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CO2 Assimilation 

Autotrophic plants convert CO2 into organic compound (triose phosphates)

Biosynthesis occurs in chloroplasts

CO2 fixation requires ATP and NADPH
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Carbon Assimilation

The Calvin cycle
→ cyclic three stage
     process (many steps)

I) Fixation:
CO2 is condensed with
5C-sugar (R15BP) to
yield two 3C sugars

II) Reduction:
R15BP at the expense
of ATP and NADPH

III) Regeneration:
Six 3C sugars to three 5C
sugars to keep cycle going
→ regeneration of R15BP
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Stage 1) Carbon Fixation - RUBISCO

Bacterial RUBISCO

Spinach RUBISCO

Carbon fixation requires the enzyme
Ribulose 1,5-bisphosphate 
carboxylase/oxygenase → RUBISCO

Most abundant protein in nature.

Bacterial RUBISCO is simpler.
→ similar intersubunit contacts

Two enzymatic activities:

a) Covalently attaches CO
2
 to R1,5BP

b) cleaves 6C sugar into 2x 3C sugars
    (3-phosphoglycerate)

More Later: RUBISCO also has an undesirable 
oxygenase activity (ie. fixes O

2
 not CO

2
) 
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Catalytic Mechanism of RUBISCO

PDBid 1RXO

RUBISCO needs to be activated by
the addition of CO2 to an active-site
Lysine.

RUBISCO activase 
a) displaces R1,5BP of inactive RUBISCO
b) allows CO2 to bind

CO
2
 then reacts with Lys201 of RUBISCO

and Mg2+ binds to carbamoyl-Lys

Activation is catalyzed by
RUBISCO activase
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Catalytic Mechanism of RUBISCO

Carbamoylated lysine, stabilized by Mg2+, 
abstracts a H+ from the central carbon of R15BP.
→ (forms a carbanion that is) stabilized
    as an endiol intermediate

Endiol attacks CO2 forming C-C bond
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Catalytic Mechanism of RUBISCO

Mg2+ plays a central role in
the catalytic mechanism at
all stages.

RUBISCO
inhibitor
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Calvin Cycle – Stage 2

The second stage is a reduction
→ set of two reaction

Reversal of the equivalent steps
in glycolysis
 → BUT NADPH is the cofactor

Chloroplast stroma contains all 
glycolytic enzymes except 
phosphoglycerate mutase
(3PG → 2PG) 

Stromal and cytosolic enzymes are isozymes, they catalyze the same reaction
but are products of different genes.
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Calvin Cycle – Stage 2

X (not in stroma)

Calvin
 Cycle
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Fate of 
Glyceraldehyde 3-phosphate

Triose phosphate isomerase (isozyme)
converts G3P to DHAP for transaldolase
reaction
→ 1/6 of G3P exported (as DHAP) for
     gluconeogenesis or glycolysis

Stage 1 – R15BP + CO2 → 2 3PG
Stage 2 – 3PG → G3P
Stage 3 – 6 G3P → 3 R15BP + DHAP

5 of 6 G3P molecules produced are 
converted back to 3 R15BP

1 in 6 G3P molecules produced is
exported to cytosol as DHAP
(anabolism/catabolism)
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Calvin Cycle – Stage 3

The third stage is the regeneration 
of the CO

2 
acceptor (R15BP)

→ multiple reactions that convert
     6 3C-sugars to 3 5C sugar and
     a 3C-sugar
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Calvin Cycle – Stage 3

Regeneration of 
Ribulose 1,5-Bisphosphate 
from triose phosphates.

Similar to the pentose 
phosphate pathway
in reverse
     Enzymes 5 & 9 (right)
     Are unique
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Pentose Phosphate Pathway 
(review)

Alternative path to oxidize
Glucose.

The electron acceptor is NADP+.

NADPH is needed for reductive
biosynthesis.

Products are pentose phosphates.

Calvin Cycle (stage 3) is similar to nonoxidative
phase of pentose phosphate pathway in reverse
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Nonoxidative Reactions of the Pentose 
Phosphate Pathway 

Reaction reversed in Calvin Cycle
(stage 3) are boxed

- both transketolase reactions
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Transketolase

Transketolase → transfer of 2-carbon group
→ TPP-mediated

Reaction (below) is reversed in Calvin-Cycle:

Conversion of 6C and 3C 
sugars to 4C and 5C
sugars
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Transketolase

Reaction (below) is reversed
in Calvin-Cycle:

Conversion of 7C and 3C sugars 
to two 5C sugars.

Transketolase reaction 
mechanism
  - requires TPP cofactor
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Regeneration of 
ribulose 1,5-bisphosphate

Requires ATP
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Calvin Cycle Stoichiometry

6 NADPH and 9 ATP are
required to produce a single  
glyceraldehyde-3-phosphate 
→ 2:3 ratio

Results in the net loss of
1 Pi from the chloroplast
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Phosphate Import & Triose Sugar Export

 

Pi–triose phosphate antiporter

Glyceraldehyde 3-phosphate produced by Calvin cycle
is converted to dihydroxyacetone phosphate by triose phosphate isomerase
→ DHAP

(stroma->cytosol)
 and P

i (cytosol->stroma)
 are exchanged 1:1

Inner chloroplast membrane
is impermeable to most
phosphorylated compounds
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What About ATP and NADPH?

ATP and NADPH cannot cross the chloroplast membrane.

Pi-triose phosphate antiport 
system 'indirectly' moves ATP 
and reducing equivalents 
across the membrane. 

DHAP is transported to the 
cytosol where it is converted to
3-phosphoglycerate 
(+ ATP + NADH)

→ glycolytic enzymes
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Dark Reaction Revisited: 
Light Regulated?
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Light Regulation of Dark Reaction

Illumination of chloroplasts leads to
→ transport of H+ into the thylakoid
→ results in Mg2+ transport to the stroma

→ increase in [NADPH]

These signals are used to regulate
stromal enzymes.

RUBISCO activation (carbamoylysine) 
is faster at alkaline pH.

High Mg2+ concentration favors formation
of the active RUBISCO complex.
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(more) Light Regulation of 
The Dark Reactions

Fructose 1,6-bisphosphatase requires Mg2+ and is very dependent on pH.

→ its activity increases more the 100 fold when pH and [Mg2+] rise

Note: Calvin cyle (Dark Reaction) is more active in the presence of light
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(more) Light Regulation of 
The Dark Reactions

Light reactions also result in electron flow through ferredoxin to thioredoxin 
(ferredoxin-thioredoxin reductase.)

→ thioredoxin activates the carbon assimilation reactions.

Reduction of disulfide activates multiple Calvin cycle enzymes:
→ seduheptulose 1,7 bisphosphatase
→ fructose 1,6 bisphosphatase
→ ribulose 5-phosphate kinase
→ glyceraldehyde 3-phosphate dehydrogenase
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Photorespiration
RUBISCO is not absolutely specific for CO2 as a substrate.

→ molecular O2 competes with CO2

Has to be recycled

→ about 30% of the reactions consume O2

Result of O
2
 fixation

Loss of 2C’s from the
Calvin-cycle
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The Salvage of Phosphoglycolate

The Glycolate Pathway

In chloroplasts a phosphatase
converts 2-phosphoglycolate
to glycolate.

→ exported to peroxisome
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The Salvage of Phosphoglycolate

The Glycolate Pathway

Glycolate is oxidized to
glyoxylate.

Glyoxylate undergoes
transamination to glycine
→ exported to mitochondria

Peroxide formed is deactivated by
peroxidases in the peroxysome.
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The Salvage of Phosphoglycolate

The Glycolate Pathway

Two glycine molecules
form Serine and CO2

→ Glycine decarboxylase
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Glycine Decarboxylase

Have you seen something
similar before?
→ where?
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Pyruvate Dehydrogenase Complex

Oxidative decarboxylation of pyruvate to acetyl-CoA.

Step 1 is rate limiting and responsible for substrate specificity.
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Glycine Decarboxylase

Similar in structure and function
to two mitochondrial complexes
→ pyruvate dehydrogenase
→ α-ketoglutarate dehydrogenase

Glycine decarboxylase:
4 subunits P,H,T & L
→ stoichiometry P4H27T9L2

Step 1
Schiff base formation between 
glycine and pyridoxal phosphate (PLP)

Step 2
Protein P catalyzes oxidative decarboxylation
of glycine
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Glycine Decarboxylase

Step 3
Protein T releases NH3

from the methylamine
moiety
→ cofactor: tetrahydrofolate (H4T)

Step 4
Protein L oxidized the 
two SH-groups of lipoic acid.

Step 5
FAD is regenerated by transfering
electrons ton NADH.

N5,N10-methylene H4F is used by serine
hydroxymethyltransferase to convert one
molecule of glycine to serine.
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CO2 Fixation in C4 Plants

Avoiding the wasteful photorespiration some
plants have evolved a separate “C4 pathway” 
→ specialized cells

In mesophyll cells CO2 is fixed as HCO3
- by

PEP carboxylase.

CO2 is split off by malic enzyme in the bundle-
sheath cell → high local concentration 
→ less O2 misincorporation

C4 component
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CO2 Fixation in C4 Plants

C4 pathway has a greater energy cost
than the C3 pathway.
→ 5 ATP per CO2 vs. 3 ATP in C3

But at higher temperatures the affinity
of RUBISCO for CO2 decreases.
→ at about 28 to 30°C the gain in efficiency

is overcompensated by the
elimination of photorespiration.

→C4 plants outgrow most C3 plants 
during summer.

Some plants, native to very hot &
dry environments separate CO2 
trapping and fixation over time.
CO2 is trapped and stored as malate
in the night. During day stomata close
and CO2 is released by malic enzyme
→ assimilation via RUBISCO
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