IEOR E4602: Quantitative Risk Management Extreme Value Theory

Martin Haugh

Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

Motivation

- Suppose we wish to estimate VaR_{α} for a given portfolio.
- We could use the empirical α -quantile, q_{α} .
- But there are many potential problems with this approach
 - there may not be enough data
 - $\ensuremath{\,\bullet\,}$ the empirical quantile will never exceed the maximum loss in the data-set
 - time series dependence is ignored, i.e., we will be working with the unconditional loss distribution.
- Extreme value theory helps overcome these problems.

Extreme Value Theory (EVT)

- Two principal parametric approaches to modeling the extremes of a probability distribution:
 - 1. The block maxima approach
 - 2. The threshold exceedances approach.
- Threshold exceedances approach is more modern and usually the preferred approach
 - makes better use of available data.
- The Hill Estimator approach is also commonly used
 - this is a non-parametric approach.
- EVT can be combined with time-series models to estimate conditional loss distributions
 - and therefore construct better estimates of VaR, ES, etc.

The GEV Distributions

Definition: The CDF of the generalized extreme value (GEV) distribution satisfies

$$H_{\xi}(x) = \begin{cases} e^{-(1+\xi x)^{-1/\xi}}, & \xi \neq 0\\ e^{-e^{-x}}, & \xi = 0. \end{cases}$$

where $1 + \xi x > 0$.

- A three-parameter family is given by $H_{\xi,\mu,\sigma}(x):=H_\xi((x-\mu)/\sigma)$
 - μ is the location parameter
 - σ is the scale parameter
 - ξ is the shape parameter.
- $H_{\xi}(\cdot)$ defines the type of the distribution
 - i.e. recall a type is a family of distributions specified up to location and scale.

Definition: The right endpoint, x_F , of a distribution with CDF, $F(\cdot)$, is given by $x_F := \sup\{x \in \mathbb{R} : F(x) < 1\}.$

- When $\xi > 0$ obtain the Fréchet distribution
 - has an infinite right endpoint.
- When $\xi = 0$ obtain the Gumbel distribution
 - has an infinite right endpoint
 - tail decays much faster than tail of Fréchet distribution.
- When $\xi < 0$ obtain the Weibull distribution
 - a short-tailed distribution with finite right endpoint

Convergence of Maxima

- Role of GEV distribution in the theory of extremes is analogous to role of normal distribution in the Central Limit Theorem (CLT) for sums of random variables.
- Recall the CLT: if X_1, X_2, \ldots are IID with a finite variance then

$$\frac{S_n-a_n}{b_n} \ \longrightarrow \ \mathsf{N}(0,1) \ \text{ in distribution where}$$

$$S_n := \sum_{i=1}^n X_i$$

$$a_n := n \operatorname{\mathsf{E}}[X_1]$$

$$b_n := \sqrt{n\operatorname{\mathsf{Var}}(X_1)}$$

- Let $M_n := \max(X_1, \ldots, X_n)$, i.e., the block maximum.
- The block maxima approach to EVT is concerned with the limiting distribution of M_n .

The Maximum Domain of Attraction

Definition: A CDF, F, is said to be in the maximum domain of attraction (MDA) of H if there exist sequences of constants, c_n and d_n with $c_n > 0$ for all n, such that

$$\lim_{n \to \infty} P\left(\frac{M_n - d_n}{c_n} \le x\right) = H(x) \tag{1}$$

for some non-degenerate CDF, H.

Note that (1) implies (why?)

$$\lim_{n \to \infty} F^n(c_n x + d_n) = H(x).$$
(2)

The Fisher-Tippett Theorem (1920's)

Theorem: If $F \in MDA(H)$ for some non-degenerate CDF, H, then H must be a distribution of type H_{ξ} , i.e., a GEV distribution.

- If convergence of normalized maxima takes place, then the type of the distribution is uniquely determined. The location, μ , and scaling, σ , depend on the normalizing sequences, c_n and d_n .
- Essentially all the commonly used distributions of statistics are in MDA(H_{ξ}) for some ξ .

Example: The Exponential Distribution

• Suppose the X_i 's are IID $\text{Exp}(\lambda)$ so that

 $F(x) = 1 - e^{-\lambda x}$

for $x \ge 0$ and $\lambda > 0$.

• Let
$$c_n := 1/\lambda$$
 and $d_n := \ln(n)/\lambda$.

- Can directly calculate the limiting distribution using (1).
- We obtain

$$F^{n}(c_{n}x + d_{n}) = \left(1 - \frac{1}{n} e^{-x}\right)^{n}, \quad x \ge -\ln(n)$$

so that

$$\lim_{n \to \infty} F^n(c_n x + d_n) = e^{-e^{-x}}.$$

• Therefore obtain $F \in \mathsf{MDA}(H_0)$.

The Fréchet MDA

Definition:

(i) A positive function, L, on $(0,\infty)$ is slowly varying at ∞ if

$$\lim_{x \to \infty} \frac{L(tx)}{L(x)} = 1, \quad t > 0.$$

(ii) A positive function, h, on $(0,\infty)$ is regularly varying at ∞ with index $\rho \in \mathbb{R}$ if

$$\lim_{x \to \infty} \frac{h(tx)}{h(x)} = t^{\rho}, \quad t > 0.$$

e.g. The logarithmic function, log(x), is slowly varying.

The Fréchet MDA

Theorem: For $\xi > 0$,

$$F \in \mathsf{MDA}(H_{\xi}) \iff \bar{F}(x) = x^{-1/\xi} L(x)$$

for some function, L, that is slowly varying at ∞ and where $\overline{F}(x) := 1 - F(x)$.

- When $F \in MDA(H_{\xi})$, often refer to $\alpha := 1/\xi$ as the tail index of the distribution.
- e.g. Fréchet, t, F and Pareto are all in Fréchet MDA.
- Can be shown that if $F \in MDA(H_{\xi})$ for $\xi > 0$, then $E[X^k] = \infty$ for $k > 1/\xi = \alpha$.

The Gumbel and Weibull MDA's

- The Gumbel and Weibull distributions aren't as interesting from a finance perspective
 - but their MDA's can still be characterized.
- e.g. exponential, normal and log-normal are in Gumbel MDA
 - $\mathsf{E}[X^k] < \infty$ for all k > 0 in this case.
- e.g. Beta distribution is in Weibull MDA.

The Non-IID Case

- So far have dealt with only the IID case.
- But in finance, data is rarely IID.
- Can be shown, however, that for most strictly stationary time series, our results continue to hold
 - $\bullet\,$ e.g. our results hold for ARCH / GARCH models
 - if it exists, the extremal index, $\theta \in (0, 1]$, of the time series is key!
 - $n\theta$ can be interpreted as the number of independent clusters of observation in n observations.
 - see Section 7.1.3 of *McNeil, Frey and Embrechts* for further details.

The Block Maxima Method

- Assume we have observation X_1, \ldots, X_{nm}
 - so that the data can be split into m blocks with $M_j := \max\{j^{th} \text{ block}\}$
 - each block contains n observations.
- Would like both n and m to be large but there are tradeoffs
 - would like n large so that convergence to the \mbox{GEV} has occurred
 - would like m large so that we have more observations and hence lower variances of MLE estimates.
- In practice, if we are working with daily data and we have sufficiently many observations, might take quarterly, semi-annual or annual block sizes.

The Block Maxima Method

- Let $h_{\xi,\mu,\sigma}$ be the log-density.
- Then log-likelihood for $\xi \neq 0$ given by

$$l(\xi, \mu, \sigma; M_1, \dots, M_m) = \sum_{i=1}^m h_{\xi, \mu, \sigma}(M_i)$$

= $-m \ln(\sigma) - \left(1 + \frac{1}{\xi}\right) \sum_{i=1}^m \ln\left(1 + \xi \frac{M_i - \mu}{\sigma}\right)$
 $- \sum_{i=1}^m \left(1 + \xi \frac{M_i - \mu}{\sigma}\right)^{-1/\xi}.$

- We then maximize the log-likelihood over (ξ, μ, σ) subject to
 - $\bullet \quad \sigma > 0 \, \text{ and } \quad$
 - $1 + \xi (M_i \mu) / \sigma > 0$ for all i = 1, ..., m.

The Return Level and Return Period Problems

• The fitted GEV model can be used to analyze stress losses. In particular we have the return level problem and the return period problem.

Definition: Let H denote the CDF of the true n-block maximum. Then the k n-block return level is

$$r_{n,k} := q_{1-1/k}(H)$$

i.e., the (1 - 1/k)-quantile of H.

- The *k n*-block return level can be interpreted as the level that is exceeded once out of every *k n*-blocks on average.
- Using our fitted model, we obtain

$$\hat{r}_{n,k} = H_{\hat{\xi},\hat{\mu},\hat{\sigma}}^{-1} \left(1 - \frac{1}{k}\right) = \hat{\mu} + \frac{\hat{\sigma}}{\hat{\xi}} \left(\left(-\ln\left(1 - \frac{1}{k}\right)\right)^{-\hat{\xi}} - 1 \right)$$

 estimates of r_{n,k} should always (why?) be accompanied by confidence intervals.

The Return Level and Return Period Problems

Definition: Let H denote the CDF of the true n-block maximum. The return period of the event $\{M > u\}$ is given by

$$k_{n,u} := 1/\bar{H}(u)$$

where $\overline{H}(u) = 1 - H(u)$.

- $k_{n,u}$ is the average number of blocks we must wait before we observe the event $\{M > u\}$.
- Again, an estimate of $k_{n,u}$ should always be accompanied by confidence intervals.

Threshold Exceedances

- The block maxima approach is inefficient as it ignores all but the maximum observation in each block.
- The threshold exceedance approach does not suffer from this approach
 - it uses all of the data above some threshold, *u*.
- The Generalized Pareto Distribution (GPD) plays the key role in the threshold exceedance approach.

The Generalized Pareto Distribution

Definition: The Generalized Pareto Distribution (GPD) is given by

$$G_{\xi,\beta}(x) = \begin{cases} 1 - (1 + \xi x/\beta)^{-1/\xi}, & \xi \neq 0\\ 1 - e^{-x/\beta}, & \xi = 0. \end{cases}$$

where $\beta > 0$, and $x \ge 0$ when $\xi \ge 0$, and $0 \le x \le -\beta/\xi$ when $\xi < 0$.

- ξ is the shape parameter
- β is the scale parameter.
- When $\xi > 0$ obtain the ordinary Pareto distribution.
- When $\xi = 0$ obtain the exponential distribution.
- When $\xi < 0$ obtain the short-tailed Pareto distribution.

Excess Distribution Over a Threshold

Definition: Let X be a random variable with CDF, F. Then the excess distribution over the threshold u has CDF

$$F_u(x) = P(X - u \le x \mid X > u) = \frac{F(x + u) - F(u)}{1 - F(u)}$$
(3)

for $0 \le x < X_f - u$ where $x_F \le \infty$ is the right endpoint of F.

• In survival analysis F_u is known as the residual life CDF.

Definition: The mean excess function of a random variable, X, with finite mean is given by

$$e(u) := \mathsf{E}[X - u \mid X > u].$$

Examples: Exponential and GPD Random Variables

- e.g. If $X \sim \text{Exp}(\lambda)$, then can show that $F_u(x) = F(x)$
 - reflects the memoryless property of exponential random variables.
- e.g. Suppose $X \sim G_{\xi,\beta}$. Then (3) implies

$$F_u(x) = G_{\xi,\beta(u)}$$
 where

$$\begin{array}{ll} \beta(u) &:= & \beta + \xi u \\ 0 \leq x < \infty \text{ if } \xi \geq 0 \ \, \text{and} \ \, 0 \leq x \leq -\beta/\xi - u \text{ if } \xi < 0 \end{array}$$

- so the excess CDF remains a GPD with the same shape parameter but with a different scaling.
- can also show that the mean excess function satisfies

$$e(u) = \frac{\beta(u)}{1-\xi} = \frac{\beta+\xi u}{1-\xi}$$

where $0 \leq u < \infty$ if $0 \leq \xi < 1~~ {\rm and}~~ 0 \leq u \leq -\beta/\xi$ if $\xi < 0$

- note that e(u) is linear in u for the GPD, a useful property!

The GPD and MDA's

Theorem: We can find a positive function, $\beta(u)$, such that

$$\lim_{u \to x_F} \sup_{0 \le x < x_F - u} |F_u(x) - G_{\xi,\beta(u)}(x)| = 0$$
(4)

if and only if $F \in \mathsf{MDA}(H_{\xi})$, $\xi \in \mathbb{R}$.

- This theorem provides the link between the theories of block maxima and threshold exceedances.
- Since essentially all commonly used distributions are in $MDA(H_{\xi})$ for some ξ , we see that the GPD distribution is the canonical distribution for excess distributions.
- Note that the shape parameter, ξ , does not depend on u.
- Can use (4) by taking u to be "large" and therefore assuming that $F_u(x) = G_{\xi,\beta}(x)$ for $0 \le x < x_F u$ and some ξ and $\beta > 0$.

Modeling Excess Losses

- Let X_1, \ldots, X_n represent loss data from the distribution F.
- A random number N_u will exceed the threshold, u.
- Let Y_1, \ldots, Y_{N_u} be the values of the N_u excess losses.
- We assume $F_u = G_{\xi,\beta}$ and estimate ξ and β using maximum likelihood.
- Obtain

$$l(\xi, \beta \; ; \; Y_1, \dots, Y_{N_u}) = \sum_{i=1}^{N_u} \ln g_{\xi, \beta}(Y_i)$$

= $-N_u \ln(\beta) - \left(1 + \frac{1}{\xi}\right) \sum_{i=1}^{N_u} \ln\left(1 + \xi \frac{Y_i}{\beta}\right)$

which we maximize subject to $\beta > 0$ and $1 + \xi Y_i/\beta > 0$ for all i.

When the Data is Not IID

- So far have assumed the data is IID
 - but of course we know financial return data is not IID!
- If the extremal index, θ , equals 1 then no evidence of extremal clustering
 - so fine to assume data is IID.
- If $\theta < 1$ then there is evidence of extremal clustering
 - situation not so satisfactory
 - but can still use the MLE method to estimate the parameters
 - technically this becomes quasi-MLE since the model is misspecified
 - · point estimates of the parameters should still be fine
 - but standard errors might be too small in which case associated confidence intervals would also be too narrow.

Excesses Over Higher Thresholds

Lemma: Suppose $F_u(x) = G_{\xi, \beta}(x)$ for $0 \le x < x_F - u$ for some ξ and $\beta > 0$. Then $F_v(x) = G_{\xi, \beta+\xi(v-u)}(x)$ for any higher threshold $v \ge u$.

- So excess distribution over higher thresholds remains a GPD with same shape parameter, ξ, but with a scaling parameter that grows linearly in v.
- If $\xi < 1$, the mean excess function satisfies

$$e(v) = \frac{\beta + \xi(v - u)}{1 - \xi} = \frac{\xi v}{1 - \xi} + \frac{\beta - \xi u}{1 - \xi}$$
(5)

where $u \leq v < \infty$ if $0 \leq \xi < 1$ and $u \leq v \leq u - \beta/\xi$ if $\xi < 0$

- linearity of (5) in v can be used as a diagnostic for choosing the appropriate threshold, \boldsymbol{u}
- this diagnostic tool is called the sample mean excess plot.

Sample Mean Excess Plot

Definition: Given loss data X_1, \ldots, X_n , the sample mean excess function is the empirical estimator of the mean excess function given by

$$e_n(v) := \frac{\sum_{i=1}^n (X_i - v) \, \mathbf{1}_{\{X_i > v\}}}{\sum_{i=1}^n \mathbf{1}_{\{X_i > v\}}}$$

- Now can construct the mean excess plot $\{X_{(i,n)}, e_n(X_{(i,n)}) : 2 \le i \le n\}$ where $X_{(i,n)}$ is the i^{th} order statistic.
- If the data support a GPD model beyond a high threshold, then the plot should become linear for higher values of \boldsymbol{v}
 - a positive slope indicates $\xi>0$
 - a zero slope indicates $\xi \approx 0$
 - a negative slope indicates $\xi < 0$.
- Since final few values are based on very few data points they are often omitted from the plot.

Tail Probabilities

1 -

• Again assuming that $F_u(x) = G_{\xi,\ \beta}(x)$ for $0 \leq x < x_F - u$ we obtain for x > u

$$F(x) = \overline{F}(x) = P(X > u) P(X > x \mid X > u)$$

$$= \overline{F}(u) P(X - u > x - u \mid X > u)$$

$$= \overline{F}(u) \overline{F}_u(x - u)$$

$$= \overline{F}(u) \left(1 + \xi \frac{x - u}{\beta}\right)^{-1/\xi}$$

- so if we know $ar{F}(u)$ we have a formula for the tail probabilities

- (6) can now be inverted to compute risk measures!

(6)

Risk Measures

• For $\alpha \geq F(u)$ obtain

$$\mathsf{VaR}_{\alpha} = q_{\alpha}(F) = u + \frac{\beta}{\xi} \left(\left(\frac{1-\alpha}{\bar{F}(u)} \right)^{-\xi} - 1 \right).$$

• If $\xi < 1$, then

$$\mathsf{ES}_{\alpha} = \frac{1}{1-\alpha} \int_{\alpha}^{1} q_x(F) \, dx = \frac{\mathsf{VaR}_{\alpha}}{1-\xi} + \frac{\beta-\xi u}{1-\xi}.$$

• Also obtain
$$\lim_{\alpha \to 1} \frac{\mathsf{ES}_{\alpha}}{\mathsf{VaR}_{\alpha}} \; = \; \left\{ \begin{array}{cc} (1-\xi)^{-1}, & 1 > \xi \geq 0\\ 1, & \xi < 0. \end{array} \right.$$

Estimation in Practice

- Can use the sample mean excess plot to choose an appropriate threshold, *u*.
- MLE methods then used to estimate ξ and β as well as their standard errors.
- We can use the empirical estimator, N_u/n , to estimate $\bar{F}(u)$.
- Then have

$$\hat{\bar{F}}(x) = \frac{N_u}{n} \left(1 + \hat{\xi} \, \frac{x - u}{\hat{\beta}}\right)^{-1/\xi} \tag{7}$$

as our tail probability estimator for $x \ge u$

- should also compute confidence intervals for (7)
 - either using Monte-Carlo (how?) or by reparametrizing (how?).
- $\bullet\,$ Should also study sensitivity of parameter estimates to the threshold, u
 - results are not reliable if estimates remain sensitive for large *u*.

Multivariate EVT

- Can also study extreme value theory for multivariate data
 - leads to multivariate EVT.
- The marginal distributions are as in the univariate case
 - e.g. GPD for the threshold exceedances method.
- So the main item of concern is the dependency structure
 - leads to extreme value copulas
 - e.g. the Gumbel copula is a 2-dimensional EV copula.
- Generally difficult to apply Multivariate EVT in high dimensions
 - too many parameters to estimate.
- A common solution is to simply collapse the problem to the univariate case by considering the entire portfolio value or return as a univariate random variable.

Example: Danish Fire Loss Data

- \bullet Dataset consists of 2,156 fire insurance losses over 1m Danish Kroner from 1980 to 1990
 - representing combined loss for building and contents and sometimes, business earnings
 - losses are inflation adjusted to 1985 levels.
- Mean excess plot appears linear over entire range
 - so GPD with $\xi > 0$ could be fitted to entire dataset.
- We find $\hat{\xi}\approx .52$
 - so fitted model is very heavy-tailed with infinite variance. Why?
 - because $\mathsf{E}[X^k] = \infty$ for any GPD distribution with $k \ge 1/\xi$.

The Hill Estimator

- The Hill method assumes $F \in MDA(H_{\xi})$ for $\xi > 0$, i.e., the Fréchet MDA
 - so $\overline{F}(x) = L(x) x^{-1/\xi}$ where L is slowly varying.
- The estimator satisfies

$$\hat{\xi}_k^{Hill} = \frac{1}{k} \sum_{i=1}^k \ln(X_{i,n}) - \ln(X_{k,n}), \quad 2 \le k \le n$$

where $X_{n,n} \leq \cdots \leq X_{1,n}$ are the order statistics.

- often a very good estimator of ξ when the tail probability is well approximated by a power function
- It is common to plot the Hill estimator for different values of \boldsymbol{k}
 - obtain the Hill plot
 - and to then choose a value of k from a region where the estimator is relatively stable.

Where Does the Hill Estimator Come From?

Consider the mean excess for function, $e(\cdot)$, for $\ln(X)$. We obtain:

 $e(\ln(u)) = \mathsf{E}[\ln(X) - \ln(u) \mid \ln(X) > \ln(u)]$

$$= \frac{1}{\bar{F}(u)} \int_{u}^{\infty} (\ln(x) - \ln(u)) dF(x)$$

$$= \frac{1}{\bar{F}(u)} \int_{u}^{\infty} \frac{\bar{F}(x)}{x} dx \qquad \text{(using integration by parts)}$$

$$= \frac{1}{\bar{F}(u)} \int_{u}^{\infty} L(x)x^{-(1+1/\xi)} dx$$

$$\approx \frac{L(u)}{\bar{F}(u)} \int_{u}^{\infty} x^{-(1+1/\xi)} dx \qquad \text{(for } u \text{ sufficiently large)}$$

$$= \frac{L(u)u^{-1/\xi}\xi}{\bar{F}(u)}$$

$$= \xi.$$

(8)

Conditional or Dynamic EVT for Financial Time Series

- So far, our applications of EVT lead to estimates of the unconditional loss distribution.
- But we are usually (much) more interested in the conditional loss distribution
 - at least in the case of financial applications
 - generally not true in the case of insurance applications. Why?
- Can apply EVT to obtain estimate of the conditional loss distribution using time series models
 - in particular, ARCH / GARCH models.

Conditional or Dynamic EVT for Financial Time Series

 Suppose the negative log-returns (from date *t* − 1 to date *t*) are generated by a strictly stationary time series

$$L_t = \mu_t + \sigma_t Z_t$$

- μ_t and σ_t are known at time t-1
- and the Z_t 's are IID innovations with unknown CDF, $G(\cdot)$.
- The risk measures VaR^t_{α} and ES^t_{α} (at date t-1) satisfy

$$\mathsf{VaR}^{t}_{\alpha} = \mu_{t} + \sigma_{t} q_{\alpha}(Z)$$
$$\mathsf{ES}^{t}_{\alpha} = \mu_{t} + \sigma_{t} \mathsf{ES}_{\alpha}(Z)$$

where q_{α} is the α -quantile of Z.

- We can estimate VaR^t_{α} and ES^t_{α} by first fitting a GARCH model to the L_t 's
 - but we don't know the distribution, $G(\cdot)$, of Z
 - so we need to use quasi-maximum likelihood estimation (QMLE) instead of the usual MLE.

Conditional or Dynamic EVT for Financial Time Series

- The fitted GARCH model can be used to estimate μ_t and σ_t .
- We want to apply EVT to the innovations, Z, but we don't observe the Z's.
- Instead we take the GARCH residuals as our data for EVT.
- We fit the GPD to the tails of the residuals and estimate the corresponding risk measures to obtain

$$\begin{aligned} \hat{\mathsf{VaR}}_{\alpha}^{t} &= \hat{\mu}_{t} + \hat{\sigma}_{t} \hat{q}_{\alpha}(Z) \\ \hat{\mathsf{ES}}_{\alpha}^{t} &= \hat{\mu}_{t} + \hat{\sigma}_{t} \hat{\mathsf{ES}}_{\alpha}(Z) \end{aligned}$$

- See Section 3 of *"Extreme Value Theory for Risk Managers"* by McNeil or Sections 7.2.6 and 2.3.6 of MFE
 - note how well the dynamic EVT VaR method back-tests!
- See also Risk Management and Time Series lecture notes.