introduction to modeling with copulas. Copulas are the mechanism which allows us to
isolate the dependency structure in a multivariate distribution. In particular, we can construct any multivariate
distribution by separately specifying the marginal distributions and the copula. Copula modeling has played an
important role in finance in recent years and has been a source of controversy and debate both during and since
the financial crisis of 2008 / 2009.

In these notes we discuss the main results including Sklar’s Theorem and the Fréchet-Hoeffding bounds, and
give several different examples of copulas including the Gaussian and t copulas. We discuss various measures of
dependency including rank correlations and coefficient of tail dependence and also discuss various fallacies
associated with the commonly used Pearson correlation coefficient. After discussing various methods for
calibrating copulas we end with an application where we use the Gaussian copula model to price a simple
stylized version of a collateralized debt obligation or CDO. CDO’s were credited with playing a large role in the
financial crisis – hence the infamy of the Gaussian copula model.

1 Introduction and Main Results

Copulas are functions that enable us to separate the marginal distributions from the dependency structure of a
given multivariate distribution. They are useful for several reasons. First, they help to expose and understand
the various fallacies associated with correlation. They also play an important role in pricing securities that
depend on many underlying securities, e.g. equity basket options, collateralized debt obligations (CDO’s),
nth-to-default options etc. Indeed the (in)famous Gaussian copula model was the model1 of choice for pricing
and hedging CDO’s up to and even beyond the financial crisis.

There are some problems associated with the use of copulas, however. They are not always applied properly and
are generally static in nature. Moreover, they are sometimes used in a ”black-box” fashion and understanding
the overall joint multivariate distribution can be difficult when it is constructed by separately specifying the
marginals and copula. Nevertheless, an understanding of copulas is important in risk management. We begin
with the definition of a copula.

Definition 1 A d-dimensional copula, C : [0, 1]d :→ [0, 1] is a cumulative distribution function (CDF) with
uniform marginals.

We write C(u) = C(u1, . . . , ud) for a generic copula and immediately have (why?) the following properties:

1. C(u1, . . . , ud) is non-decreasing in each component, ui.

2. The ith marginal distribution is obtained by setting uj = 1 for j 6= i and since it it is uniformly distributed

C(1, . . . , 1, ui, 1, . . . , 1) = ui.

3. For ai ≤ bi, P (U1 ∈ [a1, b1], . . . , Ud ∈ [ad, bd]) must be non-negative. This implies the rectangle inequality

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+id C(u1,i1 , . . . , ud,id) ≥ 0

where uj,1 = aj and uj,2 = bj .

1We will introduce the Gaussian copula model for pricing CDO’s in Section 5 and we will return to it again later in the
course when we discuss the important topic of model risk.
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The reverse is also true in that any function that satisfies properties 1 to 3 is a copula. It is also easy to confirm
that C(1, u1, . . . , ud−1) is a (d− 1)-dimensional copula and, more generally, that all k-dimensional marginals
with 2 ≤ k ≤ d are copulas. We now recall the definition of the quantile function or generalized inverse: for a
CDF, F , the generalized inverse, F←, is defined as

F←(x) := inf{v : F (v) ≥ x}.

We then have the following well-known result:

Proposition 1 If U ∼ U [0, 1] and FX is a CDF, then

P (F←(U) ≤ x) = FX(x).

In the opposite direction, if X has a continuous CDF, FX , then

FX(X) ∼ U [0, 1].

Now let X = (X1, . . . , Xd) be a multivariate random vector with CDF FX and with continuous and increasing
marginals. Then by Proposition 1 it follows that the joint distribution of FX1

(X1), . . . , FXd(Xd) is a copula,
CX say. We can find an expression for CX by noting that

CX(u1, . . . , ud) = P (FX1(X1) ≤ u1, . . . , FXd(Xd) ≤ ud)
= P

(
X1 ≤ F−1X1

(u1), . . . , Xd ≤ F−1Xd
(ud)

)
= FX

(
F−1X1

(u1), . . . , F−1Xd
(ud)

)
. (1)

If we now let uj := FXj (xj) then (1) yields

FX (x1, . . . , xd) = CX(FX1
(x1), . . . , FXd(xd))

This is one side of the famous Sklar’s Theorem which we now state formally.

Theorem 2 (Sklar’s Theorem 1959) Consider a d-dimensional CDF, F , with marginals F1, . . . , Fd. Then
there exists a copula, C, such that

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) (2)

for all xi ∈ [−∞, ∞] and i = 1, . . . , d.

If Fi is continuous for all i = 1, . . . , d, then C is unique; otherwise C is uniquely determined only on
Ran(F1)× · · · × Ran(Fd) where Ran(Fi) denotes the range of the CDF, Fi.

In the opposite direction, consider a copula, C, and univariate CDF’s, F1, . . . , Fd. Then F as defined in (2) is a
multivariate CDF with marginals F1, . . . , Fd. �

Example 1 Let Y and Z be two IID random variables each with CDF, F (·). Let X1 := min(Y,Z) and
X2 := max(Y, Z) with marginals F1(·) and F2(·), respectively. We then have

P (X1 ≤ x1, X2 ≤ x2) = 2 F (min{x1, x2}) F (x2) − F (min{x1, x2})2 . (3)

We can derive (3) by considering separately the two cases (i) x2 ≤ x1 and (ii) x2 > x1.

We would like to compute the copula, C(u1, u2), of (X1, X2). Towards this end we first note the two marginals
satisfy

F1(x) = 2F (x) − F (x)2

F2(x) = F (x)2.

But Sklar’s Theorem states that C(·, ·) satisfies C(F1(x1), F2(x2)) = F (x1, x2) so if we connect the pieces(!)
we will obtain

C(u1, u2) = 2 min{1−
√

1− u1,
√
u2}
√
u2 − min{1−

√
1− u1,

√
u2}2.



An Introduction to Copulas 3

When the Marginals Are Continuous

Suppose the marginal distributions, F1, . . . , Fn, are continuous. It can then be shown that

Fi (F←i (y)) = y. (4)

If we now evaluate (2) at xi = F←i (ui) and use (4) then we obtain the very useful characterization

C(u) = F (F←1 (u1), . . . , F←d (ud)). (5)

The Density and Conditional Distribution of a Copula

If the copula has a density, i.e. a PDF, then it is obtained in the usual manner as

c(u) =
∂d C(u1, . . . , ud)

∂u1 · · · ∂ud
.

When d = 2, we can plot c(u) to gain some intuition regarding the copula. We will see such plots later in
Section 2. If the copula has a density and is given in the form of (5) then we can write

c(u) =
f
(
F−11 (u1), . . . , F−1d (ud)

)
f1
(
F−11 (u1)

)
· · · fd

(
F−1d (ud)

)
where we have used F←i = F−1i since Fi is differentiable. It is also easy to obtain the conditional distribution of
a copula. In particular, we have

P (U2 ≤ u2 | U1 = u1) = lim
δ→0

P (U2 ≤ u2, U1 ∈ (u1 − δ, u1 + δ])

P (U1 ∈ (u1 − δ, u1 + δ])

= lim
δ→0

C(u1 + δ, u2) − C(u1 − δ, u2)

2δ

=
∂

∂u1
C(u1, u2).

This implies that the conditional CDF may be derived directly from the copula itself. The following result is one
of the most important in the theory of copulas. It essentially states that if we apply a monotonic transformation
to each component in X = (X1, . . . , Xd) then the copula of the resulting multivariate distribution remains the
same.

Proposition 3 (Invariance Under Monotonic Transformations) Suppose the random variables
X1, . . . , Xd have continuous marginals and copula, CX . Let Ti : R→ R, for i = 1, . . . , d be strictly increasing
functions. Then the dependence structure of the random variables

Y1 := T1(X1), . . . , Yd := Td(Xd)

is also given by the copula CX .

Sketch of proof when Tj’s are continuous and F−1Xj
’s exist:

First note that

FY (y1, . . . , yd) = P (T1(X1) ≤ y1, . . . , Td(Xd) ≤ yd)
= P (X1 ≤ T−11 (y1), . . . , Xd ≤ T−1d (yd))

= FX(T−11 (y1), . . . , T−1d (yd)) (6)

so that (why?) FYj (yj) = FXj (T
−1
j (yj)). This in turn implies

F−1Yj
(yj) = Tj(F

−1
Xj

(yj)). (7)
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The proof now follows because

CY (u1, . . . , ud) = FY
(
F−1Y1

(u1), . . . , F−1Yd
(ud)

)
by (5)

= FX
(
T−11

(
F−1Y1

(u1)
)
, . . . , T−1d

(
F−1Yd

(ud)
))

by (6)

= FX
(
F−1X1

(u1), . . . , F−1Xd
(ud)

)
by (7)

= CX(u1, . . . , ud)

and so CX = CY . �

The following important result was derived independently by Fréchet and Hoeffding.

Theorem 4 (The Fréchet-Hoeffding Bounds) Consider a copula C(u) = C(u1, . . . , ud). Then

max

{
1− d+

d∑
i=1

ui, 0

}
≤ C(u) ≤ min{u1, . . . , ud}.

Sketch of Proof: The first inequality follows from the observation

C(u) = P

 ⋂
1≤i≤d

{Ui ≤ ui}


= 1 − P

 ⋃
1≤i≤d

{Ui > ui}


≥ 1 −

d∑
i=1

P (Ui > ui) = 1− d+

d∑
i=1

ui.

The second inequality follows since
⋂

1≤i≤d{Ui ≤ ui} ⊆ {Ui ≤ ui} for all i. �

The upper Fréchet-Hoeffding bound is tight for all d whereas the lower Fréchet-Hoeffding bound is tight only
when d = 2. These bounds correspond to cases of extreme of dependency, i.e. comonotonicity and
countermonotonicity. The comonotonic copula is given by

M(u) := min{u1, . . . , ud}

which is the Fréchet-Hoeffding upper bound. It corresponds to the case of extreme positive dependence. We
have the following result.

Proposition 5 Let X1, . . . , Xd be random variables with continuous marginals and suppose Xi = Ti(X1) for
i = 2, . . . , d where T2, . . . , Td are strictly increasing transformations. Then X1, . . . , Xd have the comonotonic
copula.

Proof: Apply the invariance under monotonic transformations proposition and observe that the copula of
(X1, X1, . . . , X1) is the comonotonic copula. �

The countermonotonic copula is the 2-dimensional copula that is the Fréchet-Hoeffding lower bound. It
satisfies

W (u1, u2) = max{u1 + u2 − 1, 0} (8)

and corresponds to the case of perfect negative dependence.

Exercise 1 Confirm that (8) is the joint distribution of (U, 1− U) where U ∼ U(0, 1). Why is the
Fréchet-Hoeffding lower bound not a copula for d > 2?
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The independence copula satisfies

Π(u) =

d∏
i=1

ui

and it is easy to confirm using Sklar’s Theorem that random variables are independent if and only if their copula
is the independence copula.

2 The Gaussian, t and Other Parametric Copulas

We now discuss a number of other copulas, all of which are parametric. We begin with the very important
Gaussian and t copulas.

2.1 The Gaussian Copula

Recall that when the marginal CDF’s are continuous we have from (5) that C(u) = F (F←1 (u1), . . . , F←1 (ud)).
Now let X ∼ MNd(0,P), where P is the correlation matrix of X. Then the corresponding Gaussian copula is
defined as

CGaussP (u) := ΦP

(
Φ−1(u1), . . . ,Φ−1(ud)

)
(9)

where Φ(·) is the standard univariate normal CDF and ΦP (·) denotes the joint CDF of X.

Exercise 2 Suppose Y ∼ MNd(µ,Σ) with Corr(Y) = P. Explain why Y has the same copula as X. We can
therefore conclude that a Gaussian copula is fully specified by a correlation matrix, P.

For d = 2, we obtain the countermonotonic, independence and comonotonic copulas in (9) when ρ = −1, 0,
and 1, respectively. We can easily simulate the Gaussian copula via the following algorithm:

Simulating the Gaussian Copula

1. For an arbitrary covariance matrix, Σ, let P be its corresponding correlation matrix.

2. Compute the Cholesky decomposition, A, of P so that P = ATA.

3. Generate Z ∼ MNd(0, Id).

4. Set X = AT Z.

5. Return U = (Φ(X1), . . . ,Φ(Xd)).

The distribution of U is the Gaussian copula CGaussP (u) so that

Prob(U1 ≤ u1, . . . , Ud ≤ ud) = Φ
(
Φ−1(u1), . . . ,Φ−1(ud)

)
where u = (u1, . . . , ud). This is also (why?) the copula of X.

We can use this algorithm to generate any random vector Y = (Y1, . . . , Yd) with arbitrary marginals and
Gaussian copula. To do this we first generate U using the above algorithm and then use the standard inverse
transform method along each component to generate Yi = F−1i (Ui). That Y has the corresponding Gaussian
copula follows by our result on the invariance of copulas to monotonic transformations.
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2.2 The t Copula

Recall that X = (X1, . . . , Xd) has a multivariate t distribution with ν degrees of freedom (d.o.f.) if

X =
Z√
ξ/ν

where Z ∼ MNd(0,Σ) and ξ ∼ χ2
ν independently of Z. The d-dimensional t-copula is then defined as

Ctν,P (u) := tν,P
(
t−1ν (u1), . . . , t−1ν (ud)

)
(10)

where again P is a correlation matrix, tν,P is the joint CDF of X ∼ td(ν,0,P) and tν is the standard univariate
CDF of a t-distribution with ν d.o.f. As with the Gaussian copula, we can easily simulate from the t copula:

Simulating the t Copula

1. For an arbitrary covariance matrix, Σ, let P be its corresponding correlation matrix.

2. Generate X ∼ MNd(0,P).

3. Generate ξ ∼ χ2
ν independent of X.

4. Return U =
(
tν(X1/

√
ξ/ν), . . . , tν(Xd/

√
ξ/ν)

)
where tν is the CDF of a univariate t distribution with ν

degrees-of-freedom.

The distribution of U is the t copula, Ctν,P (u), and this is also (why?) the copula of X. As before, we can use
this algorithm to generate any random vector Y = (Y1, . . . , Yd) with arbitrary marginals and a given t
copula.We first generate U with the t copula as described above and then use the standard inverse transform
method along each component to generate Yi = F−1i (Ui).

2.3 Other Parametric Copulas

The bivariate Gumbel copula is defined as

CGuθ (u1, u2) := exp
(
−
(
(− lnu1)θ + (− lnu2)θ

) 1
θ

)
(11)

where θ ∈ [1,∞). When θ = 1 in (11) we obtain the independence copula. When θ →∞ the Gumbel copula
converges to the comonotonicity copula. The Gumbel copula is an example of a copula with tail dependence
(see Section 3) in just one corner.

Consider Figure 1 where we compare the bivariate normal and (bivariate) meta-Gumbel2 distributions. In
particular, we obtained the two scatterplots by simulating 5, 000 points from each bivariate distribution. In each
case the marginal distributions were standard normal. The linear correlation is ≈ .7 for both distributions but it
should be clear from the scatterplots that the meta-Gumbel is much more likely to see large joint moves. We
will return to this issue of tail dependence in Section 3.

In Figure 8.4 of Ruppert and Matteson (SDAFE 2015) we have plotted the bivariate Gumbel copula for various
values of θ. As such earlier, we see that tail dependence only occurs in one corner of the distribution.

The bivariate Clayton copula is defined as

CClθ (u1, u2) :=
(
u−θ1 + u−θ2 − 1

)−1/θ
(12)

where θ ∈ [−1,∞)\{0}.
2The meta-Gumbel distribution is the name of any distribution that has a Gumbel copula. In this example the marginals

are standard normal. The “meta” terminology is generally used to denote the copula of a multivariate distribution, leaving the
marginals to be otherwise specified.
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Figure 1: Bivariate Normal versus Bivariate Meta-Gumbel Copula

As θ → 0 in (12) we obtain the independence copula and as θ →∞ it can checked that the Clayton copula
converges to the comonotonic copula. When θ = −1 we obtain the Fréchet-Hoeffding lower bound. The
Clayton copula therefore traces the countermonotonic, independence and comonotonic copulas as θ moves from
−1 through 0 to ∞. In Figure 8.3 of Ruppert and Matteson (SDAFE, 2015) we have plotted the bivariate
Clayton copula for various values of θ.

The Clayton and Gumbel copulas belong to a more general family of copulas called the Archimedean copulas.
They can be be generalized to d dimensions but their d-dimensional versions are exchangeable. This means
that C(u1, . . . , ud) is unchanged if we permute u1, . . . , ud implying that all pairs have the same dependence
structure. This has implications for modeling with Archimedean copulas!

There are many other examples of parametric copulas. Some of these are discussed in MFE by McNeil, Frey and
Embrechts and SDAFE by Ruppert and Matteson.

3 Measures of Dependence

Understanding the dependence structure of copulas is vital to understanding their properties. There are three
principal measures of dependence:

1. The usual Pearson, i.e. linear, correlation coefficient is only defined if second moments exist. It is
invariant under positive linear transformations, but not under general strictly increasing transformations.
Moreover, there are many fallacies associated with the Pearson correlation.

2. Rank correlations only depend on the unique copula of the joint distribution and are therefore (why?)
invariant to strictly increasing transformations. Rank correlations can also be very useful for calibrating
copulas to data. See Section 4.3.

3. Coefficients of tail dependence are a measure of dependence in the extremes of the distributions.
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Figure 8.4 from Ruppert and Matteson: Bivariate random samples of size 200 from various Gumbel
copulas.

Fallacies of the Pearson Correlation Coefficient

We begin by discussing some of the most common fallacies associated with the Pearson correlation coefficient.
In particular, each of the following statements is false!

1. The marginal distributions and correlation matrix are enough to determine the joint distribution.

2. For given univariate distributions, F1 and F2, and any correlation value ρ ∈ [−1, 1], it is always possible to
construct a joint distribution F with margins F1 and F2 and correlation ρ.

3. The VaR of the sum of two risks is largest when the two risks have maximal correlation.

We have already provided (where?) a counter-example to the first statement earlier in these notes. We will
focus on the second statement / fallacy but first we recall the following definition.

Definition 2 We say two random variables, X1 and X2, are of the same type if there exist constants a > 0
and b ∈ R such that

X1 ∼ aX2 + b.

The following result addresses the second fallacy.

Theorem 6 Let (X1, X2) be a random vector with finite-variance marginal CDF’s F1 and F2, respectively,
and an unspecified joint CDF. Assuming Var(X1) > 0 and Var(X2) > 0, then the following statements hold:

1. The attainable correlations form a closed interval [ρmin, ρmax] with ρmin < 0 < ρmax.
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Figure 8.3 from Ruppert and Matteson: Bivariate random samples of size 200 from various Clayton
copulas.

2. The minimum correlation ρ = ρmin is attained if and only if X1 and X2 are countermonotonic. The
maximum correlation ρ = ρmax is attained if and only if X1 and X2 are comonotonic.

3. ρmin = −1 if and only if X1 and −X2 are of the same type. ρmax = 1 if and only if X1 and X2 are of the
same type.

Proof: The proof is not very difficult; see MFE for details. �

3.1 Rank Correlations

There are two important rank correlation measures, namely Spearman’s rho and Kendall’s tau. We begin with
the former.

Definition 3 For random variables X1 and X2, Spearman’s rho is defined as

ρs(X1, X2) := ρ(F1(X1), F2(X2)).



An Introduction to Copulas 10

Spearman’s rho is therefore simply the linear correlation of the probability-transformed random variables. The
Spearman’s rho matrix is simply the matrix of pairwise Spearman’s rho correlations, ρ(Fi(Xi), Fj(Xj)). It is
(why?) a positive-definite matrix. If X1 and X2 have continuous marginals then it can be shown that

ρs(X1, X2) = 12

∫ 1

0

∫ 1

0

(C(u1, u2) − u1u2) du1 du2.

It is also possible to show that for a bivariate Gaussian copula

ρs(X1, X2) =
6

π
arcsin

ρ

2
' ρ

where ρ is the Pearson, i.e., linear, correlation coefficient.

Definition 4 For random variables X1 and X2, Kendall’s tau is defined as

ρτ (X1, X2) := E
[
sign

(
(X1 − X̃1) (X2 − X̃2)

)]
where (X̃1, X̃2) is independent of (X1, X2) but has the same joint distribution as (X1, X2).

Note that Kendall’s tau can be written as

ρτ (X1, X2) = P
(

(X1 − X̃1) (X2 − X̃2) > 0
)
− P

(
(X1 − X̃1) (X2 − X̃2) < 0

)
so if both probabilities are equal then ρτ (X1, X2) = 0. If X1 and X2 have continuous marginals then it can be
shown that

ρτ (X1, X2) = 4

∫ 1

0

∫ 1

0

C(u1, u2) dC(u1, u2) − 1.

It may also be shown that for a bivariate Gaussian copula, or more generally, if X ∼ E2(µ,P, ψ) and
P (X = µ) = 0 then

ρτ (X1, X2) =
2

π
arcsin ρ (13)

where ρ = P12 = P21 is the Pearson correlation coefficient. We note that (13) can be very useful for estimating
ρ with fat-tailed elliptical distributions. It generally provides much more robust estimates of ρ than the usual
Pearson estimator. This can be seen from Figure 2 where we compare estimates of Pearson’s correlation using
the usual Pearson estimator versus using Kendall’s τ and (13). The true underlying distribution was bivariate t
with ν = 3 degrees-of-freedom and true Pearson correlation ρ = 0.5. Each point in Figure 2 was an estimate
constructed from a sample of n = 60 (simulated) data-points from the true distribution. We see the estimator
based on Kendall’s tau is clearly superior to the usual estimator.

Exercise 3 Can you explain why Kendall’s tau performs so well here? Hint: It may be easier to figure out why
the usual Pearson estimator can sometimes perform so poorly.

Properties of Spearman’s Rho and Kendall’s Tau

Spearman’s rho and Kendall’s tau are examples of rank correlations in that, when the marginals are continuous,
they depend only on the bivariate copula and not on the marginals. They are therefore invariant in this case
under strictly increasing transformations.

Spearman’s rho and Kendall’s tau both take values in [−1, 1]:

• They equal 0 for independent random variables. (It’s possible, however, for dependent variables to also
have a rank correlation of 0.)

• They take the value 1 when X1 and X2 are comonotonic.

• They take the value −1 when X1 and X2 are countermonotonic.

As discussed in Section 4.3, Spearman’s rho and Kendall’s tau can be very useful for calibrating copulas via
method-of-moments type algorithms. And as we have seen, the second fallacy associated with the Pearson
coefficient is clearly no longer an issue when we work with rank correlations.
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Figure 2: Estimating Pearson’s correlation using the usual Pearson estimator versus using Kendall’s τ .
Underlying distribution was bivariate t with ν = 3 degrees-of-freedom and true Pearson correlation ρ = 0.5.

3.2 Tail Dependence

We have the following definitions of lower and upper tail dependence.

Definition 5 Let X1 and X2 denote two random variables with CDF’s F1 and F2, respectively. Then the
coefficient of upper tail dependence, λu, is given by

λu := lim
q↗1

P (X2 > F←2 (q) | X1 > F←1 (q))

provided that the limit exists. Similarly, the coefficient of lower tail dependence, λl, is given by

λl := lim
q↘0

P (X2 ≤ F←2 (q) | X1 ≤ F←1 (q))

provided again that the limit exists.

If λu > 0, then we say that X1 and X2 have upper tail dependence while if λu = 0 we say they are
asymptotically independent in the upper tail. Lower tail dependence and asymptotically independent in the lower
tail are similarly defined using λl. The upper and lower coefficients are identical for both the Gaussian and t
copulas. Unless ρ = ±1 it can be shown that the Gaussian copula is asymptotically independent in both tails.
This is not true of the t copula, however. In Figure 8.6 of Ruppert and Matteson (SDAFE, 2015) we have
plotted λl = λu as a function of ρ for various values of the d.o.f, ν. It is clear (and makes intuitive sense) that
λl = λu is decreasing in ν for any fixed value of ρ.
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Figure 8.6 from Ruppert and Matteson: Coefficients of tail dependence for bivariate t-copulas as
functions of ρ for ν = 1, 4, 25 and 250.

4 Estimating Copulas

There are several related methods that can be used for estimating copulas:

1. Maximum likelihood estimation (MLE). It is often considered too difficult to apply as there too many
parameters to estimate.

2. Pseudo-MLE of which there are two types: parametric pseudo-MLE and semi-parametric pseudo-MLE.
Pseudo-MLE seems to be used most often in practice. The marginals are estimated via their empirical
CDFs and the copula is then estimated via MLE.

3. Moment-matching methods are also sometimes used. They methods can also be used for finding
starting points for (pseudo)-MLE.

We now discuss these methods in further detail.

4.1 Maximum Likelihood Estimation

Let Y = (Y1 . . . Yd)
> be a random vector and suppose we have parametric models FY1

(· |θ1), . . . , FYd(· |θd)
for the marginal CDFs. We assume that we also have a parametric model cY(· |θC) for the copula density of Y.
By differentiating (2) we see that the density of Y is given by

fY(y) = fY(y1, . . . , yd) = cY (FY1
(y1), . . . , FYd(yd))

d∏
j=1

fYj (yj). (14)
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Suppose now that we are given an IID sample Y1:n = (Y1, . . . ,Yn). We then obtain the log-likelihood as

logL(θ1, . . . ,θd,θC) = log

n∏
i=1

fY(yi)

=

n∑
i=1

(
log[cY (FY1

(yi,1 |θ1), . . . , FYd(yi,d |θd) |θC)]

+ log (fY1
(yi,1 |θ1)) + · · ·+ log (fYd(yi,d |θd))

)
. (15)

The ML estimators θ̂1, . . . , θ̂d, θ̂C are obtained by maximizing (15) with respect to θ1, . . . ,θd,θC . There are
problems with this approach, however:

1. There are (tto) many parameters to estimate, especially for large values of d. As a result, performing the
optimization can be difficult.

2. If any of the parametric univariate distributions FYi(· |θi) are misspecified then this can cause biases in
the estimation of both the univariate distributions and the copula.

4.2 Pseudo-Maximum Likelihood Estimation

The pseudo-MLE approach helps to resolve the problems associated with the MLE approach mentioned above.
It has two steps:

1. First estimate the marginal CDFs to obtain F̂Yj for j = 1, . . . , d. We can do this using either:

• The empirical CDF of y1,j , . . . , yn,j so that

F̂Yj (y) =

∑n
i=1 1{yi,j≤y}

n+ 1
.

• A parametric model with θ̂j obtained using the usual univariate MLE approach.

2. Then estimate the copula parameters θC by maximizing

n∑
i=1

log
[
cY

(
F̂Y1

(yi,1), . . . , F̂Yd(yi,d) |θC
) ]

(16)

Note that (16) is obtained directly from (15) by only including terms that depend on the (as yet) unestimated
parameter vector θC and setting the marginals at their fitted values obtained from Step 1. It is worth
mentioning that even (16) may be difficult to maximize if d large. In that event it is important to have a good
starting point for the optimization or to impose additional structure on θC .

4.3 Fitting Gaussian and t Copulas

A moment-matching approach for fitting either the Gaussian or t copulas can be obtained immediately from the
following result.

Proposition 7 (Results 8.1 from Ruppert and Matteson)
Let Y = (Y1 . . . Yd)

> have a meta-Gaussian distribution with continuous univariate marginal distributions and
copula CGaussΩ and let Ωi,j = [Ω]i,j . Then

ρτ (Yi, Yj) =
2

π
arcsin (Ωi,j) (17)

and

ρS(Yi, Yj) =
6

π
arcsin (Ωi,j/2) ≈ Ωi,j (18)

If instead Y has a meta-t distribution with continuous univariate marginal distributions and copula Ctν,Ω then
(17) still holds but (18) does not.
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Exercise 4 There are several ways to use this Proposition to fit meta Gaussian and t copulas. What are some
of them?

5 An Application: Pricing CDO’s

We begin in subsection 5.1 with a simple3 one-period stylized copula where each of the (corporate) bonds has
identical characteristics. Then in subsection 5.2 we consider the more realistic case of multi-period CDO’s with
heterogeneous underlying securities.

5.1 A Simple Stylized 1-Period CDO

We want to find the expected losses in a simple 1-period CDO with the following characteristics:

• The maturity is 1 year.

• There are N = 125 bonds in the reference portfolio.

• Each bond pays a coupon of one unit after 1 year if it has not defaulted.

• The recovery rate on each defaulted bond is zero.

• There are 3 tranches of interest: the equity, mezzanine and senior tranches with attachment points 0-3
defaults, 4-6 defaults and 7-125 defaults, respectively.

We make the simple assumption that the probability, q, of defaulting within 1 year is identical across all bonds
Xi is the normalized asset value of the ith credit, i.e. bond, and we assume

Xi =
√
ρM +

√
1− ρZi (19)

where M,Z1, . . . , ZN are IID normal random variables. Note that the correlation between each pair of asset
values is identical. We assume also that the ith credit defaults if Xi ≤ x̄i. Since the probability of default, q, is
identical across all bonds we must therefore have

x̄1 = · · · x̄N = Φ−1(q). (20)

It now follows from (19) and (20) that

P(Credit i defaults |M) = P(Xi ≤ x̄i |M)

= P(
√
ρM +

√
1− ρZi ≤ Φ−1(q) |M)

= P

(
Zi ≤

Φ−1(q)−√ρM
√

1− ρ

∣∣∣∣ M) .
Therefore conditional on M , the total number of defaults is Binomial(N, qM ) where

qM := Φ

(
Φ−1(q)−√ρM
√

1− ρ

)
.

That is,

p(k |M) =

(
N

k

)
qkM (1− qM )N−k. (21)

The unconditional probabilities can be computed by integrating numerically the binomial probabilities with
respect to M so that

P(k defaults) =

∫ ∞
−∞

p(k |M)φ(M) dM (22)

3The example is taken from “The Devil is in the Tails: Actuarial Mathematics and the Subprime Mortgage Crisis”, by C.
Donnelly and P. Embrechts in ASTIN Bulletin 40(1), 1-33.
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where φ(·) is the standard normal PDF. We can now compute the expected (risk-neutral) loss on each of the
three tranches according to

EQ0 [Equity tranche loss] = 3× P(3 or more defaults) +

2∑
k=1

k P(k defaults)

EQ0 [Mezzanine tranche loss] = 3× P(6 or more defaults) +

2∑
k=1

k P(k + 3 defaults)

EQ0 [Senior tranche loss] =

119∑
k=1

k P(k + 6 defaults).

Results for various values of ρ and q are displayed in the figure below. Regardless of the individual default

Figure 3: Expected Tranche Losses As a Function of q and ρ

probability, q, and correlation, ρ, we see

EQ0 [% Equity tranche loss] ≥ EQ0 [% Mezzanine tranche loss] ≥ EQ0 [% Senior tranche loss] .

We also note that the expected losses in the equity tranche are always decreasing in ρ while mezzanine tranches
are often relatively insensitive4 to ρ. The expected losses in senior tranches (with upper attachment point of
100% or 125 units in our example) are always increasing in ρ.

4This has important implications when it comes to model calibration, an issue we will not pursue further here.
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Exercise 5 How does the total expected loss in the portfolio vary with ρ?

Where Does the Gaussian Copula Appear?

Let CX1,...,XN denote the copula of X := (X1, . . . , XN ) in (19). Then it should be clear that the copula of X is
indeed the Gaussian copula CGaussP where P is the correlation matrix with all off-diagonal elements equal to ρ.
By definition of the Gaussian copula, CX1,...,XN satisfies

CX1,...,XN (u1, . . . , uN ) = P (Φ(X1) ≤ u1, . . . ,Φ(XN ) ≤ uN ). (23)

We can substitute for the Xi’s in (23) using (19) and then condition on M to obtain

CX1,...,XN (u1, . . . , uN ) =

∫ ∞
−∞

N∏
i=1

Φ

(
Φ−1(ui)−

√
ρM

√
1− ρ

)
φ(M) dM (24)

where φ(·) is the standard Normal pdf. We can now use Sklar’s Theorem (in particular (2)) and (24) to see that
the joint probability of default satisfies

P (X1 ≤ x̄1, . . . , XN ≤ x̄n) =

∫ ∞
−∞

N∏
i=1

Φ

(
Φ−1(Φ(x̄i))−

√
ρM

√
1− ρ

)
φ(M) dM

=

∫ ∞
−∞

N∏
i=1

Φ

(
Φ−1(q)−√ρM
√

1− ρ

)
φ(M) dM. (25)

In this example, we assumed the default probabilities were identical and as a result we were able to use binomial
probabilities as in (21). We therefore did not need to use (25) to compute the expected tranche losses and so
the role of the Gaussian copula was a little obscured in this example. That will not be the case in Section 5.2
when the underlying bonds have different default probabilities.

Remark 1 It should be clear from (21), (22) and (25) that the introduction of the x̄i’s was not necessary at
all. They were merely used to allow for the economic interpretation of the Xi’s as representing (normalized)
asset values with default occurring if Xi fell below x̄i. But from a mathematical point of view this was not
necessary and only the default probabilities, q, were required in conjunction with Gaussian copula assumption.
We will therefore ignore the x̄i’s in Section 5.2.

5.2 Multiperiod CDO’s

In practice CDO’s are multi-period securities and the underlying bonds are heterogeneous. More work is
therefore required to explain their mechanics and analyze them. We assume that each of the N credits in the
reference portfolio has a notional amount of Ai. This means that if the ith credit defaults, then the portfolio
incurs a loss of Ai × (1−Ri) where Ri is the recovery rate, i.e., the percentage of the notional amount that is
recovered upon default. We assume Ri is fixed and known. We also assume that the default of the ith credit
occurs according to an exponential5 distribution with a constant arrival rate λi. Note that λi is easily estimated
from either credit-default-swap (CDS) spreads or the prices of corporate bonds, all of which are observable in
the market place. In particular, for any fixed time, t, we can compute Fi(t), the risk-neutral probability that the
ith credit defaults before time t.

For i = 1, . . . , N , we define

Xi = aiM +
√

1− a2i Zi (26)

where M,Z1, . . . , ZN are IID normal random variables. Each of the factor loadings, ai, is assumed to lie in the
interval [0, 1]. It is also clear that Corr(Xi, Xj) = aiaj and that the Xi’s are multivariate normally distributed

5The exponential rate is commonly assumed but it is not an important assumption. What is important is that we can
compute Fi(t) for each credit.



An Introduction to Copulas 17

with covariance matrix equal to the correlation matrix, P, where Pi,j = aiaj for i 6= j. Let F (t1, . . . , tN )
denote the joint distribution for the default times of the N credits in the portfolio. We then assume

F (t1, . . . , tN ) = ΦP

(
Φ−1(F1(t1)), . . . ,Φ−1(Fn(tN ))

)
(27)

where ΦP (·) denotes the multivariate normal CDF with mean vector 0 and correlation matrix, P. We note that
(27) amounts to assuming that the default times for the N credits have the same Gaussian copula as
X = (X1, . . . , XN ). It is worth mentioning that this particular model is sometimes called the 1-factor gaussian
copula model with the random variable, M , playing the role of the single factor. It is easy to generalize this to a
multi-factor model by including additional factors in (26). The effect of these additional factors would be to
allow for more general correlation matrices, P , in (27) but this is only achieved at the cost of having to compute
multi-dimensional integrals in (28) below.

Computing the Portfolio Loss Distribution

In order to price credit derivatives with the Gaussian copula model of (27), we need to compute the portfolio
loss distribution for a common fixed time t = t1 = · · · = tN . Towards this end we let qi := Fi(t) denote the
marginal (risk-neutral) probability of the ith credit defaulting by this time. Noting (as before) that the default
events for each of the N names are independent conditional on M , we obtain

Fi(t|M) = Φ

(
Φ−1(qi)− aiM√

1− a2i

)
.

Now let pN (l, t) denote the risk-neutral probability that there are a total of l defaults in the portfolio before
time t. Then we may write

pN (l, t) =

∫ ∞
−∞

pN (l, t|M) φ(M) dM. (28)

While we will not go into the details6, it is straightforward to calculate pN (l, t|M) using a simple iterative
procedure. We can then perform a numerical integration on the right-hand-side of (28) to calculate p(l, t). If we
assume that the notional, Ai, and the recovery rate, Ri, are constant7 across all credits, then the loss on any
given credit will be either 0 or A(1−R). In particular, this implies that knowing the probability distribution of
the number of defaults is equivalent to knowing the probability distribution of the total loss up to time t in the
reference portfolio.

The Mechanics and Pricing of a Synthetic CDO Tranche

We now provide a more formal definition of a tranche. A tranche is defined by the lower and upper attachment
points, L and U , respectively. Since the Ai’s and Ri’s are assumed constant across all i, the tranche loss
function, TLL,U (l), for a fixed time, t, is a function of only the number of defaults, l, and is given by

TLL,Ut (l) := max {min{lA(1−R), U} − L, 0} .

For a given number of defaults it tells us the loss suffered by the tranche. For example, if L and U are 3% and
7%, respectively, and the total portfolio loss is lA(1−R) = 5%, then the tranche loss is 2% of the total
portfolio notional or 50% of the tranche notional.

When an investors sells protection on the tranche she is guaranteeing to reimburse any realized losses on the
tranche to the protection buyer. In return for this guarantee the protection seller is paid a premium at regular
intervals8 until the contract expires. The fair value of the CDO tranche is defined to be that value of the
premium for which the expected value of the premium leg is equal to the expected value of the default leg.

6Can you see how the iterative procedure might work?
7This is a common assumption although it is straightforward to relax it.
8Typically every three months. In some cases the protection buyer may also pay an upfront amount in addition to, or instead

of, a regular premium. This typically occurs for equity tranches which have a lower attachment point of zero.
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Clearly then the fair value of the CDO tranche will depend on the expected value of the tranche loss function.
Indeed, for a fixed time, t, the expected tranche loss is given by

E
[
TLL,Ut

]
=

N∑
l=0

TLL,Ut (l) p(l, t)

which we can compute using (28). We now compute the fair value of the premium and default legs.

Premium Leg: The premium leg represents the premium payments that are paid periodically by the protection
buyer to the protection seller. They are paid at the end of each time interval and they are based upon the
remaining notional in the tranche. Formally, the time t = 0 value of the premium leg, PL,U0 , satisfies

PLL,U0 = s

n∑
t=1

dt∆t

(
(U − L)− E0

[
TLL,Ut

])
(29)

where n is the number of periods in the contract, dt is the risk-free discount factor for payment date t, s is the
annualized spread or premium paid to the protection seller and ∆t is the accrual factor for payment date t. For
example, if we ignore day-count conventions, ∆t = 1/4 if payments take place quarterly and ∆t = 1/2 if
payments take place semi-annually. Note that (29) is consistent with the statement that the premium paid at
any time t is based only on the remaining notional in the tranche.

Default Leg: The default leg represents the cash flows paid to the protection buyer upon losses occurring in the

tranche. Formally, the time t = 0 value of the default leg, DLL,U0 , satisfies

DLL,U0 =

n∑
t=1

dt

(
E0

[
TLL,Ut

]
− E0

[
TLL,Ut−1

])
. (30)

The fair premium, s∗ say, is the value of s that equates the value of the default leg with the value of the
premium leg. In particular, we have

s∗ :=
DLL,U0∑n

t=1 dt∆t

(
(U − L)− E0

[
TLL,Ut

]) .
As is the case with swaps and forwards, the fair value of the tranche to the protection buyer and seller at
initiation is therefore zero.

Exercise 6 Suppose the CDO contract also required the protection buyer to make a fixed payment, F say, to
the protection seller at the initiation of the contract in addition to the periodic premium payments. How would
you compute the fair premium, s∗, in that case?

Remark 2 As mentioned earlier, it is also possible to incorporate recovery values and notional values that vary
with each credit in the portfolio. In this case it is straightforward to calculate the characteristic function of the
total portfolio loss, again conditional on the factor, M . The fast Fourier transform can then be applied to
calculate the conditional portfolio loss distribution. This in turn can be used to compute the unconditional
portfolio loss distribution in a manner analogous to (28).

5.3 Cash Versus Synthetic CDOs

The first CDOs to be traded were all cash CDOs where the reference portfolio was an actual physical portfolio
and consisted of corporate bonds9 that the CDO issuer usually kept on its balance sheet. Capital requirement
regulations meant that these bonds required a substantial amount of capital to be set aside to cover any
potential losses. In an effort to reduce these capital requirements, banks converted the portfolio into a series of
tranches and sold most of these tranches to investors. By keeping the equity tranche for themselves the banks

9Or loans in the case of collateralized loan obligations (CLOs).
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succeeded in keeping most of the economic risk of the portfolio and therefore the corresponding rewards.
However, they also succeeded in dramatically reducing the amount of capital they needed to set aside. Hence
the first CDO deals were motivated by regulatory arbitrage considerations.

It soon become clear, however, that there was an appetite in the market-place for these products. Hedge funds,
for example, were keen to buy the riskier tranches whereas insurance companies and others sought the
AAA-rated senior and super-senior tranches. This appetite and the explosion in the CDS market gave rise to
synthetic tranches. In a synthetic tranche, the underlying reference portfolio is no longer a physical portfolio of
corporate bonds or loans. It is instead a fictitious portfolio consisting of a number of credits with an associated
notional amount for each credit. The mechanics of a synthetic tranche are precisely as we described above but
they have at least two features that distinguish them from cash CDOs: (i) with a synthetic CDO it is no longer
necessary to tranche the entire portfolio and sell the entire “deal”. For example, a bank could sell protection on
a 3%-7% tranche and never have to worry about selling the other pieces of the reference portfolio. This is not
the case with cash CDOs. (ii) because the bank no longer owns the underlying bond portfolio, it is no longer
hedged against adverse price movements. It therefore needs to dynamically hedge its synthetic tranche position
and typically does so using the CDS markets.

5.4 Calibrating the Gaussian Copula

In practice, it is very common to calibrate synthetic tranches as follows. First we assume that all pairwise
correlations, Corr(Xi, Xj), are identical. This is equivalent to taking a1 = · · · = aN = a in (26). We then
obtain Corr(Xi, Xj) = a2 := ρ for all i, j. In the case of the liquid CDO tranches whose prices are observable in
the market-place, we then choose ρ so that the fair tranche spread in the model is equal to the quoted spread in
the market place. We refer to this calibrated correlation, ρimp say, as the tranche implied correlation. If the
model is correct, then we should obtain the same value of ρimp for every tranche. Unfortunately, this does not
occur in practice. Indeed, in the case of mezzanine tranches it is possible that there is no value of ρ that fits the
market price. It is also possible that there are multiple solutions.

The market has reacted to this problem by introducing the concept of base correlation. Base correlations are the
implied correlations of equity tranches with increasing upper attachment points. Implied base correlations can
always be computed and then bootstrapping techniques are employed to price the mezzanine tranches. Just as
equity derivatives markets have an implied volatility surface, the CDO market has implied base correlation
curves. These functions are generally increasing functions of the upper attachment point.

A distinguishing feature of CDOs and other credit derivatives such as nth-to-default options is that they can be
very sensitive to correlation assumptions. As a risk manager or investor in structured credit, it is very important
to understand why equity, mezzanine and super senior tranches react as they do to changes in implied
correlation.

Exercise 7 Explain why the value of a long position in an equity tranche has a positive exposure to implied
correlation. (A long position is equivalent to selling protection on the tranche.)

Exercise 8 Explain why the value of a long position in a super-senior tranche, i.e. a tranche with an upper
attachment point of 100%, has a negative exposure to implied correlation.

Because a mezzanine tranche falls between the equity and senior tranches its exposure to default correlation is
not so clear-cut. Indeed a mezzanine tranche may have little or no exposure to implied correlation. This can
have significant implications some of which we discuss below.

5.5 Risk Management and Weaknesses of the Gaussian Copula

The Gaussian copula model has many weaknesses and some of them are particularly severe. When discussing
these weaknesses below it should be kept in mind that the Gaussian copula model has also been applied to other
asset-backed securities and not just to CDO’s. That said, some market participants understood these
weaknesses well before the 2008 credit crisis and understood that the Gaussian copula was ultimately little more
than a mechanism for quoting prices of CDO tranches via implied correlations. In the final reckoning, it is
difficult to attach blame to any model. The blame that is attributed to the Gaussian copula surely lies with
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those who abused and misused these models and failed to understand the true extent of the market and liquidity
risks associated with the CDOs and ABS structures more generally. Of course, it is also clear that in many
circumstances there were no incentives in place at the institutional level to encourage users to properly
understand and account for these risks.

We now describe some of the weaknesses of the Gaussian copula model (and the structured credit market more
generally) as they pertain to the 2008 credit crisis.

1. The Gaussian copula model is completely static. There are no stochastic processes in the model and so it
does not allow for the possibility that credit spreads, for example, change dynamically. The model
therefore fails to account for many possible eventualities.

2. The model is not transparent. In particular, it is very difficult to interpret the implied correlation of a
tranche. On a related point, the non-transparency of the model makes it very difficult to construct
realistic scenarios that can be used to stress-test a portfolio of tranches. For example, a portfolio of ABS
and MBS CDOs should be stress tested using macro-economic models and models of the housing market.
But there is no clear way to do this using the Gaussian copula technology. As a result most of the
stress-tests that were done in practice were based on stressing implied correlation and CDS spreads. But
determining whether a stress of implied correlation is realistic in the context of the Gaussian copula model
is very difficult.

3. Liquidity risk was clearly a key risk in these markets when so many institutions were holding enormous
positions in these securities. Many participants obviously failed to consider this risk. Moreover once the
crisis began, model risk contributed to the mounting liquidity problems as the market quickly realized that
their models were utterly incapable of pricing these securities. The resulting price uncertainty, coupled
with the non-transparency of the products themselves, led to massive bid-offer spreads which essentially
shut the market down.

4. Investors in CDO tranches commonly hedged their aggregate credit exposure (as opposed to correlation
exposure) by assuming that the credit spreads of the underlying names in the portfolio all moved together.
This meant that they could hedge a long position in an equity 0%− 3% tranche, say, by taking a short
position in a 3%− 7% mezzanine tranche. The notional of the position in the mezzanine tranche can be
calculated (how exactly?) using the calibrated Gaussian copula model. While such a hedge did not protect
against actual defaults occurring, investors typically viewed themselves as being hedged against movements
in the underlying credit spreads. But this hedge can fail to protect you when a subset of individual credit
spreads moves dramatically and when the remaining underlying spreads hardly move at all.

This is what occurred in May 2005 when Ford and General Motors were suddenly downgraded by the
ratings agencies. Their CDS spreads increased substantially and investors that had sold protection on the
equity tranches of CDOs containing Ford and GM incurred substantial losses as a result. Moreover, some
of these investors had hedged by taking short positions on mezzanine tranches of the same CDO’s.
However, the spreads on the mezzanine tranches barely moved and so investors who neglected to consider
the possibility if idiosyncratic moves were not hedged at all and incurred substantial losses. Of course this
is more a weakness of how the model was used rather than a weakness of the model itself.

5. A single parameter, ρ, is used to calibrate a model which has O(N2) pairwise correlations. This is clearly
a very restrictive assumption.

6. In practice the model needed to be calibrated at very frequent intervals which of course only serves to
highlight the inadequacy of the model. (This is unfortunately true of most financial models.)

On a related note, when people asserted (in defense of their risk management processes) that the US housing
market had never fallen simultaneously across the entire country they were guilty of several mistakes: (i) They
ignored the endogeneity in the system so that they did not account for the possibility of the huge structured
credit market exacerbating a decline in the housing market. (ii) They also ignored that the world we live in



An Introduction to Copulas 21

today is very different from the world of even 20 years ago. It is far more globalized and interconnected and as a
result, historical house price movements should have provided little comfort.

An interesting front-page article was published by the Wall Street Journal on Sept 12th 2005 that discussed the
role of the Gaussian copula as well as the market reaction to the sudden downgrading of Ford and General
Motors in May 2005. It can be downloaded from

http://www.nowandfutures.com/download/credit default swaps WSJ news20050912.pdf

The article isn’t entirely satisfactory10 but it certainly proves that many market participants were well aware of
the limitations of the Gaussian copula model long before the credit crisis began in 2008. It is also worth
emphasizing again that many people were aware of the weaknesses and problems listed above. When they
highlighted these problems, however, they were either ignored or discounted. In the absence of strong
regulations this is likely to occur again as there will always be a large and powerful group of people who have a
vested interest in “business-as-usual”.

We will return later to the Gaussian copula model and the pricing of CDO’s when we discuss model risk. The
Gaussian copula model provides a rich source of examples of models that are poorly understood and used
incorrectly!

10Even the most sophisticated business media sources seem incapable of getting everything right when it comes to quantitative
matters. For those who require further evidence of this statement, do a search of the Financial Times and the Monty Hall
problem.


