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Abstract 

In this thesis, we have developed a full time domain approach for the simulation of 

pulse propagation in the optical fiber. Same as split-step method in frequency domain, 

this approach also treats the linear and nonlinear process alternately. To avoid the back 

and forth transformation between time and frequency domains, a digital Infinite Impulse 

Response (IIR) filter is used to treat the linear propagation directly in time domain. The 

signal samples pass through a pre-extracted IIR digital filter where the convolution is 

simply replaced by a series of operations that consist of shift and multiplication only. 

Compared with frequency domain method, this approach is fully realized in a 

"data-flow" fashion. Compared with time domain finite impulse response (FIR) method, 

this approach can save more memory and computation time. 

This approach is verified by comparing with the conventional frequency domain 

split-step Fourier method, and it is applied to the simulation of the pulse propagation, 

including polarization mode dispersion (PMD) effect in the optical fiber. 
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Chapter 1 

Introduction 

1.1 Optical Fiber Communication System 

Optical fiber communication systems have attracted more and more attention in the 

recent years because optical fibers have so many outstanding advantages. The most 

significant merit of an optical fiber is its enormous bandwidth. An optical fiber 

communication system uses a very high carrier frequency, around 200THz [1], which 

provides a far greater potential bandwidth than a cable system. Coaxial cables have a 

bandwidth up to approximately 500MHz [2]. In optical systems, this carrier frequency is 

usually expressed as a wavelength, 1.55,um. This enormous bandwidth makes it possible 

to transmit signals at a very high speed. 

Fiber loss and dispersion are two primary constraints in optical fiber communication 

systems. The fiber loss is reduced to 0.2dB/km in the early 1970's, and the invention of 

the Erbium-Doped Fiber Amplifier (EDFA) in the late 1980's brought a whole new era of 

lightwave communications. After that, dispersion in fibers became the major constraint in 

optical communication system instead of the fiber loss. And as the transmission rate 

continually increases, the random birefringence in the optical fiber cannot be ignored 

because it leads to a phenomenon called Polarization Mode Dispersion (PMD). When the 

single channel bit rate grows beyond lOGbit/s, PMD becomes a major concern and 

limitation in optical communication systems. Because of the advanced manufacturing 
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process which makes PMD very low, we can have system working at bit rate of 40Gbps 

per channel. Anyway, when the speed continues to increase beyond 40Gbps, PMD will 

be significant and cannot be ignored. 

Most optical fiber communication systems nowadays use intensity modulation-direct 

detection (IMIDD). A typical multi-span fiber system is shown in Figure 1.1. 

Photo-detector Decision circuit 

Output 1 

WDM 

: .••.•.•.•..••..••.••.•.•.• 1 

Photo-detector Decision circuit 

Input m Output m 

Figure 1.1 A schematic diagram of an optical fiber communication system 

At the transmitter side, single or multiple lasers are used as the transmitters. Directly 

modulating laser diodes or external modulators can be used. The input signal can be of 

any waveform such as Gaussian, rectangular or raise-cosine. An EDFA or semiconductor 

optical amplifier (SOA) is also used right after the transmitter in some systems to 

increase the signal power for further propagation. If wavelength-division multiplexing 

(WDM) system is used, a multiplexer (MUX) is needed before transmitting the signals 

through fiber spans. 

As the signal propagates through the optical fiber, it will be distorted and needs 

another amplifier to extend the propagation length without using repeater. The signal will 

2 
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then propagate along the fiber again and reach the receiver end. At the receiver side, the 

photo-detector, along with the decision circuit, converts the received optical signal to the 

electrical output. If WDM is used, before the photo-detector the signal will pass through a 

WDM demultiplexer (DEMUX), which is used to effectively separate the signal. 

Although manufacturing technology is very mature and standardized today, it is still 

very expensive to build the real system. Computer modeling and simulation are having, 

and will increasingly have, a pivotal role in supporting the design of long-haul amplified 

terrestrial and submarine systems, as well as of medium- and short-length ultrahigh

capacity ( Tbit/ s) systems. In all these instances, the trial-and-error experimentation of 

several different design solutions has become unrealistic due to the overwhelming cost of 

the testbeds. It is also necessary that the indispensable testbeds be immediately functional, 

and only small adjustments are needed to reach the final configuration in the actual 

system. The only way is to precede the testbed implementation phase with a thorough 

modeling and simulation method that allows the fine adjustment of the system parameters 

in advance [4]. System performance simulations become more important in the 

development of the new systems and in the optimization of the existing ones. In studying 

pulse propagation in optical fiber, especially incorporating the polarization mode 

dispersion effect, a computational effective simulation is very necessary. 

1.2 Thesis Motivation 

Pulse propagation in optical fiber is governed by the well-known Nonlinear 

3 
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Schrodinger Equation (NSE). This equation is a nonlinear partial differential equation 

(PDE) that generally does not have analytical solutions except for a few special cases in 

which the inverse scattering method can be used. Therefore, a numerical method is very 

necessary. A large number of numerical methods have been developed [2]-[10]. Among 

them, frequency domain split-step method [3][10] is the most popular. Recently, a time 

domain split-step digital FIR filtering method has been developed [11]. After that, this 

time domain split-step digital FIR filtering method was further applied to the situation 

incorporating the polarization mode dispersion effect [12]. If the mappings from 

frequency domain transfer functions to time domain filters need be done at every step, the 

extra burden due to the filter extraction will offset all the computation effort saved by 

using time domain approach. To solve this problem, this approach was developed. The 

key idea of this approach is to extract the FIR filter coefficients for all the possible 

transfer functions at the very beginning just once to establish a one-to-one mapping from 

the frequency domain transfer functions to the time domain filters, then to call the 

relevant time domain filter when the frequency domain transfer function is randomly 

selected in the propagation. 

In this thesis, a time domain split-step digital IIR filtering approach is proposed for 

the evaluation of the optical pulse propagation along the fiber. Similar to the time domain 

split-step digital FIR filtering approach, IIR approach also has the following advantages: 

It can provide a data flow fashion to simulate the pulse propagation in optical fiber; it 

makes the noise treatment much easier; it makes the distributed and parallel computing 

possible; it meets causality requirement automatically, as the output signal sample will 

4 
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depend on the past input and output signal sample only. But in computation complexity, 

this IIR filtering approach is really superior to FIR filtering approach. 

For a given sampling interval and a given resolution on fiber frequency domain 

response, a feature number N can be extracted as one over the product of the time 

domain sampling interval and the frequency domain resolution. The computation 

complexity is O(NlogN) for frequency domain FFT algorithm and o(N 2
) for time 

domain convolution algorithm. 

In digital filtering algorithms, if a filter with length N contains redundant 

information, however, this filter always can be replaced by a different filter with a 

reduced length M ( < N) without noticeable accuracy sacrifice. For instance, the IIR 

filter can be employed to replace the FIR filter with a greatly reduced filter length. The 

FIR filter built on Chebyshev polynomials can also reduce the length of that built on the 

normal Tyler series [13]. Therefore, the time domain digital filter algorithm will be 

computationally less complex than the frequency domain FFT algorithm as long as the 

filter length is M < ~ N log N [ 14]. 

The computation complexity is o((2(P + 1))2
) for time domain IIR filtering 

approach, where P is the order of IIR filter. Under the same condition, compared with 

FIR filter, IIR filter always can fit frequency domain transfer function with fewer terms. 

The IIR filter proposed in this thesis only includes four items ( P = 1 ), which is yet 

realized at the cost of bandwidth. Therefore, we have to reduce step size, that is, increase 

the number of the step n for the same fiber span to ensure enough bandwidth. The 

5 
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computation complexity of FIR approach is o(M 2 
), increasing quadratically with the 

length of FIR filter, while the computation complexity of IIR approach is 

o(n(2(P + 1 )Y) = 0(4n), increasing linearly with the number of the step. Thus, split-step 

IIR filtering approach will save more memory and computation time than split-step FIR 

filtering approach. 

We will apply this work to the simulation of pulse propagation over optical fibers 

with the PMD effect where coupled nonlinear Schrodinger equations (CNSE) must be 

solved. 

1.3 Outline of Thesis 

This thesis is organized in such a way: Firstly, polarization mode dispersion and 

governing equations for pulse propagation in optical fiber are described in chapter 2. In 

chapter 3, frequency domain split-step FFT method and time domain split-step FIR 

method for solving the nonlinear Schrodinger equation (NSE) and coupled nonlinear 

Schrodinger equations (CNSE) are reviewed. Time domain split-step IIR method for 

solving the NSE is described, and some implementation examples are given in chapter 4. 

The proposed time-domain split-step IIR filtering approach for solving CNSE is 

described in chapter 5. The implementations of split-step IIR filtering approach for CNSE 

are validated through comparisons in chapter 6. In Chapter 7, final conclusions are 

summarized and future work is proposed. 

6 
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Chapter 2 

Polarization Mode Dispersion and Governing Equations 

2.1 PMD in Optical Fiber 

Single-mode fiber supports one fundamental mode, which consists of two 

orthogonal polarization modes, the fast mode and the slow mode, due to birefringence 

which is caused by internal or external stresses or by non-perfect circularity of the fiber 

core. Mechanical stress exerted on the fiber during cabling, installing, and splicing, as 

well as the imperfections arise in the manufacturing process, are the reason for the 

variations in the cylindrical geometry. The asymmetry of the fiber core introduces small 

refractive index difference for the two polarization states. Each polarization mode has its 

own propagation constant. Usually the state of polarization of an arbitrary optical field 

can be represented by the vector sum of the field components aligned with the two 

polarization modes. 

The difference in propagation constants is called birefringence strength, 

7 
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where 11/3 is birefringence strength; 

/3.,. is the propagation constant of the slow mode; 

fJ 1 is the propagation constant of the fast mode; 

11neff is the differential index of fraction; 

ns is the effective index of refraction of the slow mode and defined as - cfJ, . n,--, 
(J) 

cfJ 
n1 is the effective index of refraction of the fast mode and defined as n 1 = --1 ; 

(J) 

c is the speed of light, 3x108 m/ s. 

The degree of modal birefringence B is defined by 

B = IP,.- fJJI =I - I (2 2) k ns nf . 
0 

For a given value of B , the power between the two modes exchanges periodically as 

they propagate inside the fiber with the period Lbear defined by 

2TC A 
Lbeat = I I =- (2.3) 

fJs- fJJ B 

8 
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Lbear is generally referred to as the beat length. The axis along which the effective mode 

index is smaller is called fast axis as the group velocity is larger for light propagating in 

that direction. For the same reason, the axis with a larger mode index is called slow axis. 

v
8 

is defined as group velocity at which a particularly marked spot on a 

low-frequency envelope will be seen to move at 

v =(dOl) (2.4) 
g dfJ 

The different group velocities of the modes cause the optical pulse broadening. 

Therefore, they limit the bandwidth of the optical fiber communication system. The 

difference in the group delays between the fast and slow modes is 

~T = ld(!!.fJ)I = !!.neff _OJ dl!.neff (2.S) 
dw c c dw 

where 11 r is also called the differential group delay (DGD). 

Because birefringence exists, if input pulse excites both polarization components, it 

becomes broader at the fiber output side since the two components disperse along the 

fiber due to the DGD. This phenomenon is called Polarization Mode Dispersion (PMD). 

And the delay between the two components is called the DGD. DGD is the unit which is 

9 
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used to describe PMD. PMD can be categorized as first order PMD and second order 

PMD. The second order PMD is the result of the signal's wavelength dependence and 

pulse broadening. 

PMD can be ignored at low bit rate but becomes important as the bit rate continues 

to increase. PMD is a significant source of impairment for ultra-long-haul transmission at 

high bit rates. It becomes of considerable concern as the bit rate of each channel in 

system goes beyond lOGbps . The performance of long-haul 40Gbps systems would be 

limited by PMD, and the situation would become worse as the bit rate continues to 

increase [15][16]. 

2.2 Governing Equations 

Pulse propagation in optical fiber is governed by the well-known Nonlinear 

Schrodinger Equation (NSE). This equation is used to describe the slowly-varying 

envelope of the optical field. 

On the other hand, when fiber birefringence is not negligible, a single NSE is not 

sufficient for describing the behavior of pulse propagation in such fibers [17]. The 

birefringence in optical fiber leads to PMD which changes randomly over time and 

wavelength. Its effect is also polarization dependent, which makes the description of the 

pulse propagation rather complicated as polarization related statistics must be involved. 

As a result, the simulation of pulse propagation including the PMD effect must be 

computationally much more expensive as the fiber property virtually changes from 

10 
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section to section. A related problem with the conventional frequency domain split-step 

Fourier method is the drastic increase of the back and forth Fast Fourier Transform (FFT) 

with huge memory size and tremendous computation time involved. 

2.2.1 Nonlinear Schrodinger Equation 

From Maxwell's equations, we can obtain the wave equation that describes 

lightwave propagation in optical fibers. Starting from the wave equation, we can derive a 

basic equation that governs the propagation of slowly-varying envelope of the lightwave 

in nonlinear dispersive fibers, namely, the nonlinear Schrodinger equation (NSE) [18], 

where A 

a 

fJl 

flz 

fJ3 

r 

aA a- ()A i d2A 1 d3A . ~-~z
-+-A+/1-+-/1 ---fl. -=zyA A 
dz 2 1 dt 2 2 dt2 6 3 dt3 

denotes the envelope of the lightwave; 

denotes the fiber loss; 

denotes the wave propagation constant; 

denotes the fiber second-order dispersion; 

denotes the fiber third-order dispersion; 

denotes the fiber nonlinear parameter; 

i represents the imaginary unit. 

(2.6) 

11 
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When other effects, such as PMD effect, are considered, the basic NSE equation will 

be made some changes correspondingly. 

In equation (2.6), the dispersions higher than the third order are generally neglected. 

This simplification is consistent with the quasi-monochromatic assumption in the 

derivation from Maxwell's equations to NSE equation. Some transformations are further 

made to make this equation (2.6) more simple and clear. 

It is useful to use a reference moving with the pulse at the group velocity v g 

(retarded time) to eliminate /]1 from the real time, 

Then, the envelope is scaled to explicitly cancel out the homogenous loss to further 

simplify the governing equation, 

a 
--z 

A= Ae 2 (2.8) 

Finally the nonlinear Schrodinger equation (NSE) becomes: 

12 
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This equation is valid for pulse whose width is 2:: 0.1 ps ( ~w:::; 1013 s -I ). 

2.2.2 Coupled Nonlinear Schrodinger Equation 

When fiber birefringence becomes a major concern, the coupled nonlinear 

Schrodinger equations (CNSE) are the governing equations that describe pulse 

propagation in optical fiber [19]. In this thesis we select the form in which birefringence 

orientation varies randomly and the birefringence strength is fixed in each step. Later this 

will be described in detail. 

(2.10) 

Where UI'U 2 denotes the complex envelope of two polarization components of the 

optical field; 

T is the retarded time T = t - fJ1 z . This transformation is important in simulation 

because it allows one to view the signal propagate in a time window of limited duration; 

a denotes the fiber loss; 

13 
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-I 
m; 

b is the birefringence parameter which is defined as b = _!!_, and measured in 
Lbeat 

Lbeat is the beat length of the fiber given as Lbear = ~, and measured in m , 
!ln 

where A is the wavelength and !ln is typically 10-7
; 

b' is given by b' = DPMD 
1 

, and measured in ps/(km·m)~; 
2(2Lcorr )2 

DPMD denotes the polarization mode dispersion coefficient, and is measured in 

ps/(km)~; 

Lcorr is the fiber correlation length, and measured in m ; 

/32 is the second order dispersion; 

mn 
y is the fiber nonlinear parameter, given as y = ____Q__l_ where m0 , n2 , Aeff are the 

cAe.tr 

central frequency, nonlinear coefficient and effective mode area, respectively; y is 

measured in W-I/ km ; 

i represents the imaginary unit. 

Without losing generality, the dispersions higher than the second order are still 

neglected here. But one can easily modify equation (2.10) to incorporate other physical 

effects if necessary. 

The similar transformations are made to the equation (2.10) 

14 



Master Thesis - Hongjing Zhao McMaster - Electrical and Computer Engineering 

U1 = U1 exp(- ~ z) 
U 2 = U 2 exp(- ~ z) 

(2.11) 

to eliminate the loss term. The following simplified equations can be gotten 

(2.12) 

On the left hand side, the second term and third term represent the contributions from the 

fiber birefringence to the signal; if these terms are not zero, the signals undergo 

polarization mode dispersion. The parameter b and B are the birefringence parameter 

and birefringence orientation angle, respectively. It is important to note that both 

parameters are random. Virtually, it is reasonable to view the fiber as a linked segments 

whose length are small enough that their birefringence can be considered constant inside 

each segment [17]. Within each segment, the birefringence is deterministic, that is, 

changes only occur from section to section. Thus, random coupling between two 

polarization components occurs only between different fiber sections because of the 

random rotation of the principal axis. There are two specific physical models to capture 

this randomness. In the first model, the birefringence orientation varies randomly from 

15 
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section to section while the birefringence strength is fixed. In the second model, both the 

birefringence strength and orientation change randomly from section to section. The two 

components are assumed to be Gaussian random processes, statistically independent of 

each other [20]. It has been shown that both models will lead to identical result [21]. In 

this thesis, the first model will be selected for our simulation because it makes the 

treatment easier. 

The forth term takes into account the second order dispersion. The fifth term is 

referred to as nonlinearity effect with the loss term included. 

The very last term is the polarization mode coupling effect between the two 

components. The power exchange between the two polarizations mode are linked through 

this term. Mathematically, the coupling effect between them is linked through a transfer 

matrix. This matrix includes the rapid motion over the Poincare sphere which completely 

characterize the parameters underlying polarization mode dispersion within a given 

optical frequency range in the fiber. 

16 
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Chapter3 

Split-step FFT and FIR-DSP Methods 

3.1 Frequency Domain Split-step FFT Method 

The basic idea of split-step FFT method is to divide the fiber span into many steps. 

Within each step, the linear and nonlinear effects are pretended to act alternately. To 

understand how this method works, it is useful to rewrite nonlinear ScLrodinger equation 

(2.6) as 

a A at =(D+N)A (3.1) 

where D is the linear operator that accounts for dispersion and N is the nonlinear 

operator that governs the nonlinear effect. In particular, 

D=-i/32~+/33 L 
2 ar2 6 aT3 (3.2) 

N = iye-az IAI2 

17 
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In every small propagation step, these two operations are assumed to take effects 

alternately [18], then the dispersion and nonlinear effects can be treated independently. 

That is, the calculation is made up of two separated steps. The solution to equation (2.6) 

is given by [6], 

A(z+&,m) = HDF[ A( z,T)] (3.3) 

A( z+&,T) = exp(i&ye-az ~F-1 
[ A(z+ &,m) J)F-1 

[ A(z+ &,w)] (3.4) 

where F( ] and F-1 
[ ] denote the Fourier and inverse Fourier transform respectively, 

and the frequency domain transfer function in equation (3.3) is given by 

. I fJ , I , 

( ) 

1(- 2!J.zor--(:J3!J.zw ) 
HDW=e2 6 (3.5) 

Equation (3.3) to (3.5) is the core of the split-step Fourier algorithm. 

It is clear that the solution from split-step method converges to the exact solution of 

(2.6) as the step size decreases to 0. It is also known that the error introduced in each step 

is in the order of & 2
• Throughout this thesis, the results from frequency domain 

Split-step method are assumed to be the exact solutions to the NSE equation and are used 

as a basis for comparison with the results from our simulation and analysis. 

18 
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3.2 Time Domain Split-step FIR-DSP Method 

A general FIR digital filter approach is used to treat the linear propagation directly in 

time domain, which can keep a good balance between the computation efficiency and 

accuracy [11]. 

Firstly, a FIR filter is extracted. This makes all processes be treated in time domain 

without much sacrifice on the accuracy. A polynomial function is constructed 

M 

fi F (w) = LhkeiwAk (3.6) 
k=O 

where /::,. denotes the time domain sampling interval and h0 , h1 , h2 , ... hM are the 

coefficients of FIR filter, which need to be calculated by searching for the linear least 

square fit to the frequency domain transfer function H 0 (w). A standard merit function 

can be defined as 

Where w1, l = 1,2,3 ... , L are a frequency domain sampling set, which uniformly covers 

the entire interested frequency range Q determined by the spectrum of the input signal. 

19 
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Let d z 2 I dhk = 0, k = 0,1,2 ... M , which yields 

L L L L 

~) Leiwr!!. Leiwr!!. LHo(wl) 
1=1 1=1 1=1 ho 

1=1 

L L 

Leiwr!!. ~ Leiwr!!.HD(wl) 
(3.8) 1=1 = 1=1 

L L L hM L 

Leiwr!!.M Leiw1!!.(M+1) Leiw1!!.2M I eiwr!!.M H D (WI ) 

1=1 1=1 1=1 1=1 

By solving this linear equation (3.8), FIR coefficients h0 , h1 , • • ·, hM can be calculated. 

M should be selected as the smallest integer that makes the error z 2 smaller than a 

pre-given value. This can be easily done by looping Min an ascent order. 

Replacing (3.5) by (3.6) in (3.3) gives 

M 

A(z+&,m)= LhkeiwMF[A(z,T)] (3.9) 
k=O 

Convert equation (3.9) back to time domain 

M 

F-1[A(z + &,m)] = LhkA(z,T- kf).) (3.10) 
k=O 

Finally, equation (3.10) and (3.4) form the time domain split-step FIR filtering algorithm, 

where the linear propagation is evaluated through a digital FIR filter with length M + 1. 

20 
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3.3 Split-step FFT method for CNSE 

Similar to the way to solve the NSE, only this time the split-step Fourier method is 

applied to solve a pair of nonlinear Schrodinger equations. 

Still using the split-step Fourier method to separate the linear and the nonlinear 

operators, the coupled nonlinear Schrodinger equation (2.12) can be written as 

(3.11) 

where D is the linear operator, N 1 and N 2 are the nonlinear operators for two 

different polarization envelopes : 

. 1 a2 

D=-z-/1-
2 2 ar2 

(3.12) 

N, =iyexp(-<r<{r.l' -~(lu,l'- ~: u; J] 
N, = iyexp(- <r<{lu ,I' -~ (1u,1' - ~: u,' J] 

(3.13) 

The operators D, N 1 and N 2 , still take effects alternately over a small propagation 

21 
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distance ~z, and the dispersion and nonlinear effects can be considered independently. 

Thus, the computation still includes two steps: linear step and nonlinear step. 

3.3.1 Linear step 

In this step, only linear part takes effect while nonlinear part is not considered. 

CNSE can be expressed as, 

After Fourier transformation, equation (3.14) becomes: 

a~ =i«~cmfJ+U2 sin8)-iolf(~coffJ+U2 sin8)+D~ 

au2 = i«~ sin8-U2 coffJ)-iolf(~ sin8-Uz coffJ)+ DU2 
Oz 

(3.14) 

(3.15) 

- 1 2 where D = i- {J2w (3.16) is the dispersive operator in frequency domain. The solution 
2 

to equation (3.15) is: 

U1(z + &,w) = exp(D&)(m1P 1 (z,w)+ m12U2 (z,w)) 

U2 (z + &,w) = exp(D&)(m2P 1 (z,w)+ m22U2 (z,w)) 
(3.17) 
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where mij are the elements of 2-by-2 matrix transfer function m(z,m) which account 

for the random fiber birefringence effect. 

To calculate (3.17), subdivide each interval llz into smaller subinterval & , and in 

each subinterval 

where 

(3.18) 

m(1 = m~; = cos[(b- b' m )&]+ i cos(ejl )sin[(b- b' m )&] 

m/2 =m~1 =isin(Bj1 )sin[(b-b'm)&] 
(3.19) 

and e11 are constant in each subinterval but random from subinterval to subinterval. 

The total transfer matrix is expressed as: 

N 

IT exp(D&)· mj(m) (3.20) 
j=I 

where N is the number of subintervals. 

23 



Master Thesis - Hongjing Zhao McMaster - Electrical and Computer Engineering 

3.3.2 Nonlinear step 

In this step, only nonlinear part takes effect while linear part is not considered. 

CNSE can be expressed as: 

a~ -N.u 
- I I 

dz 
au2=NU a: 2 2 

(3.21) 

The nonlinear effect is added on as: 

U1 (z + &,T) = exp(&N1 )U1 (z + &,T) 

V2 (z + &,T) = exp(&NJD2 (z + 11z,T) 
(3.22) 

For each step Llz, these two steps are repeated until a given distance is reached. 

3.4 Split-step FIR-DSP method for CNSE 

The Split-step DSP method [11] is very successful to solve the NSE effectively. But 

this implementation only included fundamental physical effects, such as the second and 

third order dispersion and nonlinearity effects. A further extension incorporating the PMD 

effect has been developed and proven successfully too [12]. 

Here we will not give the detail how this time domain split-step FIR-DSP method 
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works to solve the CNSE. Just as mentioned in chapter 1, the key idea of this approach is 

to extract the FIR filter coefficients for all the possible transfer functions at the very 

beginning just once to establish a one-to-one mapping from the frequency domain 

transfer functions to the time domain filters, then to call the relevant time domain filter 

when the frequency domain transfer function is randomly selected in the propagation. 

Assuming that we have K split-steps, N subintervals for each split-step and L 

possible sample frequency domain transfer functions, the direct approach will have to 

perform K · N filter extractions since at each subinterval one of the L sample 

frequency domain transfer function will be used, whereas this time domain FIR filtering 

approach will need only L time domain filter extractions. In practice, we always have 

K · N >> L. Therefore, the direct approach is obviously wasteful as there must be some 

frequency domain transfer functions repeatedly extracted. This FIR-DSP approach, 

however, guarantees minimum number of extractions required to establish the mappings 

from the frequency domain transfer functions to the time domain filters. 
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Cbapter4 

Split-step IIR-DSP Method for NSE 

4.1 The Design of IIR Filter 

An IIR filter can be built as a rational function 

p 

Lakejkt.w 

HI ( w) = ~k=-=-o P--

I+ LbkejlD.w 
k=l 

(4.1) 

Giventhefactthat H 0 (w) isanall-passfilter, H 1 (w) shouldhavethesamenumberof 

zeros and poles symmetrically distributed in the complex z = eiw!!. plane. The numerator 

and the denominator of the rational function (4.1) therefore have the same order defined 

as p . The total length of the IIR filter is given as 2(p +I) accordingly. 

Replacing (3.5) by (4.I) in (3.3) gives 

p 

Lakejkt.w 

A(z + &,w) = k=oP F[A(z,T)] (4.2) 

I+ LbkejlD.w 
k=l 

By converting equation (4.2) back to time domain, we have 
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p 

LakejM.w 

A(z+&,w)= k=oP F[A(z,T)] (4.3) 
1+ Lbkejtf).w 

k=I 

Thus, equation (3.4) and (4.3) form the time domain split-step IIR filtering algorithm, 

where the linear propagation is evaluated through a digital IIR filter with length 2(p + 1). 

In this algorithm, not only the input values in the present and previous p steps 

[A(z,T- k~). k = 0,1,2, ... , p], but also the output values in the previous p steps 

[A(z+&,T-kd), k =1,2, ... ,p] will be used for the evaluation of the present output 

value [A(z + &,T)]. Comparing with the FIR filter with length M , for the same 

split-step size, this modified IIR filter algorithm saves both computation time and 

memory size as its length is reduced to 2(P + 1) < M. 

In order to improve the accuracy, a better strategy is to consider the nonlinear effect 

at the midpoint rather than at the end of each step. Actually the following modified 

algorithm is implemented 

p p 

Av2 (z + &/2,T) = IakA(z,T- kd)- LhkA(z,T- k~) 
k;Q k;J 

A;12 (z + &/2, T) = exp(L\zN)AI/2 (z + &/2, T) (4.4) 
p p 

A(z+&,T) = IakA;12 (z +&/2,T -k~)- LhkA;12 (z +&/2,T -kd) 
k;O k;J 

The coefficients ak and bk are extracted from half-step transfer function given by 
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. I 2 I 3 t(-fh&w --f:JJ&w ) 
HD(m)=e 4 12 (4.5) 

For & , the transfer function of the second order dispersion is 
2 

It can be modeled as a filter which has a unit amplitude and the following group delay 

Using IIR filter, it is easy to realize that the transfer function be exactly of unit amplitude 

throughout the Nyquist frequency domain OJE [-n/~,+1l'j~], where ~ is time domain 

sampling interval used in the simulation. It is sufficient that each pole p j of the transfer 

function in the Z -transform plane be matched by a zero at 1/ p j • 

For the linear group delay of second-order dispersion, we can use the following IIR 

filter to approximate it [ 4]: 

. 1 1 z- J- z--
H ( ) Pi Pr 

lin Z = PiPr 
z- }Pi z- Pr 

(4.8) 
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where z = eim!l, !1 is time domain sampling interval. pi and Pr are real numbers. 

They must be related as 

1=4pf~-pfh-p,? 
p,(1+ pn\1+ p,) 

(4.9) 

which can ensure the amplitude of Hun(z) equal to 1. Thus we just need to consider 

how to fit its phase from HD(m). 

This llR filter has such form of group delay: 

(4.10) 

Here the first term represents a frequency-independent amount of extra delay that has no 

importance. The second term is the desired linear group delay. The third term indicates 

that the error is on the order of eli or higher. The m2 term is absent because (4.9) 

ensures that it is cancelled out. 

By carefully selecting !1z and !1, we can make the linear parts of 'r
8 

and r Hli• 

equal, thus this llR filter will approximate our transfer function. 

The linear group delay of this llR filter is limited to _!_112m. This can be seen by 
2 

plotting the second term of (4.10) as a function of pi. If a larger value is needed, we can 
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either cascade more of these filters or reduce the amount of needed delay by shortening 

the spatial integration step size & [22]. 

To assess how well the filter performs, the following error function is defined as 

Its mean-square value c over the frequency range [- (n/2~).+(n/2~)] 

~ .c(n/2~) ( \,1 2 
c =- ( )1e m11 dm (4.12) 

7[ 7fj2~ 

which turns out to depend only on P;, not on ~'. c is fairly low over the whole range 

Pi = ±0.31. At approximately Pi = ±0.282, the error has two minima. Because we need 

to ensure Tg and T Hun equal, when /32 is negative, we select P; = -0.282, and the 

corresponding Pr = 0.1336. 

We plot the linear group delay implemented by the IIR filter versus idea linear group 

delay in Figure 4.1, and the phase in Figure 4.2. Here the following parameters are 

selected: /32 =-22ps2 /km, ~=0.390625ps, &/2=0.0062km. There is a good 

agreement between the desired linear group delay and the synthesized one, at least half 

the Nyquist frequency. 
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According to the description in the previous paragraphs, the computational 

complexity of this digital IIR filter is evaluated with a length 2(p + 1) = 4, far smaller 

than the length of FIR filter. In each step, for dispersion part we only need do 3 

multiplications and 2 additions, totally 5 operations. Though we have to reduce the step 

size to satisfy the requirement of this IIR filter design, this IIR filter is still much more 

efficient. 

4.2 Implementation 

4.2.1 Step Size Selection 

In the split-step frequency domain method, only error introduced by the 

split-step is needed to be considered, because there is no error introduced in 

frequency domain linear propagation. Obviously, this split-step error can be 

controlled through the selection of !!,.z, the step size along the propagation direction. 

By introducing the second order dispersion length LD2, the third order dispersion 

length LD3 and the nonlinear length LNL defined as 

L = T
02 

(4.17) 
D2 /3

2 

L = T~ (4.18) 
D3 /3

3 

L = l (4.19) 
NL ye-az p 
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with T0 indicating the input pulse width and P the peak power of the incident pulse. 

& must be selected as a fraction of the smallest of the above lengths. 

In this split-step digital filtering approach, however, additional error (X 2 in FIR 

and E in IIR) has been introduced in the extraction of the digital filter. Therefore, 

further constraint on the step size may exist and should be analyzed. Generally, it is 

impossible to obtain such a fit in the phase over the entire frequency range with only 

limited terms. Letting WP be the maximum range in phase in which the fitting error 

does not exceed E and by ignoring the third order dispersion term, we have 

Noting that the time domain sampling interval !J. must satisfy !J. = 1/W{L) with W{L) 

indicating the frequency domain window size (maximumm ), we obtain 

As W P is normally in the range of a few phase periods ( 2n ), we immediately find that 

the step size set by (4.21) is smaller than that given in (4.17) since!J.<<T0 • Similar 

analysis also applies when only 3rct order dispersion term is considered, where we have 
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Again, this step size (4.22) is smaller than that given in (4.18). Thus, in digital filter 

algorithm, the step size must be chosen as the smallest of those given in equations (4.21), 

(4.22) and (4.19). This drawback is naturally brought into by the extra error introduced in 

linear propagation as an additional fitting must be introduced in the digital filter approach. 

The shrinkage on the required step size solely depends on the fitting quality: when a 

better fitting is achieved, WP must be larger and the shrinkage will be smaller. As long 

as a fitting will make W P > (T~ I !13
) I 2 , there is no extra constraint on the step size so 

that we can select the same step size as in the split-step frequency domain method. 

However, an enlarged W P will inevitably lead to a lengthened filter that will again 

increase the computation cost. Therefore, there must be an optimized W P in terms of the 

computation cost, which compromises the selections on the filter length and the step size. 

In the digital filter algorithm, the accuracy is ensured by monitoring the conserved 

quantity in propagation, i.e., the pulse energy. Taking its maximum allowed quantity 

defined by equations (4.21), (4.22) and (4.19) as the initial value, the step size will 

automatically be reduced and the computation repeats if the variation of pulse energy is 

found to be beyond a predetermined small range. 

For the IIR filter design described in this Chapter, the selection of !1z must satisfy 

another requirement. For the second order dispersion IIR filter, ( 4. 7) must be equal to the 

linear term in ( 4.10), then we can get 
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(4.23) 

4.2.2 Validation of IIR Filter 

Here, we will use this split-step IIR filtering approach to simulate the pulse 

propagation in fiber. In this simulation, only the negative second-order dispersion in 
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Figure 4.3 Gaussian pulse output after 150 steps 
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standard single mode fiber (SMF) is considered: /32 = -22 ps 2 /km, /33 = 0 with 

operating wavelength positioned at the center of the C-hand ( 1555.12nm ). No fiber 

nonlinearity is assumed ( y = 0 ). 

To test the pulse propagation, a Gaussian input pulse is assumed with a width 

(T0 ) of 3.125ps. The time domain sampling interval is chosen as /), = 0.390625ps. 

To satisfy the requirement of this IIR filter design, we calculate to get 

& = 0.0062km. The results of pulse propagation are shown in figure 4.3, from 

which we can see the exact agreement between the two approaches. 
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Chapter 5 

Split-step IIR-DSPMethod for CNSE 

Compared with split-step FIR DSP approach for CNSE, split-step IIR filtering 

method uses IIR filter to replace the FIR filter to treat the linear propagation part, while 

the way to treat nonlinearity part stays the same. Because of this replacement, 

computation time and memory size will be saved greatly. 

The split-step IIR filtering algorithm in solving CNSE contains two main routines. 

In the first routine, we extract all the necessary filter coefficients for a given fiber. This 

routine only needs to be computed once for a given fiber. The second routine is to deal 

with each split-step. Assuming that we have K split-step, N subintervals for each 

split-step and L possible sample frequency domain transfer functions, a simple diagram 

is given in figure 5.1. 

In the first routine, the following steps will be taken to extract IIR filter coefficients: 

Step 1: A random code generator (RCG), defined by a Gaussian random process, will be 

called to generate L status. This set of status will be used to compute the random 

birefringence orientations. 
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Start 

Coefficients extraction of 4 X L IIR filters 

corresponding to L 2 X 2 matrices 

Set k = 1 

Set i = 1 

Perform a sub-step calculation 

i ++ 

No 

Perform nonlinear step calculation 

k++ 

No 

End 

Call Random Code 

Generator (RCG) to 

generate L status 

Figure 5.1 Diagram of time domain IIR filtering approach for CNSE 
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Step 2: Compute all 2x2 matrices exp(D&)·mpl=l,2,3, ... L, corresponding to the 

L status of ~ . 

Step 3: Corresponding to the four elements in each exp(D&)·m1(w) matrix, extract the 

four IIR filters. Obtain all L different 2 x 2 IIR filter matrices. Store them 

as A1 
, 1 = 1, 2, ... , L . 

In the second routine, we will perform each split-step. For each split-step & , we 

further divide it into N subsections with the same length. As described in Chapter 2, the 

birefringence orientation varies randomly from subsection to subsection while the 

birefringence strength is fixed. 8z = & and N = 500 is chosen, and it is enough to 
N 

cover the randomness of the birefringence. The time domain signal will pass through 

these N IIR filter matrices, which account for the random rotation of the birefringence 

effects and dispersion. 

For the i1
h subsection, 

U iii(T) = (-f II ij(i-I)&.(T-kd) _-fbi I iji&.(T-M)J + (".p 12ij(i-l)&.(T-kd) _ ..fbl2iji&(T-M)J 
I LJat,k I LJ l,k I LJat.k 2 LJ l,k 2 

k=O k=l k=O k=l 

iji&.(T) = (-f a21 u(i-I)&(T-M) _ ..f b21iji&.(T-M)J + (-f a22u(i-I)&.(T-M) _ ..f b22iji&(T-kd)) 
2 LJ l,k I LJ l,k I LJ l,k 2 LJ l,k 2 

k=O k=l k=O k=l 

(5.1) 

This operation is defined as 
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where 1 is a number from 1 to L randomly selected by a random code generator 

(RCG). 

For e" split-step & , we will perform the following two steps: linear step and 

nonlinear step. The diagram is shown in figure 5.2: 

Step 1: According to the RCG assigned number k1 (a number in the range from 1 to L ), 

pick 

as the first IIR filter matrix for the first subsection i = 1 and perform: 

Then according to the RCG assigned number k2, pick A1 = Ak2 as the second IIR filter 

matrix for subsection i = 2 and perform U 2& = ~2U&. Similarly, for each subsection 

from i = 3 to N -1 , pick IIR filter matrix according to the RCG assigned number, k3 

to k(N -1). Finally, get the RCG assigned number kN, pick A= AkN as the last IIR 
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filter matrix for the last subsection i = N and perform UN&= AwU(N-l)&. 

All together for eh split-step & , this process can be expressed as 

Step 2: we will deal with nonlinear part to complete eh split-step & , 

U1(z + !!..z,T)= exp(&N1)D1(z + &,T) 

U
2 
(z + &,T) = exp(&N

2
)D

2
(z + ~z,T) (S.4) 

To summarize, in a total split-step length & , input signal will firstly pass through 

N IIR filter matrices selected by randomly picking out one of the L pre-determined 

IIR filter matrices at each subsection liz, Then pass through the nonlinear part. Thus, we 

move one split-step & forward. Because we have total number of K & step, then 

we will perform the split-step procedure for K times. 
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Figure 5.2 Diagram for each split-step 
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Chapter 6 

Implementation of Split-step IIR filtering Approach for CNSE 

In this section, we will validate our algorithm through comparison between the 

traditional frequency domains split-step Fourier method and the time domain split-step 

IIR filtering method in optical pulse propagation when considering PMD effects. We will 

show that the simulation using the proposed IIR filtering method leads to precisely the 

same result as is obtained by conventional split-step Fourier approach. Five cases have 

been chosen to demonstrate the simulations results. All computations reported here were 

run without fiber loss and it will not affect the generality of our analyses. 

6.1 Wide Gaussian Input Pulse 

We selected the following parameters: /]2 = -21.6 ps 2 /km and /]3 = 0 with 

operating wavelength at the center of the C-hand (1555.12nm). Parameters b and b' 

are selected as b=0.20268m-1 and b'=6.708ps/(km·m)~, [17]. The birefringence 

orientation rotates randomly from section to section, but the birefringence strength is 

assumed to be constant. The input power is distributed as 50:50 for fast axis and slow 

axis. The step size is selected as Az = lkm . The time domain sampling interval is 

selected as ~ = 4.9238 ps , a Gaussian input pulse is assumed with a width T0 =50 ps. 
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Figure 6.1 Simulation results by split-step IIR filter method and FFT methods 
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The pulse propagation simulation results from split-step Fourier method and the 

split-step IIR method are showed in figure 6.1, where Ul and U2 are the outputs of 

fast axis and slow axis, respectively. These two approaches produce exactly the same 

results for the same assumed variation of the fiber birefringence. But we found that the 

shape of the distorted pulses is strongly dependent on the random number sequence used 

for computing the random variation of the birefringence orientation angles. This 

dependence corresponds physically to the observation that different fibers with different 

random variations of the birefringence will have somewhat different behaviors. To solve 

this problem, we can implement the simulation with all possible random number 

sequences, and then get the average results. 

6.2 Wide Gaussian Pulse Propagation in Fiber with Stronger PMD 

In the second simulation, we selected the following parameters: 

/32 =-21.6ps 2 /km and /33 =0, b=0.20268m-1 and b'=15.811ps/(km·m)~. In 

this test, the peak of the input pulse is again normalized to 1 and the input power is 

distributed as 50:50 for fast axis and slow axis. & = lkm is selected as the step size. 

Time domain sampling interval is selected as /)., = 4.9238 ps . Gaussian input pulse is 

assumed with a width T0 = 50 ps . 
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Figure 6.2 Simulation results by split-step IIR filter method and FFT methods 

The simulations results are shown in figure 6.2. This time we still get exact 

agreement between the results from these two different approaches. Compared with the 

simulation results in 6.1, we found that larger b', which means stronger PMD, can lead 

to more severe pulse distortion in propagation. 
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6.3 Wide Gaussian Pulse Propagation in Fiber with Smaller 

Birefringence 

In the third simulation, we selected the following parameters: /32 = -21.6 ps 2 /km 

and /33 =0, b=6.283lxl0-2 m-1 and b'=15.8llps/(km·m)~. Thepeakoftheinput 

pulse is again normalized to 1 and l:!.z = lkm is selected as the step size. Time domain 

sampling interval is selected as /j. = 4.9238ps. Gaussian input pulse is assumed with a 

width T0 = 50 ps . 
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Figure 6.3 Simulation results by split-step IIR filter method and FFf methods 
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Figure 6.3 still show exact agreement between the two approaches. Compared with 

the results in 6.2, we found that different b would not produce obvious difference on 

the shape of the output pulse. But smaller b , which means smaller birefringence, will 

make the power between the slow mode and fast mode exchange more slowly as they 

propagate in the fiber. 

6.4 Narrow Gaussian Input Pulse 

In the fourth simulation, we study a narrow Gaussian pulse with a width of 

T0 = 5 ps . The peak of the input pulse is again normalized to 1, and time domain 

sampling interval is selected as !). = 0.3482 ps . A smaller step size t1z = 0.005km is 

selected. We use the following parameters: /32 = -21.6 ps 2 /km and /33 = 0 , 

b=6.2831x10-2 m-1 and b'=15.811ps/(km·m)~. 

Figure 6.4 show the narrow Gaussian pulse propagation simulation results. With 

split-step IIR filtering method we still get the same result as the split-step FFf approach 

does. But we found that the output pulse is deformed more severely after only couple 

kilometers of propagation because PMD has a stronger effect on narrow Gaussian pulse. 
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6.5 Gaussian Pulse Propagation in Dispersion-Shifted Fiber 

In the fifth simulation, we study PMD effect on dispersion compensation. We 

simulated the pulse propagation in a fiber span which is made up of a l50km stretch of 

dispersion-shifted fiber with /32 = 2ps 2 /Jan , followed by a 15/an stretch of 

conventional fiber with /32 = -20 ps 2 /km. A birefringence average beat length of 50m 

is chosen, together with a PMD value of 3 psj ..{i;;;. The birefringence correlation length 

is assumed to be lOOm. In this test, the peak of the input pulse is again normalized to 1 

and !l.z = 1/an is selected as the step size in dispersion-shifted fiber, !l.z = 0.1/an in 

conventional fiber. Time domain sampling interval is selected as 11 = 1.4983 ps . 

Gaussian input pulse is assumed with a width T0 = 25 ps . 

Figure 6.5 show the pulse propagation simulation results from split-step Fourier 

method and the split-step IIR method. The output pulses calculated by different algorithm 

are still exactly identical. Figure 6.6 show the pulse propagation simulation results 

without PMD effect. By comparing figure 6.5 and 6.6, we can find that, due to PMD 

effect, pulse propagation cannot be well dispersion-compensated. 
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Chapter7 

Conclusions 

7.1 Conclusions 

In this thesis, a time domain split-step IIR filtering approach is proposed and 

implemented for the simulation of light pulse propagation in fiber with PMD effects 

considered. We reviewed the frequency domain split-step Fourier method and time 

domain FIR filtering method. We applied this time domain split-step IIR filtering 

approach to solve CNSE and several simulation examples are given. 

Using the conventional split-step FFf method as the benchmark, we have validated 

the proposed approach and found that this time domain split-step IIR filtering approach 

can achieve exact agreement. As a full time domain simulator in optical fiber 

communication systems, this approach has outstanding advantages: it can be fully 

realized in a data-flow fashion; it makes the noise treatment much easier; it makes the 

distributed and parallel computing possible; it meets causality requirement automatically 

since the output signal sample will depend on the past input signal sample only; it is 

computationally less complex and can save much more computation time and memory 

size than time domain FIR filtering method. 

In our simulation, each step l:!!z is divided into 500 subintervals. For each 
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subinterval, the computation complexity of split-step FIR filtering approach is 

o(M 2 )=0(5122 )=0(262144), while the computation complexity of split-step IIR 

filtering approach is only o((2(P + 1)Y )= 0(16). It is very obvious that this IIR approach 

is much less computationally complex than FIR approach. 

7.2 Future Works 

The proposed time domain split-step IIR filtering method has been studied only for 

the second order dispersion. The design of IIR filter for the third order dispersion still 

needs to be studied in the future work. 
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