

UNPLUGGED 1 2 3 4

Unplugged
Lesson plans for offline (unplugged) Hour of Code activities.

Lesson 1: Programming Unplugged: My Robotic Friends
Relay
This activity will begin with a short review of "My Robotic Friends," then will quickly move to a race
against the clock, as students break into teams and work together to write a program one
instruction at a time.

Lesson 2: Text Compression
At some point we reach a physical limit of how fast we can send bits and if we want to send a large
amount of information faster, we have to find a way to represent the same information with fewer
bits - we must compress the data.

Lesson 3: Simple Encryption
In this lesson, students are introduced to the need for encryption and simple techniques for
breaking (or cracking) secret messages. Students try their own hand at cracking a message
encoded with the classic Caesar cipher and also a Random Substitution Cipher. Students should
become well-acquainted with idea that in an age of powerful computational tools, techniques of
encryption will need to be more sophisticated. The most important aspect of this lesson is to
understand how and why encryption plays a role in all of our lives every day on the Internet, and
that making good encryption is not trivial. Students will get their feet wet with understanding the
considerations that must go into making strong encryption in the face of powerful computational
tools that can be used to crack it. The need for secrecy when sending bits over the Internet is
important for anyone using the Internet.

Lesson 4: Dance Party: Unplugged
Unplugged | Events

Have a class dance party to learn about events.

file:///hoc/unplugged/
file:///hoc/unplugged/
file:///hoc/unplugged/
file:///hoc/unplugged/

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

UNPLUGGED 1 2 3 4

Lesson 1: Programming Unplugged: My
Robotic Friends Relay
Overview
This activity will begin with a short review of "My Robotic Friends,"
then will quickly move to a race against the clock, as students break
into teams and work together to write a program one instruction at a
time.

Purpose
There are many important components to this lesson. Students will be
able to run around and get their wiggles out while building teamwork,
programming, and debugging skills. Teamwork is very important in
computer science. While Pair Programming - Student Video is
common, it is more common for computer scientists to work in teams.
These teams write and debug code as a group rather than individuals.
In this lesson, students will learn to work together while being as
efficient as possible.

This activity also provides a sense of urgency that will teach them to
balance their time carefully and avoid mistakes, but not to fall too far
behind.

Agenda
Warm Up

Introduction

Main Activity (15 min)

Relay Programming Activity

Wrap Up (15 min)

Flash Chat: What did we learn?
Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Practice communicating ideas through code
and symbols.
Use teamwork to complete a task.
Verify the work done by teammates to ensure
a successful outcome.

Preparation
Read My Robotic Friends - Teacher

Prep Guide.
Locate a wide open space for this activity,

such as the gym or outdoor field.
Print out one My Robotic Friends -

Symbol Key per group. This is "code" to be
used.

resource paper-trapezoid-template
not found are provided if your class is not
going to use cups.

Print out one set of Stacking Cup Ideas -
Manipulatives per group.

Make sure each student has a Think Spot
Journal - Reflection Journal.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

My Robotic Friends - Teacher Prep Guide

For the Students

My Robotic Friends - Symbol Key
Stacking Cup Ideas - Manipulatives
My Robotic Friends - Paper Trapezoid
Template

Think Spot Journal - Reflection Journal
Make a Copy

Make a Copy

https://www.youtube.com/watch?v=vgkahOzFH2Q
https://studio.code.org/s/unplugged-hoc/stage/1/puzzle/1/
https://docs.google.com/document/d/1CTFqQVeEis2OHLdoNS1ZYDcZfJX6hPeczLjmtot8850/
https://drive.google.com/file/d/0B5EtbgRo8FVhZUh2ZURHenpYU0E/view?usp=sharing
https://drive.google.com/file/d/0B5EtbgRo8FVhX0ZvSTJaSWhUS3M/view?usp=sharing
https://drive.google.com/open?id=1IwPCkbZen2Md6MsbaOO5wYA93e8qrgrna2pozTGazjY
https://docs.google.com/document/d/1CTFqQVeEis2OHLdoNS1ZYDcZfJX6hPeczLjmtot8850/
https://drive.google.com/file/d/0B5EtbgRo8FVhZUh2ZURHenpYU0E/view?usp=sharing
https://drive.google.com/file/d/0B5EtbgRo8FVhX0ZvSTJaSWhUS3M/view?usp=sharing
https://drive.google.com/open?id=1go_BJorY8OzmqWyB5z8_FY7bbPCWg1ZBxfjewU0nMmA
https://drive.google.com/open?id=1IwPCkbZen2Md6MsbaOO5wYA93e8qrgrna2pozTGazjY

Vocabulary
Algorithm - A list of steps to finish a task.
Bug - Part of a program that does not work
correctly.
Debugging - Finding and fixing problems in
an algorithm or program.

 Clarifications

Here are some clarifications that need to be shared from
time to time:

Only one person from each group can be at the image
at one time.
It is okay to discuss algorithms with the rest of the
group in line, even up to the point of planning who is
going to write what when they get to the cups.
When a student debugs a program by crossing out an
incorrect instruction (or a grouping of incorrect
instructions) this counts as their entire turn. The next
player will need to figure out how to correct the removed
item.

Teaching Guide
Warm Up

Introduction
Recall that in "My Robotic Friends" we guided our teammate's Automatic Realization Machine (ARM) using arrows. Take a
moment to go through a quick "My Robotic Friends" example as a reminder. It can either be one that you have already
covered or one that is new.

We are going to do the same kind of thing today, but instead of controlling each other, we are going to work together to
create a program one symbol at a time.

Main Activity (15 min)

Relay Programming Activity
The practice lesson was easy enough; let's add some action! We're going to do the same type of thing (create a program
describing how the cups are stacked) but now we're going to do it in relay teams, one symbol at a time.

The rules of this game are simple:

Divide students into groups of 3-5.
Have each group queue up relay-style.
Place an identical stack of cups at the other side of the
room/gym/field from each team.
Have the first student in line dash over to the cups,
review it, and write down the first symbol in the
program to reproduce that stack.
The first student then runs back and tags the next
person in line, then goes to the back of the queue.
The next person in line dashes to the stack of cups,
reviews the stack, reviews the program that has
already been written, then either debugs the program
by crossing out an incorrect symbol, or adds a new
one. That student then dashes back to tag the next
person, and the process continues until one group has
finished their program.

First group to finish with a program that matches the stack of cups is the winner! Play through this several times, with
images of increasing difficulty.

Wrap Up (15 min)

Flash Chat: What did we learn?
What did we learn today?
What if we were each able to do five symbols at a time?

How important would it be to debug our own work and the work of the programmer before us?
How about with 10 symbols?
10,000? Would it be more or less important?

Is it easier or harder to have multiple people working on the same program?
Do you think people make more or fewer mistakes when they're in a hurry?

If you find a mistake, do you have to throw out the entire program and start over?

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How did you feel during today's lesson?
How did teamwork play a role in the success of writing today's program?
How did you use your debugging skills in today's lesson?

Extended Learning

Use these activities to enhance student learning. They can be used as outside of class activities or other enrichment.

Pass the paper

If you don't have the time or room for a relay, you can have students pass the paper around their desk grouping, each
writing one arrow before they move the paper along.

Fill It, Move It

As the teacher, create a stack of cups with as many cups as children in each group.
Have the students write as many symbols in the program as it takes to get to the next cup (including putting the cup
down) before passing to the next person.

Debugging Together

Create a stack of cups at the front of the room. Have each student create a program for the stack. Ask students to trade
with their elbow partner and debug each other's code.

Circle the first incorrect step, then pass it back.
Give the students another chance to review and debug their own work.
Ask for a volunteer to share their program.

Ask the class:

How many students had the same program?
Anyone have something different?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

UNPLUGGED 1 2 3 4

Lesson 2: Text Compression
Overview
At some point we reach a physical limit of how fast we can send bits
and if we want to send a large amount of information faster, we have
to find a way to represent the same information with fewer bits - we
must compress the data. In this lesson, students will use the Text
Compression Widget to compress segments of English text by looking
for patterns and substituting symbols for larger patterns of text.

Purpose
The basic principle behind compression is to develop a method or
protocol for using fewer bits to represent the original information. The
way we represent compressed data in this lesson, with a “dictionary”
of repeated patterns is similar to the LZW compression scheme,
but it should be noted that LZW is slightly different from what students
do in this lesson. Students invent their own way here. LZW is used not
only for text (zip files), but also with the GIF image file format.

Agenda
Getting Started (5-7 mins)

Warm up: Abbr In Ur Txt Msgs (5-7 mins)

Activity (45 mins)

Decode this Mystery Text (10-15 mins)
Use the Text Compression Widget

Wrap-up (10 mins)

Discuss properties and challenges with compression

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Collaborate with a peer to find a solution to a
text compression problem using the Text
Compression Widget (lossless compression
scheme).
Explain why the optimal amount of
compression is impossible or “hard” to
identify.
Explain some factors that make compression
challenging.
Describe the purpose and rationale for
lossless compression.

Preparation
Test out the Text Compression Widget
Review the teaching tips to decide which

options you want to use

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

Activity Recap - Decode this Message -
Activity Recap

For the Students

Decode this message - Activity Guide

Activity Guide - Text Compression -
Activity Guide

Video: Text Compression with Aloe
Blacc - Video (download)
Text Compression Widget on Code
Studio - Widget

Vocabulary
Lossless Compression - a data
compression algorithm that allows the original

Make a Copy

Make a Copy

Make a Copy

http://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://studio.code.org/s/unplugged-hoc/stage/2/puzzle/1/
https://docs.google.com/document/d/1Z3kwOLtnzV-vFvNYVCI5CwJlqW7oMPHsmLEQNog-0jM/
https://docs.google.com/document/d/1x89s9Xo6lwMJPQjJqhzPaBg_huwTF9LmV2PrUrESYZQ/
https://docs.google.com/document/d/1dEvtuFNhx9tOWBFt8z_7_uB6WqeS5SSSdYamsZu6hJ0/
https://www.youtube.com/watch?v=LCGkcn1f-ms&feature=youtu.be
https://videos.code.org/2015/csp/textcompression_blacc.mp4
https://studio.code.org/s/text-compression/stage/1/puzzle/1

data to be perfectly reconstructed from the
compressed data.

 Discussion
Goal

As a warm up to thinking about Text Compression,
connect to ways that most people already compress text in
their lives, through abbreviations and acronyms with which
most people have some experience in text messages.

Motivate some ideas about why someone would want to
compress text.

Teaching Guide
Getting Started (5-7 mins)

Warm up: Abbr In Ur Txt Msgs (5-7 mins)
Prompt:

"When you send text messages to a friend, do
you spell every word correctly?"

Do you use abbreviations for common words? List
as many as you can.
Write some examples of things you might see in a
text message that are not proper English.

Give students a minute to write, and to share with a
neighbor?

"Why do you use these abbreviations? What is the benefit?"
Possible answers:

to save characters/keystrokes
to hide from parents/teachers
to be cool, clever, funny
to “speak in code”
to say the same thing in less space

 What's this about? - Compression: Same Data, Fewer Bits

Today's class is about compression
When you abbreviate or use coded language to shorten the original text, you are “compressing text.” Computers do
this too, in order to save time and space.

The art and science of compression is about figuring out how to represent the SAME DATA with FEWER BITS.

Why is this important? One reason is that storage space is limited and you'd always prefer to use fewer bits if you
could. A much more compelling reason is that there is an upper limit to how fast bits can be transmitted over the
Internet.

What if we need to send a large amount of text faster over the Internet, but we’ve reached the physical limit of how fast
we can send bits? Our only choice is to somehow capture the same information with fewer bits; we call this
compression.

Transition:

Let's look at an example of a text message that's been compressed in a clever way.

Activity (45 mins)

Decode this Mystery Text (10-15 mins)
Distribute or Display the Activity guide: Decode this message - Activity Guide
Put students into partners or work individually.
Task: What was the original text?
Give students a few minutes to decode the text. The text should be a short poem (see activity recap below)

https://docs.google.com/document/d/1x89s9Xo6lwMJPQjJqhzPaBg_huwTF9LmV2PrUrESYZQ/

 Content Corner

The video explains a little bit about compression in general
- the difference between lossless compression and lossy
compression. Todays class is about lossless
compression we'll do lossy compression in a class or
two after looking at image encoding.

Student Activity Guide Activity Recap

Distribute or Display Activity guide:
Decode this message - Activity
Guide

(Display or draw yourself) Activity Recap:
Activity Recap - Decode this Message -
Activity Recap

Recap: How much was it compressed?

To answer, we need to compare the number of characters in the original poem to the number of characters needed to
represent the compressed version.

Let's break it down.

Display or Demonstrate yourself ideas from: Activity Recap - Decode this Message - Activity Recap (shown in
table above)

Important Note:

The compressed poem is not just this part: If you were to send this to someone
over the Internet they would not be able to decode it.
The full compressed text includes BOTH the compressed text and the key to solve it.
Thus, you must account for the total number of characters in the message plus the total number of characters in the
key to see how much you've compressed it over the original.

Transition

Now you're going to get to try your hand at compressing some things on your own.

Use the Text Compression Widget
 Video: Text Compression with Aloe Blacc -

Video

Video explains compression
Demonstrates the use of the Text Compression Tool.
NOTE: This video pops up automatically when
students visit the text compression stage in Code
Studio.

Divide students into groups of 2
Assign each pair one of the poems provided and challenge them, as a pair to compress their poem as much as
possible.

https://docs.google.com/document/d/1x89s9Xo6lwMJPQjJqhzPaBg_huwTF9LmV2PrUrESYZQ/
https://docs.google.com/document/d/1Z3kwOLtnzV-vFvNYVCI5CwJlqW7oMPHsmLEQNog-0jM/
https://code.org/curriculum/docs/csp/U2L02-pitterPatter-encoded.png
https://code.org/curriculum/docs/csp/U2L02-pitterPatter-compressionbreakdown.png
https://docs.google.com/document/d/1Z3kwOLtnzV-vFvNYVCI5CwJlqW7oMPHsmLEQNog-0jM/
https://code.org/curriculum/docs/csp/U2L02-pitterPatter-compressed.png
https://code.org/curriculum/docs/csp/code-studio-icon.png
https://www.youtube.com/watch?v=LCGkcn1f-ms&feature=youtu.be

 Teaching Tip

Teacher's Choice whether to show the video to the
whole class or let students watch it from within Code
Studio. There are benefits and drawbacks to each.

Option to Consider: Get students into the text
compression tool BEFORE showing the video. You might
find students are more receptive to some of the
information in the video if they have tried to use the tool
first.

Communication and Collaboration: To develop
communication and collaboration between students,
include one of the following scenarios in class:

Have students who were assigned the same poem
compare results, or seat them in the same area of the
room.
Have a little friendly competition - but be careful not to
let “bad” competition seep in - to see which pair can
compress a poem the most. Use a poem that none of
the students have compressed yet.
For each poem, have the group(s) who did it figure out
the best in the class, and record it on the board or
somewhere that people can see.

Have a class goal of getting the compression
percentages for the four poems as high as possible.
The groups with the best compression percentages
may be asked to share their strategy with the class.

Students may be reluctant to share if they feel they don’t
have the best results, but students should see others’
work and offer advice and strategies.

Deliver or put simple instructions on the board so students can follow.
Challenge: compress your assigned poem as much as possible.
Compare with other groups to see if you can do
better.
Try to develop a general strategy that will lead to a
good compression.

After some time, have pairs that did the same poem
get together to compare schemes. As a group their
job is to come up with the best compression for that
poem for the class.

Optionally: you may hand out Text Compression
(optional) - Activity Guide, which also explains the
instructions and gives students tasks. It may work well
as an out-of-class activity or assessment.

Wrap-up (10 mins)

Discuss properties and
challenges with compression
Ask groups to pause to discuss the questions at the end
of the activity.

Prompts:

"What makes doing this compression hard?"

Invite responses. Some of these issues should
surface: You can start in lots of different ways. Early
choices affect later ones. Once you find one set of
patterns, others emerge.
There is a tipping point: you might be making
progress compressing, but at some point the scale
tips and the dictionary starts to get so big that you
lose the benefit of having it. But then you might start re-thinking the dictionary to tweak some bits out.

"Do we think that these compression amounts that we’ve found are the the best? Is there a way to know
what the best compression is?"

We probably don’t know what’s best.
There are so many possibilities it’s hard to know. It turns out the only way to guarantee perfect compression is brute
force. This means trying every possible set of substitutions. Even for small texts this will take far too long. The “best” is
really just the best we’ve found so far.

"But is there a process a person can follow to find the best (or a pretty good) compression for a piece of
text?"

Yes, but it’s imprecise -- you might leave this as a lingering question.

Extended Learning

Real World: Zip Compression

Experiment with zip using text files with different contents. Are the results for small files as good as for large files? (On
Macs, in the Finder choose “get info” for a file to see the actual number of bytes in the file, since the Finder display will
show 4KB for any file that’s less than that.)

https://docs.google.com/document/d/1k_7idFW88iQ9s-xdj3z9K5sTANpGNPtRbE-i8RqbPD0/

Warning: results may vary. Zip works really well for text, but it might not compress other files very well because they
are already compressed or don’t have the same kinds of embedded patterns that text documents do.

Challenge: Research the LZW algorithm

.zip compression is based on the LZW Compression Scheme

While the idea behind the text compression tool is similar to LZW (zip) algorithm, tracing the path of compression and
decompression is somewhat challenging. Learning more about LZW and what happens in the course of this algorithm
would be an excellent extension project for some individuals.

Standards Alignment
CSTA K-12 Computer Science Standards (2011)

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

2.1 - A variety of abstractions built upon binary sequences can be used to represent all digital data.

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

3.1 - People use computer programs to process information to gain insight and knowledge.

3.3 - There are trade offs when representing information as digital data.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://creativecommons.org/
file://code.org/contact

UNPLUGGED 1 2 3 4

Lesson 3: Simple Encryption
Overview
In this lesson, students are introduced to the need for encryption and
simple techniques for breaking (or cracking) secret messages.
Students try their own hand at cracking a message encoded with the
classic Caesar cipher and also a Random Substitution Cipher.
Students should become well-acquainted with idea that in an age of
powerful computational tools, techniques of encryption will need to be
more sophisticated. The most important aspect of this lesson is to
understand how and why encryption plays a role in all of our lives
every day on the Internet, and that making good encryption is not
trivial. Students will get their feet wet with understanding the
considerations that must go into making strong encryption in the face
of powerful computational tools that can be used to crack it. The need
for secrecy when sending bits over the Internet is important for
anyone using the Internet.

Purpose
“Encryption” is a process for transforming a message so that the
original is “hidden” from anyone who is not the intended recipient.
Encryption is not just for the military and spies anymore. We use
encryption everyday on the Internet, primarily to conduct commercial
transactions, and without it our economy might grind to a halt.

This lesson gives students a first taste of the kind of thinking that goes
into encrypting messages in the face of computational tools.
Computational tools dramatically increase the strength and complexity
of the algorithms we use to encrypt information, but these same tools
also increase our ability to crack an encryption. Developing strong
encryption relies on knowledge of problems that are “hard” for
computers to solve, and using that knowledge to encrypt messages.
As a resource, you may wish to read all of Chapter 5 of Blown to
Bits. It provides social context which you may want to bring to your
classroom.

Agenda
Getting Started (15)

Classic Encryption - The Caesar Cipher

Activity (35)

Part 1 - Crack a Caesar Cipher
Part 2 - Crack a Random Substitution Cipher

Wrap-up (10)

Video: Encryption and Public Keys
Discussion

View on Code Studio

Objectives
Students will be able to:

Explain why encryption is an important need
for everyday life on the Internet.
Crack a message encrypted with a Caesar
cipher using a Caesar Cipher Widget
Crack a message encrypted with random
substitution using Frequency Analysis
Explain the weaknesses and security flaws of
substitution ciphers

Preparation
Examine both versions of the widget

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Encryption Widgets on Code Studio
Encryption and Public Keys - Video
(download)

Vocabulary
Caesar Cipher - a technique for encryption
that shifts the alphabet by some number of
characters
Cipher - the generic term for a technique (or
algorithm) that performs encryption
Cracking encryption - When you attempt to
decode a secret message without knowing all
the specifics of the cipher, you are trying to
"crack" the encryption.
Decryption - a process that reverses
encryption, taking a secret message and
reproducing the original plain text
Encryption - a process of encoding
messages to keep them secret, so only
"authorized" parties can read it.
Random Substitution Cipher - an

https://studio.code.org/s/unplugged-hoc/stage/3/puzzle/1/
https://studio.code.org/s/hoc-encryption
https://youtu.be/ZghMPWGXexs
http://videos.code.org/2015/csp/concept_encryption.mp4

Extended Learning encryption technique that maps each letter of
the alphabet to a randomly chosen other
letters of the alphabet.

 Content Corner

If necessary provide context of some facts about the
Internet:

The Internet is not inherently secure.
Packets traveling across the Internet move through
many routers, each of which could be owned by
different people or organizations.
So we should assume all information traveling across
the Internet to be public, as if written on a postcard and
sent through the mail.

 Teaching Tip

Resist the urge to give students a tool or device to aid in
cracking this message -- that's coming in the next part of
the lesson! Part of the point here is that it's possible
without tools. With tools it becomes trivial, as we'll see
next.

If students are struggling to start here are a few strategy
suggestions:

Find a small word and try alphabetic shifts until it's clear
that it's an English word
Remember the letters aren't randomly substituted - the
alphabet is just shifted.
Once you have found the amount of shift the rest comes
easily.

Teaching Guide
Getting Started (15)

 Remarks

Secrecy is a critical part of our lives, in ways big and
small. As our lives increasingly are conducted on the
Internet, we want to be sure we can maintain the
privacy of our information and control who has access
to privileged information.

Digital commerce, business, government operations,
and even social networks all rely on our ability to keep
information from falling into the wrong hands.

We need a way to send secret messages...

Classic Encryption - The Caesar
Cipher
Background:

Many of the ideas we use to keep secrets in the digital age are far older than the Internet. The process of
encoding a plain text message in some secret way is called Encryption

For example in Roman times Julius Caesar is reported to have encrypted messages to his soldiers and
generals by using a simple alphabetic shift - every character was encrypted by substituting it with a
character that was some fixed number of letters away in the alphabet.

As a result an alphabetic shift is often referred to as the Caesar Cipher.

Prompt:

This message was encrypted using a Caesar Cipher (an "alphabetic shift").
Let's see how long it takes you to decode this message (remember it's just a shifting of the alphabet):

Display or write this on the board

 serr cvmmn va gur pnsrgrevn

Give students about 3-5 minutes to work on
cracking the message.

ANSWER: "free pizza in the cafeteria" - the
A-Z alphabet is shifted 13 characters.

Recap:

With this simple encryption technique it only took a few
minutes to decode a small message.
What if the message were longer BUT you had a
computational tool to help you?!

Activity (35)

 Cracking Substitution Ciphers

In this set of activities students will use two different versions of a simple widget in Code Studio to "crack" a messages
encoded with substitution ciphers, including an alphabetic shift and random substitution.

 Content Corner

If you'd like your students to read a little bit about
Historical Cryptography and cracking ciphers, check
out 'Substitution Ciphers and Frequency Analaysis' in
Blown to Bits, Chapter 5 - Reading pp. 165-169.

 Teaching Tip

Don't rush it, but don't linger on cracking caesar ciphers.
Presenting and cracking a caesar cipher should go pretty
fast.

The widget is pretty self-explanatory. Let students figure
out how to use it on their own.

The goal here is make points about cracking encryption
with computational tools, and start to use some common
terms.

You should move on to cracking random substitution
relatively quickly.

 Transition to Code Studio : Encryption

Widgets on Code Studio

Part 1 - Crack a Caesar Cipher
The instructions for this activity are simple - there is no
handout:

Put students in pairs/partners

Goal: Select a message encrypted with a caesar
cipher and use the provided widget to "crack" it.

Experiment with the tool - Click things, poke around,
figure out what it's doing.
Choose one of the messages from the pull
down menu and try to crack it using the tool.
If you want to, enter you own message, encrypt it,
and have a friend decrypt it.

Give students about 5 minutes to get into the tool
and crack a few messages

Aided with the tool, cracking an alphabetic shift is
trivial.
Once you've done one, it only takes a matter of seconds to do others.

Optional - Pause and Recap:

There is a page in Code studio which recaps terminology (encryption, decryption, crack, cipher, Caesar ciper) and poses
the next problem.

You may optionally pause here to recap and go over terms if you like or just let students proceed (see activity part 2
below).

Part 2 - Crack a Random Substitution Cipher
After re-capping the first activity make sure students understand the following before proceeding:

Cracking a Caesar cipher is easy...trivial with a computational tool like the one we used.
The next step is to make the encryption slightly harder...

New Challenge:

What if instead of shifting the whole alphabet, we mapped every letter of the alphabet to a random
different letter of the alphabet? This is called a random substitution cipher.

The new version of the widget you'll see is a more sophisticated version of the encryption tool that
shows you lots of different stuff.

But what it does is bit of a mystery! Let's check it out...

 Get Cracking

Have students click to the next bubble to see the frequency analysis version of the widget. (It should look like the
screen shown below)

Goal: let students explore for 5-10 minutes to see if they can discover what the tool is showing them and allowing them
to do.

The tasks laid out for students in code studio are:

Figure out what is going on in this new version of the tool
What information is being presented to you?

http://www.bitsbook.com/wp-content/uploads/2008/12/chapter5.pdf
https://code.org/curriculum/docs/csp/code-studio-icon.png
https://studio.code.org/s/hoc-encryption

 Use a Discovery-based approach

REMINDER: Discovery-based introduction of tools
in a nutshell:

Get students into to the tool without much or any
introduction
Give students working in partners a fixed amount of
time (5 minutes or so) to poke around and see if they
can figure out what it does and doesn’t do – typically
this might be presented as a mystery worth
investigating
Ask the group to report what they found
Teacher fill in any gaps or explanations of how the tool
works afterwards

This widget, like all others, are meant as a learning tool.
You cannot break it so you are encouraged to let students
play and investigate to figure out how the tools work.

These discovery-based methods of introducing tools have
been tested in professional development and have
worked well for teachers who use this curriculum. This
method is effective for a few reasons, but overall students
find this approach more engaging and fun, and they tend
to be more receptive to, and motivated to hear,
explanations of how the tool works after trying to “solve
the mystery” themselves.

 Wrap up
goals

The video re-iterates a number of points that came out in
this lesson.

In wrapping-up, make sure students:

Understand the relationship between
cryptographic keys and passwords.

A Key is an input to an encryption algorithm. A
password is basically the same thing.

Understand why using longer passwords makes
them harder to guess.

Longer passwords increase the number of possible
keys making it Computationally hard to guess what
the key is.

Figure out what the the tool let's you do
As usual: you can't break it. So click on things, poke
around.
If you figure it out you might be able to crack a
message encoded with random substitution.

After some exploration time regroup to clarify
what the tool is and how it works.

If necessary point out to students that the next level
in code studio (the one after the frequency analysis
tool) explains a little bit about how frequency analysis
works and suggests a few strategies for how to get
started.

Give students about 15-20 minutes to crack one
of the messages.

If they finish there are more to try.
Students can enter their own messages, do a random
substitution to encrypt it, then copy/paste the
encrypted version and see if a friend can crack it.
It is possible to get pretty proficient at cracking these messages with the tool.

Wrap-up (10)

Video: Encryption and Public Keys
Show the The Internet: Encryption & Public Keys
- Video

You should know about this video:

0:00 to 4:11 covers Caesar and Vigenere ciphers
and explains why they are hard to crack
After 4:11...it explains the difference between
encryption that uses symmetric v. asymmetric keys
which is related to material on public key
encryption and is intended as a preview/teaser for
more modern encryption techniques.

Discussion
As part of wrap up the major points we want to draw
out are:

Encryption is essential for every day life and activity
The "strength" of encryption is related to how easy it is to crack a message, assuming adversary knows the technique but
not the exact "key"

https://code.org/curriculum/docs/csp/U4L05-freqanalysis-screencap.png
https://www.youtube.com/watch?v=ZghMPWGXexs

 Teaching Tips

Students should be encouraged to chat with their partner
while completing the worksheet. The questions are fairly
straightforward and the point is more to use the questions
as a guide to the reading, than to find all the answers as
quickly as possible.

A random substitution cipher is very crackable by hand though it might take some time, trial and error.
However, when aided with computational tools, a random substitution cipher can be cracked by a novice in a matter of
minutes.
Simple substitution ciphers give insight into encryption algorithms, but as we've seen fall way short when a potential
adversary is aided with computational tools...our understanding must become more sophisticated.
If we are to create a secure Internet, we will need to develop tools and protocols which can resist the enormous
computational power of modern computers.

Here are a couple of thought-provoking prompts you can use to bring closure to the lesson and as an avenue to draw out
the points above. Choose one or more.

Prompts:

How much easier is it to crack a caesar cipher than a random substitution cipher? Can you put a number on
it?

For Caesar's Cipher there are only 25 possible ways to shift the alphabet. Worst case, you only need to
try 25 different possibilites. A random substitution cipher has MANY more possibilities (26 factorial =
4x10 possibilities). However, as we learned, with frequency analysis we can avoid having to try all of
them blindly.

Was it difficult to crack a Random Substitution cipher? Did it take longer than you thought? shorter? Why?

Computational tools aid humans in the implementation of encryption, decryption, and cracking
algorithms. In other words, using a computer changes the speed and complexity of the types of
encryption we can do, but it also increases our ability to break or circumvent encryption.

Any encryption cipher is an algorithm for transforming plaintext into ciphertext. What about the other way
around? Can you write out an algorithm for cracking a Ceasar cipher? What about a random substitution
cipher?

An algorithm for cracking a Caesar cipher is pretty easy - for each possible alphabetic shift, try it, see if
the words come out as english.
An algorithm for cracking random substitution is trickier and more nunanced. There might not be a
single great answer but through thinking about it you realize how tricky it is to codify human intelligence
and intuition for doing something like frequency analysis into a process that a machine can follow. It
probably requires some human intervention which is an interesting point to make.

Review of Terminolgoy -- you can use this opportunity to review new vocabulary introduced in the activity
and respond to questions students may have encountered during the activity.

Definitions of cryptography, encryption, decryption, cracking/breaking an encryption, cipher, etc.

Extended Learning

Read Blown to Bits

Read pp. 165-169 of Blown to Bits, Chapter 5 -
Reading.
Answer the questions provided in the reading guide
and worksheet Reading Guide for Encryption -
Worksheet

More Blown to Bits

The earlier sections of Chapter 5 of Blown to Bits make reference to the significance of and controversies surrounding
encryption in the aftermath of September 11th. This reading may be a useful tool for further introducing the impact of
cryptography on many aspects of modern life.

26

http://www.bitsbook.com/wp-content/uploads/2008/12/chapter5.pdf
https://docs.google.com/document/d/1Adxoscvs8sf6ieEvoe8-5RfH542CvoCupb5t9ZiB1No/

Ask students to review the history of their Internet browsing and calculate roughly what percentage they conduct with the
assumption that it is “private.” Do they have any way of being sure this is the case? Are there any websites they visit
where they feel more confident in the secrecy of their traffic than others? Are they justified in this conclusion?

Standards Alignment
CSTA K-12 Computer Science Standards (2011)

CI - Community, Global, and Ethical Impacts

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to solve a

problem.

3.3 - There are trade offs when representing information as digital data.

6.3 - Cybersecurity is an important concern for the Internet and the systems built on it.

7.3 - Computing has a global affect -- both beneficial and harmful -- on people and society.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

UNPLUGGED 1 2 3 4

Lesson 4: Dance Party: Unplugged
Overview
Students will learn that events are a useful way to control when an
action happens, and can even be used to make make multiple things
act in sync. In programming, you can use events to respond to a user
controlling it (like pressing buttons or clicking the mouse). Events can
make your program more interesting and interactive.

Purpose
Students will learn to think about controlling actions using events.
Events are widely used in programming and should be easily
recognizable after this lesson.

Agenda
Warm Up (10 min)

Vocabulary
Warming up to Events

Main Activity (25 min)

Dance Rehearsal
Dance Party
Extensions

Wrap Up (5 min)

Flash Chat: What did we learn?

Go Viral!

View on Code Studio

Objectives
Students will be able to:

Respond to commands given by an instructor.
Recognize movements of the teacher as
signals to start an action.
Keep track of actions associated with different
events.

Preparation
Project the The Big Dance Party Slides.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

The Big Dance Party Slides
Event Controller
Spotify Playlist (all ages)

Vocabulary
Event - An action that causes something to
happen.

https://studio.code.org/s/unplugged-hoc/stage/4/puzzle/1/
https://docs.google.com/presentation/d/1Guau5AeuqQCcPz06bfhtTmgt_ykaxKZ_JzkhzcECOcQ/
https://docs.google.com/presentation/d/1Guau5AeuqQCcPz06bfhtTmgt_ykaxKZ_JzkhzcECOcQ/
https://code.org/curriculum/course2/15/Activity15-TheBigEvent.pdf
https://open.spotify.com/playlist/2MiLztu5QGQERdEsZed81b?si=6cF0s1ETQf2vN_ea8B4fIw

 Lesson Tip

It is important to note that each move is performed
continuously but also in left/right pairs. For example, when
performing Clap High students will clap once to the left,
then once to the right, then repeat that until the next move
starts.

Teaching Guide
Warm Up (10 min)

Vocabulary
This lesson has one new and important vocabulary word:

Event

An event is an action that causes something to happen.

Warming up to Events
Introduction

Today we're going to have a dance party! Does anyone have a
favorite dance move?
Have you ever watched a dance team perform to music together?
How do they stay in sync?

One way to do this might be to plan out all of the moves in
advance. It's almost like the dancers are programmed!
Computer scientists would call this an algorithm because it's a list of steps to get something done.
Another way to keep in sync is to have a cue that tells everyone when to change to a different
move. Everyone would still need to know what moves to perform and agree on what the cues mean.

If I want everyone in class to clap at the exact same time, I could do that by giving you a countdown
from 3. (Try it!)
When I reached "1", that was the event that gave you all the signal to clap.

Ask the class if they can think of any other events that could give signals.
You may need to remind them that you're not talking about an event like a birthday party or a field trip.
If they have trouble, you can remind them that an event is an action that causes something to happen.

Blowing a whistle
Waving a flag
Saying a magic word
Pressing a button

Today, we're going to organize our class dance party using events.

Main Activity (25 min)

Directions:

Dance Rehearsal
Project the Dance Moves Slides onto your classroom
screen.
Practice each of the moves until students feel secure
with them.

Consider expectations you might need to set
around safety and personal space.

When you reach the last slide, decide with your class
what each button does. We suggest:

Green Button -> High Clap
Orange Button -> Dab
Teal Button -> Star

https://curriculum.code.org/media/uploads/floss_sm.gif

 Lesson Tip

At the beginning, give enough space between button
presses for students to perform the move in both
directions a couple times. You can get faster over time.

 Lesson Tip

Feel free to change up the music or to re-program each of
your events. This is called iteration and it's a big part of
what computer scientists do!

Purple Button -> Body Roll
Pink Button -> This Or That

Practice tapping the buttons on the overhead and having your class react.
Let your class know that every time you push a button, it is an “event” that lets them know what they are expected to
start doing next.

Dance Party
Start playing some music.

Check out this Spotify Playlist. We are using
radio-safe versions of all songs. For younger
students, you may want to use this further filtered
list filtered list Spotify Playlist (all ages) .

Use the controller buttons to have class change dance
moves while the music plays.

Extensions
Mix up the dance moves using suggestions from the
class. Encourage students to teach each other what
they know.

If only a few students can perform a complex move,
you can make them the lead dancers for a
particular event.

For example, pressing one button might cause 3
students to start flossing while the rest of the class performs a body roll.

Wrap Up (5 min)

Flash Chat: What did we learn?
Why do we need to be able to handle events in a program?
What are some other kinds of events that you can think of?

Go Viral!

The Hour of Code is about creativity, and we can’t wait to see what you create! Please share student creations, photos, and
videos on social media! Teachers, record your classroom coding a dance, or dancing the dance. Make your video special
by adding an ending clip.

Be sure to include #HourOfCode and tag us on Facebook, Twitter and Instagram. Bonus points for tagging the artist whose
music your students used. Code.org will re-share our favorite posts to our millions of followers. �

Of course, make sure to respect your school's social media policy

https://open.spotify.com/user/hadipartovi/playlist/4MSGjehzB7MqAK16SawOKD?si=BCF50JEwR7G7t1Jg-5k0rQ
https://open.spotify.com/playlist/2MiLztu5QGQERdEsZed81b?si=6cF0s1ETQf2vN_ea8B4fIw
https://www.dropbox.com/sh/rosgan9bmb7dqsy/AACoqvjQVltlBORTNWjLTk0Na?dl=0
https://curriculum.code.org/media/uploads/girls-flossing.2018-11-01-16_13_52_9Ot0bvX.gif

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

	Unplugged
	Lesson 1: Programming Unplugged: My Robotic Friends Relay
	Lesson 2: Text Compression
	Lesson 3: Simple Encryption
	Lesson 4: Dance Party: Unplugged
	Unplugged | Events

	Lesson 1: Programming Unplugged: My Robotic Friends Relay
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Teachers
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up
	Introduction

	Main Activity (15 min)
	Relay Programming Activity

	Wrap Up (15 min)
	Flash Chat: What did we learn?
	Journaling
	Journal Prompts:

	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 2: Text Compression
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Teachers
	For the Students

	Vocabulary

	Teaching Guide
	Getting Started (5-7 mins)
	Warm up: Abbr In Ur Txt Msgs (5-7 mins)

	Activity (45 mins)
	Decode this Mystery Text (10-15 mins)
	Use the Text Compression Widget

	Wrap-up (10 mins)
	Discuss properties and challenges with compression

	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2011)
	Computer Science Principles

	Lesson 3: Simple Encryption
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Students

	Vocabulary
	Agenda

	Teaching Guide
	Getting Started (15)
	Classic Encryption - The Caesar Cipher

	Activity (35)
	Part 1 - Crack a Caesar Cipher
	Part 2 - Crack a Random Substitution Cipher

	Wrap-up (10)
	Video: Encryption and Public Keys
	Discussion

	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2011)
	Computer Science Principles

	Lesson 4: Dance Party: Unplugged
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Teachers

	Vocabulary

	Teaching Guide
	Warm Up (10 min)
	Vocabulary
	Warming up to Events

	Main Activity (25 min)
	Dance Rehearsal
	Dance Party
	Extensions

	Wrap Up (5 min)
	Flash Chat: What did we learn?

	Go Viral!
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

